AsmWriter.cpp revision 4932a5a3350a28a7cb41972036d6576401cc1b01
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/CachedWriter.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/Assembly/PrintModulePass.h"
20#include "llvm/Assembly/AsmAnnotationWriter.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/SymbolTable.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Streams.h"
34#include <algorithm>
35using namespace llvm;
36
37namespace llvm {
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42/// This class provides computation of slot numbers for LLVM Assembly writing.
43/// @brief LLVM Assembly Writing Slot Computation.
44class SlotMachine {
45
46/// @name Types
47/// @{
48public:
49
50  /// @brief A mapping of Values to slot numbers
51  typedef std::map<const Value*, unsigned> ValueMap;
52
53  /// @brief A plane with next slot number and ValueMap
54  struct ValuePlane {
55    unsigned next_slot;        ///< The next slot number to use
56    ValueMap map;              ///< The map of Value* -> unsigned
57    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
58  };
59
60  /// @brief The map of planes by Type
61  typedef std::map<const Type*, ValuePlane> TypedPlanes;
62
63/// @}
64/// @name Constructors
65/// @{
66public:
67  /// @brief Construct from a module
68  SlotMachine(const Module *M);
69
70  /// @brief Construct from a function, starting out in incorp state.
71  SlotMachine(const Function *F);
72
73/// @}
74/// @name Accessors
75/// @{
76public:
77  /// Return the slot number of the specified value in it's type
78  /// plane.  Its an error to ask for something not in the SlotMachine.
79  /// Its an error to ask for a Type*
80  int getSlot(const Value *V);
81
82  /// Determine if a Value has a slot or not
83  bool hasSlot(const Value* V);
84  bool hasSlot(const Type* Ty);
85
86/// @}
87/// @name Mutators
88/// @{
89public:
90  /// If you'd like to deal with a function instead of just a module, use
91  /// this method to get its data into the SlotMachine.
92  void incorporateFunction(const Function *F) {
93    TheFunction = F;
94    FunctionProcessed = false;
95  }
96
97  /// After calling incorporateFunction, use this method to remove the
98  /// most recently incorporated function from the SlotMachine. This
99  /// will reset the state of the machine back to just the module contents.
100  void purgeFunction();
101
102/// @}
103/// @name Implementation Details
104/// @{
105private:
106  /// This function does the actual initialization.
107  inline void initialize();
108
109  /// Values can be crammed into here at will. If they haven't
110  /// been inserted already, they get inserted, otherwise they are ignored.
111  /// Either way, the slot number for the Value* is returned.
112  unsigned getOrCreateSlot(const Value *V);
113
114  /// Insert a value into the value table. Return the slot number
115  /// that it now occupies.  BadThings(TM) will happen if you insert a
116  /// Value that's already been inserted.
117  unsigned insertValue(const Value *V);
118
119  /// Add all of the module level global variables (and their initializers)
120  /// and function declarations, but not the contents of those functions.
121  void processModule();
122
123  /// Add all of the functions arguments, basic blocks, and instructions
124  void processFunction();
125
126  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
127  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
128
129/// @}
130/// @name Data
131/// @{
132public:
133
134  /// @brief The module for which we are holding slot numbers
135  const Module* TheModule;
136
137  /// @brief The function for which we are holding slot numbers
138  const Function* TheFunction;
139  bool FunctionProcessed;
140
141  /// @brief The TypePlanes map for the module level data
142  TypedPlanes mMap;
143
144  /// @brief The TypePlanes map for the function level data
145  TypedPlanes fMap;
146
147/// @}
148
149};
150
151}  // end namespace llvm
152
153static RegisterPass<PrintModulePass>
154X("printm", "Print module to stderr");
155static RegisterPass<PrintFunctionPass>
156Y("print","Print function to stderr");
157
158static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
159                                   bool PrintName,
160                               std::map<const Type *, std::string> &TypeTable,
161                                   SlotMachine *Machine);
162
163static const Module *getModuleFromVal(const Value *V) {
164  if (const Argument *MA = dyn_cast<Argument>(V))
165    return MA->getParent() ? MA->getParent()->getParent() : 0;
166  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
167    return BB->getParent() ? BB->getParent()->getParent() : 0;
168  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
169    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
170    return M ? M->getParent() : 0;
171  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
172    return GV->getParent();
173  return 0;
174}
175
176static SlotMachine *createSlotMachine(const Value *V) {
177  if (const Argument *FA = dyn_cast<Argument>(V)) {
178    return new SlotMachine(FA->getParent());
179  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
180    return new SlotMachine(I->getParent()->getParent());
181  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
182    return new SlotMachine(BB->getParent());
183  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
184    return new SlotMachine(GV->getParent());
185  } else if (const Function *Func = dyn_cast<Function>(V)) {
186    return new SlotMachine(Func);
187  }
188  return 0;
189}
190
191// getLLVMName - Turn the specified string into an 'LLVM name', which is either
192// prefixed with % (if the string only contains simple characters) or is
193// surrounded with ""'s (if it has special chars in it).
194static std::string getLLVMName(const std::string &Name,
195                               bool prefixName = true) {
196  assert(!Name.empty() && "Cannot get empty name!");
197
198  // First character cannot start with a number...
199  if (Name[0] >= '0' && Name[0] <= '9')
200    return "\"" + Name + "\"";
201
202  // Scan to see if we have any characters that are not on the "white list"
203  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
204    char C = Name[i];
205    assert(C != '"' && "Illegal character in LLVM value name!");
206    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
207        C != '-' && C != '.' && C != '_')
208      return "\"" + Name + "\"";
209  }
210
211  // If we get here, then the identifier is legal to use as a "VarID".
212  if (prefixName)
213    return "%"+Name;
214  else
215    return Name;
216}
217
218
219/// fillTypeNameTable - If the module has a symbol table, take all global types
220/// and stuff their names into the TypeNames map.
221///
222static void fillTypeNameTable(const Module *M,
223                              std::map<const Type *, std::string> &TypeNames) {
224  if (!M) return;
225  const SymbolTable &ST = M->getSymbolTable();
226  SymbolTable::type_const_iterator TI = ST.type_begin();
227  for (; TI != ST.type_end(); ++TI) {
228    // As a heuristic, don't insert pointer to primitive types, because
229    // they are used too often to have a single useful name.
