AsmWriter.cpp revision 4d7a2061f147cf64c0cdd36e67ca71e1d89c16f3
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Operator.h"
27#include "llvm/Metadata.h"
28#include "llvm/Module.h"
29#include "llvm/ValueSymbolTable.h"
30#include "llvm/TypeSymbolTable.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Dwarf.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/FormattedStream.h"
39#include <algorithm>
40#include <cctype>
41#include <map>
42using namespace llvm;
43
44// Make virtual table appear in this compilation unit.
45AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
46
47//===----------------------------------------------------------------------===//
48// Helper Functions
49//===----------------------------------------------------------------------===//
50
51static const Module *getModuleFromVal(const Value *V) {
52  if (const Argument *MA = dyn_cast<Argument>(V))
53    return MA->getParent() ? MA->getParent()->getParent() : 0;
54
55  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
56    return BB->getParent() ? BB->getParent()->getParent() : 0;
57
58  if (const Instruction *I = dyn_cast<Instruction>(V)) {
59    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
60    return M ? M->getParent() : 0;
61  }
62
63  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
64    return GV->getParent();
65  return 0;
66}
67
68// PrintEscapedString - Print each character of the specified string, escaping
69// it if it is not printable or if it is an escape char.
70static void PrintEscapedString(const StringRef &Name,
71                               raw_ostream &Out) {
72  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
73    unsigned char C = Name[i];
74    if (isprint(C) && C != '\\' && C != '"')
75      Out << C;
76    else
77      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
78  }
79}
80
81enum PrefixType {
82  GlobalPrefix,
83  LabelPrefix,
84  LocalPrefix,
85  NoPrefix
86};
87
88/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
89/// prefixed with % (if the string only contains simple characters) or is
90/// surrounded with ""'s (if it has special chars in it).  Print it out.
91static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
92                          PrefixType Prefix) {
93  assert(Name.data() && "Cannot get empty name!");
94  switch (Prefix) {
95  default: llvm_unreachable("Bad prefix!");
96  case NoPrefix: break;
97  case GlobalPrefix: OS << '@'; break;
98  case LabelPrefix:  break;
99  case LocalPrefix:  OS << '%'; break;
100  }
101
102  // Scan the name to see if it needs quotes first.
103  bool NeedsQuotes = isdigit(Name[0]);
104  if (!NeedsQuotes) {
105    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
106      char C = Name[i];
107      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
108        NeedsQuotes = true;
109        break;
110      }
111    }
112  }
113
114  // If we didn't need any quotes, just write out the name in one blast.
115  if (!NeedsQuotes) {
116    OS << Name;
117    return;
118  }
119
120  // Okay, we need quotes.  Output the quotes and escape any scary characters as
121  // needed.
122  OS << '"';
123  PrintEscapedString(Name, OS);
124  OS << '"';
125}
126
127/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
128/// prefixed with % (if the string only contains simple characters) or is
129/// surrounded with ""'s (if it has special chars in it).  Print it out.
130static void PrintLLVMName(raw_ostream &OS, const Value *V) {
131  PrintLLVMName(OS, V->getName(),
132                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
133}
134
135//===----------------------------------------------------------------------===//
136// TypePrinting Class: Type printing machinery
137//===----------------------------------------------------------------------===//
138
139static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
140  return *static_cast<DenseMap<const Type *, std::string>*>(M);
141}
142
143void TypePrinting::clear() {
144  getTypeNamesMap(TypeNames).clear();
145}
146
147bool TypePrinting::hasTypeName(const Type *Ty) const {
148  return getTypeNamesMap(TypeNames).count(Ty);
149}
150
151void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
152  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
153}
154
155
156TypePrinting::TypePrinting() {
157  TypeNames = new DenseMap<const Type *, std::string>();
158}
159
160TypePrinting::~TypePrinting() {
161  delete &getTypeNamesMap(TypeNames);
162}
163
164/// CalcTypeName - Write the specified type to the specified raw_ostream, making
165/// use of type names or up references to shorten the type name where possible.
166void TypePrinting::CalcTypeName(const Type *Ty,
167                                SmallVectorImpl<const Type *> &TypeStack,
168                                raw_ostream &OS, bool IgnoreTopLevelName) {
169  // Check to see if the type is named.
170  if (!IgnoreTopLevelName) {
171    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
172    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
173    if (I != TM.end()) {
174      OS << I->second;
175      return;
176    }
177  }
178
179  // Check to see if the Type is already on the stack...
180  unsigned Slot = 0, CurSize = TypeStack.size();
181  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
182
183  // This is another base case for the recursion.  In this case, we know
184  // that we have looped back to a type that we have previously visited.
185  // Generate the appropriate upreference to handle this.
186  if (Slot < CurSize) {
187    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
188    return;
189  }
190
191  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
192
193  switch (Ty->getTypeID()) {
194  case Type::VoidTyID:      OS << "void"; break;
195  case Type::FloatTyID:     OS << "float"; break;
196  case Type::DoubleTyID:    OS << "double"; break;
197  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
198  case Type::FP128TyID:     OS << "fp128"; break;
199  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
200  case Type::LabelTyID:     OS << "label"; break;
201  case Type::MetadataTyID:  OS << "metadata"; break;
202  case Type::IntegerTyID:
203    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
204    break;
205
206  case Type::FunctionTyID: {
207    const FunctionType *FTy = cast<FunctionType>(Ty);
208    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
209    OS << " (";
210    for (FunctionType::param_iterator I = FTy->param_begin(),
211         E = FTy->param_end(); I != E; ++I) {
212      if (I != FTy->param_begin())
213        OS << ", ";
214      CalcTypeName(*I, TypeStack, OS);
215    }
216    if (FTy->isVarArg()) {
217      if (FTy->getNumParams()) OS << ", ";
218      OS << "...";
219    }
220    OS << ')';
221    break;
222  }
223  case Type::StructTyID: {
224    const StructType *STy = cast<StructType>(Ty);
225    if (STy->isPacked())
226      OS << '<';
227    OS << "{ ";
228    for (StructType::element_iterator I = STy->element_begin(),
229         E = STy->element_end(); I != E; ++I) {
230      CalcTypeName(*I, TypeStack, OS);
231      if (next(I) != STy->element_end())
232        OS << ',';
233      OS << ' ';
234    }
235    OS << '}';
236    if (STy->isPacked())
237      OS << '>';
238    break;
239  }
240  case Type::PointerTyID: {
241    const PointerType *PTy = cast<PointerType>(Ty);
242    CalcTypeName(PTy->getElementType(), TypeStack, OS);
243    if (unsigned AddressSpace = PTy->getAddressSpace())
244      OS << " addrspace(" << AddressSpace << ')';
245    OS << '*';
246    break;
247  }
248  case Type::ArrayTyID: {
249    const ArrayType *ATy = cast<ArrayType>(Ty);
250    OS << '[' << ATy->getNumElements() << " x ";
251    CalcTypeName(ATy->getElementType(), TypeStack, OS);
252    OS << ']';
253    break;
254  }
255  case Type::VectorTyID: {
256    const VectorType *PTy = cast<VectorType>(Ty);
257    OS << "<" << PTy->getNumElements() << " x ";
258    CalcTypeName(PTy->getElementType(), TypeStack, OS);
259    OS << '>';
260    break;
261  }
262  case Type::OpaqueTyID:
263    OS << "opaque";
264    break;
265  default:
266    OS << "<unrecognized-type>";
267    break;
268  }
269
270  TypeStack.pop_back();       // Remove self from stack.
271}
272
273/// printTypeInt - The internal guts of printing out a type that has a
274/// potentially named portion.
275///
276void TypePrinting::print(const Type *Ty, raw_ostream &OS,
277                         bool IgnoreTopLevelName) {
278  // Check to see if the type is named.
279  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
280  if (!IgnoreTopLevelName) {
281    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
282    if (I != TM.end()) {
283      OS << I->second;
284      return;
285    }
286  }
287
288  // Otherwise we have a type that has not been named but is a derived type.
289  // Carefully recurse the type hierarchy to print out any contained symbolic
290  // names.
291  SmallVector<const Type *, 16> TypeStack;
292  std::string TypeName;
293
294  raw_string_ostream TypeOS(TypeName);
295  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
296  OS << TypeOS.str();
297
298  // Cache type name for later use.
