AsmWriter.cpp revision 47c5188789bc40671504ed1fa3a44765cefba44f
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Operator.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/Dwarf.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/FormattedStream.h"
39#include <algorithm>
40#include <cctype>
41#include <map>
42using namespace llvm;
43
44// Make virtual table appear in this compilation unit.
45AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46
47//===----------------------------------------------------------------------===//
48// Helper Functions
49//===----------------------------------------------------------------------===//
50
51static const Module *getModuleFromVal(const Value *V) {
52  if (const Argument *MA = dyn_cast<Argument>(V))
53    return MA->getParent() ? MA->getParent()->getParent() : 0;
54
55  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
56    return BB->getParent() ? BB->getParent()->getParent() : 0;
57
58  if (const Instruction *I = dyn_cast<Instruction>(V)) {
59    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
60    return M ? M->getParent() : 0;
61  }
62
63  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
64    return GV->getParent();
65  if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
66    return NMD->getParent();
67  return 0;
68}
69
70// PrintEscapedString - Print each character of the specified string, escaping
71// it if it is not printable or if it is an escape char.
72static void PrintEscapedString(const StringRef &Name,
73                               raw_ostream &Out) {
74  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
75    unsigned char C = Name[i];
76    if (isprint(C) && C != '\\' && C != '"')
77      Out << C;
78    else
79      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
80  }
81}
82
83enum PrefixType {
84  GlobalPrefix,
85  LabelPrefix,
86  LocalPrefix,
87  NoPrefix
88};
89
90/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
91/// prefixed with % (if the string only contains simple characters) or is
92/// surrounded with ""'s (if it has special chars in it).  Print it out.
93static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
94                          PrefixType Prefix) {
95  assert(Name.data() && "Cannot get empty name!");
96  switch (Prefix) {
97  default: llvm_unreachable("Bad prefix!");
98  case NoPrefix: break;
99  case GlobalPrefix: OS << '@'; break;
100  case LabelPrefix:  break;
101  case LocalPrefix:  OS << '%'; break;
102  }
103
104  // Scan the name to see if it needs quotes first.
105  bool NeedsQuotes = isdigit(Name[0]);
106  if (!NeedsQuotes) {
107    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
108      char C = Name[i];
109      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
110        NeedsQuotes = true;
111        break;
112      }
113    }
114  }
115
116  // If we didn't need any quotes, just write out the name in one blast.
117  if (!NeedsQuotes) {
118    OS << Name;
119    return;
120  }
121
122  // Okay, we need quotes.  Output the quotes and escape any scary characters as
123  // needed.
124  OS << '"';
125  PrintEscapedString(Name, OS);
126  OS << '"';
127}
128
129/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
130/// prefixed with % (if the string only contains simple characters) or is
131/// surrounded with ""'s (if it has special chars in it).  Print it out.
132static void PrintLLVMName(raw_ostream &OS, const Value *V) {
133  PrintLLVMName(OS, V->getName(),
134                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
135}
136
137//===----------------------------------------------------------------------===//
138// TypePrinting Class: Type printing machinery
139//===----------------------------------------------------------------------===//
140
141static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
142  return *static_cast<DenseMap<const Type *, std::string>*>(M);
143}
144
145void TypePrinting::clear() {
146  getTypeNamesMap(TypeNames).clear();
147}
148
149bool TypePrinting::hasTypeName(const Type *Ty) const {
150  return getTypeNamesMap(TypeNames).count(Ty);
151}
152
153void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
154  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
155}
156
157
158TypePrinting::TypePrinting() {
159  TypeNames = new DenseMap<const Type *, std::string>();
160}
161
162TypePrinting::~TypePrinting() {
163  delete &getTypeNamesMap(TypeNames);
164}
165
166/// CalcTypeName - Write the specified type to the specified raw_ostream, making
167/// use of type names or up references to shorten the type name where possible.
168void TypePrinting::CalcTypeName(const Type *Ty,
169                                SmallVectorImpl<const Type *> &TypeStack,
170                                raw_ostream &OS, bool IgnoreTopLevelName) {
171  // Check to see if the type is named.
172  if (!IgnoreTopLevelName) {
173    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
174    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
175    if (I != TM.end()) {
176      OS << I->second;
177      return;
178    }
179  }
180
181  // Check to see if the Type is already on the stack...
182  unsigned Slot = 0, CurSize = TypeStack.size();
183  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
184
185  // This is another base case for the recursion.  In this case, we know
186  // that we have looped back to a type that we have previously visited.
187  // Generate the appropriate upreference to handle this.
188  if (Slot < CurSize) {
189    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
190    return;
191  }
192
193  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
194
195  switch (Ty->getTypeID()) {
196  case Type::VoidTyID:      OS << "void"; break;
197  case Type::FloatTyID:     OS << "float"; break;
198  case Type::DoubleTyID:    OS << "double"; break;
199  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
200  case Type::FP128TyID:     OS << "fp128"; break;
201  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
202  case Type::LabelTyID:     OS << "label"; break;
203  case Type::MetadataTyID:  OS << "metadata"; break;
204  case Type::IntegerTyID:
205    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
206    break;
207
208  case Type::FunctionTyID: {
209    const FunctionType *FTy = cast<FunctionType>(Ty);
210    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
211    OS << " (";
212    for (FunctionType::param_iterator I = FTy->param_begin(),
213         E = FTy->param_end(); I != E; ++I) {
214      if (I != FTy->param_begin())
215        OS << ", ";
216      CalcTypeName(*I, TypeStack, OS);
217    }
218    if (FTy->isVarArg()) {
219      if (FTy->getNumParams()) OS << ", ";
220      OS << "...";
221    }
222    OS << ')';
223    break;
224  }
225  case Type::StructTyID: {
226    const StructType *STy = cast<StructType>(Ty);
227    if (STy->isPacked())
228      OS << '<';
229    OS << "{ ";
230    for (StructType::element_iterator I = STy->element_begin(),
231         E = STy->element_end(); I != E; ++I) {
232      CalcTypeName(*I, TypeStack, OS);
233      if (next(I) != STy->element_end())
234        OS << ',';
235      OS << ' ';
236    }
237    OS << '}';
238    if (STy->isPacked())
239      OS << '>';
240    break;
241  }
242  case Type::UnionTyID: {
243    const UnionType *UTy = cast<UnionType>(Ty);
244    OS << "union { ";
245    for (StructType::element_iterator I = UTy->element_begin(),
246         E = UTy->element_end(); I != E; ++I) {
247      CalcTypeName(*I, TypeStack, OS);
248      if (next(I) != UTy->element_end())
249        OS << ',';
250      OS << ' ';
251    }
252    OS << '}';
253    break;
254  }
255  case Type::PointerTyID: {
256    const PointerType *PTy = cast<PointerType>(Ty);
257    CalcTypeName(PTy->getElementType(), TypeStack, OS);
258    if (unsigned AddressSpace = PTy->getAddressSpace())
259      OS << " addrspace(" << AddressSpace << ')';
260    OS << '*';
261    break;
262  }
263  case Type::ArrayTyID: {
264    const ArrayType *ATy = cast<ArrayType>(Ty);
265    OS << '[' << ATy->getNumElements() << " x ";
266    CalcTypeName(ATy->getElementType(), TypeStack, OS);
267    OS << ']';
268    break;
269  }
270  case Type::VectorTyID: {
271    const VectorType *PTy = cast<VectorType>(Ty);
272    OS << "<" << PTy->getNumElements() << " x ";
273    CalcTypeName(PTy->getElementType(), TypeStack, OS);
274    OS << '>';
275    break;
276  }
277  case Type::OpaqueTyID:
278    OS << "opaque";
279    break;
280  default:
281    OS << "<unrecognized-type>";
282    break;
283  }
284
285  TypeStack.pop_back();       // Remove self from stack.
286}
287
288/// printTypeInt - The internal guts of printing out a type that has a
289/// potentially named portion.
290///
291void TypePrinting::print(const Type *Ty, raw_ostream &OS,
292                         bool IgnoreTopLevelName) {
293  // Check to see if the type is named.