230    //
231    const Type *Ty = cast<Type>(TI->second);
232    if (!isa<PointerType>(Ty) ||
233        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
234        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
235      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
236  }
237}
238
239
240
241static void calcTypeName(const Type *Ty,
242                         std::vector<const Type *> &TypeStack,
243                         std::map<const Type *, std::string> &TypeNames,
244                         std::string & Result){
245  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
246    Result += Ty->getDescription();  // Base case
247    return;
248  }
249
250  // Check to see if the type is named.
251  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
252  if (I != TypeNames.end()) {
253    Result += I->second;
254    return;
255  }
256
257  if (isa<OpaqueType>(Ty)) {
258    Result += "opaque";
259    return;
260  }
261
262  // Check to see if the Type is already on the stack...
263  unsigned Slot = 0, CurSize = TypeStack.size();
264  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
265
266  // This is another base case for the recursion.  In this case, we know
267  // that we have looped back to a type that we have previously visited.
268  // Generate the appropriate upreference to handle this.
269  if (Slot < CurSize) {
270    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
271    return;
272  }
273
274  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
275
276  switch (Ty->getTypeID()) {
277  case Type::FunctionTyID: {
278    const FunctionType *FTy = cast<FunctionType>(Ty);
279    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
280    Result += " (";
281    for (FunctionType::param_iterator I = FTy->param_begin(),
282           E = FTy->param_end(); I != E; ++I) {
283      if (I != FTy->param_begin())
284        Result += ", ";
285      calcTypeName(*I, TypeStack, TypeNames, Result);
286    }
287    if (FTy->isVarArg()) {
288      if (FTy->getNumParams()) Result += ", ";
289      Result += "...";
290    }
291    Result += ")";
292    break;
293  }
294  case Type::StructTyID: {
295    const StructType *STy = cast<StructType>(Ty);
296    Result += "{ ";
297    for (StructType::element_iterator I = STy->element_begin(),
298           E = STy->element_end(); I != E; ++I) {
299      if (I != STy->element_begin())
300        Result += ", ";
301      calcTypeName(*I, TypeStack, TypeNames, Result);
302    }
303    Result += " }";
304    break;
305  }
306  case Type::PointerTyID:
307    calcTypeName(cast<PointerType>(Ty)->getElementType(),
308                          TypeStack, TypeNames, Result);
309    Result += "*";
310    break;
311  case Type::ArrayTyID: {
312    const ArrayType *ATy = cast<ArrayType>(Ty);
313    Result += "[" + utostr(ATy->getNumElements()) + " x ";
314    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
315    Result += "]";
316    break;
317  }
318  case Type::PackedTyID: {
319    const PackedType *PTy = cast<PackedType>(Ty);
320    Result += "<" + utostr(PTy->getNumElements()) + " x ";
321    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
322    Result += ">";
323    break;
324  }
325  case Type::OpaqueTyID:
326    Result += "opaque";
327    break;
328  default:
329    Result += "<unrecognized-type>";
330  }
331
332  TypeStack.pop_back();       // Remove self from stack...
333  return;
334}
335
336
337/// printTypeInt - The internal guts of printing out a type that has a
338/// potentially named portion.
339///
340static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
341                              std::map<const Type *, std::string> &TypeNames) {
342  // Primitive types always print out their description, regardless of whether
343  // they have been named or not.
344  //
345  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
346    return Out << Ty->getDescription();
347
348  // Check to see if the type is named.
349  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
350  if (I != TypeNames.end()) return Out << I->second;
351
352  // Otherwise we have a type that has not been named but is a derived type.
353  // Carefully recurse the type hierarchy to print out any contained symbolic
354  // names.
355  //
356  std::vector<const Type *> TypeStack;
357  std::string TypeName;
358  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
359  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
360  return (Out << TypeName);
361}
362
363
364/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
365/// type, iff there is an entry in the modules symbol table for the specified
366/// type or one of it's component types. This is slower than a simple x << Type
367///
368std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
369                                      const Module *M) {
370  Out << ' ';
371
372  // If they want us to print out a type, attempt to make it symbolic if there
373  // is a symbol table in the module...
374  if (M) {
375    std::map<const Type *, std::string> TypeNames;
376    fillTypeNameTable(M, TypeNames);
377
378    return printTypeInt(Out, Ty, TypeNames);
379  } else {
380    return Out << Ty->getDescription();
381  }
382}
383
384// PrintEscapedString - Print each character of the specified string, escaping
385// it if it is not printable or if it is an escape char.
386static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
387  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
388    unsigned char C = Str[i];
389    if (isprint(C) && C != '"' && C != '\\') {
390      Out << C;
391    } else {
392      Out << '\\'
393          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
394          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
395    }
396  }
397}
398
399static const char * getPredicateText(unsigned predicate) {
400  const char * pred = "unknown";
401  switch (predicate) {
402    case FCmpInst::FCMP_FALSE: pred = "false"; break;
403    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
404    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
405    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
406    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
407    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
408    case FCmpInst::FCMP_ONE:   pred = "one"; break;
409    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
410    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
411    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
412    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
413    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
414    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
415    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
416    case FCmpInst::FCMP_UNE:   pred = "une"; break;
417    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
418    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
419    case ICmpInst::ICMP_NE:    pred = "ne"; break;
420    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
421    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
422    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
423    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
424    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
425    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
426    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
427    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
428  }
429  return pred;
430}
431
432/// @brief Internal constant writer.
433static void WriteConstantInt(std::ostream &Out, const Constant *CV,
434                             bool PrintName,
435                             std::map<const Type *, std::string> &TypeTable,
436                             SlotMachine *Machine) {
437  const int IndentSize = 4;
438  static std::string Indent = "\n";
439  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
440    Out << (CB->getValue() ? "true" : "false");
441  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
442    if (CI->getType()->isSigned())
443      Out << CI->getSExtValue();
444    else
445      Out << CI->getZExtValue();
446  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
447    // We would like to output the FP constant value in exponential notation,
448    // but we cannot do this if doing so will lose precision.  Check here to
449    // make sure that we only output it in exponential format if we can parse
450    // the value back and get the same value.
451    //
452    std::string StrVal = ftostr(CFP->getValue());
453
454    // Check to make sure that the stringized number is not some string like
455    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
456    // the string matches the "[-+]?[0-9]" regex.
457    //
458    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
459        ((StrVal[0] == '-' || StrVal[0] == '+') &&
460         (StrVal[1] >= '0' && StrVal[1] <= '9')))
461      // Reparse stringized version!