299  if (!IgnoreTopLevelName)
300    TM.insert(std::make_pair(Ty, TypeOS.str()));
301}
302
303namespace {
304  class TypeFinder {
305    // To avoid walking constant expressions multiple times and other IR
306    // objects, we keep several helper maps.
307    DenseSet<const Value*> VisitedConstants;
308    DenseSet<const Type*> VisitedTypes;
309
310    TypePrinting &TP;
311    std::vector<const Type*> &NumberedTypes;
312  public:
313    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
314      : TP(tp), NumberedTypes(numberedTypes) {}
315
316    void Run(const Module &M) {
317      // Get types from the type symbol table.  This gets opaque types referened
318      // only through derived named types.
319      const TypeSymbolTable &ST = M.getTypeSymbolTable();
320      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
321           TI != E; ++TI)
322        IncorporateType(TI->second);
323
324      // Get types from global variables.
325      for (Module::const_global_iterator I = M.global_begin(),
326           E = M.global_end(); I != E; ++I) {
327        IncorporateType(I->getType());
328        if (I->hasInitializer())
329          IncorporateValue(I->getInitializer());
330      }
331
332      // Get types from aliases.
333      for (Module::const_alias_iterator I = M.alias_begin(),
334           E = M.alias_end(); I != E; ++I) {
335        IncorporateType(I->getType());
336        IncorporateValue(I->getAliasee());
337      }
338
339      // Get types from functions.
340      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
341        IncorporateType(FI->getType());
342
343        for (Function::const_iterator BB = FI->begin(), E = FI->end();
344             BB != E;++BB)
345          for (BasicBlock::const_iterator II = BB->begin(),
346               E = BB->end(); II != E; ++II) {
347            const Instruction &I = *II;
348            // Incorporate the type of the instruction and all its operands.
349            IncorporateType(I.getType());
350            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
351                 OI != OE; ++OI)
352              IncorporateValue(*OI);
353          }
354      }
355    }
356
357  private:
358    void IncorporateType(const Type *Ty) {
359      // Check to see if we're already visited this type.
360      if (!VisitedTypes.insert(Ty).second)
361        return;
362
363      // If this is a structure or opaque type, add a name for the type.
364      if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
365            || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
366        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
367        NumberedTypes.push_back(Ty);
368      }
369
370      // Recursively walk all contained types.
371      for (Type::subtype_iterator I = Ty->subtype_begin(),
372           E = Ty->subtype_end(); I != E; ++I)
373        IncorporateType(*I);
374    }
375
376    /// IncorporateValue - This method is used to walk operand lists finding
377    /// types hiding in constant expressions and other operands that won't be
378    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
379    /// inst operands are all explicitly enumerated.
380    void IncorporateValue(const Value *V) {
381      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
382
383      // Already visited?
384      if (!VisitedConstants.insert(V).second)
385        return;
386
387      // Check this type.
388      IncorporateType(V->getType());
389
390      // Look in operands for types.
391      const Constant *C = cast<Constant>(V);
392      for (Constant::const_op_iterator I = C->op_begin(),
393           E = C->op_end(); I != E;++I)
394        IncorporateValue(*I);
395    }
396  };
397} // end anonymous namespace
398
399
400/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
401/// the specified module to the TypePrinter and all numbered types to it and the
402/// NumberedTypes table.
403static void AddModuleTypesToPrinter(TypePrinting &TP,
404                                    std::vector<const Type*> &NumberedTypes,
405                                    const Module *M) {
406  if (M == 0) return;
407
408  // If the module has a symbol table, take all global types and stuff their
409  // names into the TypeNames map.
410  const TypeSymbolTable &ST = M->getTypeSymbolTable();
411  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
412       TI != E; ++TI) {
413    const Type *Ty = cast<Type>(TI->second);
414
415    // As a heuristic, don't insert pointer to primitive types, because
416    // they are used too often to have a single useful name.
417    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
418      const Type *PETy = PTy->getElementType();
419      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
420          !isa<OpaqueType>(PETy))
421        continue;
422    }
423
424    // Likewise don't insert primitives either.
425    if (Ty->isInteger() || Ty->isPrimitiveType())
426      continue;
427
428    // Get the name as a string and insert it into TypeNames.
429    std::string NameStr;
430    raw_string_ostream NameROS(NameStr);
431    formatted_raw_ostream NameOS(NameROS);
432    PrintLLVMName(NameOS, TI->first, LocalPrefix);
433    NameOS.flush();
434    TP.addTypeName(Ty, NameStr);
435  }
436
437  // Walk the entire module to find references to unnamed structure and opaque
438  // types.  This is required for correctness by opaque types (because multiple
439  // uses of an unnamed opaque type needs to be referred to by the same ID) and
440  // it shrinks complex recursive structure types substantially in some cases.
441  TypeFinder(TP, NumberedTypes).Run(*M);
442}
443
444
445/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
446/// type, iff there is an entry in the modules symbol table for the specified
447/// type or one of it's component types.
448///
449void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
450  TypePrinting Printer;
451  std::vector<const Type*> NumberedTypes;
452  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
453  Printer.print(Ty, OS);
454}
455
456//===----------------------------------------------------------------------===//
457// SlotTracker Class: Enumerate slot numbers for unnamed values
458//===----------------------------------------------------------------------===//
459
460namespace {
461
462/// This class provides computation of slot numbers for LLVM Assembly writing.
463///
464class SlotTracker {
465public:
466  /// ValueMap - A mapping of Values to slot numbers.
467  typedef DenseMap<const Value*, unsigned> ValueMap;
468
469private:
470  /// TheModule - The module for which we are holding slot numbers.
471  const Module* TheModule;
472
473  /// TheFunction - The function for which we are holding slot numbers.
474  const Function* TheFunction;
475  bool FunctionProcessed;
476
477  /// TheMDNode - The MDNode for which we are holding slot numbers.
478  const MDNode *TheMDNode;
479
480  /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
481  const NamedMDNode *TheNamedMDNode;
482
483  /// mMap - The TypePlanes map for the module level data.
484  ValueMap mMap;
485  unsigned mNext;
486
487  /// fMap - The TypePlanes map for the function level data.
488  ValueMap fMap;
489  unsigned fNext;
490
491  /// mdnMap - Map for MDNodes.
492  ValueMap mdnMap;
493  unsigned mdnNext;
494public:
495  /// Construct from a module
496  explicit SlotTracker(const Module *M);
497  /// Construct from a function, starting out in incorp state.
498  explicit SlotTracker(const Function *F);
499  /// Construct from a mdnode.
500  explicit SlotTracker(const MDNode *N);
501  /// Construct from a named mdnode.
502  explicit SlotTracker(const NamedMDNode *N);
503
504  /// Return the slot number of the specified value in it's type
505  /// plane.  If something is not in the SlotTracker, return -1.
506  int getLocalSlot(const Value *V);
507  int getGlobalSlot(const GlobalValue *V);
508  int getMetadataSlot(const MDNode *N);
509
510  /// If you'd like to deal with a function instead of just a module, use
511  /// this method to get its data into the SlotTracker.
512  void incorporateFunction(const Function *F) {
513    TheFunction = F;
514    FunctionProcessed = false;
515  }
516
517  /// After calling incorporateFunction, use this method to remove the
518  /// most recently incorporated function from the SlotTracker. This
519  /// will reset the state of the machine back to just the module contents.
520  void purgeFunction();
521
522  /// MDNode map iterators.
523  ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
524  ValueMap::iterator mdnEnd() { return mdnMap.end(); }
525  unsigned mdnSize() const { return mdnMap.size(); }
526  bool mdnEmpty() const { return mdnMap.empty(); }
527
528  /// This function does the actual initialization.
529  inline void initialize();
530
531  // Implementation Details
532private:
533  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
534  void CreateModuleSlot(const GlobalValue *V);
535
536  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
537  void CreateMetadataSlot(const MDNode *N);
538
539  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
540  void CreateFunctionSlot(const Value *V);
541
542  /// Add all of the module level global variables (and their initializers)
543  /// and function declarations, but not the contents of those functions.
544  void processModule();
545
546  /// Add all of the functions arguments, basic blocks, and instructions.
547  void processFunction();
548
549  /// Add all MDNode operands.
550  void processMDNode();
551
552  /// Add all MDNode operands.
