AsmWriter.cpp revision 55e73a549359c949069550cbfc79b3e63c4c4119
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Module.h"
27#include "llvm/SymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Streams.h"
34#include <algorithm>
35using namespace llvm;
36
37namespace llvm {
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42/// This class provides computation of slot numbers for LLVM Assembly writing.
43/// @brief LLVM Assembly Writing Slot Computation.
44class SlotMachine {
45
46/// @name Types
47/// @{
48public:
49
50  /// @brief A mapping of Values to slot numbers
51  typedef std::map<const Value*, unsigned> ValueMap;
52
53  /// @brief A plane with next slot number and ValueMap
54  struct ValuePlane {
55    unsigned next_slot;        ///< The next slot number to use
56    ValueMap map;              ///< The map of Value* -> unsigned
57    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
58  };
59
60  /// @brief The map of planes by Type
61  typedef std::map<const Type*, ValuePlane> TypedPlanes;
62
63/// @}
64/// @name Constructors
65/// @{
66public:
67  /// @brief Construct from a module
68  SlotMachine(const Module *M);
69
70  /// @brief Construct from a function, starting out in incorp state.
71  SlotMachine(const Function *F);
72
73/// @}
74/// @name Accessors
75/// @{
76public:
77  /// Return the slot number of the specified value in it's type
78  /// plane.  Its an error to ask for something not in the SlotMachine.
79  /// Its an error to ask for a Type*
80  int getSlot(const Value *V);
81
82/// @}
83/// @name Mutators
84/// @{
85public:
86  /// If you'd like to deal with a function instead of just a module, use
87  /// this method to get its data into the SlotMachine.
88  void incorporateFunction(const Function *F) {
89    TheFunction = F;
90    FunctionProcessed = false;
91  }
92
93  /// After calling incorporateFunction, use this method to remove the
94  /// most recently incorporated function from the SlotMachine. This
95  /// will reset the state of the machine back to just the module contents.
96  void purgeFunction();
97
98/// @}
99/// @name Implementation Details
100/// @{
101private:
102  /// This function does the actual initialization.
103  inline void initialize();
104
105  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
106  void CreateModuleSlot(const GlobalValue *V);
107
108  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
109  void CreateFunctionSlot(const Value *V);
110
111  /// Add all of the module level global variables (and their initializers)
112  /// and function declarations, but not the contents of those functions.
113  void processModule();
114
115  /// Add all of the functions arguments, basic blocks, and instructions
116  void processFunction();
117
118  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
119  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
120
121/// @}
122/// @name Data
123/// @{
124public:
125
126  /// @brief The module for which we are holding slot numbers
127  const Module* TheModule;
128
129  /// @brief The function for which we are holding slot numbers
130  const Function* TheFunction;
131  bool FunctionProcessed;
132
133  /// @brief The TypePlanes map for the module level data
134  TypedPlanes mMap;
135
136  /// @brief The TypePlanes map for the function level data
137  TypedPlanes fMap;
138
139/// @}
140
141};
142
143}  // end namespace llvm
144
145static RegisterPass<PrintModulePass>
146X("printm", "Print module to stderr");
147static RegisterPass<PrintFunctionPass>
148Y("print","Print function to stderr");
149
150static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
151                               std::map<const Type *, std::string> &TypeTable,
152                                   SlotMachine *Machine);
153
154static const Module *getModuleFromVal(const Value *V) {
155  if (const Argument *MA = dyn_cast<Argument>(V))
156    return MA->getParent() ? MA->getParent()->getParent() : 0;
157  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
158    return BB->getParent() ? BB->getParent()->getParent() : 0;
159  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
160    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
161    return M ? M->getParent() : 0;
162  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
163    return GV->getParent();
164  return 0;
165}
166
167static SlotMachine *createSlotMachine(const Value *V) {
168  if (const Argument *FA = dyn_cast<Argument>(V)) {
169    return new SlotMachine(FA->getParent());
170  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
171    return new SlotMachine(I->getParent()->getParent());
172  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
173    return new SlotMachine(BB->getParent());
174  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
175    return new SlotMachine(GV->getParent());
176  } else if (const Function *Func = dyn_cast<Function>(V)) {
177    return new SlotMachine(Func);
178  }
179  return 0;
180}
181
182// getLLVMName - Turn the specified string into an 'LLVM name', which is either
183// prefixed with % (if the string only contains simple characters) or is
184// surrounded with ""'s (if it has special chars in it).
185static std::string getLLVMName(const std::string &Name,
186                               bool prefixName = true) {
187  assert(!Name.empty() && "Cannot get empty name!");
188
189  // First character cannot start with a number...
190  if (Name[0] >= '0' && Name[0] <= '9')
191    return "\"" + Name + "\"";
192
193  // Scan to see if we have any characters that are not on the "white list"
194  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
195    char C = Name[i];
196    assert(C != '"' && "Illegal character in LLVM value name!");
197    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
198        C != '-' && C != '.' && C != '_')
199      return "\"" + Name + "\"";
200  }
201
202  // If we get here, then the identifier is legal to use as a "VarID".