462      if (atof(StrVal.c_str()) == CFP->getValue()) {
463        Out << StrVal;
464        return;
465      }
466
467    // Otherwise we could not reparse it to exactly the same value, so we must
468    // output the string in hexadecimal format!
469    assert(sizeof(double) == sizeof(uint64_t) &&
470           "assuming that double is 64 bits!");
471    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
472
473  } else if (isa<ConstantAggregateZero>(CV)) {
474    Out << "zeroinitializer";
475  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
476    // As a special case, print the array as a string if it is an array of
477    // ubytes or an array of sbytes with positive values.
478    //
479    const Type *ETy = CA->getType()->getElementType();
480    if (CA->isString()) {
481      Out << "c\"";
482      PrintEscapedString(CA->getAsString(), Out);
483      Out << "\"";
484
485    } else {                // Cannot output in string format...
486      Out << '[';
487      if (CA->getNumOperands()) {
488        Out << ' ';
489        printTypeInt(Out, ETy, TypeTable);
490        WriteAsOperandInternal(Out, CA->getOperand(0),
491                               PrintName, TypeTable, Machine);
492        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
493          Out << ", ";
494          printTypeInt(Out, ETy, TypeTable);
495          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
496                                 TypeTable, Machine);
497        }
498      }
499      Out << " ]";
500    }
501  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
502    Out << '{';
503    unsigned N = CS->getNumOperands();
504    if (N) {
505      if (N > 2) {
506        Indent += std::string(IndentSize, ' ');
507        Out << Indent;
508      } else {
509        Out << ' ';
510      }
511      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
512
513      WriteAsOperandInternal(Out, CS->getOperand(0),
514                             PrintName, TypeTable, Machine);
515
516      for (unsigned i = 1; i < N; i++) {
517        Out << ", ";
518        if (N > 2) Out << Indent;
519        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
520
521        WriteAsOperandInternal(Out, CS->getOperand(i),
522                               PrintName, TypeTable, Machine);
523      }
524      if (N > 2) Indent.resize(Indent.size() - IndentSize);
525    }
526
527    Out << " }";
528  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
529      const Type *ETy = CP->getType()->getElementType();
530      assert(CP->getNumOperands() > 0 &&
531             "Number of operands for a PackedConst must be > 0");
532      Out << '<';
533      Out << ' ';
534      printTypeInt(Out, ETy, TypeTable);
535      WriteAsOperandInternal(Out, CP->getOperand(0),
536                             PrintName, TypeTable, Machine);
537      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
538          Out << ", ";
539          printTypeInt(Out, ETy, TypeTable);
540          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
541                                 TypeTable, Machine);
542      }
543      Out << " >";
544  } else if (isa<ConstantPointerNull>(CV)) {
545    Out << "null";
546
547  } else if (isa<UndefValue>(CV)) {
548    Out << "undef";
549
550  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
551    Out << CE->getOpcodeName();
552    if (CE->isCompare())
553      Out << " " << getPredicateText(CE->getPredicate());
554    Out << " (";
555
556    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
557      printTypeInt(Out, (*OI)->getType(), TypeTable);
558      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
559      if (OI+1 != CE->op_end())
560        Out << ", ";
561    }
562
563    if (CE->isCast()) {
564      Out << " to ";
565      printTypeInt(Out, CE->getType(), TypeTable);
566    }
567
568    Out << ')';
569
570  } else {
571    Out << "<placeholder or erroneous Constant>";
572  }
573}
574
575
576/// WriteAsOperand - Write the name of the specified value out to the specified
577/// ostream.  This can be useful when you just want to print int %reg126, not
578/// the whole instruction that generated it.
579///
580static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
581                                   bool PrintName,
582                                  std::map<const Type*, std::string> &TypeTable,
583                                   SlotMachine *Machine) {
584  Out << ' ';
585  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
586    Out << getLLVMName(V->getName());
587  else {
588    const Constant *CV = dyn_cast<Constant>(V);
589    if (CV && !isa<GlobalValue>(CV)) {
590      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
591    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
592      Out << "asm ";
593      if (IA->hasSideEffects())
594        Out << "sideeffect ";
595      Out << '"';
596      PrintEscapedString(IA->getAsmString(), Out);
597      Out << "\", \"";
598      PrintEscapedString(IA->getConstraintString(), Out);
599      Out << '"';
600    } else {
601      int Slot;
602      if (Machine) {
603        Slot = Machine->getSlot(V);
604      } else {
605        Machine = createSlotMachine(V);
606        if (Machine)
607          Slot = Machine->getSlot(V);
608        else
609          Slot = -1;
610        delete Machine;
611      }
612      if (Slot != -1)
613        Out << '%' << Slot;
614      else
615        Out << "<badref>";
616    }
617  }
618}
619
620/// WriteAsOperand - Write the name of the specified value out to the specified
621/// ostream.  This can be useful when you just want to print int %reg126, not
622/// the whole instruction that generated it.
623///
624std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
625                                   bool PrintType, bool PrintName,
626                                   const Module *Context) {
627  std::map<const Type *, std::string> TypeNames;
628  if (Context == 0) Context = getModuleFromVal(V);
629
630  if (Context)
631    fillTypeNameTable(Context, TypeNames);
632
633  if (PrintType)
634    printTypeInt(Out, V->getType(), TypeNames);
635
636  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
637  return Out;
638}
639
640
641namespace llvm {
642
643class AssemblyWriter {
644  std::ostream &Out;
645  SlotMachine &Machine;
646  const Module *TheModule;
647  std::map<const Type *, std::string> TypeNames;
648  AssemblyAnnotationWriter *AnnotationWriter;
649public:
650  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
651                        AssemblyAnnotationWriter *AAW)
652    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
653
654    // If the module has a symbol table, take all global types and stuff their
655    // names into the TypeNames map.
656    //
657    fillTypeNameTable(M, TypeNames);
658  }
659
660  inline void write(const Module *M)         { printModule(M);      }
661  inline void write(const GlobalVariable *G) { printGlobal(G);      }
662  inline void write(const Function *F)       { printFunction(F);    }
663  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
664  inline void write(const Instruction *I)    { printInstruction(*I); }
665  inline void write(const Constant *CPV)     { printConstant(CPV);  }
666  inline void write(const Type *Ty)          { printType(Ty);       }
667
668  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
669
670  const Module* getModule() { return TheModule; }
671
672private:
673  void printModule(const Module *M);
674  void printSymbolTable(const SymbolTable &ST);
675  void printConstant(const Constant *CPV);
676  void printGlobal(const GlobalVariable *GV);
677  void printFunction(const Function *F);
678  void printArgument(const Argument *FA);
679  void printBasicBlock(const BasicBlock *BB);
680  void printInstruction(const Instruction &I);
681
682  // printType - Go to extreme measures to attempt to print out a short,
683  // symbolic version of a type name.