553  void processNamedMDNode();
554
555  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
556  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
557};
558
559}  // end anonymous namespace
560
561
562static SlotTracker *createSlotTracker(const Value *V) {
563  if (const Argument *FA = dyn_cast<Argument>(V))
564    return new SlotTracker(FA->getParent());
565
566  if (const Instruction *I = dyn_cast<Instruction>(V))
567    return new SlotTracker(I->getParent()->getParent());
568
569  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
570    return new SlotTracker(BB->getParent());
571
572  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
573    return new SlotTracker(GV->getParent());
574
575  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
576    return new SlotTracker(GA->getParent());
577
578  if (const Function *Func = dyn_cast<Function>(V))
579    return new SlotTracker(Func);
580
581  return 0;
582}
583
584#if 0
585#define ST_DEBUG(X) errs() << X
586#else
587#define ST_DEBUG(X)
588#endif
589
590// Module level constructor. Causes the contents of the Module (sans functions)
591// to be added to the slot table.
592SlotTracker::SlotTracker(const Module *M)
593  : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
594    TheNamedMDNode(0), mNext(0), fNext(0),  mdnNext(0) {
595}
596
597// Function level constructor. Causes the contents of the Module and the one
598// function provided to be added to the slot table.
599SlotTracker::SlotTracker(const Function *F)
600  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
601    TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
602}
603
604// Constructor to handle single MDNode.
605SlotTracker::SlotTracker(const MDNode *C)
606  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
607    TheNamedMDNode(0), mNext(0), fNext(0),  mdnNext(0) {
608}
609
610// Constructor to handle single NamedMDNode.
611SlotTracker::SlotTracker(const NamedMDNode *N)
612  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
613    TheNamedMDNode(N), mNext(0), fNext(0),  mdnNext(0) {
614}
615
616inline void SlotTracker::initialize() {
617  if (TheModule) {
618    processModule();
619    TheModule = 0; ///< Prevent re-processing next time we're called.
620  }
621
622  if (TheFunction && !FunctionProcessed)
623    processFunction();
624
625  if (TheMDNode)
626    processMDNode();
627
628  if (TheNamedMDNode)
629    processNamedMDNode();
630}
631
632// Iterate through all the global variables, functions, and global
633// variable initializers and create slots for them.
634void SlotTracker::processModule() {
635  ST_DEBUG("begin processModule!\n");
636
637  // Add all of the unnamed global variables to the value table.
638  for (Module::const_global_iterator I = TheModule->global_begin(),
639         E = TheModule->global_end(); I != E; ++I) {
640    if (!I->hasName())
641      CreateModuleSlot(I);
642    if (I->hasInitializer()) {
643      if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
644        CreateMetadataSlot(N);
645    }
646  }
647
648  // Add metadata used by named metadata.
649  for (Module::const_named_metadata_iterator
650         I = TheModule->named_metadata_begin(),
651         E = TheModule->named_metadata_end(); I != E; ++I) {
652    const NamedMDNode *NMD = I;
653    for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
654      MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
655      if (MD)
656        CreateMetadataSlot(MD);
657    }
658  }
659
660  // Add all the unnamed functions to the table.
661  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
662       I != E; ++I)
663    if (!I->hasName())
664      CreateModuleSlot(I);
665
666  ST_DEBUG("end processModule!\n");
667}
668
669// Process the arguments, basic blocks, and instructions  of a function.
670void SlotTracker::processFunction() {
671  ST_DEBUG("begin processFunction!\n");
672  fNext = 0;
673
674  // Add all the function arguments with no names.
675  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
676      AE = TheFunction->arg_end(); AI != AE; ++AI)
677    if (!AI->hasName())
678      CreateFunctionSlot(AI);
679
680  ST_DEBUG("Inserting Instructions:\n");
681
682  MetadataContext &TheMetadata = TheFunction->getContext().getMetadata();
683
684  // Add all of the basic blocks and instructions with no names.
685  for (Function::const_iterator BB = TheFunction->begin(),
686       E = TheFunction->end(); BB != E; ++BB) {
687    if (!BB->hasName())
688      CreateFunctionSlot(BB);
689    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
690         ++I) {
691      if (I->getType() != Type::getVoidTy(TheFunction->getContext()) &&
692          !I->hasName())
693        CreateFunctionSlot(I);
694      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
695        if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
696          CreateMetadataSlot(N);
697
698      // Process metadata attached with this instruction.
699      const MetadataContext::MDMapTy *MDs = TheMetadata.getMDs(I);
700      if (MDs)
701        for (MetadataContext::MDMapTy::const_iterator MI = MDs->begin(),
702               ME = MDs->end(); MI != ME; ++MI)
703          if (MDNode *MDN = dyn_cast_or_null<MDNode>(MI->second))
704            CreateMetadataSlot(MDN);
705    }
706  }
707
708  FunctionProcessed = true;
709
710  ST_DEBUG("end processFunction!\n");
711}
712
713/// processMDNode - Process TheMDNode.
714void SlotTracker::processMDNode() {
715  ST_DEBUG("begin processMDNode!\n");
716  mdnNext = 0;
717  CreateMetadataSlot(TheMDNode);
718  TheMDNode = 0;
719  ST_DEBUG("end processMDNode!\n");
720}
721
722/// processNamedMDNode - Process TheNamedMDNode.
723void SlotTracker::processNamedMDNode() {
724  ST_DEBUG("begin processNamedMDNode!\n");
725  mdnNext = 0;
726  for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
727    MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
728    if (MD)
729      CreateMetadataSlot(MD);
730  }
731  TheNamedMDNode = 0;
732  ST_DEBUG("end processNamedMDNode!\n");
733}
734
735/// Clean up after incorporating a function. This is the only way to get out of
736/// the function incorporation state that affects get*Slot/Create*Slot. Function
737/// incorporation state is indicated by TheFunction != 0.
738void SlotTracker::purgeFunction() {
739  ST_DEBUG("begin purgeFunction!\n");
740  fMap.clear(); // Simply discard the function level map
741  TheFunction = 0;
742  FunctionProcessed = false;
743  ST_DEBUG("end purgeFunction!\n");
744}
745
746/// getGlobalSlot - Get the slot number of a global value.
747int SlotTracker::getGlobalSlot(const GlobalValue *V) {
748  // Check for uninitialized state and do lazy initialization.
749  initialize();
750
751  // Find the type plane in the module map
752  ValueMap::iterator MI = mMap.find(V);
753  return MI == mMap.end() ? -1 : (int)MI->second;
754}
755
756/// getGlobalSlot - Get the slot number of a MDNode.
757int SlotTracker::getMetadataSlot(const MDNode *N) {
758  // Check for uninitialized state and do lazy initialization.
759  initialize();
760
761  // Find the type plane in the module map
762  ValueMap::iterator MI = mdnMap.find(N);
763  return MI == mdnMap.end() ? -1 : (int)MI->second;
764}
765
766
767/// getLocalSlot - Get the slot number for a value that is local to a function.
768int SlotTracker::getLocalSlot(const Value *V) {
769  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
770
771  // Check for uninitialized state and do lazy initialization.
772  initialize();
773
774  ValueMap::iterator FI = fMap.find(V);
775  return FI == fMap.end() ? -1 : (int)FI->second;
776}
777
778
779/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
780void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
781  assert(V && "Can't insert a null Value into SlotTracker!");
782  assert(V->getType() != Type::getVoidTy(V->getContext()) &&
783         "Doesn't need a slot!");
784  assert(!V->hasName() && "Doesn't need a slot!");
785
786  unsigned DestSlot = mNext++;
787  mMap[V] = DestSlot;
788
789  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
790           DestSlot << " [");
791  // G = Global, F = Function, A = Alias, o = other
792  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
793            (isa<Function>(V) ? 'F' :
794             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
795}
796
797/// CreateSlot - Create a new slot for the specified value if it has no name.