203  if (prefixName)
204    return "%"+Name;
205  else
206    return Name;
207}
208
209
210/// fillTypeNameTable - If the module has a symbol table, take all global types
211/// and stuff their names into the TypeNames map.
212///
213static void fillTypeNameTable(const Module *M,
214                              std::map<const Type *, std::string> &TypeNames) {
215  if (!M) return;
216  const TypeSymbolTable &ST = M->getTypeSymbolTable();
217  TypeSymbolTable::const_iterator TI = ST.begin();
218  for (; TI != ST.end(); ++TI) {
219    // As a heuristic, don't insert pointer to primitive types, because
220    // they are used too often to have a single useful name.
221    //
222    const Type *Ty = cast<Type>(TI->second);
223    if (!isa<PointerType>(Ty) ||
224        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
225        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
226      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
227  }
228}
229
230
231
232static void calcTypeName(const Type *Ty,
233                         std::vector<const Type *> &TypeStack,
234                         std::map<const Type *, std::string> &TypeNames,
235                         std::string & Result){
236  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
237    Result += Ty->getDescription();  // Base case
238    return;
239  }
240
241  // Check to see if the type is named.
242  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
243  if (I != TypeNames.end()) {
244    Result += I->second;
245    return;
246  }
247
248  if (isa<OpaqueType>(Ty)) {
249    Result += "opaque";
250    return;
251  }
252
253  // Check to see if the Type is already on the stack...
254  unsigned Slot = 0, CurSize = TypeStack.size();
255  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
256
257  // This is another base case for the recursion.  In this case, we know
258  // that we have looped back to a type that we have previously visited.
259  // Generate the appropriate upreference to handle this.
260  if (Slot < CurSize) {
261    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
262    return;
263  }
264
265  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
266
267  switch (Ty->getTypeID()) {
268  case Type::FunctionTyID: {
269    const FunctionType *FTy = cast<FunctionType>(Ty);
270    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
271    Result += " (";
272    unsigned Idx = 1;
273    for (FunctionType::param_iterator I = FTy->param_begin(),
274           E = FTy->param_end(); I != E; ++I) {
275      if (I != FTy->param_begin())
276        Result += ", ";
277      calcTypeName(*I, TypeStack, TypeNames, Result);
278      if (FTy->getParamAttrs(Idx)) {
279        Result += + " ";
280        Result += FunctionType::getParamAttrsText(FTy->getParamAttrs(Idx));
281      }
282      Idx++;
283    }
284    if (FTy->isVarArg()) {
285      if (FTy->getNumParams()) Result += ", ";
286      Result += "...";
287    }
288    Result += ")";
289    if (FTy->getParamAttrs(0)) {
290      Result += " ";
291      Result += FunctionType::getParamAttrsText(FTy->getParamAttrs(0));
292    }
293    break;
294  }
295  case Type::StructTyID: {
296    const StructType *STy = cast<StructType>(Ty);
297    if (STy->isPacked())
298      Result += '<';
299    Result += "{ ";
300    for (StructType::element_iterator I = STy->element_begin(),
301           E = STy->element_end(); I != E; ++I) {
302      if (I != STy->element_begin())
303        Result += ", ";
304      calcTypeName(*I, TypeStack, TypeNames, Result);
305    }
306    Result += " }";
307    if (STy->isPacked())
308      Result += '>';
309    break;
310  }
311  case Type::PointerTyID:
312    calcTypeName(cast<PointerType>(Ty)->getElementType(),
313                          TypeStack, TypeNames, Result);
314    Result += "*";
315    break;
316  case Type::ArrayTyID: {
317    const ArrayType *ATy = cast<ArrayType>(Ty);
318    Result += "[" + utostr(ATy->getNumElements()) + " x ";
319    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
320    Result += "]";
321    break;
322  }
323  case Type::PackedTyID: {
324    const PackedType *PTy = cast<PackedType>(Ty);
325    Result += "<" + utostr(PTy->getNumElements()) + " x ";
326    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
327    Result += ">";
328    break;
329  }
330  case Type::OpaqueTyID:
331    Result += "opaque";
332    break;
333  default:
334    Result += "<unrecognized-type>";
335    break;
336  }
337
338  TypeStack.pop_back();       // Remove self from stack...
339}
340
341
342/// printTypeInt - The internal guts of printing out a type that has a
343/// potentially named portion.
344///
345static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
346                              std::map<const Type *, std::string> &TypeNames) {
347  // Primitive types always print out their description, regardless of whether
348  // they have been named or not.
349  //
350  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
351    return Out << Ty->getDescription();
352
353  // Check to see if the type is named.
354  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
355  if (I != TypeNames.end()) return Out << I->second;
356
357  // Otherwise we have a type that has not been named but is a derived type.
358  // Carefully recurse the type hierarchy to print out any contained symbolic
359  // names.