294  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
295  if (!IgnoreTopLevelName) {
296    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
297    if (I != TM.end()) {
298      OS << I->second;
299      return;
300    }
301  }
302
303  // Otherwise we have a type that has not been named but is a derived type.
304  // Carefully recurse the type hierarchy to print out any contained symbolic
305  // names.
306  SmallVector<const Type *, 16> TypeStack;
307  std::string TypeName;
308
309  raw_string_ostream TypeOS(TypeName);
310  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
311  OS << TypeOS.str();
312
313  // Cache type name for later use.
314  if (!IgnoreTopLevelName)
315    TM.insert(std::make_pair(Ty, TypeOS.str()));
316}
317
318namespace {
319  class TypeFinder {
320    // To avoid walking constant expressions multiple times and other IR
321    // objects, we keep several helper maps.
322    DenseSet<const Value*> VisitedConstants;
323    DenseSet<const Type*> VisitedTypes;
324
325    TypePrinting &TP;
326    std::vector<const Type*> &NumberedTypes;
327  public:
328    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
329      : TP(tp), NumberedTypes(numberedTypes) {}
330
331    void Run(const Module &M) {
332      // Get types from the type symbol table.  This gets opaque types referened
333      // only through derived named types.
334      const TypeSymbolTable &ST = M.getTypeSymbolTable();
335      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
336           TI != E; ++TI)
337        IncorporateType(TI->second);
338
339      // Get types from global variables.
340      for (Module::const_global_iterator I = M.global_begin(),
341           E = M.global_end(); I != E; ++I) {
342        IncorporateType(I->getType());
343        if (I->hasInitializer())
344          IncorporateValue(I->getInitializer());
345      }
346
347      // Get types from aliases.
348      for (Module::const_alias_iterator I = M.alias_begin(),
349           E = M.alias_end(); I != E; ++I) {
350        IncorporateType(I->getType());
351        IncorporateValue(I->getAliasee());
352      }
353
354      // Get types from functions.
355      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
356        IncorporateType(FI->getType());
357
358        for (Function::const_iterator BB = FI->begin(), E = FI->end();
359             BB != E;++BB)
360          for (BasicBlock::const_iterator II = BB->begin(),
361               E = BB->end(); II != E; ++II) {
362            const Instruction &I = *II;
363            // Incorporate the type of the instruction and all its operands.
364            IncorporateType(I.getType());
365            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
366                 OI != OE; ++OI)
367              IncorporateValue(*OI);
368          }
369      }
370    }
371
372  private:
373    void IncorporateType(const Type *Ty) {
374      // Check to see if we're already visited this type.
375      if (!VisitedTypes.insert(Ty).second)
376        return;
377
378      // If this is a structure or opaque type, add a name for the type.
379      if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
380            || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
381        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
382        NumberedTypes.push_back(Ty);
383      }
384
385      // Recursively walk all contained types.
386      for (Type::subtype_iterator I = Ty->subtype_begin(),
387           E = Ty->subtype_end(); I != E; ++I)
388        IncorporateType(*I);
389    }
390
391    /// IncorporateValue - This method is used to walk operand lists finding
392    /// types hiding in constant expressions and other operands that won't be
393    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
394    /// inst operands are all explicitly enumerated.
395    void IncorporateValue(const Value *V) {
396      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
397
398      // Already visited?
399      if (!VisitedConstants.insert(V).second)
400        return;
401
402      // Check this type.
403      IncorporateType(V->getType());
404
405      // Look in operands for types.
406      const Constant *C = cast<Constant>(V);
407      for (Constant::const_op_iterator I = C->op_begin(),
408           E = C->op_end(); I != E;++I)
409        IncorporateValue(*I);
410    }
411  };
412} // end anonymous namespace
413
414
415/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
416/// the specified module to the TypePrinter and all numbered types to it and the
417/// NumberedTypes table.
418static void AddModuleTypesToPrinter(TypePrinting &TP,
419                                    std::vector<const Type*> &NumberedTypes,
420                                    const Module *M) {
421  if (M == 0) return;
422
423  // If the module has a symbol table, take all global types and stuff their
424  // names into the TypeNames map.
425  const TypeSymbolTable &ST = M->getTypeSymbolTable();
426  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
427       TI != E; ++TI) {
428    const Type *Ty = cast<Type>(TI->second);
429
430    // As a heuristic, don't insert pointer to primitive types, because
431    // they are used too often to have a single useful name.
432    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
433      const Type *PETy = PTy->getElementType();
434      if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
435          !PETy->isOpaqueTy())
436        continue;
437    }
438
439    // Likewise don't insert primitives either.
440    if (Ty->isIntegerTy() || Ty->isPrimitiveType())
441      continue;
442
443    // Get the name as a string and insert it into TypeNames.
444    std::string NameStr;
445    raw_string_ostream NameROS(NameStr);
446    formatted_raw_ostream NameOS(NameROS);
447    PrintLLVMName(NameOS, TI->first, LocalPrefix);
448    NameOS.flush();
449    TP.addTypeName(Ty, NameStr);
450  }
451
452  // Walk the entire module to find references to unnamed structure and opaque
453  // types.  This is required for correctness by opaque types (because multiple
454  // uses of an unnamed opaque type needs to be referred to by the same ID) and
455  // it shrinks complex recursive structure types substantially in some cases.
456  TypeFinder(TP, NumberedTypes).Run(*M);
457}
458
459
460/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
461/// type, iff there is an entry in the modules symbol table for the specified
462/// type or one of it's component types.
463///
464void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
465  TypePrinting Printer;
466  std::vector<const Type*> NumberedTypes;
467  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
468  Printer.print(Ty, OS);
469}
470
471//===----------------------------------------------------------------------===//
472// SlotTracker Class: Enumerate slot numbers for unnamed values
473//===----------------------------------------------------------------------===//
474
475namespace {
476
477/// This class provides computation of slot numbers for LLVM Assembly writing.
478///
479class SlotTracker {
480public:
481  /// ValueMap - A mapping of Values to slot numbers.
482  typedef DenseMap<const Value*, unsigned> ValueMap;
483
484private:
485  /// TheModule - The module for which we are holding slot numbers.
486  const Module* TheModule;
487
488  /// TheFunction - The function for which we are holding slot numbers.
489  const Function* TheFunction;
490  bool FunctionProcessed;
491
492  /// mMap - The TypePlanes map for the module level data.
493  ValueMap mMap;
494  unsigned mNext;
495
496  /// fMap - The TypePlanes map for the function level data.
497  ValueMap fMap;
498  unsigned fNext;
499
500  /// mdnMap - Map for MDNodes.
501  DenseMap<const MDNode*, unsigned> mdnMap;
502  unsigned mdnNext;
503public:
504  /// Construct from a module
505  explicit SlotTracker(const Module *M);
506  /// Construct from a function, starting out in incorp state.
507  explicit SlotTracker(const Function *F);
508
509  /// Return the slot number of the specified value in it's type
510  /// plane.  If something is not in the SlotTracker, return -1.
511  int getLocalSlot(const Value *V);
512  int getGlobalSlot(const GlobalValue *V);
513  int getMetadataSlot(const MDNode *N);
514
515  /// If you'd like to deal with a function instead of just a module, use
516  /// this method to get its data into the SlotTracker.
517  void incorporateFunction(const Function *F) {
518    TheFunction = F;
519    FunctionProcessed = false;
520  }
521
522  /// After calling incorporateFunction, use this method to remove the
523  /// most recently incorporated function from the SlotTracker. This
524  /// will reset the state of the machine back to just the module contents.
525  void purgeFunction();
526
527  /// MDNode map iterators.
528  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
529  mdn_iterator mdn_begin() { return mdnMap.begin(); }
530  mdn_iterator mdn_end() { return mdnMap.end(); }
531  unsigned mdn_size() const { return mdnMap.size(); }
532  bool mdn_empty() const { return mdnMap.empty(); }
533
534  /// This function does the actual initialization.