684  //
685  std::ostream &printType(const Type *Ty) {
686    return printTypeInt(Out, Ty, TypeNames);
687  }
688
689  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
690  // without considering any symbolic types that we may have equal to it.
691  //
692  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
693
694  // printInfoComment - Print a little comment after the instruction indicating
695  // which slot it occupies.
696  void printInfoComment(const Value &V);
697};
698}  // end of llvm namespace
699
700/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
701/// without considering any symbolic types that we may have equal to it.
702///
703std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
704  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
705    printType(FTy->getReturnType()) << " (";
706    for (FunctionType::param_iterator I = FTy->param_begin(),
707           E = FTy->param_end(); I != E; ++I) {
708      if (I != FTy->param_begin())
709        Out << ", ";
710      printType(*I);
711    }
712    if (FTy->isVarArg()) {
713      if (FTy->getNumParams()) Out << ", ";
714      Out << "...";
715    }
716    Out << ')';
717  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
718    Out << "{ ";
719    for (StructType::element_iterator I = STy->element_begin(),
720           E = STy->element_end(); I != E; ++I) {
721      if (I != STy->element_begin())
722        Out << ", ";
723      printType(*I);
724    }
725    Out << " }";
726  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
727    printType(PTy->getElementType()) << '*';
728  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
729    Out << '[' << ATy->getNumElements() << " x ";
730    printType(ATy->getElementType()) << ']';
731  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
732    Out << '<' << PTy->getNumElements() << " x ";
733    printType(PTy->getElementType()) << '>';
734  }
735  else if (isa<OpaqueType>(Ty)) {
736    Out << "opaque";
737  } else {
738    if (!Ty->isPrimitiveType())
739      Out << "<unknown derived type>";
740    printType(Ty);
741  }
742  return Out;
743}
744
745
746void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
747                                  bool PrintName) {
748  if (Operand != 0) {
749    if (PrintType) { Out << ' '; printType(Operand->getType()); }
750    WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
751  } else {
752    Out << "<null operand!>";
753  }
754}
755
756
757void AssemblyWriter::printModule(const Module *M) {
758  if (!M->getModuleIdentifier().empty() &&
759      // Don't print the ID if it will start a new line (which would
760      // require a comment char before it).
761      M->getModuleIdentifier().find('\n') == std::string::npos)
762    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
763
764  if (!M->getDataLayout().empty())
765    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
766
767  switch (M->getEndianness()) {
768  case Module::LittleEndian: Out << "target endian = little\n"; break;
769  case Module::BigEndian:    Out << "target endian = big\n";    break;
770  case Module::AnyEndianness: break;
771  }
772  switch (M->getPointerSize()) {
773  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
774  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
775  case Module::AnyPointerSize: break;
776  }
777  if (!M->getTargetTriple().empty())
778    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
779
780  if (!M->getModuleInlineAsm().empty()) {
781    // Split the string into lines, to make it easier to read the .ll file.
782    std::string Asm = M->getModuleInlineAsm();
783    size_t CurPos = 0;
784    size_t NewLine = Asm.find_first_of('\n', CurPos);
785    while (NewLine != std::string::npos) {
786      // We found a newline, print the portion of the asm string from the
787      // last newline up to this newline.
788      Out << "module asm \"";
789      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
790                         Out);
791      Out << "\"\n";
792      CurPos = NewLine+1;
793      NewLine = Asm.find_first_of('\n', CurPos);
794    }
795    Out << "module asm \"";
796    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
797    Out << "\"\n";
798  }
799
800  // Loop over the dependent libraries and emit them.
801  Module::lib_iterator LI = M->lib_begin();
802  Module::lib_iterator LE = M->lib_end();
803  if (LI != LE) {
804    Out << "deplibs = [ ";
805    while (LI != LE) {
806      Out << '"' << *LI << '"';
807      ++LI;
808      if (LI != LE)
809        Out << ", ";
810    }
811    Out << " ]\n";
812  }
813
814  // Loop over the symbol table, emitting all named constants.
815  printSymbolTable(M->getSymbolTable());
816
817  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
818       I != E; ++I)
819    printGlobal(I);
820
821  Out << "\nimplementation   ; Functions:\n";
822
823  // Output all of the functions.
824  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
825    printFunction(I);
826}
827
828void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
829  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
830
831  if (!GV->hasInitializer())
832    switch (GV->getLinkage()) {
833     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
834     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
835     default: Out << "external "; break;
836    }
837  else
838    switch (GV->getLinkage()) {
839    case GlobalValue::InternalLinkage:     Out << "internal "; break;
840    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
841    case GlobalValue::WeakLinkage:         Out << "weak "; break;
842    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
843    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
844    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
845    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
846    case GlobalValue::ExternalLinkage:     break;
847    case GlobalValue::GhostLinkage:
848      llvm_cerr << "GhostLinkage not allowed in AsmWriter!\n";
849      abort();
850    }
851
852  Out << (GV->isConstant() ? "constant " : "global ");
853  printType(GV->getType()->getElementType());
854
855  if (GV->hasInitializer()) {
856    Constant* C = cast<Constant>(GV->getInitializer());
857    assert(C &&  "GlobalVar initializer isn't constant?");
858    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
859  }
860
861  if (GV->hasSection())
862    Out << ", section \"" << GV->getSection() << '"';
863  if (GV->getAlignment())
864    Out << ", align " << GV->getAlignment();
865
866  printInfoComment(*GV);
867  Out << "\n";
868}
869
870
871// printSymbolTable - Run through symbol table looking for constants
872// and types. Emit their declarations.
873void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
874
875  // Print the types.
876  for (SymbolTable::type_const_iterator TI = ST.type_begin();
877       TI != ST.type_end(); ++TI) {
878    Out << "\t" << getLLVMName(TI->first) << " = type ";
879
880    // Make sure we print out at least one level of the type structure, so
881    // that we do not get %FILE = type %FILE
882    //
883    printTypeAtLeastOneLevel(TI->second) << "\n";
884  }
885
886  // Print the constants, in type plane order.