360  //
361  std::vector<const Type *> TypeStack;
362  std::string TypeName;
363  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
364  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
365  return (Out << TypeName);
366}
367
368
369/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
370/// type, iff there is an entry in the modules symbol table for the specified
371/// type or one of it's component types. This is slower than a simple x << Type
372///
373std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
374                                      const Module *M) {
375  Out << ' ';
376
377  // If they want us to print out a type, but there is no context, we can't
378  // print it symbolically.
379  if (!M)
380    return Out << Ty->getDescription();
381
382  std::map<const Type *, std::string> TypeNames;
383  fillTypeNameTable(M, TypeNames);
384  return printTypeInt(Out, Ty, TypeNames);
385}
386
387// PrintEscapedString - Print each character of the specified string, escaping
388// it if it is not printable or if it is an escape char.
389static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
390  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
391    unsigned char C = Str[i];
392    if (isprint(C) && C != '"' && C != '\\') {
393      Out << C;
394    } else {
395      Out << '\\'
396          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
397          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
398    }
399  }
400}
401
402static const char *getPredicateText(unsigned predicate) {
403  const char * pred = "unknown";
404  switch (predicate) {
405    case FCmpInst::FCMP_FALSE: pred = "false"; break;
406    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
407    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
408    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
409    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
410    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
411    case FCmpInst::FCMP_ONE:   pred = "one"; break;
412    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
413    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
414    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
415    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
416    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
417    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
418    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
419    case FCmpInst::FCMP_UNE:   pred = "une"; break;
420    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
421    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
422    case ICmpInst::ICMP_NE:    pred = "ne"; break;
423    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
424    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
425    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
426    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
427    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
428    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
429    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
430    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
431  }
432  return pred;
433}
434
435/// @brief Internal constant writer.
436static void WriteConstantInt(std::ostream &Out, const Constant *CV,
437                             std::map<const Type *, std::string> &TypeTable,
438                             SlotMachine *Machine) {
439  const int IndentSize = 4;
440  static std::string Indent = "\n";
441  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
442    Out << (CB->getValue() ? "true" : "false");
443  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
444    Out << CI->getSExtValue();
445  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
446    // We would like to output the FP constant value in exponential notation,
447    // but we cannot do this if doing so will lose precision.  Check here to
448    // make sure that we only output it in exponential format if we can parse
449    // the value back and get the same value.
450    //
451    std::string StrVal = ftostr(CFP->getValue());
452
453    // Check to make sure that the stringized number is not some string like
454    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
455    // the string matches the "[-+]?[0-9]" regex.
456    //
457    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
458        ((StrVal[0] == '-' || StrVal[0] == '+') &&
459         (StrVal[1] >= '0' && StrVal[1] <= '9')))
460      // Reparse stringized version!
461      if (atof(StrVal.c_str()) == CFP->getValue()) {
462        Out << StrVal;
463        return;
464      }
465
466    // Otherwise we could not reparse it to exactly the same value, so we must
467    // output the string in hexadecimal format!
468    assert(sizeof(double) == sizeof(uint64_t) &&
469           "assuming that double is 64 bits!");
470    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
471
472  } else if (isa<ConstantAggregateZero>(CV)) {
473    Out << "zeroinitializer";
474  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
475    // As a special case, print the array as a string if it is an array of
476    // ubytes or an array of sbytes with positive values.
477    //
478    const Type *ETy = CA->getType()->getElementType();
479    if (CA->isString()) {
480      Out << "c\"";
481      PrintEscapedString(CA->getAsString(), Out);
482      Out << "\"";
483
484    } else {                // Cannot output in string format...
485      Out << '[';
486      if (CA->getNumOperands()) {
487        Out << ' ';
488        printTypeInt(Out, ETy, TypeTable);
489        WriteAsOperandInternal(Out, CA->getOperand(0),
490                               TypeTable, Machine);
491        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
492          Out << ", ";
493          printTypeInt(Out, ETy, TypeTable);
494          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
495        }
496      }
497      Out << " ]";
498    }
499  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
500    if (CS->getType()->isPacked())
501      Out << '<';
502    Out << '{';
503    unsigned N = CS->getNumOperands();
504    if (N) {
505      if (N > 2) {
506        Indent += std::string(IndentSize, ' ');
507        Out << Indent;
508      } else {
509        Out << ' ';
510      }
511      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
512
513      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
514
515      for (unsigned i = 1; i < N; i++) {
516        Out << ", ";
517        if (N > 2) Out << Indent;
518        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
519
520        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
521      }
522      if (N > 2) Indent.resize(Indent.size() - IndentSize);
523    }
524
525    Out << " }";
526    if (CS->getType()->isPacked())
527      Out << '>';
528  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
529      const Type *ETy = CP->getType()->getElementType();
530      assert(CP->getNumOperands() > 0 &&
531             "Number of operands for a PackedConst must be > 0");
532      Out << '<';
533      Out << ' ';
534      printTypeInt(Out, ETy, TypeTable);
535      WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
536      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
537          Out << ", ";
538          printTypeInt(Out, ETy, TypeTable);
539          WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
540      }
541      Out << " >";
542  } else if (isa<ConstantPointerNull>(CV)) {
543    Out << "null";
544
545  } else if (isa<UndefValue>(CV)) {
546    Out << "undef";
547
548  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
549    Out << CE->getOpcodeName();
550    if (CE->isCompare())
551      Out << " " << getPredicateText(CE->getPredicate());
552    Out << " (";
553
554    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
555      printTypeInt(Out, (*OI)->getType(), TypeTable);
556      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
557      if (OI+1 != CE->op_end())
558        Out << ", ";
559    }
560
561    if (CE->isCast()) {
562      Out << " to ";
563      printTypeInt(Out, CE->getType(), TypeTable);
564    }
565
566    Out << ')';
567
568  } else {
569    Out << "<placeholder or erroneous Constant>";
570  }
571}
572
573
574/// WriteAsOperand - Write the name of the specified value out to the specified
575/// ostream.  This can be useful when you just want to print int %reg126, not
576/// the whole instruction that generated it.