798void SlotTracker::CreateFunctionSlot(const Value *V) {
799  assert(V->getType() != Type::getVoidTy(TheFunction->getContext()) &&
800         !V->hasName() && "Doesn't need a slot!");
801
802  unsigned DestSlot = fNext++;
803  fMap[V] = DestSlot;
804
805  // G = Global, F = Function, o = other
806  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
807           DestSlot << " [o]\n");
808}
809
810/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
811void SlotTracker::CreateMetadataSlot(const MDNode *N) {
812  assert(N && "Can't insert a null Value into SlotTracker!");
813
814  ValueMap::iterator I = mdnMap.find(N);
815  if (I != mdnMap.end())
816    return;
817
818  unsigned DestSlot = mdnNext++;
819  mdnMap[N] = DestSlot;
820
821  for (MDNode::const_elem_iterator MDI = N->elem_begin(),
822         MDE = N->elem_end(); MDI != MDE; ++MDI) {
823    const Value *TV = *MDI;
824    if (TV)
825      if (const MDNode *N2 = dyn_cast<MDNode>(TV))
826        CreateMetadataSlot(N2);
827  }
828}
829
830//===----------------------------------------------------------------------===//
831// AsmWriter Implementation
832//===----------------------------------------------------------------------===//
833
834static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
835                                   TypePrinting *TypePrinter,
836                                   SlotTracker *Machine);
837
838
839
840static const char *getPredicateText(unsigned predicate) {
841  const char * pred = "unknown";
842  switch (predicate) {
843    case FCmpInst::FCMP_FALSE: pred = "false"; break;
844    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
845    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
846    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
847    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
848    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
849    case FCmpInst::FCMP_ONE:   pred = "one"; break;
850    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
851    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
852    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
853    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
854    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
855    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
856    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
857    case FCmpInst::FCMP_UNE:   pred = "une"; break;
858    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
859    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
860    case ICmpInst::ICMP_NE:    pred = "ne"; break;
861    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
862    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
863    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
864    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
865    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
866    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
867    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
868    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
869  }
870  return pred;
871}
872
873static void WriteMDNodeComment(const MDNode *Node,
874			       formatted_raw_ostream &Out) {
875  if (Node->getNumElements() < 1)
876    return;
877  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getElement(0));
878  if (!CI) return;
879  unsigned Val = CI->getZExtValue();
880  unsigned Tag = Val & ~LLVMDebugVersionMask;
881  if (Val >= LLVMDebugVersion) {
882    if (Tag == dwarf::DW_TAG_auto_variable)
883      Out << "; [ DW_TAG_auto_variable ]";
884    else if (Tag == dwarf::DW_TAG_arg_variable)
885      Out << "; [ DW_TAG_arg_variable ]";
886    else if (Tag == dwarf::DW_TAG_return_variable)
887      Out << "; [ DW_TAG_return_variable ]";
888    else if (Tag == dwarf::DW_TAG_vector_type)
889      Out << "; [ DW_TAG_vector_type ]";
890    else if (Tag == dwarf::DW_TAG_user_base)
891      Out << "; [ DW_TAG_user_base ]";
892    else
893      Out << "; [" << dwarf::TagString(Tag) << " ]";
894  }
895}
896
897static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter,
898                         SlotTracker &Machine) {
899  SmallVector<const MDNode *, 16> Nodes;
900  Nodes.resize(Machine.mdnSize());
901  for (SlotTracker::ValueMap::iterator I =
902         Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
903    Nodes[I->second] = cast<MDNode>(I->first);
904
905  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
906    Out << '!' << i << " = metadata ";
907    const MDNode *Node = Nodes[i];
908    Out << "!{";
909    for (MDNode::const_elem_iterator NI = Node->elem_begin(),
910           NE = Node->elem_end(); NI != NE;) {
911      const Value *V = *NI;
912      if (!V)
913        Out << "null";
914      else if (const MDNode *N = dyn_cast<MDNode>(V)) {
915        Out << "metadata ";
916        Out << '!' << Machine.getMetadataSlot(N);
917      }
918      else {
919        TypePrinter.print((*NI)->getType(), Out);
920        Out << ' ';
921        WriteAsOperandInternal(Out, *NI, &TypePrinter, &Machine);
922      }
923      if (++NI != NE)
924        Out << ", ";
925    }
926
927    Out << "}";
928    WriteMDNodeComment(Node, Out);
929    Out << "\n";
930  }
931}
932
933static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
934  if (const OverflowingBinaryOperator *OBO =
935        dyn_cast<OverflowingBinaryOperator>(U)) {
936    if (OBO->hasNoUnsignedWrap())
937      Out << " nuw";
938    if (OBO->hasNoSignedWrap())
939      Out << " nsw";
940  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
941    if (Div->isExact())
942      Out << " exact";
943  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
944    if (GEP->isInBounds())
945      Out << " inbounds";
946  }
947}
948
949static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
950                             TypePrinting &TypePrinter, SlotTracker *Machine) {
951  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
952    if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
953      Out << (CI->getZExtValue() ? "true" : "false");
954      return;
955    }
956    Out << CI->getValue();
957    return;
958  }
959
960  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
961    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
962        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
963      // We would like to output the FP constant value in exponential notation,
964      // but we cannot do this if doing so will lose precision.  Check here to
965      // make sure that we only output it in exponential format if we can parse
966      // the value back and get the same value.
967      //
968      bool ignored;
969      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
970      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
971                              CFP->getValueAPF().convertToFloat();
972      std::string StrVal = ftostr(CFP->getValueAPF());
973
974      // Check to make sure that the stringized number is not some string like
975      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
976      // that the string matches the "[-+]?[0-9]" regex.
977      //
978      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
979          ((StrVal[0] == '-' || StrVal[0] == '+') &&
980           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
981        // Reparse stringized version!
982        if (atof(StrVal.c_str()) == Val) {
983          Out << StrVal;
984          return;
985        }
986      }
987      // Otherwise we could not reparse it to exactly the same value, so we must
988      // output the string in hexadecimal format!  Note that loading and storing
989      // floating point types changes the bits of NaNs on some hosts, notably
990      // x86, so we must not use these types.
991      assert(sizeof(double) == sizeof(uint64_t) &&
992             "assuming that double is 64 bits!");
993      char Buffer[40];
994      APFloat apf = CFP->getValueAPF();
995      // Floats are represented in ASCII IR as double, convert.
996      if (!isDouble)
997        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
998                          &ignored);
999      Out << "0x" <<
1000              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
1001                            Buffer+40);
1002      return;
1003    }
1004
1005    // Some form of long double.  These appear as a magic letter identifying
1006    // the type, then a fixed number of hex digits.
1007    Out << "0x";
1008    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1009      Out << 'K';
1010      // api needed to prevent premature destruction
1011      APInt api = CFP->getValueAPF().bitcastToAPInt();
1012      const uint64_t* p = api.getRawData();
1013      uint64_t word = p[1];
1014      int shiftcount=12;
1015      int width = api.getBitWidth();
1016      for (int j=0; j<width; j+=4, shiftcount-=4) {
1017        unsigned int nibble = (word>>shiftcount) & 15;
1018        if (nibble < 10)
1019          Out << (unsigned char)(nibble + '0');
1020        else
1021          Out << (unsigned char)(nibble - 10 + 'A');
1022        if (shiftcount == 0 && j+4 < width) {
1023          word = *p;
1024          shiftcount = 64;
1025          if (width-j-4 < 64)
1026            shiftcount = width-j-4;
1027        }
1028      }
1029      return;
1030    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
1031      Out << 'L';
1032    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1033      Out << 'M';
1034    else
1035      llvm_unreachable("Unsupported floating point type");
1036    // api needed to prevent premature destruction
1037    APInt api = CFP->getValueAPF().bitcastToAPInt();
1038    const uint64_t* p = api.getRawData();
1039    uint64_t word = *p;
1040    int shiftcount=60;
1041    int width = api.getBitWidth();
1042    for (int j=0; j<width; j+=4, shiftcount-=4) {
1043      unsigned int nibble = (word>>shiftcount) & 15;
1044      if (nibble < 10)
1045        Out << (unsigned char)(nibble + '0');
1046      else
1047        Out << (unsigned char)(nibble - 10 + 'A');
1048      if (shiftcount == 0 && j+4 < width) {
1049        word = *(++p);
1050        shiftcount = 64;
1051        if (width-j-4 < 64)
1052          shiftcount = width-j-4;
1053      }
1054    }
1055    return;
1056  }
1057
1058  if (isa<ConstantAggregateZero>(CV)) {
1059    Out << "zeroinitializer";
1060    return;
1061  }
1062
1063  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1064    // As a special case, print the array as a string if it is an array of
1065    // i8 with ConstantInt values.