535  inline void initialize();
536
537  // Implementation Details
538private:
539  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
540  void CreateModuleSlot(const GlobalValue *V);
541
542  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
543  void CreateMetadataSlot(const MDNode *N);
544
545  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
546  void CreateFunctionSlot(const Value *V);
547
548  /// Add all of the module level global variables (and their initializers)
549  /// and function declarations, but not the contents of those functions.
550  void processModule();
551
552  /// Add all of the functions arguments, basic blocks, and instructions.
553  void processFunction();
554
555  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
556  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
557};
558
559}  // end anonymous namespace
560
561
562static SlotTracker *createSlotTracker(const Value *V) {
563  if (const Argument *FA = dyn_cast<Argument>(V))
564    return new SlotTracker(FA->getParent());
565
566  if (const Instruction *I = dyn_cast<Instruction>(V))
567    return new SlotTracker(I->getParent()->getParent());
568
569  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
570    return new SlotTracker(BB->getParent());
571
572  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
573    return new SlotTracker(GV->getParent());
574
575  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
576    return new SlotTracker(GA->getParent());
577
578  if (const Function *Func = dyn_cast<Function>(V))
579    return new SlotTracker(Func);
580
581  if (isa<MDNode>(V))
582    return new SlotTracker((Function *)0);
583
584  return 0;
585}
586
587#if 0
588#define ST_DEBUG(X) dbgs() << X
589#else
590#define ST_DEBUG(X)
591#endif
592
593// Module level constructor. Causes the contents of the Module (sans functions)
594// to be added to the slot table.
595SlotTracker::SlotTracker(const Module *M)
596  : TheModule(M), TheFunction(0), FunctionProcessed(false),
597    mNext(0), fNext(0),  mdnNext(0) {
598}
599
600// Function level constructor. Causes the contents of the Module and the one
601// function provided to be added to the slot table.
602SlotTracker::SlotTracker(const Function *F)
603  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
604    mNext(0), fNext(0), mdnNext(0) {
605}
606
607inline void SlotTracker::initialize() {
608  if (TheModule) {
609    processModule();
610    TheModule = 0; ///< Prevent re-processing next time we're called.
611  }
612
613  if (TheFunction && !FunctionProcessed)
614    processFunction();
615}
616
617// Iterate through all the global variables, functions, and global
618// variable initializers and create slots for them.
619void SlotTracker::processModule() {
620  ST_DEBUG("begin processModule!\n");
621
622  // Add all of the unnamed global variables to the value table.
623  for (Module::const_global_iterator I = TheModule->global_begin(),
624         E = TheModule->global_end(); I != E; ++I) {
625    if (!I->hasName())
626      CreateModuleSlot(I);
627  }
628
629  // Add metadata used by named metadata.
630  for (Module::const_named_metadata_iterator
631         I = TheModule->named_metadata_begin(),
632         E = TheModule->named_metadata_end(); I != E; ++I) {
633    const NamedMDNode *NMD = I;
634    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
635      if (MDNode *MD = NMD->getOperand(i))
636        CreateMetadataSlot(MD);
637    }
638  }
639
640  // Add all the unnamed functions to the table.
641  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
642       I != E; ++I)
643    if (!I->hasName())
644      CreateModuleSlot(I);
645
646  ST_DEBUG("end processModule!\n");
647}
648
649// Process the arguments, basic blocks, and instructions  of a function.
650void SlotTracker::processFunction() {
651  ST_DEBUG("begin processFunction!\n");
652  fNext = 0;
653
654  // Add all the function arguments with no names.
655  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
656      AE = TheFunction->arg_end(); AI != AE; ++AI)
657    if (!AI->hasName())
658      CreateFunctionSlot(AI);
659
660  ST_DEBUG("Inserting Instructions:\n");
661
662  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
663
664  // Add all of the basic blocks and instructions with no names.
665  for (Function::const_iterator BB = TheFunction->begin(),
666       E = TheFunction->end(); BB != E; ++BB) {
667    if (!BB->hasName())
668      CreateFunctionSlot(BB);
669
670    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
671         ++I) {
672      if (!I->getType()->isVoidTy() && !I->hasName())
673        CreateFunctionSlot(I);
674
675      // Intrinsics can directly use metadata.
676      if (isa<IntrinsicInst>(I))
677        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
678          if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
679            CreateMetadataSlot(N);
680
681      // Process metadata attached with this instruction.
682      I->getAllMetadata(MDForInst);
683      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
684        CreateMetadataSlot(MDForInst[i].second);
685      MDForInst.clear();
686    }
687  }
688
689  FunctionProcessed = true;
690
691  ST_DEBUG("end processFunction!\n");
692}
693
694/// Clean up after incorporating a function. This is the only way to get out of
695/// the function incorporation state that affects get*Slot/Create*Slot. Function
696/// incorporation state is indicated by TheFunction != 0.
697void SlotTracker::purgeFunction() {
698  ST_DEBUG("begin purgeFunction!\n");
699  fMap.clear(); // Simply discard the function level map
700  TheFunction = 0;
701  FunctionProcessed = false;
702  ST_DEBUG("end purgeFunction!\n");
703}
704
705/// getGlobalSlot - Get the slot number of a global value.
706int SlotTracker::getGlobalSlot(const GlobalValue *V) {
707  // Check for uninitialized state and do lazy initialization.
708  initialize();
709
710  // Find the type plane in the module map
711  ValueMap::iterator MI = mMap.find(V);
712  return MI == mMap.end() ? -1 : (int)MI->second;
713}
714
715/// getMetadataSlot - Get the slot number of a MDNode.
716int SlotTracker::getMetadataSlot(const MDNode *N) {
717  // Check for uninitialized state and do lazy initialization.
718  initialize();
719
720  // Find the type plane in the module map
721  mdn_iterator MI = mdnMap.find(N);
722  return MI == mdnMap.end() ? -1 : (int)MI->second;
723}
724
725
726/// getLocalSlot - Get the slot number for a value that is local to a function.
727int SlotTracker::getLocalSlot(const Value *V) {
728  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
729
730  // Check for uninitialized state and do lazy initialization.
731  initialize();
732
733  ValueMap::iterator FI = fMap.find(V);
734  return FI == fMap.end() ? -1 : (int)FI->second;
735}
736
737
738/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
739void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
740  assert(V && "Can't insert a null Value into SlotTracker!");
741  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
742  assert(!V->hasName() && "Doesn't need a slot!");
743
744  unsigned DestSlot = mNext++;
745  mMap[V] = DestSlot;
746
747  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
748           DestSlot << " [");
749  // G = Global, F = Function, A = Alias, o = other
750  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
751            (isa<Function>(V) ? 'F' :
752             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
753}
754
755/// CreateSlot - Create a new slot for the specified value if it has no name.
756void SlotTracker::CreateFunctionSlot(const Value *V) {
757  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
758
759  unsigned DestSlot = fNext++;
760  fMap[V] = DestSlot;
761
762  // G = Global, F = Function, o = other
763  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
764           DestSlot << " [o]\n");
765}
766
767/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
768void SlotTracker::CreateMetadataSlot(const MDNode *N) {
769  assert(N && "Can't insert a null Value into SlotTracker!");
770
771  // Don't insert if N is a function-local metadata, these are always printed
772  // inline.
773  if (N->isFunctionLocal())
774    return;
775
776  mdn_iterator I = mdnMap.find(N);
777  if (I != mdnMap.end())
778    return;
779
780  unsigned DestSlot = mdnNext++;
781  mdnMap[N] = DestSlot;
782
783  // Recursively add any MDNodes referenced by operands.