577///
578static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
579                                  std::map<const Type*, std::string> &TypeTable,
580                                   SlotMachine *Machine) {
581  Out << ' ';
582  if (V->hasName())
583    Out << getLLVMName(V->getName());
584  else {
585    const Constant *CV = dyn_cast<Constant>(V);
586    if (CV && !isa<GlobalValue>(CV)) {
587      WriteConstantInt(Out, CV, TypeTable, Machine);
588    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
589      Out << "asm ";
590      if (IA->hasSideEffects())
591        Out << "sideeffect ";
592      Out << '"';
593      PrintEscapedString(IA->getAsmString(), Out);
594      Out << "\", \"";
595      PrintEscapedString(IA->getConstraintString(), Out);
596      Out << '"';
597    } else {
598      int Slot;
599      if (Machine) {
600        Slot = Machine->getSlot(V);
601      } else {
602        Machine = createSlotMachine(V);
603        if (Machine)
604          Slot = Machine->getSlot(V);
605        else
606          Slot = -1;
607        delete Machine;
608      }
609      if (Slot != -1)
610        Out << '%' << Slot;
611      else
612        Out << "<badref>";
613    }
614  }
615}
616
617/// WriteAsOperand - Write the name of the specified value out to the specified
618/// ostream.  This can be useful when you just want to print int %reg126, not
619/// the whole instruction that generated it.
620///
621std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
622                                   bool PrintType, const Module *Context) {
623  std::map<const Type *, std::string> TypeNames;
624  if (Context == 0) Context = getModuleFromVal(V);
625
626  if (Context)
627    fillTypeNameTable(Context, TypeNames);
628
629  if (PrintType)
630    printTypeInt(Out, V->getType(), TypeNames);
631
632  WriteAsOperandInternal(Out, V, TypeNames, 0);
633  return Out;
634}
635
636
637namespace llvm {
638
639class AssemblyWriter {
640  std::ostream &Out;
641  SlotMachine &Machine;
642  const Module *TheModule;
643  std::map<const Type *, std::string> TypeNames;
644  AssemblyAnnotationWriter *AnnotationWriter;
645public:
646  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
647                        AssemblyAnnotationWriter *AAW)
648    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
649
650    // If the module has a symbol table, take all global types and stuff their
651    // names into the TypeNames map.
652    //
653    fillTypeNameTable(M, TypeNames);
654  }
655
656  inline void write(const Module *M)         { printModule(M);      }
657  inline void write(const GlobalVariable *G) { printGlobal(G);      }
658  inline void write(const Function *F)       { printFunction(F);    }
659  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
660  inline void write(const Instruction *I)    { printInstruction(*I); }
661  inline void write(const Constant *CPV)     { printConstant(CPV);  }
662  inline void write(const Type *Ty)          { printType(Ty);       }
663
664  void writeOperand(const Value *Op, bool PrintType);
665
666  const Module* getModule() { return TheModule; }
667
668private:
669  void printModule(const Module *M);
670  void printTypeSymbolTable(const TypeSymbolTable &ST);
671  void printValueSymbolTable(const SymbolTable &ST);
672  void printConstant(const Constant *CPV);
673  void printGlobal(const GlobalVariable *GV);
674  void printFunction(const Function *F);
675  void printArgument(const Argument *FA, FunctionType::ParameterAttributes A);
676  void printBasicBlock(const BasicBlock *BB);
677  void printInstruction(const Instruction &I);
678
679  // printType - Go to extreme measures to attempt to print out a short,
680  // symbolic version of a type name.
681  //
682  std::ostream &printType(const Type *Ty) {
683    return printTypeInt(Out, Ty, TypeNames);
684  }
685
686  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
687  // without considering any symbolic types that we may have equal to it.
688  //
689  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
690
691  // printInfoComment - Print a little comment after the instruction indicating
692  // which slot it occupies.
693  void printInfoComment(const Value &V);
694};
695}  // end of llvm namespace
696
697/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
698/// without considering any symbolic types that we may have equal to it.