1066    //
1067    const Type *ETy = CA->getType()->getElementType();
1068    if (CA->isString()) {
1069      Out << "c\"";
1070      PrintEscapedString(CA->getAsString(), Out);
1071      Out << '"';
1072    } else {                // Cannot output in string format...
1073      Out << '[';
1074      if (CA->getNumOperands()) {
1075        TypePrinter.print(ETy, Out);
1076        Out << ' ';
1077        WriteAsOperandInternal(Out, CA->getOperand(0),
1078                               &TypePrinter, Machine);
1079        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1080          Out << ", ";
1081          TypePrinter.print(ETy, Out);
1082          Out << ' ';
1083          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
1084        }
1085      }
1086      Out << ']';
1087    }
1088    return;
1089  }
1090
1091  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1092    if (CS->getType()->isPacked())
1093      Out << '<';
1094    Out << '{';
1095    unsigned N = CS->getNumOperands();
1096    if (N) {
1097      Out << ' ';
1098      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1099      Out << ' ';
1100
1101      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1102
1103      for (unsigned i = 1; i < N; i++) {
1104        Out << ", ";
1105        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1106        Out << ' ';
1107
1108        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1109      }
1110      Out << ' ';
1111    }
1112
1113    Out << '}';
1114    if (CS->getType()->isPacked())
1115      Out << '>';
1116    return;
1117  }
1118
1119  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1120    const Type *ETy = CP->getType()->getElementType();
1121    assert(CP->getNumOperands() > 0 &&
1122           "Number of operands for a PackedConst must be > 0");
1123    Out << '<';
1124    TypePrinter.print(ETy, Out);
1125    Out << ' ';
1126    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1127    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1128      Out << ", ";
1129      TypePrinter.print(ETy, Out);
1130      Out << ' ';
1131      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1132    }
1133    Out << '>';
1134    return;
1135  }
1136
1137  if (isa<ConstantPointerNull>(CV)) {
1138    Out << "null";
1139    return;
1140  }
1141
1142  if (isa<UndefValue>(CV)) {
1143    Out << "undef";
1144    return;
1145  }
1146
1147  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1148    Out << "!" << Machine->getMetadataSlot(Node);
1149    return;
1150  }
1151
1152  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1153    Out << CE->getOpcodeName();
1154    WriteOptimizationInfo(Out, CE);
1155    if (CE->isCompare())
1156      Out << ' ' << getPredicateText(CE->getPredicate());
1157    Out << " (";
1158
1159    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1160      TypePrinter.print((*OI)->getType(), Out);
1161      Out << ' ';
1162      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1163      if (OI+1 != CE->op_end())
1164        Out << ", ";
1165    }
1166
1167    if (CE->hasIndices()) {
1168      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1169      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1170        Out << ", " << Indices[i];
1171    }
1172
1173    if (CE->isCast()) {
1174      Out << " to ";
1175      TypePrinter.print(CE->getType(), Out);
1176    }
1177
1178    Out << ')';
1179    return;
1180  }
1181
1182  Out << "<placeholder or erroneous Constant>";
1183}
1184
1185
1186/// WriteAsOperand - Write the name of the specified value out to the specified
1187/// ostream.  This can be useful when you just want to print int %reg126, not
1188/// the whole instruction that generated it.
1189///
1190static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1191                                   TypePrinting *TypePrinter,
1192                                   SlotTracker *Machine) {
1193  if (V->hasName()) {
1194    PrintLLVMName(Out, V);
1195    return;
1196  }
1197
1198  const Constant *CV = dyn_cast<Constant>(V);
1199  if (CV && !isa<GlobalValue>(CV)) {
1200    assert(TypePrinter && "Constants require TypePrinting!");
1201    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1202    return;
1203  }
1204
1205  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1206    Out << "asm ";
1207    if (IA->hasSideEffects())
1208      Out << "sideeffect ";
1209    Out << '"';
1210    PrintEscapedString(IA->getAsmString(), Out);
1211    Out << "\", \"";
1212    PrintEscapedString(IA->getConstraintString(), Out);
1213    Out << '"';
1214    return;
1215  }
1216
1217  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1218    Out << '!' << Machine->getMetadataSlot(N);
1219    return;
1220  }
1221
1222  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1223    Out << "!\"";
1224    PrintEscapedString(MDS->getString(), Out);
1225    Out << '"';
1226    return;
1227  }
1228
1229  if (V->getValueID() == Value::PseudoSourceValueVal) {
1230    V->print(Out);
1231    return;
1232  }
1233
1234  char Prefix = '%';
1235  int Slot;
1236  if (Machine) {
1237    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1238      Slot = Machine->getGlobalSlot(GV);
1239      Prefix = '@';
1240    } else {
1241      Slot = Machine->getLocalSlot(V);
1242    }
1243  } else {
1244    Machine = createSlotTracker(V);
1245    if (Machine) {
1246      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1247        Slot = Machine->getGlobalSlot(GV);
1248        Prefix = '@';
1249      } else {
1250        Slot = Machine->getLocalSlot(V);
1251      }
1252      delete Machine;
1253    } else {
1254      Slot = -1;
1255    }
1256  }
1257
1258  if (Slot != -1)
1259    Out << Prefix << Slot;
1260  else
1261    Out << "<badref>";
1262}
1263
1264void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1265                          bool PrintType, const Module *Context) {
1266
1267  // Fast path: Don't construct and populate a TypePrinting object if we
1268  // won't be needing any types printed.
1269  if (!PrintType &&
1270      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1271    WriteAsOperandInternal(Out, V, 0, 0);
1272    return;
1273  }
1274
1275  if (Context == 0) Context = getModuleFromVal(V);
1276
1277  TypePrinting TypePrinter;
1278  std::vector<const Type*> NumberedTypes;
1279  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1280  if (PrintType) {
1281    TypePrinter.print(V->getType(), Out);
1282    Out << ' ';
1283  }
1284
1285  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1286}
1287
1288namespace {
1289
1290class AssemblyWriter {
1291  formatted_raw_ostream &Out;
1292  SlotTracker &Machine;
1293  const Module *TheModule;
1294  TypePrinting TypePrinter;
1295  AssemblyAnnotationWriter *AnnotationWriter;
1296  std::vector<const Type*> NumberedTypes;
1297  DenseMap<unsigned, const char *> MDNames;
1298
1299public:
1300  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1301                        const Module *M,
1302                        AssemblyAnnotationWriter *AAW)
1303    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1304    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1305    // FIXME: Provide MDPrinter
1306    MetadataContext &TheMetadata = M->getContext().getMetadata();
1307    const StringMap<unsigned> *Names = TheMetadata.getHandlerNames();
1308    for (StringMapConstIterator<unsigned> I = Names->begin(),
1309           E = Names->end(); I != E; ++I) {
1310      const StringMapEntry<unsigned> &Entry = *I;
1311      MDNames[I->second] = Entry.getKeyData();
1312    }
1313  }
1314
1315  void write(const Module *M) { printModule(M); }
1316
1317  void write(const GlobalValue *G) {
1318    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1319      printGlobal(GV);
1320    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1321      printAlias(GA);
1322    else if (const Function *F = dyn_cast<Function>(G))
1323      printFunction(F);
1324    else
1325      llvm_unreachable("Unknown global");
1326  }
1327
1328  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
1329  void write(const Instruction *I)    { printInstruction(*I); }
1330
1331  void writeOperand(const Value *Op, bool PrintType);
1332  void writeParamOperand(const Value *Operand, Attributes Attrs);
1333
1334private:
1335  void printModule(const Module *M);
1336  void printTypeSymbolTable(const TypeSymbolTable &ST);
1337  void printGlobal(const GlobalVariable *GV);
1338  void printAlias(const GlobalAlias *GV);
1339  void printFunction(const Function *F);
1340  void printArgument(const Argument *FA, Attributes Attrs);
1341  void printBasicBlock(const BasicBlock *BB);
1342  void printInstruction(const Instruction &I);
1343
1344  // printInfoComment - Print a little comment after the instruction indicating
1345  // which slot it occupies.