887  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
888       PI != ST.plane_end(); ++PI) {
889    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
890    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
891
892    for (; VI != VE; ++VI) {
893      const Value* V = VI->second;
894      const Constant *CPV = dyn_cast<Constant>(V) ;
895      if (CPV && !isa<GlobalValue>(V)) {
896        printConstant(CPV);
897      }
898    }
899  }
900}
901
902
903/// printConstant - Print out a constant pool entry...
904///
905void AssemblyWriter::printConstant(const Constant *CPV) {
906  // Don't print out unnamed constants, they will be inlined
907  if (!CPV->hasName()) return;
908
909  // Print out name...
910  Out << "\t" << getLLVMName(CPV->getName()) << " =";
911
912  // Write the value out now...
913  writeOperand(CPV, true, false);
914
915  printInfoComment(*CPV);
916  Out << "\n";
917}
918
919/// printFunction - Print all aspects of a function.
920///
921void AssemblyWriter::printFunction(const Function *F) {
922  // Print out the return type and name...
923  Out << "\n";
924
925  // Ensure that no local symbols conflict with global symbols.
926  const_cast<Function*>(F)->renameLocalSymbols();
927
928  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
929
930  if (F->isExternal())
931    switch (F->getLinkage()) {
932    case GlobalValue::DLLImportLinkage:    Out << "declare dllimport "; break;
933    case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
934    default: Out << "declare ";
935    }
936  else
937    switch (F->getLinkage()) {
938    case GlobalValue::InternalLinkage:     Out << "internal "; break;
939    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
940    case GlobalValue::WeakLinkage:         Out << "weak "; break;
941    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
942    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
943    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
944    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
945    case GlobalValue::ExternalLinkage: break;
946    case GlobalValue::GhostLinkage:
947      llvm_cerr << "GhostLinkage not allowed in AsmWriter!\n";
948      abort();
949    }
950
951  // Print the calling convention.
952  switch (F->getCallingConv()) {
953  case CallingConv::C: break;   // default
954  case CallingConv::CSRet:        Out << "csretcc "; break;
955  case CallingConv::Fast:         Out << "fastcc "; break;
956  case CallingConv::Cold:         Out << "coldcc "; break;
957  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
958  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
959  default: Out << "cc" << F->getCallingConv() << " "; break;
960  }
961
962  printType(F->getReturnType()) << ' ';
963  if (!F->getName().empty())
964    Out << getLLVMName(F->getName());
965  else
966    Out << "\"\"";
967  Out << '(';
968  Machine.incorporateFunction(F);
969
970  // Loop over the arguments, printing them...
971  const FunctionType *FT = F->getFunctionType();
972
973  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
974       I != E; ++I)
975    printArgument(I);
976
977  // Finish printing arguments...
978  if (FT->isVarArg()) {
979    if (FT->getNumParams()) Out << ", ";
980    Out << "...";  // Output varargs portion of signature!
981  }
982  Out << ')';
983
984  if (F->hasSection())
985    Out << " section \"" << F->getSection() << '"';
986  if (F->getAlignment())
987    Out << " align " << F->getAlignment();
988
989  if (F->isExternal()) {
990    Out << "\n";
991  } else {
992    Out << " {";
993
994    // Output all of its basic blocks... for the function
995    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
996      printBasicBlock(I);
997
998    Out << "}\n";
999  }
1000
1001  Machine.purgeFunction();
1002}
1003
1004/// printArgument - This member is called for every argument that is passed into
1005/// the function.  Simply print it out
1006///
1007void AssemblyWriter::printArgument(const Argument *Arg) {
1008  // Insert commas as we go... the first arg doesn't get a comma
1009  if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
1010
1011  // Output type...
1012  printType(Arg->getType());
1013
1014  // Output name, if available...
1015  if (Arg->hasName())
1016    Out << ' ' << getLLVMName(Arg->getName());
1017}
1018
1019/// printBasicBlock - This member is called for each basic block in a method.
1020///
1021void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1022  if (BB->hasName()) {              // Print out the label if it exists...
1023    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
1024  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1025    Out << "\n; <label>:";
1026    int Slot = Machine.getSlot(BB);
1027    if (Slot != -1)
1028      Out << Slot;
1029    else
1030      Out << "<badref>";
1031  }
1032
1033  if (BB->getParent() == 0)
1034    Out << "\t\t; Error: Block without parent!";
1035  else {
1036    if (BB != &BB->getParent()->front()) {  // Not the entry block?
1037      // Output predecessors for the block...
1038      Out << "\t\t;";
1039      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1040
1041      if (PI == PE) {
1042        Out << " No predecessors!";
1043      } else {
1044        Out << " preds =";
1045        writeOperand(*PI, false, true);
1046        for (++PI; PI != PE; ++PI) {
1047          Out << ',';
1048          writeOperand(*PI, false, true);
1049        }
1050      }
1051    }
1052  }
1053
1054  Out << "\n";
1055
1056  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1057
1058  // Output all of the instructions in the basic block...
1059  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1060    printInstruction(*I);
1061
1062  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1063}
1064
1065
1066/// printInfoComment - Print a little comment after the instruction indicating
1067/// which slot it occupies.
1068///
1069void AssemblyWriter::printInfoComment(const Value &V) {
1070  if (V.getType() != Type::VoidTy) {
1071    Out << "\t\t; <";
1072    printType(V.getType()) << '>';
1073
1074    if (!V.hasName()) {
1075      int SlotNum = Machine.getSlot(&V);
1076      if (SlotNum == -1)
1077        Out << ":<badref>";
1078      else
1079        Out << ':' << SlotNum; // Print out the def slot taken.
1080    }
1081    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1082  }
1083}
1084
1085// This member is called for each Instruction in a function..
1086void AssemblyWriter::printInstruction(const Instruction &I) {
1087  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1088
1089  Out << "\t";
1090
1091  // Print out name if it exists...
1092  if (I.hasName())
1093    Out << getLLVMName(I.getName()) << " = ";
1094
1095  // If this is a volatile load or store, print out the volatile marker.
1096  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1097      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1098      Out << "volatile ";
1099  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1100    // If this is a call, check if it's a tail call.
1101    Out << "tail ";
1102  }
1103
1104  // Print out the opcode...
1105  Out << I.getOpcodeName();
1106
1107  // Print out the compare instruction predicates
1108  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1109    Out << " " << getPredicateText(FCI->getPredicate());
1110  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1111    Out << " " << getPredicateText(ICI->getPredicate());
1112  }
1113
1114  // Print out the type of the operands...