784  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
785    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
786      CreateMetadataSlot(Op);
787}
788
789//===----------------------------------------------------------------------===//
790// AsmWriter Implementation
791//===----------------------------------------------------------------------===//
792
793static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
794                                   TypePrinting *TypePrinter,
795                                   SlotTracker *Machine);
796
797
798
799static const char *getPredicateText(unsigned predicate) {
800  const char * pred = "unknown";
801  switch (predicate) {
802  case FCmpInst::FCMP_FALSE: pred = "false"; break;
803  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
804  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
805  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
806  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
807  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
808  case FCmpInst::FCMP_ONE:   pred = "one"; break;
809  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
810  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
811  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
812  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
813  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
814  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
815  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
816  case FCmpInst::FCMP_UNE:   pred = "une"; break;
817  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
818  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
819  case ICmpInst::ICMP_NE:    pred = "ne"; break;
820  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
821  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
822  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
823  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
824  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
825  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
826  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
827  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
828  }
829  return pred;
830}
831
832
833static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
834  if (const OverflowingBinaryOperator *OBO =
835        dyn_cast<OverflowingBinaryOperator>(U)) {
836    if (OBO->hasNoUnsignedWrap())
837      Out << " nuw";
838    if (OBO->hasNoSignedWrap())
839      Out << " nsw";
840  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
841    if (Div->isExact())
842      Out << " exact";
843  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
844    if (GEP->isInBounds())
845      Out << " inbounds";
846  }
847}
848
849static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
850                             TypePrinting &TypePrinter, SlotTracker *Machine) {
851  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
852    if (CI->getType()->isIntegerTy(1)) {
853      Out << (CI->getZExtValue() ? "true" : "false");
854      return;
855    }
856    Out << CI->getValue();
857    return;
858  }
859
860  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
861    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
862        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
863      // We would like to output the FP constant value in exponential notation,
864      // but we cannot do this if doing so will lose precision.  Check here to
865      // make sure that we only output it in exponential format if we can parse
866      // the value back and get the same value.
867      //
868      bool ignored;
869      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
870      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
871                              CFP->getValueAPF().convertToFloat();
872      SmallString<128> StrVal;
873      raw_svector_ostream(StrVal) << Val;
874
875      // Check to make sure that the stringized number is not some string like
876      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
877      // that the string matches the "[-+]?[0-9]" regex.
878      //
879      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
880          ((StrVal[0] == '-' || StrVal[0] == '+') &&
881           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
882        // Reparse stringized version!
883        if (atof(StrVal.c_str()) == Val) {
884          Out << StrVal.str();
885          return;
886        }
887      }
888      // Otherwise we could not reparse it to exactly the same value, so we must
889      // output the string in hexadecimal format!  Note that loading and storing
890      // floating point types changes the bits of NaNs on some hosts, notably
891      // x86, so we must not use these types.
892      assert(sizeof(double) == sizeof(uint64_t) &&
893             "assuming that double is 64 bits!");
894      char Buffer[40];
895      APFloat apf = CFP->getValueAPF();
896      // Floats are represented in ASCII IR as double, convert.
897      if (!isDouble)
898        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
899                          &ignored);
900      Out << "0x" <<
901              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
902                            Buffer+40);
903      return;
904    }
905
906    // Some form of long double.  These appear as a magic letter identifying
907    // the type, then a fixed number of hex digits.
908    Out << "0x";
909    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
910      Out << 'K';
911      // api needed to prevent premature destruction
912      APInt api = CFP->getValueAPF().bitcastToAPInt();
913      const uint64_t* p = api.getRawData();
914      uint64_t word = p[1];
915      int shiftcount=12;
916      int width = api.getBitWidth();
917      for (int j=0; j<width; j+=4, shiftcount-=4) {
918        unsigned int nibble = (word>>shiftcount) & 15;
919        if (nibble < 10)
920          Out << (unsigned char)(nibble + '0');
921        else
922          Out << (unsigned char)(nibble - 10 + 'A');
923        if (shiftcount == 0 && j+4 < width) {
924          word = *p;
925          shiftcount = 64;
926          if (width-j-4 < 64)
927            shiftcount = width-j-4;
928        }
929      }
930      return;
931    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
932      Out << 'L';
933    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
934      Out << 'M';
935    else
936      llvm_unreachable("Unsupported floating point type");
937    // api needed to prevent premature destruction
938    APInt api = CFP->getValueAPF().bitcastToAPInt();
939    const uint64_t* p = api.getRawData();
940    uint64_t word = *p;
941    int shiftcount=60;
942    int width = api.getBitWidth();
943    for (int j=0; j<width; j+=4, shiftcount-=4) {
944      unsigned int nibble = (word>>shiftcount) & 15;
945      if (nibble < 10)
946        Out << (unsigned char)(nibble + '0');
947      else
948        Out << (unsigned char)(nibble - 10 + 'A');
949      if (shiftcount == 0 && j+4 < width) {
950        word = *(++p);
951        shiftcount = 64;
952        if (width-j-4 < 64)
953          shiftcount = width-j-4;
954      }
955    }
956    return;
957  }
958
959  if (isa<ConstantAggregateZero>(CV)) {
960    Out << "zeroinitializer";
961    return;
962  }
963
964  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
965    Out << "blockaddress(";
966    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
967    Out << ", ";
968    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
969    Out << ")";
970    return;
971  }
972
973  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
974    // As a special case, print the array as a string if it is an array of
975    // i8 with ConstantInt values.
976    //
977    const Type *ETy = CA->getType()->getElementType();
978    if (CA->isString()) {
979      Out << "c\"";
980      PrintEscapedString(CA->getAsString(), Out);
981      Out << '"';
982    } else {                // Cannot output in string format...
983      Out << '[';
984      if (CA->getNumOperands()) {
985        TypePrinter.print(ETy, Out);
986        Out << ' ';
987        WriteAsOperandInternal(Out, CA->getOperand(0),
988                               &TypePrinter, Machine);
989        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
990          Out << ", ";
991          TypePrinter.print(ETy, Out);
992          Out << ' ';
993          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
994        }
995      }
996      Out << ']';
997    }
998    return;
999  }
1000
1001  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1002    if (CS->getType()->isPacked())
1003      Out << '<';
1004    Out << '{';
1005    unsigned N = CS->getNumOperands();
1006    if (N) {
1007      Out << ' ';
1008      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1009      Out << ' ';
1010
1011      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1012
1013      for (unsigned i = 1; i < N; i++) {
1014        Out << ", ";
1015        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1016        Out << ' ';
1017
1018        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1019      }
1020      Out << ' ';
1021    }
1022
1023    Out << '}';
1024    if (CS->getType()->isPacked())
1025      Out << '>';
1026    return;
1027  }
1028
1029  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1030    const Type *ETy = CP->getType()->getElementType();
1031    assert(CP->getNumOperands() > 0 &&
1032           "Number of operands for a PackedConst must be > 0");
1033    Out << '<';
1034    TypePrinter.print(ETy, Out);
1035    Out << ' ';
1036    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1037    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1038      Out << ", ";
1039      TypePrinter.print(ETy, Out);
1040      Out << ' ';
1041      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1042    }
1043    Out << '>';
1044    return;
1045  }
1046
1047  if (isa<ConstantPointerNull>(CV)) {
1048    Out << "null";
1049    return;
1050  }
1051
1052  if (isa<UndefValue>(CV)) {
1053    Out << "undef";
1054    return;
1055  }
1056
1057  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1058    Out << "!" << Machine->getMetadataSlot(Node);
1059    return;
1060  }
1061
1062  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1063    Out << CE->getOpcodeName();
1064    WriteOptimizationInfo(Out, CE);
1065    if (CE->isCompare())
1066      Out << ' ' << getPredicateText(CE->getPredicate());
1067    Out << " (";
1068
1069    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1070      TypePrinter.print((*OI)->getType(), Out);
1071      Out << ' ';
1072      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1073      if (OI+1 != CE->op_end())
1074        Out << ", ";
1075    }
1076
1077    if (CE->hasIndices()) {
1078      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1079      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1080        Out << ", " << Indices[i];
1081    }
1082
1083    if (CE->isCast()) {
1084      Out << " to ";
1085      TypePrinter.print(CE->getType(), Out);
1086    }
1087
1088    Out << ')';
1089    return;
1090  }
1091
1092  Out << "<placeholder or erroneous Constant>";
1093}
1094
1095static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1096                                    TypePrinting *TypePrinter,
1097                                    SlotTracker *Machine) {
1098  Out << "!{";
1099  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1100    const Value *V = Node->getOperand(mi);
1101    if (V == 0)
1102      Out << "null";
1103    else {
1104      TypePrinter->print(V->getType(), Out);
1105      Out << ' ';
1106      WriteAsOperandInternal(Out, Node->getOperand(mi),
1107                             TypePrinter, Machine);
1108    }
1109    if (mi + 1 != me)
1110      Out << ", ";
1111  }
1112
1113  Out << "}";
1114}
1115
1116
1117/// WriteAsOperand - Write the name of the specified value out to the specified
1118/// ostream.  This can be useful when you just want to print int %reg126, not
1119/// the whole instruction that generated it.