1346  void printInfoComment(const Value &V);
1347};
1348}  // end of anonymous namespace
1349
1350
1351void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1352  if (Operand == 0) {
1353    Out << "<null operand!>";
1354  } else {
1355    if (PrintType) {
1356      TypePrinter.print(Operand->getType(), Out);
1357      Out << ' ';
1358    }
1359    WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1360  }
1361}
1362
1363void AssemblyWriter::writeParamOperand(const Value *Operand,
1364                                       Attributes Attrs) {
1365  if (Operand == 0) {
1366    Out << "<null operand!>";
1367  } else {
1368    // Print the type
1369    TypePrinter.print(Operand->getType(), Out);
1370    // Print parameter attributes list
1371    if (Attrs != Attribute::None)
1372      Out << ' ' << Attribute::getAsString(Attrs);
1373    Out << ' ';
1374    // Print the operand
1375    WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1376  }
1377}
1378
1379void AssemblyWriter::printModule(const Module *M) {
1380  if (!M->getModuleIdentifier().empty() &&
1381      // Don't print the ID if it will start a new line (which would
1382      // require a comment char before it).
1383      M->getModuleIdentifier().find('\n') == std::string::npos)
1384    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1385
1386  if (!M->getDataLayout().empty())
1387    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1388  if (!M->getTargetTriple().empty())
1389    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1390
1391  if (!M->getModuleInlineAsm().empty()) {
1392    // Split the string into lines, to make it easier to read the .ll file.
1393    std::string Asm = M->getModuleInlineAsm();
1394    size_t CurPos = 0;
1395    size_t NewLine = Asm.find_first_of('\n', CurPos);
1396    Out << '\n';
1397    while (NewLine != std::string::npos) {
1398      // We found a newline, print the portion of the asm string from the
1399      // last newline up to this newline.
1400      Out << "module asm \"";
1401      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1402                         Out);
1403      Out << "\"\n";
1404      CurPos = NewLine+1;
1405      NewLine = Asm.find_first_of('\n', CurPos);
1406    }
1407    Out << "module asm \"";
1408    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1409    Out << "\"\n";
1410  }
1411
1412  // Loop over the dependent libraries and emit them.
1413  Module::lib_iterator LI = M->lib_begin();
1414  Module::lib_iterator LE = M->lib_end();
1415  if (LI != LE) {
1416    Out << '\n';
1417    Out << "deplibs = [ ";
1418    while (LI != LE) {
1419      Out << '"' << *LI << '"';
1420      ++LI;
1421      if (LI != LE)
1422        Out << ", ";
1423    }
1424    Out << " ]";
1425  }
1426
1427  // Loop over the symbol table, emitting all id'd types.
1428  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1429  printTypeSymbolTable(M->getTypeSymbolTable());
1430
1431  // Output all globals.
1432  if (!M->global_empty()) Out << '\n';
1433  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1434       I != E; ++I)
1435    printGlobal(I);
1436
1437  // Output all aliases.
1438  if (!M->alias_empty()) Out << "\n";
1439  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1440       I != E; ++I)
1441    printAlias(I);
1442
1443  // Output all of the functions.
1444  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1445    printFunction(I);
1446
1447  // Output named metadata.
1448  if (!M->named_metadata_empty()) Out << '\n';
1449  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1450         E = M->named_metadata_end(); I != E; ++I) {
1451    const NamedMDNode *NMD = I;
1452    Out << "!" << NMD->getName() << " = !{";
1453    for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
1454      if (i) Out << ", ";
1455      MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
1456      Out << '!' << Machine.getMetadataSlot(MD);
1457    }
1458    Out << "}\n";
1459  }
1460
1461  // Output metadata.
1462  if (!Machine.mdnEmpty()) Out << '\n';
1463  WriteMDNodes(Out, TypePrinter, Machine);
1464}
1465
1466static void PrintLinkage(GlobalValue::LinkageTypes LT,
1467                         formatted_raw_ostream &Out) {
1468  switch (LT) {
1469  case GlobalValue::ExternalLinkage: break;
1470  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1471  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1472  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1473  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1474  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1475  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1476  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1477  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1478  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1479  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1480  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1481  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1482  case GlobalValue::AvailableExternallyLinkage:
1483    Out << "available_externally ";
1484    break;
1485  case GlobalValue::GhostLinkage:
1486    llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1487  }
1488}
1489
1490
1491static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1492                            formatted_raw_ostream &Out) {
1493  switch (Vis) {
1494  default: llvm_unreachable("Invalid visibility style!");
1495  case GlobalValue::DefaultVisibility: break;
1496  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1497  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1498  }
1499}
1500
1501void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1502  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1503  Out << " = ";
1504
1505  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1506    Out << "external ";
1507
1508  PrintLinkage(GV->getLinkage(), Out);
1509  PrintVisibility(GV->getVisibility(), Out);
1510
1511  if (GV->isThreadLocal()) Out << "thread_local ";
1512  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1513    Out << "addrspace(" << AddressSpace << ") ";
1514  Out << (GV->isConstant() ? "constant " : "global ");
1515  TypePrinter.print(GV->getType()->getElementType(), Out);
1516
1517  if (GV->hasInitializer()) {
1518    Out << ' ';
1519    writeOperand(GV->getInitializer(), false);
1520  }
1521
1522  if (GV->hasSection())
1523    Out << ", section \"" << GV->getSection() << '"';
1524  if (GV->getAlignment())
1525    Out << ", align " << GV->getAlignment();
1526
1527  printInfoComment(*GV);
1528  Out << '\n';
1529}
1530
1531void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1532  // Don't crash when dumping partially built GA
1533  if (!GA->hasName())
1534    Out << "<<nameless>> = ";
1535  else {
1536    PrintLLVMName(Out, GA);
1537    Out << " = ";
1538  }
1539  PrintVisibility(GA->getVisibility(), Out);
1540
1541  Out << "alias ";
1542
1543  PrintLinkage(GA->getLinkage(), Out);
1544
1545  const Constant *Aliasee = GA->getAliasee();
1546
1547  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1548    TypePrinter.print(GV->getType(), Out);
1549    Out << ' ';
1550    PrintLLVMName(Out, GV);
1551  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1552    TypePrinter.print(F->getFunctionType(), Out);
1553    Out << "* ";
1554
1555    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1556  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1557    TypePrinter.print(GA->getType(), Out);
1558    Out << ' ';
1559    PrintLLVMName(Out, GA);
1560  } else {
1561    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1562    // The only valid GEP is an all zero GEP.
1563    assert((CE->getOpcode() == Instruction::BitCast ||
1564            CE->getOpcode() == Instruction::GetElementPtr) &&
1565           "Unsupported aliasee");
1566    writeOperand(CE, false);
1567  }
1568
1569  printInfoComment(*GA);
1570  Out << '\n';
1571}
1572
1573void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1574  // Emit all numbered types.
1575  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1576    Out << '%' << i << " = type ";
1577
1578    // Make sure we print out at least one level of the type structure, so
1579    // that we do not get %2 = type %2
1580    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1581    Out << '\n';
1582  }
1583
1584  // Print the named types.
1585  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1586       TI != TE; ++TI) {
1587    PrintLLVMName(Out, TI->first, LocalPrefix);
1588    Out << " = type ";
1589
1590    // Make sure we print out at least one level of the type structure, so
1591    // that we do not get %FILE = type %FILE
1592    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1593    Out << '\n';
1594  }
1595}
1596
1597/// printFunction - Print all aspects of a function.
1598///
1599void AssemblyWriter::printFunction(const Function *F) {
1600  // Print out the return type and name.
1601  Out << '\n';
1602
1603  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1604
1605  if (F->isDeclaration())
1606    Out << "declare ";
1607  else
1608    Out << "define ";
1609
1610  PrintLinkage(F->getLinkage(), Out);
1611  PrintVisibility(F->getVisibility(), Out);
1612
1613  // Print the calling convention.
1614  switch (F->getCallingConv()) {
1615  case CallingConv::C: break;   // default
1616  case CallingConv::Fast:         Out << "fastcc "; break;
1617  case CallingConv::Cold:         Out << "coldcc "; break;
1618  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1619  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1620  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1621  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1622  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1623  default: Out << "cc" << F->getCallingConv() << " "; break;
1624  }
1625
1626  const FunctionType *FT = F->getFunctionType();
1627  const AttrListPtr &Attrs = F->getAttributes();
1628  Attributes RetAttrs = Attrs.getRetAttributes();
1629  if (RetAttrs != Attribute::None)
1630    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1631  TypePrinter.print(F->getReturnType(), Out);
1632  Out << ' ';
1633  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1634  Out << '(';
1635  Machine.incorporateFunction(F);
1636
1637  // Loop over the arguments, printing them...