699///
700std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
701  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
702    printType(FTy->getReturnType());
703    Out << " (";
704    unsigned Idx = 1;
705    for (FunctionType::param_iterator I = FTy->param_begin(),
706           E = FTy->param_end(); I != E; ++I) {
707      if (I != FTy->param_begin())
708        Out << ", ";
709      printType(*I);
710      if (FTy->getParamAttrs(Idx)) {
711        Out << " " << FunctionType::getParamAttrsText(FTy->getParamAttrs(Idx));
712      }
713      Idx++;
714    }
715    if (FTy->isVarArg()) {
716      if (FTy->getNumParams()) Out << ", ";
717      Out << "...";
718    }
719    Out << ')';
720    if (FTy->getParamAttrs(0))
721      Out << ' ' << FunctionType::getParamAttrsText(FTy->getParamAttrs(0));
722  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
723    if (STy->isPacked())
724      Out << '<';
725    Out << "{ ";
726    for (StructType::element_iterator I = STy->element_begin(),
727           E = STy->element_end(); I != E; ++I) {
728      if (I != STy->element_begin())
729        Out << ", ";
730      printType(*I);
731    }
732    Out << " }";
733    if (STy->isPacked())
734      Out << '>';
735  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
736    printType(PTy->getElementType()) << '*';
737  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
738    Out << '[' << ATy->getNumElements() << " x ";
739    printType(ATy->getElementType()) << ']';
740  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
741    Out << '<' << PTy->getNumElements() << " x ";
742    printType(PTy->getElementType()) << '>';
743  }
744  else if (isa<OpaqueType>(Ty)) {
745    Out << "opaque";
746  } else {
747    if (!Ty->isPrimitiveType())
748      Out << "<unknown derived type>";
749    printType(Ty);
750  }
751  return Out;
752}
753
754
755void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
756  if (Operand == 0) {
757    Out << "<null operand!>";
758  } else {
759    if (PrintType) { Out << ' '; printType(Operand->getType()); }
760    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
761  }
762}
763
764
765void AssemblyWriter::printModule(const Module *M) {
766  if (!M->getModuleIdentifier().empty() &&
767      // Don't print the ID if it will start a new line (which would
768      // require a comment char before it).
769      M->getModuleIdentifier().find('\n') == std::string::npos)
770    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
771
772  if (!M->getDataLayout().empty())
773    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
774
775  switch (M->getEndianness()) {
776  case Module::LittleEndian: Out << "target endian = little\n"; break;
777  case Module::BigEndian:    Out << "target endian = big\n";    break;
778  case Module::AnyEndianness: break;
779  }
780  switch (M->getPointerSize()) {
781  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
782  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
783  case Module::AnyPointerSize: break;
784  }
785  if (!M->getTargetTriple().empty())
786    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
787
788  if (!M->getModuleInlineAsm().empty()) {
789    // Split the string into lines, to make it easier to read the .ll file.
790    std::string Asm = M->getModuleInlineAsm();
791    size_t CurPos = 0;
792    size_t NewLine = Asm.find_first_of('\n', CurPos);
793    while (NewLine != std::string::npos) {
794      // We found a newline, print the portion of the asm string from the
795      // last newline up to this newline.
796      Out << "module asm \"";
797      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
798                         Out);
799      Out << "\"\n";
800      CurPos = NewLine+1;
801      NewLine = Asm.find_first_of('\n', CurPos);
802    }
803    Out << "module asm \"";
804    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
805    Out << "\"\n";
806  }
807
808  // Loop over the dependent libraries and emit them.
809  Module::lib_iterator LI = M->lib_begin();
810  Module::lib_iterator LE = M->lib_end();
811  if (LI != LE) {
812    Out << "deplibs = [ ";
813    while (LI != LE) {
814      Out << '"' << *LI << '"';
815      ++LI;
816      if (LI != LE)
817        Out << ", ";
818    }
819    Out << " ]\n";
820  }
821
822  // Loop over the symbol table, emitting all named constants.
823  printTypeSymbolTable(M->getTypeSymbolTable());
824  printValueSymbolTable(M->getValueSymbolTable());
825
826  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
827       I != E; ++I)
828    printGlobal(I);
829
830  Out << "\nimplementation   ; Functions:\n";
831
832  // Output all of the functions.
833  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
834    printFunction(I);
835}
836
837void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
838  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
839
840  if (!GV->hasInitializer())
841    switch (GV->getLinkage()) {
842     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
843     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
844     default: Out << "external "; break;
845    }
846  else
847    switch (GV->getLinkage()) {
848    case GlobalValue::InternalLinkage:     Out << "internal "; break;
849    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
850    case GlobalValue::WeakLinkage:         Out << "weak "; break;
851    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
852    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
853    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
854    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
855    case GlobalValue::ExternalLinkage:     break;
856    case GlobalValue::GhostLinkage:
857      cerr << "GhostLinkage not allowed in AsmWriter!\n";
858      abort();
859    }
860
861  Out << (GV->isConstant() ? "constant " : "global ");
862  printType(GV->getType()->getElementType());
863
864  if (GV->hasInitializer()) {
865    Constant* C = cast<Constant>(GV->getInitializer());
866    assert(C &&  "GlobalVar initializer isn't constant?");
867    writeOperand(GV->getInitializer(), false);
868  }
869
870  if (GV->hasSection())
871    Out << ", section \"" << GV->getSection() << '"';
872  if (GV->getAlignment())
873    Out << ", align " << GV->getAlignment();
874
875  printInfoComment(*GV);
876  Out << "\n";
877}
878
879void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
880  // Print the types.