1120///
1121static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1122                                   TypePrinting *TypePrinter,
1123                                   SlotTracker *Machine) {
1124  if (V->hasName()) {
1125    PrintLLVMName(Out, V);
1126    return;
1127  }
1128
1129  const Constant *CV = dyn_cast<Constant>(V);
1130  if (CV && !isa<GlobalValue>(CV)) {
1131    assert(TypePrinter && "Constants require TypePrinting!");
1132    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1133    return;
1134  }
1135
1136  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1137    Out << "asm ";
1138    if (IA->hasSideEffects())
1139      Out << "sideeffect ";
1140    if (IA->isAlignStack())
1141      Out << "alignstack ";
1142    Out << '"';
1143    PrintEscapedString(IA->getAsmString(), Out);
1144    Out << "\", \"";
1145    PrintEscapedString(IA->getConstraintString(), Out);
1146    Out << '"';
1147    return;
1148  }
1149
1150  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1151    if (N->isFunctionLocal()) {
1152      // Print metadata inline, not via slot reference number.
1153      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine);
1154      return;
1155    }
1156
1157    if (!Machine)
1158      Machine = createSlotTracker(V);
1159    Out << '!' << Machine->getMetadataSlot(N);
1160    return;
1161  }
1162
1163  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1164    Out << "!\"";
1165    PrintEscapedString(MDS->getString(), Out);
1166    Out << '"';
1167    return;
1168  }
1169
1170  if (V->getValueID() == Value::PseudoSourceValueVal ||
1171      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1172    V->print(Out);
1173    return;
1174  }
1175
1176  char Prefix = '%';
1177  int Slot;
1178  if (Machine) {
1179    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1180      Slot = Machine->getGlobalSlot(GV);
1181      Prefix = '@';
1182    } else {
1183      Slot = Machine->getLocalSlot(V);
1184    }
1185  } else {
1186    Machine = createSlotTracker(V);
1187    if (Machine) {
1188      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1189        Slot = Machine->getGlobalSlot(GV);
1190        Prefix = '@';
1191      } else {
1192        Slot = Machine->getLocalSlot(V);
1193      }
1194      delete Machine;
1195    } else {
1196      Slot = -1;
1197    }
1198  }
1199
1200  if (Slot != -1)
1201    Out << Prefix << Slot;
1202  else
1203    Out << "<badref>";
1204}
1205
1206void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1207                          bool PrintType, const Module *Context) {
1208
1209  // Fast path: Don't construct and populate a TypePrinting object if we
1210  // won't be needing any types printed.
1211  if (!PrintType &&
1212      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1213    WriteAsOperandInternal(Out, V, 0, 0);
1214    return;
1215  }
1216
1217  if (Context == 0) Context = getModuleFromVal(V);
1218
1219  TypePrinting TypePrinter;
1220  std::vector<const Type*> NumberedTypes;
1221  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1222  if (PrintType) {
1223    TypePrinter.print(V->getType(), Out);
1224    Out << ' ';
1225  }
1226
1227  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1228}
1229
1230namespace {
1231
1232class AssemblyWriter {
1233  formatted_raw_ostream &Out;
1234  SlotTracker &Machine;
1235  const Module *TheModule;
1236  TypePrinting TypePrinter;
1237  AssemblyAnnotationWriter *AnnotationWriter;
1238  std::vector<const Type*> NumberedTypes;
1239  SmallVector<StringRef, 8> MDNames;
1240
1241public:
1242  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1243                        const Module *M,
1244                        AssemblyAnnotationWriter *AAW)
1245    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1246    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1247    if (M)
1248      M->getMDKindNames(MDNames);
1249  }
1250
1251  void printMDNodeBody(const MDNode *MD);
1252  void printNamedMDNode(const NamedMDNode *NMD);
1253
1254  void printModule(const Module *M);
1255
1256  void writeOperand(const Value *Op, bool PrintType);
1257  void writeParamOperand(const Value *Operand, Attributes Attrs);
1258
1259  void writeAllMDNodes();
1260
1261  void printTypeSymbolTable(const TypeSymbolTable &ST);
1262  void printGlobal(const GlobalVariable *GV);
1263  void printAlias(const GlobalAlias *GV);
1264  void printFunction(const Function *F);
1265  void printArgument(const Argument *FA, Attributes Attrs);
1266  void printBasicBlock(const BasicBlock *BB);
1267  void printInstruction(const Instruction &I);
1268
1269private:
1270  // printInfoComment - Print a little comment after the instruction indicating
1271  // which slot it occupies.
1272  void printInfoComment(const Value &V);
1273};
1274}  // end of anonymous namespace
1275
1276void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1277  if (Operand == 0) {
1278    Out << "<null operand!>";
1279    return;
1280  }
1281  if (PrintType) {
1282    TypePrinter.print(Operand->getType(), Out);
1283    Out << ' ';
1284  }
1285  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1286}
1287
1288void AssemblyWriter::writeParamOperand(const Value *Operand,
1289                                       Attributes Attrs) {
1290  if (Operand == 0) {
1291    Out << "<null operand!>";
1292    return;
1293  }
1294
1295  // Print the type
1296  TypePrinter.print(Operand->getType(), Out);
1297  // Print parameter attributes list
1298  if (Attrs != Attribute::None)
1299    Out << ' ' << Attribute::getAsString(Attrs);
1300  Out << ' ';
1301  // Print the operand
1302  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1303}
1304
1305void AssemblyWriter::printModule(const Module *M) {
1306  if (!M->getModuleIdentifier().empty() &&
1307      // Don't print the ID if it will start a new line (which would
1308      // require a comment char before it).
1309      M->getModuleIdentifier().find('\n') == std::string::npos)
1310    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1311
1312  if (!M->getDataLayout().empty())
1313    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1314  if (!M->getTargetTriple().empty())
1315    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1316
1317  if (!M->getModuleInlineAsm().empty()) {
1318    // Split the string into lines, to make it easier to read the .ll file.
1319    std::string Asm = M->getModuleInlineAsm();
1320    size_t CurPos = 0;
1321    size_t NewLine = Asm.find_first_of('\n', CurPos);
1322    Out << '\n';
1323    while (NewLine != std::string::npos) {
1324      // We found a newline, print the portion of the asm string from the
1325      // last newline up to this newline.
1326      Out << "module asm \"";
1327      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1328                         Out);
1329      Out << "\"\n";
1330      CurPos = NewLine+1;
1331      NewLine = Asm.find_first_of('\n', CurPos);
1332    }
1333    Out << "module asm \"";
1334    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1335    Out << "\"\n";
1336  }
1337
1338  // Loop over the dependent libraries and emit them.
1339  Module::lib_iterator LI = M->lib_begin();
1340  Module::lib_iterator LE = M->lib_end();
1341  if (LI != LE) {
1342    Out << '\n';
1343    Out << "deplibs = [ ";
1344    while (LI != LE) {
1345      Out << '"' << *LI << '"';
1346      ++LI;
1347      if (LI != LE)
1348        Out << ", ";
1349    }
1350    Out << " ]";
1351  }
1352
1353  // Loop over the symbol table, emitting all id'd types.
1354  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1355  printTypeSymbolTable(M->getTypeSymbolTable());
1356
1357  // Output all globals.
1358  if (!M->global_empty()) Out << '\n';
1359  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1360       I != E; ++I)
1361    printGlobal(I);
1362
1363  // Output all aliases.