1638
1639  unsigned Idx = 1;
1640  if (!F->isDeclaration()) {
1641    // If this isn't a declaration, print the argument names as well.
1642    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1643         I != E; ++I) {
1644      // Insert commas as we go... the first arg doesn't get a comma
1645      if (I != F->arg_begin()) Out << ", ";
1646      printArgument(I, Attrs.getParamAttributes(Idx));
1647      Idx++;
1648    }
1649  } else {
1650    // Otherwise, print the types from the function type.
1651    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1652      // Insert commas as we go... the first arg doesn't get a comma
1653      if (i) Out << ", ";
1654
1655      // Output type...
1656      TypePrinter.print(FT->getParamType(i), Out);
1657
1658      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1659      if (ArgAttrs != Attribute::None)
1660        Out << ' ' << Attribute::getAsString(ArgAttrs);
1661    }
1662  }
1663
1664  // Finish printing arguments...
1665  if (FT->isVarArg()) {
1666    if (FT->getNumParams()) Out << ", ";
1667    Out << "...";  // Output varargs portion of signature!
1668  }
1669  Out << ')';
1670  Attributes FnAttrs = Attrs.getFnAttributes();
1671  if (FnAttrs != Attribute::None)
1672    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1673  if (F->hasSection())
1674    Out << " section \"" << F->getSection() << '"';
1675  if (F->getAlignment())
1676    Out << " align " << F->getAlignment();
1677  if (F->hasGC())
1678    Out << " gc \"" << F->getGC() << '"';
1679  if (F->isDeclaration()) {
1680    Out << "\n";
1681  } else {
1682    Out << " {";
1683
1684    // Output all of its basic blocks... for the function
1685    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1686      printBasicBlock(I);
1687
1688    Out << "}\n";
1689  }
1690
1691  Machine.purgeFunction();
1692}
1693
1694/// printArgument - This member is called for every argument that is passed into
1695/// the function.  Simply print it out
1696///
1697void AssemblyWriter::printArgument(const Argument *Arg,
1698                                   Attributes Attrs) {
1699  // Output type...
1700  TypePrinter.print(Arg->getType(), Out);
1701
1702  // Output parameter attributes list
1703  if (Attrs != Attribute::None)
1704    Out << ' ' << Attribute::getAsString(Attrs);
1705
1706  // Output name, if available...
1707  if (Arg->hasName()) {
1708    Out << ' ';
1709    PrintLLVMName(Out, Arg);
1710  }
1711}
1712
1713/// printBasicBlock - This member is called for each basic block in a method.
1714///
1715void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1716  if (BB->hasName()) {              // Print out the label if it exists...
1717    Out << "\n";
1718    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1719    Out << ':';
1720  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1721    Out << "\n; <label>:";
1722    int Slot = Machine.getLocalSlot(BB);
1723    if (Slot != -1)
1724      Out << Slot;
1725    else
1726      Out << "<badref>";
1727  }
1728
1729  if (BB->getParent() == 0) {
1730    Out.PadToColumn(50);
1731    Out << "; Error: Block without parent!";
1732  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1733    // Output predecessors for the block...
1734    Out.PadToColumn(50);
1735    Out << ";";
1736    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1737
1738    if (PI == PE) {
1739      Out << " No predecessors!";
1740    } else {
1741      Out << " preds = ";
1742      writeOperand(*PI, false);
1743      for (++PI; PI != PE; ++PI) {
1744        Out << ", ";
1745        writeOperand(*PI, false);
1746      }
1747    }
1748  }
1749
1750  Out << "\n";
1751
1752  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1753
1754  // Output all of the instructions in the basic block...
1755  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1756    printInstruction(*I);
1757    Out << '\n';
1758  }
1759
1760  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1761}
1762
1763
1764/// printInfoComment - Print a little comment after the instruction indicating
1765/// which slot it occupies.
1766///
1767void AssemblyWriter::printInfoComment(const Value &V) {
1768  if (V.getType() != Type::getVoidTy(V.getContext())) {
1769    Out.PadToColumn(50);
1770    Out << "; <";
1771    TypePrinter.print(V.getType(), Out);
1772    Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1773  }
1774}
1775
1776// This member is called for each Instruction in a function..
1777void AssemblyWriter::printInstruction(const Instruction &I) {
1778  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1779
1780  // Print out indentation for an instruction.
1781  Out << "  ";
1782
1783  // Print out name if it exists...
1784  if (I.hasName()) {
1785    PrintLLVMName(Out, &I);
1786    Out << " = ";
1787  } else if (I.getType() != Type::getVoidTy(I.getContext())) {
1788    // Print out the def slot taken.
1789    int SlotNum = Machine.getLocalSlot(&I);
1790    if (SlotNum == -1)
1791      Out << "<badref> = ";
1792    else
1793      Out << '%' << SlotNum << " = ";
1794  }
1795
1796  // If this is a volatile load or store, print out the volatile marker.
1797  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1798      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1799      Out << "volatile ";
1800  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1801    // If this is a call, check if it's a tail call.
1802    Out << "tail ";
1803  }
1804
1805  // Print out the opcode...
1806  Out << I.getOpcodeName();
1807
1808  // Print out optimization information.
1809  WriteOptimizationInfo(Out, &I);
1810
1811  // Print out the compare instruction predicates
1812  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1813    Out << ' ' << getPredicateText(CI->getPredicate());
1814
1815  // Print out the type of the operands...
1816  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1817
1818  // Special case conditional branches to swizzle the condition out to the front
1819  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1820    BranchInst &BI(cast<BranchInst>(I));
1821    Out << ' ';
1822    writeOperand(BI.getCondition(), true);
1823    Out << ", ";
1824    writeOperand(BI.getSuccessor(0), true);
1825    Out << ", ";
1826    writeOperand(BI.getSuccessor(1), true);
1827
1828  } else if (isa<SwitchInst>(I)) {
1829    // Special case switch statement to get formatting nice and correct...
1830    Out << ' ';
1831    writeOperand(Operand        , true);
1832    Out << ", ";
1833    writeOperand(I.getOperand(1), true);
1834    Out << " [";
1835
1836    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1837      Out << "\n    ";
1838      writeOperand(I.getOperand(op  ), true);
1839      Out << ", ";
1840      writeOperand(I.getOperand(op+1), true);
1841    }
1842    Out << "\n  ]";
1843  } else if (isa<PHINode>(I)) {
1844    Out << ' ';
1845    TypePrinter.print(I.getType(), Out);
1846    Out << ' ';
1847
1848    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1849      if (op) Out << ", ";
1850      Out << "[ ";
1851      writeOperand(I.getOperand(op  ), false); Out << ", ";
1852      writeOperand(I.getOperand(op+1), false); Out << " ]";
1853    }
1854  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1855    Out << ' ';
1856    writeOperand(I.getOperand(0), true);
1857    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1858      Out << ", " << *i;
1859  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1860    Out << ' ';
1861    writeOperand(I.getOperand(0), true); Out << ", ";
1862    writeOperand(I.getOperand(1), true);
1863    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1864      Out << ", " << *i;
1865  } else if (isa<ReturnInst>(I) && !Operand) {
1866    Out << " void";
1867  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1868    // Print the calling convention being used.
1869    switch (CI->getCallingConv()) {
1870    case CallingConv::C: break;   // default
1871    case CallingConv::Fast:  Out << " fastcc"; break;
1872    case CallingConv::Cold:  Out << " coldcc"; break;
1873    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1874    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1875    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1876    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1877    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1878    default: Out << " cc" << CI->getCallingConv(); break;
1879    }
1880
1881    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1882    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1883    const Type         *RetTy = FTy->getReturnType();
1884    const AttrListPtr &PAL = CI->getAttributes();
1885
1886    if (PAL.getRetAttributes() != Attribute::None)
1887      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1888
1889    // If possible, print out the short form of the call instruction.  We can
1890    // only do this if the first argument is a pointer to a nonvararg function,
1891    // and if the return type is not a pointer to a function.