881  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
882       TI != TE; ++TI) {
883    Out << "\t" << getLLVMName(TI->first) << " = type ";
884
885    // Make sure we print out at least one level of the type structure, so
886    // that we do not get %FILE = type %FILE
887    //
888    printTypeAtLeastOneLevel(TI->second) << "\n";
889  }
890}
891
892// printSymbolTable - Run through symbol table looking for constants
893// and types. Emit their declarations.
894void AssemblyWriter::printValueSymbolTable(const SymbolTable &ST) {
895
896  // Print the constants, in type plane order.
897  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
898       PI != ST.plane_end(); ++PI) {
899    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
900    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
901
902    for (; VI != VE; ++VI) {
903      const Value* V = VI->second;
904      const Constant *CPV = dyn_cast<Constant>(V) ;
905      if (CPV && !isa<GlobalValue>(V)) {
906        printConstant(CPV);
907      }
908    }
909  }
910}
911
912
913/// printConstant - Print out a constant pool entry...
914///
915void AssemblyWriter::printConstant(const Constant *CPV) {
916  // Don't print out unnamed constants, they will be inlined
917  if (!CPV->hasName()) return;
918
919  // Print out name...
920  Out << "\t" << getLLVMName(CPV->getName()) << " =";
921
922  // Write the value out now.
923  writeOperand(CPV, true);
924
925  printInfoComment(*CPV);
926  Out << "\n";
927}
928
929/// printFunction - Print all aspects of a function.
930///
931void AssemblyWriter::printFunction(const Function *F) {
932  // Print out the return type and name...
933  Out << "\n";
934
935  // Ensure that no local symbols conflict with global symbols.
936  const_cast<Function*>(F)->renameLocalSymbols();
937
938  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
939
940  if (F->isExternal())
941    switch (F->getLinkage()) {
942    case GlobalValue::DLLImportLinkage:    Out << "declare dllimport "; break;
943    case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
944    default: Out << "declare ";
945    }
946  else {
947    Out << "define ";
948    switch (F->getLinkage()) {
949    case GlobalValue::InternalLinkage:     Out << "internal "; break;
950    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
951    case GlobalValue::WeakLinkage:         Out << "weak "; break;
952    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
953    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
954    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
955    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
956    case GlobalValue::ExternalLinkage: break;
957    case GlobalValue::GhostLinkage:
958      cerr << "GhostLinkage not allowed in AsmWriter!\n";
959      abort();
960    }
961  }
962
963  // Print the calling convention.
964  switch (F->getCallingConv()) {
965  case CallingConv::C: break;   // default
966  case CallingConv::CSRet:        Out << "csretcc "; break;
967  case CallingConv::Fast:         Out << "fastcc "; break;
968  case CallingConv::Cold:         Out << "coldcc "; break;
969  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
970  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
971  default: Out << "cc" << F->getCallingConv() << " "; break;
972  }
973
974  const FunctionType *FT = F->getFunctionType();
975  printType(F->getReturnType()) << ' ';
976  if (!F->getName().empty())
977    Out << getLLVMName(F->getName());
978  else
979    Out << "\"\"";
980  Out << '(';
981  Machine.incorporateFunction(F);
982
983  // Loop over the arguments, printing them...
984
985  unsigned Idx = 1;
986  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
987       I != E; ++I) {
988    // Insert commas as we go... the first arg doesn't get a comma
989    if (I != F->arg_begin()) Out << ", ";
990    printArgument(I, FT->getParamAttrs(Idx));
991    Idx++;
992  }
993
994  // Finish printing arguments...
995  if (FT->isVarArg()) {
996    if (FT->getNumParams()) Out << ", ";
997    Out << "...";  // Output varargs portion of signature!
998  }
999  Out << ')';
1000  if (FT->getParamAttrs(0))
1001    Out << ' ' << FunctionType::getParamAttrsText(FT->getParamAttrs(0));
1002  if (F->hasSection())
1003    Out << " section \"" << F->getSection() << '"';
1004  if (F->getAlignment())
1005    Out << " align " << F->getAlignment();
1006
1007  if (F->isExternal()) {
1008    Out << "\n";
1009  } else {
1010    Out << " {";
1011
1012    // Output all of its basic blocks... for the function
1013    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1014      printBasicBlock(I);
1015
1016    Out << "}\n";
1017  }
1018
1019  Machine.purgeFunction();
1020}
1021
1022/// printArgument - This member is called for every argument that is passed into
1023/// the function.  Simply print it out
1024///
1025void AssemblyWriter::printArgument(const Argument *Arg,
1026                                   FunctionType::ParameterAttributes attrs) {
1027  // Output type...
1028  printType(Arg->getType());
1029
1030  if (attrs != FunctionType::NoAttributeSet)
1031    Out << ' ' << FunctionType::getParamAttrsText(attrs);
1032
1033  // Output name, if available...