1364  if (!M->alias_empty()) Out << "\n";
1365  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1366       I != E; ++I)
1367    printAlias(I);
1368
1369  // Output all of the functions.
1370  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1371    printFunction(I);
1372
1373  // Output named metadata.
1374  if (!M->named_metadata_empty()) Out << '\n';
1375
1376  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1377       E = M->named_metadata_end(); I != E; ++I)
1378    printNamedMDNode(I);
1379
1380  // Output metadata.
1381  if (!Machine.mdn_empty()) {
1382    Out << '\n';
1383    writeAllMDNodes();
1384  }
1385}
1386
1387void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1388  Out << "!" << NMD->getName() << " = !{";
1389  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1390    if (i) Out << ", ";
1391    if (MDNode *MD = NMD->getOperand(i))
1392      Out << '!' << Machine.getMetadataSlot(MD);
1393    else
1394      Out << "null";
1395  }
1396  Out << "}\n";
1397}
1398
1399
1400static void PrintLinkage(GlobalValue::LinkageTypes LT,
1401                         formatted_raw_ostream &Out) {
1402  switch (LT) {
1403  case GlobalValue::ExternalLinkage: break;
1404  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1405  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1406  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1407  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1408  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1409  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1410  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1411  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1412  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1413  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1414  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1415  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1416  case GlobalValue::AvailableExternallyLinkage:
1417    Out << "available_externally ";
1418    break;
1419  }
1420}
1421
1422
1423static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1424                            formatted_raw_ostream &Out) {
1425  switch (Vis) {
1426  case GlobalValue::DefaultVisibility: break;
1427  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1428  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1429  }
1430}
1431
1432void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1433  if (GV->isMaterializable())
1434    Out << "; Materializable\n";
1435
1436  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1437  Out << " = ";
1438
1439  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1440    Out << "external ";
1441
1442  PrintLinkage(GV->getLinkage(), Out);
1443  PrintVisibility(GV->getVisibility(), Out);
1444
1445  if (GV->isThreadLocal()) Out << "thread_local ";
1446  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1447    Out << "addrspace(" << AddressSpace << ") ";
1448  Out << (GV->isConstant() ? "constant " : "global ");
1449  TypePrinter.print(GV->getType()->getElementType(), Out);
1450
1451  if (GV->hasInitializer()) {
1452    Out << ' ';
1453    writeOperand(GV->getInitializer(), false);
1454  }
1455
1456  if (GV->hasSection())
1457    Out << ", section \"" << GV->getSection() << '"';
1458  if (GV->getAlignment())
1459    Out << ", align " << GV->getAlignment();
1460
1461  printInfoComment(*GV);
1462  Out << '\n';
1463}
1464
1465void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1466  if (GA->isMaterializable())
1467    Out << "; Materializable\n";
1468
1469  // Don't crash when dumping partially built GA
1470  if (!GA->hasName())
1471    Out << "<<nameless>> = ";
1472  else {
1473    PrintLLVMName(Out, GA);
1474    Out << " = ";
1475  }
1476  PrintVisibility(GA->getVisibility(), Out);
1477
1478  Out << "alias ";
1479
1480  PrintLinkage(GA->getLinkage(), Out);
1481
1482  const Constant *Aliasee = GA->getAliasee();
1483
1484  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1485    TypePrinter.print(GV->getType(), Out);
1486    Out << ' ';
1487    PrintLLVMName(Out, GV);
1488  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1489    TypePrinter.print(F->getFunctionType(), Out);
1490    Out << "* ";
1491
1492    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1493  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1494    TypePrinter.print(GA->getType(), Out);
1495    Out << ' ';
1496    PrintLLVMName(Out, GA);
1497  } else {
1498    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1499    // The only valid GEP is an all zero GEP.
1500    assert((CE->getOpcode() == Instruction::BitCast ||
1501            CE->getOpcode() == Instruction::GetElementPtr) &&
1502           "Unsupported aliasee");
1503    writeOperand(CE, false);
1504  }
1505
1506  printInfoComment(*GA);
1507  Out << '\n';
1508}
1509
1510void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1511  // Emit all numbered types.
1512  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1513    Out << '%' << i << " = type ";
1514
1515    // Make sure we print out at least one level of the type structure, so
1516    // that we do not get %2 = type %2
1517    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1518    Out << '\n';
1519  }
1520
1521  // Print the named types.
1522  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1523       TI != TE; ++TI) {
1524    PrintLLVMName(Out, TI->first, LocalPrefix);
1525    Out << " = type ";
1526
1527    // Make sure we print out at least one level of the type structure, so
1528    // that we do not get %FILE = type %FILE
1529    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1530    Out << '\n';
1531  }
1532}
1533
1534/// printFunction - Print all aspects of a function.
1535///
1536void AssemblyWriter::printFunction(const Function *F) {
1537  // Print out the return type and name.
1538  Out << '\n';
1539
1540  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1541
1542  if (F->isMaterializable())
1543    Out << "; Materializable\n";
1544
1545  if (F->isDeclaration())
1546    Out << "declare ";
1547  else
1548    Out << "define ";
1549
1550  PrintLinkage(F->getLinkage(), Out);
1551  PrintVisibility(F->getVisibility(), Out);
1552
1553  // Print the calling convention.
1554  switch (F->getCallingConv()) {
1555  case CallingConv::C: break;   // default
1556  case CallingConv::Fast:         Out << "fastcc "; break;
1557  case CallingConv::Cold:         Out << "coldcc "; break;
1558  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1559  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1560  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1561  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1562  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1563  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1564  default: Out << "cc" << F->getCallingConv() << " "; break;
1565  }
1566
1567  const FunctionType *FT = F->getFunctionType();
1568  const AttrListPtr &Attrs = F->getAttributes();
1569  Attributes RetAttrs = Attrs.getRetAttributes();
1570  if (RetAttrs != Attribute::None)
1571    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1572  TypePrinter.print(F->getReturnType(), Out);
1573  Out << ' ';
1574  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1575  Out << '(';
1576  Machine.incorporateFunction(F);
1577
1578  // Loop over the arguments, printing them...
1579
1580  unsigned Idx = 1;
1581  if (!F->isDeclaration()) {
1582    // If this isn't a declaration, print the argument names as well.
1583    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1584         I != E; ++I) {
1585      // Insert commas as we go... the first arg doesn't get a comma
1586      if (I != F->arg_begin()) Out << ", ";
1587      printArgument(I, Attrs.getParamAttributes(Idx));
1588      Idx++;
1589    }
1590  } else {
1591    // Otherwise, print the types from the function type.
1592    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1593      // Insert commas as we go... the first arg doesn't get a comma
1594      if (i) Out << ", ";
1595
1596      // Output type...
1597      TypePrinter.print(FT->getParamType(i), Out);
1598
1599      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1600      if (ArgAttrs != Attribute::None)
1601        Out << ' ' << Attribute::getAsString(ArgAttrs);
1602    }
1603  }
1604
1605  // Finish printing arguments...
1606  if (FT->isVarArg()) {
1607    if (FT->getNumParams()) Out << ", ";
1608    Out << "...";  // Output varargs portion of signature!
1609  }
1610  Out << ')';
1611  Attributes FnAttrs = Attrs.getFnAttributes();
1612  if (FnAttrs != Attribute::None)
1613    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1614  if (F->hasSection())
1615    Out << " section \"" << F->getSection() << '"';
1616  if (F->getAlignment())
1617    Out << " align " << F->getAlignment();
1618  if (F->hasGC())
1619    Out << " gc \"" << F->getGC() << '"';
1620  if (F->isDeclaration()) {
1621    Out << "\n";
1622  } else {
1623    Out << " {";
1624
1625    // Output all of its basic blocks... for the function
1626    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1627      printBasicBlock(I);
1628
1629    Out << "}\n";
1630  }
1631
1632  Machine.purgeFunction();
1633}
1634
1635/// printArgument - This member is called for every argument that is passed into
1636/// the function.  Simply print it out
1637///
1638void AssemblyWriter::printArgument(const Argument *Arg,
1639                                   Attributes Attrs) {
1640  // Output type...