1115  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1116
1117  // Special case conditional branches to swizzle the condition out to the front
1118  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1119    writeOperand(I.getOperand(2), true);
1120    Out << ',';
1121    writeOperand(Operand, true);
1122    Out << ',';
1123    writeOperand(I.getOperand(1), true);
1124
1125  } else if (isa<SwitchInst>(I)) {
1126    // Special case switch statement to get formatting nice and correct...
1127    writeOperand(Operand        , true); Out << ',';
1128    writeOperand(I.getOperand(1), true); Out << " [";
1129
1130    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1131      Out << "\n\t\t";
1132      writeOperand(I.getOperand(op  ), true); Out << ',';
1133      writeOperand(I.getOperand(op+1), true);
1134    }
1135    Out << "\n\t]";
1136  } else if (isa<PHINode>(I)) {
1137    Out << ' ';
1138    printType(I.getType());
1139    Out << ' ';
1140
1141    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1142      if (op) Out << ", ";
1143      Out << '[';
1144      writeOperand(I.getOperand(op  ), false); Out << ',';
1145      writeOperand(I.getOperand(op+1), false); Out << " ]";
1146    }
1147  } else if (isa<ReturnInst>(I) && !Operand) {
1148    Out << " void";
1149  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1150    // Print the calling convention being used.
1151    switch (CI->getCallingConv()) {
1152    case CallingConv::C: break;   // default
1153    case CallingConv::CSRet: Out << " csretcc"; break;
1154    case CallingConv::Fast:  Out << " fastcc"; break;
1155    case CallingConv::Cold:  Out << " coldcc"; break;
1156    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1157    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1158    default: Out << " cc" << CI->getCallingConv(); break;
1159    }
1160
1161    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1162    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1163    const Type       *RetTy = FTy->getReturnType();
1164
1165    // If possible, print out the short form of the call instruction.  We can
1166    // only do this if the first argument is a pointer to a nonvararg function,
1167    // and if the return type is not a pointer to a function.
1168    //
1169    if (!FTy->isVarArg() &&
1170        (!isa<PointerType>(RetTy) ||
1171         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1172      Out << ' '; printType(RetTy);
1173      writeOperand(Operand, false);
1174    } else {
1175      writeOperand(Operand, true);
1176    }
1177    Out << '(';
1178    if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
1179    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
1180      Out << ',';
1181      writeOperand(I.getOperand(op), true);
1182    }
1183
1184    Out << " )";
1185  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1186    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1187    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1188    const Type       *RetTy = FTy->getReturnType();
1189
1190    // Print the calling convention being used.
1191    switch (II->getCallingConv()) {
1192    case CallingConv::C: break;   // default
1193    case CallingConv::CSRet: Out << " csretcc"; break;
1194    case CallingConv::Fast:  Out << " fastcc"; break;
1195    case CallingConv::Cold:  Out << " coldcc"; break;
1196    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1197    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1198    default: Out << " cc" << II->getCallingConv(); break;
1199    }
1200
1201    // If possible, print out the short form of the invoke instruction. We can
1202    // only do this if the first argument is a pointer to a nonvararg function,
1203    // and if the return type is not a pointer to a function.
1204    //
1205    if (!FTy->isVarArg() &&
1206        (!isa<PointerType>(RetTy) ||
1207         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1208      Out << ' '; printType(RetTy);
1209      writeOperand(Operand, false);
1210    } else {
1211      writeOperand(Operand, true);
1212    }
1213
1214    Out << '(';
1215    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
1216    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
1217      Out << ',';
1218      writeOperand(I.getOperand(op), true);
1219    }
1220
1221    Out << " )\n\t\t\tto";
1222    writeOperand(II->getNormalDest(), true);
1223    Out << " unwind";
1224    writeOperand(II->getUnwindDest(), true);
1225
1226  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1227    Out << ' ';
1228    printType(AI->getType()->getElementType());
1229    if (AI->isArrayAllocation()) {
1230      Out << ',';
1231      writeOperand(AI->getArraySize(), true);
1232    }
1233    if (AI->getAlignment()) {
1234      Out << ", align " << AI->getAlignment();
1235    }
1236  } else if (isa<CastInst>(I)) {
1237    if (Operand) writeOperand(Operand, true);   // Work with broken code
1238    Out << " to ";
1239    printType(I.getType());
1240  } else if (isa<VAArgInst>(I)) {
1241    if (Operand) writeOperand(Operand, true);   // Work with broken code
1242    Out << ", ";
1243    printType(I.getType());
1244  } else if (Operand) {   // Print the normal way...
1245
1246    // PrintAllTypes - Instructions who have operands of all the same type
1247    // omit the type from all but the first operand.  If the instruction has
1248    // different type operands (for example br), then they are all printed.
1249    bool PrintAllTypes = false;
1250    const Type *TheType = Operand->getType();
1251
1252    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1253    // types even if all operands are bools.
1254    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
1255        isa<ShuffleVectorInst>(I)) {
1256      PrintAllTypes = true;
1257    } else {
1258      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1259        Operand = I.getOperand(i);