1034  if (Arg->hasName())
1035    Out << ' ' << getLLVMName(Arg->getName());
1036}
1037
1038/// printBasicBlock - This member is called for each basic block in a method.
1039///
1040void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1041  if (BB->hasName()) {              // Print out the label if it exists...
1042    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
1043  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1044    Out << "\n; <label>:";
1045    int Slot = Machine.getSlot(BB);
1046    if (Slot != -1)
1047      Out << Slot;
1048    else
1049      Out << "<badref>";
1050  }
1051
1052  if (BB->getParent() == 0)
1053    Out << "\t\t; Error: Block without parent!";
1054  else {
1055    if (BB != &BB->getParent()->front()) {  // Not the entry block?
1056      // Output predecessors for the block...
1057      Out << "\t\t;";
1058      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1059
1060      if (PI == PE) {
1061        Out << " No predecessors!";
1062      } else {
1063        Out << " preds =";
1064        writeOperand(*PI, false);
1065        for (++PI; PI != PE; ++PI) {
1066          Out << ',';
1067          writeOperand(*PI, false);
1068        }
1069      }
1070    }
1071  }
1072
1073  Out << "\n";
1074
1075  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1076
1077  // Output all of the instructions in the basic block...
1078  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1079    printInstruction(*I);
1080
1081  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1082}
1083
1084
1085/// printInfoComment - Print a little comment after the instruction indicating
1086/// which slot it occupies.
1087///
1088void AssemblyWriter::printInfoComment(const Value &V) {
1089  if (V.getType() != Type::VoidTy) {
1090    Out << "\t\t; <";
1091    printType(V.getType()) << '>';
1092
1093    if (!V.hasName()) {
1094      int SlotNum = Machine.getSlot(&V);
1095      if (SlotNum == -1)
1096        Out << ":<badref>";
1097      else
1098        Out << ':' << SlotNum; // Print out the def slot taken.
1099    }
1100    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1101  }
1102}
1103
1104// This member is called for each Instruction in a function..
1105void AssemblyWriter::printInstruction(const Instruction &I) {
1106  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1107
1108  Out << "\t";
1109
1110  // Print out name if it exists...
1111  if (I.hasName())
1112    Out << getLLVMName(I.getName()) << " = ";
1113
1114  // If this is a volatile load or store, print out the volatile marker.
1115  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1116      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1117      Out << "volatile ";
1118  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1119    // If this is a call, check if it's a tail call.
1120    Out << "tail ";
1121  }
1122
1123  // Print out the opcode...
1124  Out << I.getOpcodeName();
1125
1126  // Print out the compare instruction predicates
1127  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1128    Out << " " << getPredicateText(FCI->getPredicate());
1129  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1130    Out << " " << getPredicateText(ICI->getPredicate());
1131  }
1132
1133  // Print out the type of the operands...
1134  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1135
1136  // Special case conditional branches to swizzle the condition out to the front
1137  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1138    writeOperand(I.getOperand(2), true);
1139    Out << ',';
1140    writeOperand(Operand, true);
1141    Out << ',';
1142    writeOperand(I.getOperand(1), true);
1143
1144  } else if (isa<SwitchInst>(I)) {
1145    // Special case switch statement to get formatting nice and correct...
1146    writeOperand(Operand        , true); Out << ',';
1147    writeOperand(I.getOperand(1), true); Out << " [";
1148
1149    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1150      Out << "\n\t\t";
1151      writeOperand(I.getOperand(op  ), true); Out << ',';
1152      writeOperand(I.getOperand(op+1), true);
1153    }
1154    Out << "\n\t]";
1155  } else if (isa<PHINode>(I)) {
1156    Out << ' ';
1157    printType(I.getType());
1158    Out << ' ';
1159
1160    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1161      if (op) Out << ", ";
1162      Out << '[';
1163      writeOperand(I.getOperand(op  ), false); Out << ',';
1164      writeOperand(I.getOperand(op+1), false); Out << " ]";
1165    }
1166  } else if (isa<ReturnInst>(I) && !Operand) {
1167    Out << " void";
1168  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1169    // Print the calling convention being used.
1170    switch (CI->getCallingConv()) {
1171    case CallingConv::C: break;   // default
1172    case CallingConv::CSRet: Out << " csretcc"; break;
1173    case CallingConv::Fast:  Out << " fastcc"; break;
1174    case CallingConv::Cold:  Out << " coldcc"; break;
1175    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1176    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1177    default: Out << " cc" << CI->getCallingConv(); break;
1178    }
1179
1180    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1181    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1182    const Type       *RetTy = FTy->getReturnType();
1183
1184    // If possible, print out the short form of the call instruction.  We can
1185    // only do this if the first argument is a pointer to a nonvararg function,
1186    // and if the return type is not a pointer to a function.