1641  TypePrinter.print(Arg->getType(), Out);
1642
1643  // Output parameter attributes list
1644  if (Attrs != Attribute::None)
1645    Out << ' ' << Attribute::getAsString(Attrs);
1646
1647  // Output name, if available...
1648  if (Arg->hasName()) {
1649    Out << ' ';
1650    PrintLLVMName(Out, Arg);
1651  }
1652}
1653
1654/// printBasicBlock - This member is called for each basic block in a method.
1655///
1656void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1657  if (BB->hasName()) {              // Print out the label if it exists...
1658    Out << "\n";
1659    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1660    Out << ':';
1661  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1662    Out << "\n; <label>:";
1663    int Slot = Machine.getLocalSlot(BB);
1664    if (Slot != -1)
1665      Out << Slot;
1666    else
1667      Out << "<badref>";
1668  }
1669
1670  if (BB->getParent() == 0) {
1671    Out.PadToColumn(50);
1672    Out << "; Error: Block without parent!";
1673  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1674    // Output predecessors for the block...
1675    Out.PadToColumn(50);
1676    Out << ";";
1677    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1678
1679    if (PI == PE) {
1680      Out << " No predecessors!";
1681    } else {
1682      Out << " preds = ";
1683      writeOperand(*PI, false);
1684      for (++PI; PI != PE; ++PI) {
1685        Out << ", ";
1686        writeOperand(*PI, false);
1687      }
1688    }
1689  }
1690
1691  Out << "\n";
1692
1693  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1694
1695  // Output all of the instructions in the basic block...
1696  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1697    printInstruction(*I);
1698    Out << '\n';
1699  }
1700
1701  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1702}
1703
1704/// printInfoComment - Print a little comment after the instruction indicating
1705/// which slot it occupies.
1706///
1707void AssemblyWriter::printInfoComment(const Value &V) {
1708  if (AnnotationWriter) {
1709    AnnotationWriter->printInfoComment(V, Out);
1710    return;
1711  }
1712
1713  if (V.getType()->isVoidTy()) return;
1714
1715  Out.PadToColumn(50);
1716  Out << "; <";
1717  TypePrinter.print(V.getType(), Out);
1718  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1719}
1720
1721// This member is called for each Instruction in a function..
1722void AssemblyWriter::printInstruction(const Instruction &I) {
1723  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1724
1725  // Print out indentation for an instruction.
1726  Out << "  ";
1727
1728  // Print out name if it exists...
1729  if (I.hasName()) {
1730    PrintLLVMName(Out, &I);
1731    Out << " = ";
1732  } else if (!I.getType()->isVoidTy()) {
1733    // Print out the def slot taken.
1734    int SlotNum = Machine.getLocalSlot(&I);
1735    if (SlotNum == -1)
1736      Out << "<badref> = ";
1737    else
1738      Out << '%' << SlotNum << " = ";
1739  }
1740
1741  // If this is a volatile load or store, print out the volatile marker.
1742  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1743      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1744      Out << "volatile ";
1745  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1746    // If this is a call, check if it's a tail call.
1747    Out << "tail ";
1748  }
1749
1750  // Print out the opcode...
1751  Out << I.getOpcodeName();
1752
1753  // Print out optimization information.
1754  WriteOptimizationInfo(Out, &I);
1755
1756  // Print out the compare instruction predicates
1757  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1758    Out << ' ' << getPredicateText(CI->getPredicate());
1759
1760  // Print out the type of the operands...
1761  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1762
1763  // Special case conditional branches to swizzle the condition out to the front
1764  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1765    BranchInst &BI(cast<BranchInst>(I));
1766    Out << ' ';
1767    writeOperand(BI.getCondition(), true);
1768    Out << ", ";
1769    writeOperand(BI.getSuccessor(0), true);
1770    Out << ", ";
1771    writeOperand(BI.getSuccessor(1), true);
1772
1773  } else if (isa<SwitchInst>(I)) {
1774    // Special case switch instruction to get formatting nice and correct.
1775    Out << ' ';
1776    writeOperand(Operand        , true);
1777    Out << ", ";
1778    writeOperand(I.getOperand(1), true);
1779    Out << " [";
1780
1781    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1782      Out << "\n    ";
1783      writeOperand(I.getOperand(op  ), true);
1784      Out << ", ";
1785      writeOperand(I.getOperand(op+1), true);
1786    }
1787    Out << "\n  ]";
1788  } else if (isa<IndirectBrInst>(I)) {
1789    // Special case indirectbr instruction to get formatting nice and correct.
1790    Out << ' ';
1791    writeOperand(Operand, true);
1792    Out << ", [";
1793
1794    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1795      if (i != 1)
1796        Out << ", ";
1797      writeOperand(I.getOperand(i), true);
1798    }
1799    Out << ']';
1800  } else if (isa<PHINode>(I)) {
1801    Out << ' ';
1802    TypePrinter.print(I.getType(), Out);
1803    Out << ' ';
1804
1805    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1806      if (op) Out << ", ";
1807      Out << "[ ";
1808      writeOperand(I.getOperand(op  ), false); Out << ", ";
1809      writeOperand(I.getOperand(op+1), false); Out << " ]";
1810    }
1811  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1812    Out << ' ';
1813    writeOperand(I.getOperand(0), true);
1814    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1815      Out << ", " << *i;
1816  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1817    Out << ' ';
1818    writeOperand(I.getOperand(0), true); Out << ", ";
1819    writeOperand(I.getOperand(1), true);
1820    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1821      Out << ", " << *i;
1822  } else if (isa<ReturnInst>(I) && !Operand) {
1823    Out << " void";
1824  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1825    // Print the calling convention being used.
1826    switch (CI->getCallingConv()) {
1827    case CallingConv::C: break;   // default
1828    case CallingConv::Fast:  Out << " fastcc"; break;
1829    case CallingConv::Cold:  Out << " coldcc"; break;
1830    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1831    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1832    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1833    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1834    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1835    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1836    default: Out << " cc" << CI->getCallingConv(); break;
1837    }
1838
1839    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1840    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1841    const Type         *RetTy = FTy->getReturnType();
1842    const AttrListPtr &PAL = CI->getAttributes();
1843
1844    if (PAL.getRetAttributes() != Attribute::None)
1845      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1846
1847    // If possible, print out the short form of the call instruction.  We can
1848    // only do this if the first argument is a pointer to a nonvararg function,
1849    // and if the return type is not a pointer to a function.
1850    //
1851    Out << ' ';
1852    if (!FTy->isVarArg() &&
1853        (!RetTy->isPointerTy() ||
1854         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1855      TypePrinter.print(RetTy, Out);
1856      Out << ' ';
1857      writeOperand(Operand, false);
1858    } else {
1859      writeOperand(Operand, true);
1860    }
1861    Out << '(';
1862    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1863      if (op > 1)
1864        Out << ", ";
1865      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1866    }
1867    Out << ')';
1868    if (PAL.getFnAttributes() != Attribute::None)
1869      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1870  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1871    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1872    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1873    const Type         *RetTy = FTy->getReturnType();
1874    const AttrListPtr &PAL = II->getAttributes();
1875
1876    // Print the calling convention being used.
1877    switch (II->getCallingConv()) {
1878    case CallingConv::C: break;   // default
1879    case CallingConv::Fast:  Out << " fastcc"; break;
1880    case CallingConv::Cold:  Out << " coldcc"; break;
1881    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1882    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1883    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1884    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1885    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1886    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1887    default: Out << " cc" << II->getCallingConv(); break;
1888    }
1889
1890    if (PAL.getRetAttributes() != Attribute::None)
1891      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1892
1893    // If possible, print out the short form of the invoke instruction. We can
1894    // only do this if the first argument is a pointer to a nonvararg function,
1895    // and if the return type is not a pointer to a function.