1260        if (Operand->getType() != TheType) {
1261          PrintAllTypes = true;    // We have differing types!  Print them all!
1262          break;
1263        }
1264      }
1265    }
1266
1267    if (!PrintAllTypes) {
1268      Out << ' ';
1269      printType(TheType);
1270    }
1271
1272    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1273      if (i) Out << ',';
1274      writeOperand(I.getOperand(i), PrintAllTypes);
1275    }
1276  }
1277
1278  printInfoComment(I);
1279  Out << "\n";
1280}
1281
1282
1283//===----------------------------------------------------------------------===//
1284//                       External Interface declarations
1285//===----------------------------------------------------------------------===//
1286
1287void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1288  SlotMachine SlotTable(this);
1289  AssemblyWriter W(o, SlotTable, this, AAW);
1290  W.write(this);
1291}
1292
1293void GlobalVariable::print(std::ostream &o) const {
1294  SlotMachine SlotTable(getParent());
1295  AssemblyWriter W(o, SlotTable, getParent(), 0);
1296  W.write(this);
1297}
1298
1299void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1300  SlotMachine SlotTable(getParent());
1301  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1302
1303  W.write(this);
1304}
1305
1306void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1307  WriteAsOperand(o, this, true, true, 0);
1308}
1309
1310void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1311  SlotMachine SlotTable(getParent());
1312  AssemblyWriter W(o, SlotTable,
1313                   getParent() ? getParent()->getParent() : 0, AAW);
1314  W.write(this);
1315}
1316
1317void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1318  const Function *F = getParent() ? getParent()->getParent() : 0;
1319  SlotMachine SlotTable(F);
1320  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1321
1322  W.write(this);
1323}
1324
1325void Constant::print(std::ostream &o) const {
1326  if (this == 0) { o << "<null> constant value\n"; return; }
1327
1328  o << ' ' << getType()->getDescription() << ' ';
1329
1330  std::map<const Type *, std::string> TypeTable;
1331  WriteConstantInt(o, this, false, TypeTable, 0);
1332}
1333
1334void Type::print(std::ostream &o) const {
1335  if (this == 0)
1336    o << "<null Type>";
1337  else
1338    o << getDescription();
1339}
1340
1341void Argument::print(std::ostream &o) const {
1342  WriteAsOperand(o, this, true, true,
1343                 getParent() ? getParent()->getParent() : 0);
1344}
1345
1346// Value::dump - allow easy printing of  Values from the debugger.
1347// Located here because so much of the needed functionality is here.
1348void Value::dump() const { print(std::cerr); llvm_cerr << '\n'; }
1349
1350// Type::dump - allow easy printing of  Values from the debugger.
1351// Located here because so much of the needed functionality is here.
1352void Type::dump() const { print(std::cerr); llvm_cerr << '\n'; }
1353
1354//===----------------------------------------------------------------------===//
1355//  CachedWriter Class Implementation
1356//===----------------------------------------------------------------------===//
1357
1358void CachedWriter::setModule(const Module *M) {
1359  delete SC; delete AW;
1360  if (M) {
1361    SC = new SlotMachine(M);
1362    AW = new AssemblyWriter(Out, *SC, M, 0);
1363  } else {
1364    SC = 0; AW = 0;
1365  }
1366}
1367
1368CachedWriter::~CachedWriter() {
1369  delete AW;
1370  delete SC;
1371}
1372
1373CachedWriter &CachedWriter::operator<<(const Value &V) {
1374  assert(AW && SC && "CachedWriter does not have a current module!");
1375  if (const Instruction *I = dyn_cast<Instruction>(&V))
1376    AW->write(I);
1377  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
1378    AW->write(BB);
1379  else if (const Function *F = dyn_cast<Function>(&V))
1380    AW->write(F);
1381  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
1382    AW->write(GV);
1383  else
1384    AW->writeOperand(&V, true, true);
1385  return *this;
1386}
1387
1388CachedWriter& CachedWriter::operator<<(const Type &Ty) {
1389  if (SymbolicTypes) {
1390    const Module *M = AW->getModule();
1391    if (M) WriteTypeSymbolic(Out, &Ty, M);
1392  } else {
1393    AW->write(&Ty);
1394  }
1395  return *this;
1396}
1397
1398//===----------------------------------------------------------------------===//
1399//===--                    SlotMachine Implementation
1400//===----------------------------------------------------------------------===//
1401
1402#if 0
1403#define SC_DEBUG(X) llvm_cerr << X
1404#else
1405#define SC_DEBUG(X)
1406#endif
1407
1408// Module level constructor. Causes the contents of the Module (sans functions)
1409// to be added to the slot table.
1410SlotMachine::SlotMachine(const Module *M)
1411  : TheModule(M)    ///< Saved for lazy initialization.
1412  , TheFunction(0)
1413  , FunctionProcessed(false)
1414{
1415}
1416
1417// Function level constructor. Causes the contents of the Module and the one
1418// function provided to be added to the slot table.
1419SlotMachine::SlotMachine(const Function *F)
1420  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1421  , TheFunction(F) ///< Saved for lazy initialization
1422  , FunctionProcessed(false)
1423{
1424}
1425
1426inline void SlotMachine::initialize(void) {
1427  if (TheModule) {
1428    processModule();
1429    TheModule = 0; ///< Prevent re-processing next time we're called.
1430  }
1431  if (TheFunction && !FunctionProcessed)
1432    processFunction();
1433}
1434
1435// Iterate through all the global variables, functions, and global
1436// variable initializers and create slots for them.
1437void SlotMachine::processModule() {
1438  SC_DEBUG("begin processModule!\n");
1439
1440  // Add all of the global variables to the value table...
1441  for (Module::const_global_iterator I = TheModule->global_begin(),
1442       E = TheModule->global_end(); I != E; ++I)
1443    getOrCreateSlot(I);
1444
1445  // Add all the functions to the table
1446  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1447       I != E; ++I)
1448    getOrCreateSlot(I);
1449
1450  SC_DEBUG("end processModule!\n");
1451}
1452
1453
1454// Process the arguments, basic blocks, and instructions  of a function.
1455void SlotMachine::processFunction() {
1456  SC_DEBUG("begin processFunction!\n");
1457
1458  // Add all the function arguments
1459  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1460      AE = TheFunction->arg_end(); AI != AE; ++AI)
1461    getOrCreateSlot(AI);
1462
1463  SC_DEBUG("Inserting Instructions:\n");
1464
1465  // Add all of the basic blocks and instructions
1466  for (Function::const_iterator BB = TheFunction->begin(),
1467       E = TheFunction->end(); BB != E; ++BB) {
1468    getOrCreateSlot(BB);
1469    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
1470      getOrCreateSlot(I);
1471  }
1472
1473  FunctionProcessed = true;
1474
1475  SC_DEBUG("end processFunction!\n");
1476}
1477
1478/// Clean up after incorporating a function. This is the only way to get out of
1479/// the function incorporation state that affects the
1480/// getSlot/getOrCreateSlot lock. Function incorporation state is indicated
1481/// by TheFunction != 0.
1482void SlotMachine::purgeFunction() {
1483  SC_DEBUG("begin purgeFunction!\n");
1484  fMap.clear(); // Simply discard the function level map
1485  TheFunction = 0;
1486  FunctionProcessed = false;
1487  SC_DEBUG("end purgeFunction!\n");
1488}
1489
1490/// Get the slot number for a value. This function will assert if you
1491/// ask for a Value that hasn't previously been inserted with getOrCreateSlot.
1492/// Types are forbidden because Type does not inherit from Value (any more).