1892    //
1893    Out << ' ';
1894    if (!FTy->isVarArg() &&
1895        (!isa<PointerType>(RetTy) ||
1896         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1897      TypePrinter.print(RetTy, Out);
1898      Out << ' ';
1899      writeOperand(Operand, false);
1900    } else {
1901      writeOperand(Operand, true);
1902    }
1903    Out << '(';
1904    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1905      if (op > 1)
1906        Out << ", ";
1907      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1908    }
1909    Out << ')';
1910    if (PAL.getFnAttributes() != Attribute::None)
1911      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1912  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1913    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1914    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1915    const Type         *RetTy = FTy->getReturnType();
1916    const AttrListPtr &PAL = II->getAttributes();
1917
1918    // Print the calling convention being used.
1919    switch (II->getCallingConv()) {
1920    case CallingConv::C: break;   // default
1921    case CallingConv::Fast:  Out << " fastcc"; break;
1922    case CallingConv::Cold:  Out << " coldcc"; break;
1923    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1924    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1925    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1926    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1927    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1928    default: Out << " cc" << II->getCallingConv(); break;
1929    }
1930
1931    if (PAL.getRetAttributes() != Attribute::None)
1932      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1933
1934    // If possible, print out the short form of the invoke instruction. We can
1935    // only do this if the first argument is a pointer to a nonvararg function,
1936    // and if the return type is not a pointer to a function.
1937    //
1938    Out << ' ';
1939    if (!FTy->isVarArg() &&
1940        (!isa<PointerType>(RetTy) ||
1941         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1942      TypePrinter.print(RetTy, Out);
1943      Out << ' ';
1944      writeOperand(Operand, false);
1945    } else {
1946      writeOperand(Operand, true);
1947    }
1948    Out << '(';
1949    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1950      if (op > 3)
1951        Out << ", ";
1952      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1953    }
1954
1955    Out << ')';
1956    if (PAL.getFnAttributes() != Attribute::None)
1957      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1958
1959    Out << "\n          to ";
1960    writeOperand(II->getNormalDest(), true);
1961    Out << " unwind ";
1962    writeOperand(II->getUnwindDest(), true);
1963
1964  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1965    Out << ' ';
1966    TypePrinter.print(AI->getType()->getElementType(), Out);
1967    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1968      Out << ", ";
1969      writeOperand(AI->getArraySize(), true);
1970    }
1971    if (AI->getAlignment()) {
1972      Out << ", align " << AI->getAlignment();
1973    }
1974  } else if (isa<CastInst>(I)) {
1975    if (Operand) {
1976      Out << ' ';
1977      writeOperand(Operand, true);   // Work with broken code
1978    }
1979    Out << " to ";
1980    TypePrinter.print(I.getType(), Out);
1981  } else if (isa<VAArgInst>(I)) {
1982    if (Operand) {
1983      Out << ' ';
1984      writeOperand(Operand, true);   // Work with broken code
1985    }
1986    Out << ", ";
1987    TypePrinter.print(I.getType(), Out);
1988  } else if (Operand) {   // Print the normal way.
1989
1990    // PrintAllTypes - Instructions who have operands of all the same type
1991    // omit the type from all but the first operand.  If the instruction has
1992    // different type operands (for example br), then they are all printed.
1993    bool PrintAllTypes = false;
1994    const Type *TheType = Operand->getType();
1995
1996    // Select, Store and ShuffleVector always print all types.
1997    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1998        || isa<ReturnInst>(I)) {
1999      PrintAllTypes = true;
2000    } else {
2001      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2002        Operand = I.getOperand(i);
2003        // note that Operand shouldn't be null, but the test helps make dump()
2004        // more tolerant of malformed IR
2005        if (Operand && Operand->getType() != TheType) {
2006          PrintAllTypes = true;    // We have differing types!  Print them all!
2007          break;
2008        }
2009      }
2010    }
2011
2012    if (!PrintAllTypes) {
2013      Out << ' ';
2014      TypePrinter.print(TheType, Out);
2015    }
2016
2017    Out << ' ';
2018    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2019      if (i) Out << ", ";
2020      writeOperand(I.getOperand(i), PrintAllTypes);
2021    }
2022  }
2023
2024  // Print post operand alignment for load/store
2025  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
2026    Out << ", align " << cast<LoadInst>(I).getAlignment();
2027  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
2028    Out << ", align " << cast<StoreInst>(I).getAlignment();
2029  }
2030
2031  // Print Metadata info
2032  MetadataContext &TheMetadata = I.getContext().getMetadata();
2033  const MetadataContext::MDMapTy *MDMap = TheMetadata.getMDs(&I);
2034  if (MDMap)
2035    for (MetadataContext::MDMapTy::const_iterator MI = MDMap->begin(),
2036           ME = MDMap->end(); MI != ME; ++MI)
2037      if (const MDNode *MD = dyn_cast_or_null<MDNode>(MI->second))
2038        Out << ", !" << MDNames[MI->first]
2039            << " !" << Machine.getMetadataSlot(MD);
2040
2041  printInfoComment(I);
2042}
2043
2044
2045//===----------------------------------------------------------------------===//
2046//                       External Interface declarations
2047//===----------------------------------------------------------------------===//
2048
2049void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2050  SlotTracker SlotTable(this);
2051  formatted_raw_ostream OS(ROS);
2052  AssemblyWriter W(OS, SlotTable, this, AAW);
2053  W.write(this);
2054}
2055
2056void Type::print(raw_ostream &OS) const {
2057  if (this == 0) {
2058    OS << "<null Type>";
2059    return;
2060  }
2061  TypePrinting().print(this, OS);
2062}
2063
2064void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2065  if (this == 0) {
2066    ROS << "printing a <null> value\n";
2067    return;
2068  }
2069  formatted_raw_ostream OS(ROS);
2070  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2071    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2072    SlotTracker SlotTable(F);
2073    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2074    W.write(I);
2075  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2076    SlotTracker SlotTable(BB->getParent());
2077    AssemblyWriter W(OS, SlotTable,
2078                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
2079    W.write(BB);
2080  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2081    SlotTracker SlotTable(GV->getParent());
2082    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2083    W.write(GV);
2084  } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
2085    TypePrinting TypePrinter;
2086    TypePrinter.print(MDS->getType(), OS);
2087    OS << ' ';
2088    OS << "!\"";
2089    PrintEscapedString(MDS->getString(), OS);
2090    OS << '"';
2091  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2092    SlotTracker SlotTable(N);
2093    TypePrinting TypePrinter;
2094    SlotTable.initialize();
2095    WriteMDNodes(OS, TypePrinter, SlotTable);
2096  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2097    SlotTracker SlotTable(N);
2098    TypePrinting TypePrinter;
2099    SlotTable.initialize();
2100    OS << "!" << N->getName() << " = !{";
2101    for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
2102      if (i) OS << ", ";
2103      MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
2104      if (MD)
2105        OS << '!' << SlotTable.getMetadataSlot(MD);
2106      else
2107        OS << "null";
2108    }
2109    OS << "}\n";
2110    WriteMDNodes(OS, TypePrinter, SlotTable);
2111  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2112    TypePrinting TypePrinter;
2113    TypePrinter.print(C->getType(), OS);
2114    OS << ' ';
2115    WriteConstantInt(OS, C, TypePrinter, 0);
2116  } else if (const Argument *A = dyn_cast<Argument>(this)) {
2117    WriteAsOperand(OS, this, true,
2118                   A->getParent() ? A->getParent()->getParent() : 0);
2119  } else if (isa<InlineAsm>(this)) {
2120    WriteAsOperand(OS, this, true, 0);
2121  } else {
2122    // Otherwise we don't know what it is. Call the virtual function to
2123    // allow a subclass to print itself.
2124    printCustom(OS);
2125  }
2126}
2127
2128// Value::printCustom - subclasses should override this to implement printing.
2129void Value::printCustom(raw_ostream &OS) const {
2130  llvm_unreachable("Unknown value to print out!");
2131}
2132
2133// Value::dump - allow easy printing of Values from the debugger.
2134void Value::dump() const { print(errs()); errs() << '\n'; }
2135
2136// Type::dump - allow easy printing of Types from the debugger.
2137// This one uses type names from the given context module
2138void Type::dump(const Module *Context) const {
2139  WriteTypeSymbolic(errs(), this, Context);
2140  errs() << '\n';
2141}
2142
2143// Type::dump - allow easy printing of Types from the debugger.
2144void Type::dump() const { dump(0); }
2145
2146// Module::dump() - Allow printing of Modules from the debugger.
2147void Module::dump() const { print(errs(), 0); }
2148