1896    //
1897    Out << ' ';
1898    if (!FTy->isVarArg() &&
1899        (!RetTy->isPointerTy() ||
1900         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1901      TypePrinter.print(RetTy, Out);
1902      Out << ' ';
1903      writeOperand(Operand, false);
1904    } else {
1905      writeOperand(Operand, true);
1906    }
1907    Out << '(';
1908    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1909      if (op > 3)
1910        Out << ", ";
1911      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1912    }
1913
1914    Out << ')';
1915    if (PAL.getFnAttributes() != Attribute::None)
1916      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1917
1918    Out << "\n          to ";
1919    writeOperand(II->getNormalDest(), true);
1920    Out << " unwind ";
1921    writeOperand(II->getUnwindDest(), true);
1922
1923  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1924    Out << ' ';
1925    TypePrinter.print(AI->getType()->getElementType(), Out);
1926    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1927      Out << ", ";
1928      writeOperand(AI->getArraySize(), true);
1929    }
1930    if (AI->getAlignment()) {
1931      Out << ", align " << AI->getAlignment();
1932    }
1933  } else if (isa<CastInst>(I)) {
1934    if (Operand) {
1935      Out << ' ';
1936      writeOperand(Operand, true);   // Work with broken code
1937    }
1938    Out << " to ";
1939    TypePrinter.print(I.getType(), Out);
1940  } else if (isa<VAArgInst>(I)) {
1941    if (Operand) {
1942      Out << ' ';
1943      writeOperand(Operand, true);   // Work with broken code
1944    }
1945    Out << ", ";
1946    TypePrinter.print(I.getType(), Out);
1947  } else if (Operand) {   // Print the normal way.
1948
1949    // PrintAllTypes - Instructions who have operands of all the same type
1950    // omit the type from all but the first operand.  If the instruction has
1951    // different type operands (for example br), then they are all printed.
1952    bool PrintAllTypes = false;
1953    const Type *TheType = Operand->getType();
1954
1955    // Select, Store and ShuffleVector always print all types.
1956    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1957        || isa<ReturnInst>(I)) {
1958      PrintAllTypes = true;
1959    } else {
1960      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1961        Operand = I.getOperand(i);
1962        // note that Operand shouldn't be null, but the test helps make dump()
1963        // more tolerant of malformed IR
1964        if (Operand && Operand->getType() != TheType) {
1965          PrintAllTypes = true;    // We have differing types!  Print them all!
1966          break;
1967        }
1968      }
1969    }
1970
1971    if (!PrintAllTypes) {
1972      Out << ' ';
1973      TypePrinter.print(TheType, Out);
1974    }
1975
1976    Out << ' ';
1977    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1978      if (i) Out << ", ";
1979      writeOperand(I.getOperand(i), PrintAllTypes);
1980    }
1981  }
1982
1983  // Print post operand alignment for load/store.
1984  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1985    Out << ", align " << cast<LoadInst>(I).getAlignment();
1986  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1987    Out << ", align " << cast<StoreInst>(I).getAlignment();
1988  }
1989
1990  // Print Metadata info.
1991  if (!MDNames.empty()) {
1992    SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
1993    I.getAllMetadata(InstMD);
1994    for (unsigned i = 0, e = InstMD.size(); i != e; ++i)
1995      Out << ", !" << MDNames[InstMD[i].first]
1996          << " !" << Machine.getMetadataSlot(InstMD[i].second);
1997  }
1998  printInfoComment(I);
1999}
2000
2001static void WriteMDNodeComment(const MDNode *Node,
2002			       formatted_raw_ostream &Out) {
2003  if (Node->getNumOperands() < 1)
2004    return;
2005  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
2006  if (!CI) return;
2007  unsigned Val = CI->getZExtValue();
2008  unsigned Tag = Val & ~LLVMDebugVersionMask;
2009  if (Val < LLVMDebugVersion)
2010    return;
2011
2012  Out.PadToColumn(50);
2013  if (Tag == dwarf::DW_TAG_auto_variable)
2014    Out << "; [ DW_TAG_auto_variable ]";
2015  else if (Tag == dwarf::DW_TAG_arg_variable)
2016    Out << "; [ DW_TAG_arg_variable ]";
2017  else if (Tag == dwarf::DW_TAG_return_variable)
2018    Out << "; [ DW_TAG_return_variable ]";
2019  else if (Tag == dwarf::DW_TAG_vector_type)
2020    Out << "; [ DW_TAG_vector_type ]";
2021  else if (Tag == dwarf::DW_TAG_user_base)
2022    Out << "; [ DW_TAG_user_base ]";
2023  else if (const char *TagName = dwarf::TagString(Tag))
2024    Out << "; [ " << TagName << " ]";
2025}
2026
2027void AssemblyWriter::writeAllMDNodes() {
2028  SmallVector<const MDNode *, 16> Nodes;
2029  Nodes.resize(Machine.mdn_size());
2030  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2031       I != E; ++I)
2032    Nodes[I->second] = cast<MDNode>(I->first);
2033
2034  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2035    Out << '!' << i << " = metadata ";
2036    printMDNodeBody(Nodes[i]);
2037  }
2038}
2039
2040void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2041  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine);
2042  WriteMDNodeComment(Node, Out);
2043  Out << "\n";
2044}
2045
2046//===----------------------------------------------------------------------===//
2047//                       External Interface declarations
2048//===----------------------------------------------------------------------===//
2049
2050void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2051  SlotTracker SlotTable(this);
2052  formatted_raw_ostream OS(ROS);
2053  AssemblyWriter W(OS, SlotTable, this, AAW);
2054  W.printModule(this);
2055}
2056
2057void Type::print(raw_ostream &OS) const {
2058  if (this == 0) {
2059    OS << "<null Type>";
2060    return;
2061  }
2062  TypePrinting().print(this, OS);
2063}
2064
2065void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2066  if (this == 0) {
2067    ROS << "printing a <null> value\n";
2068    return;
2069  }
2070  formatted_raw_ostream OS(ROS);
2071  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2072    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2073    SlotTracker SlotTable(F);
2074    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2075    W.printInstruction(*I);
2076  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2077    SlotTracker SlotTable(BB->getParent());
2078    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2079    W.printBasicBlock(BB);
2080  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2081    SlotTracker SlotTable(GV->getParent());
2082    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2083    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2084      W.printGlobal(V);
2085    else if (const Function *F = dyn_cast<Function>(GV))
2086      W.printFunction(F);
2087    else
2088      W.printAlias(cast<GlobalAlias>(GV));
2089  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2090    const Function *F = N->getFunction();
2091    SlotTracker SlotTable(F);
2092    AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW);
2093    W.printMDNodeBody(N);
2094  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2095    SlotTracker SlotTable(N->getParent());
2096    AssemblyWriter W(OS, SlotTable, N->getParent(), AAW);
2097    W.printNamedMDNode(N);
2098  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2099    TypePrinting TypePrinter;
2100    TypePrinter.print(C->getType(), OS);
2101    OS << ' ';
2102    WriteConstantInt(OS, C, TypePrinter, 0);
2103  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2104             isa<Argument>(this)) {
2105    WriteAsOperand(OS, this, true, 0);
2106  } else {
2107    // Otherwise we don't know what it is. Call the virtual function to
2108    // allow a subclass to print itself.
2109    printCustom(OS);
2110  }
2111}
2112
2113// Value::printCustom - subclasses should override this to implement printing.
2114void Value::printCustom(raw_ostream &OS) const {
2115  llvm_unreachable("Unknown value to print out!");
2116}
2117
2118// Value::dump - allow easy printing of Values from the debugger.
2119void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2120
2121// Type::dump - allow easy printing of Types from the debugger.
2122// This one uses type names from the given context module
2123void Type::dump(const Module *Context) const {
2124  WriteTypeSymbolic(dbgs(), this, Context);
2125  dbgs() << '\n';
2126}
2127
2128// Type::dump - allow easy printing of Types from the debugger.
2129void Type::dump() const { dump(0); }
2130
2131// Module::dump() - Allow printing of Modules from the debugger.
2132void Module::dump() const { print(dbgs(), 0); }
2133