1493int SlotMachine::getSlot(const Value *V) {
1494  assert(V && "Can't get slot for null Value");
1495  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1496    "Can't insert a non-GlobalValue Constant into SlotMachine");
1497
1498  // Check for uninitialized state and do lazy initialization
1499  this->initialize();
1500
1501  // Get the type of the value
1502  const Type* VTy = V->getType();
1503
1504  // Find the type plane in the module map
1505  TypedPlanes::const_iterator MI = mMap.find(VTy);
1506
1507  if (TheFunction) {
1508    // Lookup the type in the function map too
1509    TypedPlanes::const_iterator FI = fMap.find(VTy);
1510    // If there is a corresponding type plane in the function map
1511    if (FI != fMap.end()) {
1512      // Lookup the Value in the function map
1513      ValueMap::const_iterator FVI = FI->second.map.find(V);
1514      // If the value doesn't exist in the function map
1515      if (FVI == FI->second.map.end()) {
1516        // Look up the value in the module map.
1517        if (MI == mMap.end()) return -1;
1518        ValueMap::const_iterator MVI = MI->second.map.find(V);
1519        // If we didn't find it, it wasn't inserted
1520        if (MVI == MI->second.map.end()) return -1;
1521        assert(MVI != MI->second.map.end() && "Value not found");
1522        // We found it only at the module level
1523        return MVI->second;
1524
1525      // else the value exists in the function map
1526      } else {
1527        // Return the slot number as the module's contribution to
1528        // the type plane plus the index in the function's contribution
1529        // to the type plane.
1530        if (MI != mMap.end())
1531          return MI->second.next_slot + FVI->second;
1532        else
1533          return FVI->second;
1534      }
1535    }
1536  }
1537
1538  // N.B. Can get here only if either !TheFunction or the function doesn't
1539  // have a corresponding type plane for the Value
1540
1541  // Make sure the type plane exists
1542  if (MI == mMap.end()) return -1;
1543  // Lookup the value in the module's map
1544  ValueMap::const_iterator MVI = MI->second.map.find(V);
1545  // Make sure we found it.
1546  if (MVI == MI->second.map.end()) return -1;
1547  // Return it.
1548  return MVI->second;
1549}
1550
1551
1552// Create a new slot, or return the existing slot if it is already
1553// inserted. Note that the logic here parallels getSlot but instead
1554// of asserting when the Value* isn't found, it inserts the value.
1555unsigned SlotMachine::getOrCreateSlot(const Value *V) {
1556  assert(V && "Can't insert a null Value to SlotMachine");
1557  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1558    "Can't insert a non-GlobalValue Constant into SlotMachine");
1559
1560  const Type* VTy = V->getType();
1561
1562  // Just ignore void typed things or things with names.
1563  if (VTy == Type::VoidTy || V->hasName())
1564    return 0; // FIXME: Wrong return value!
1565
1566  // Look up the type plane for the Value's type from the module map
1567  TypedPlanes::const_iterator MI = mMap.find(VTy);
1568
1569  if (TheFunction) {
1570    // Get the type plane for the Value's type from the function map
1571    TypedPlanes::const_iterator FI = fMap.find(VTy);
1572    // If there is a corresponding type plane in the function map
1573    if (FI != fMap.end()) {
1574      // Lookup the Value in the function map
1575      ValueMap::const_iterator FVI = FI->second.map.find(V);
1576      // If the value doesn't exist in the function map
1577      if (FVI == FI->second.map.end()) {
1578        // If there is no corresponding type plane in the module map
1579        if (MI == mMap.end())
1580          return insertValue(V);
1581        // Look up the value in the module map
1582        ValueMap::const_iterator MVI = MI->second.map.find(V);
1583        // If we didn't find it, it wasn't inserted
1584        if (MVI == MI->second.map.end())
1585          return insertValue(V);
1586        else
1587          // We found it only at the module level
1588          return MVI->second;
1589
1590      // else the value exists in the function map
1591      } else {
1592        if (MI == mMap.end())
1593          return FVI->second;
1594        else
1595          // Return the slot number as the module's contribution to
1596          // the type plane plus the index in the function's contribution
1597          // to the type plane.
1598          return MI->second.next_slot + FVI->second;
1599      }
1600
1601    // else there is not a corresponding type plane in the function map
1602    } else {
1603      // If the type plane doesn't exists at the module level
1604      if (MI == mMap.end()) {
1605        return insertValue(V);
1606      // else type plane exists at the module level, examine it
1607      } else {
1608        // Look up the value in the module's map
1609        ValueMap::const_iterator MVI = MI->second.map.find(V);
1610        // If we didn't find it there either
1611        if (MVI == MI->second.map.end())
1612          // Return the slot number as the module's contribution to
1613          // the type plane plus the index of the function map insertion.
1614          return MI->second.next_slot + insertValue(V);
1615        else
1616          return MVI->second;
1617      }
1618    }
1619  }
1620
1621  // N.B. Can only get here if !TheFunction
1622
1623  // If the module map's type plane is not for the Value's type
1624  if (MI != mMap.end()) {
1625    // Lookup the value in the module's map
1626    ValueMap::const_iterator MVI = MI->second.map.find(V);
1627    if (MVI != MI->second.map.end())
1628      return MVI->second;
1629  }
1630
1631  return insertValue(V);
1632}
1633
1634
1635// Low level insert function. Minimal checking is done. This
1636// function is just for the convenience of getOrCreateSlot (above).
1637unsigned SlotMachine::insertValue(const Value *V) {
1638  assert(V && "Can't insert a null Value into SlotMachine!");
1639  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1640         "Can't insert a non-GlobalValue Constant into SlotMachine");
1641  assert(V->getType() != Type::VoidTy && !V->hasName());
1642
1643  const Type *VTy = V->getType();
1644  unsigned DestSlot = 0;
1645
1646  if (TheFunction) {
1647    TypedPlanes::iterator I = fMap.find(VTy);
1648    if (I == fMap.end())
1649      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
1650    DestSlot = I->second.map[V] = I->second.next_slot++;
1651  } else {
1652    TypedPlanes::iterator I = mMap.find(VTy);
1653    if (I == mMap.end())
1654      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
1655    DestSlot = I->second.map[V] = I->second.next_slot++;
1656  }
1657
1658  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1659           DestSlot << " [");
1660  // G = Global, F = Function, o = other
1661  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' : 'o')));
1662  SC_DEBUG("]\n");
1663  return DestSlot;
1664}
1665