1187    //
1188    if (!FTy->isVarArg() &&
1189        (!isa<PointerType>(RetTy) ||
1190         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1191      Out << ' '; printType(RetTy);
1192      writeOperand(Operand, false);
1193    } else {
1194      writeOperand(Operand, true);
1195    }
1196    Out << '(';
1197    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1198      if (op > 1)
1199        Out << ',';
1200      writeOperand(I.getOperand(op), true);
1201      if (FTy->getParamAttrs(op) != FunctionType::NoAttributeSet)
1202        Out << " " << FTy->getParamAttrsText(FTy->getParamAttrs(op));
1203    }
1204    Out << " )";
1205    if (FTy->getParamAttrs(0) != FunctionType::NoAttributeSet)
1206      Out << ' ' << FTy->getParamAttrsText(FTy->getParamAttrs(0));
1207  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1208    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1209    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1210    const Type       *RetTy = FTy->getReturnType();
1211
1212    // Print the calling convention being used.
1213    switch (II->getCallingConv()) {
1214    case CallingConv::C: break;   // default
1215    case CallingConv::CSRet: Out << " csretcc"; break;
1216    case CallingConv::Fast:  Out << " fastcc"; break;
1217    case CallingConv::Cold:  Out << " coldcc"; break;
1218    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1219    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1220    default: Out << " cc" << II->getCallingConv(); break;
1221    }
1222
1223    // If possible, print out the short form of the invoke instruction. We can
1224    // only do this if the first argument is a pointer to a nonvararg function,
1225    // and if the return type is not a pointer to a function.
1226    //
1227    if (!FTy->isVarArg() &&
1228        (!isa<PointerType>(RetTy) ||
1229         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1230      Out << ' '; printType(RetTy);
1231      writeOperand(Operand, false);
1232    } else {
1233      writeOperand(Operand, true);
1234    }
1235
1236    Out << '(';
1237    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1238      if (op > 3)
1239        Out << ',';
1240      writeOperand(I.getOperand(op), true);
1241      if (FTy->getParamAttrs(op-2) != FunctionType::NoAttributeSet)
1242        Out << " " << FTy->getParamAttrsText(FTy->getParamAttrs(op-2));
1243    }
1244
1245    Out << " )";
1246    if (FTy->getParamAttrs(0) != FunctionType::NoAttributeSet)
1247      Out << " " << FTy->getParamAttrsText(FTy->getParamAttrs(0));
1248    Out << "\n\t\t\tto";
1249    writeOperand(II->getNormalDest(), true);
1250    Out << " unwind";
1251    writeOperand(II->getUnwindDest(), true);
1252
1253  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1254    Out << ' ';
1255    printType(AI->getType()->getElementType());
1256    if (AI->isArrayAllocation()) {
1257      Out << ',';
1258      writeOperand(AI->getArraySize(), true);
1259    }
1260    if (AI->getAlignment()) {
1261      Out << ", align " << AI->getAlignment();
1262    }
1263  } else if (isa<CastInst>(I)) {
1264    if (Operand) writeOperand(Operand, true);   // Work with broken code
1265    Out << " to ";
1266    printType(I.getType());
1267  } else if (isa<VAArgInst>(I)) {
1268    if (Operand) writeOperand(Operand, true);   // Work with broken code
1269    Out << ", ";
1270    printType(I.getType());
1271  } else if (Operand) {   // Print the normal way...
1272
1273    // PrintAllTypes - Instructions who have operands of all the same type
1274    // omit the type from all but the first operand.  If the instruction has
1275    // different type operands (for example br), then they are all printed.
1276    bool PrintAllTypes = false;
1277    const Type *TheType = Operand->getType();
1278
1279    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1280    // types even if all operands are bools.
1281    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
1282        isa<ShuffleVectorInst>(I)) {
1283      PrintAllTypes = true;
1284    } else {
1285      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1286        Operand = I.getOperand(i);
1287        if (Operand->getType() != TheType) {
1288          PrintAllTypes = true;    // We have differing types!  Print them all!
1289          break;
1290        }
1291      }
1292    }
1293
1294    if (!PrintAllTypes) {
1295      Out << ' ';
1296      printType(TheType);
1297    }
1298
1299    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1300      if (i) Out << ',';
1301      writeOperand(I.getOperand(i), PrintAllTypes);
1302    }
1303  }
1304
1305  printInfoComment(I);
1306  Out << "\n";
1307}
1308
1309
1310//===----------------------------------------------------------------------===//
1311//                       External Interface declarations
1312//===----------------------------------------------------------------------===//
1313
1314void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1315  SlotMachine SlotTable(this);
1316  AssemblyWriter W(o, SlotTable, this, AAW);
1317  W.write(this);
1318}
1319
1320void GlobalVariable::print(std::ostream &o) const {
1321  SlotMachine SlotTable(getParent());
1322  AssemblyWriter W(o, SlotTable, getParent(), 0);
1323  W.write(this);
1324}
1325
1326void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1327  SlotMachine SlotTable(getParent());
1328  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1329
1330  W.write(this);
1331}
1332
1333void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1334  WriteAsOperand(o, this, true, 0);
1335}
1336
1337void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1338  SlotMachine SlotTable(getParent());
1339  AssemblyWriter W(o, SlotTable,
1340                   getParent() ? getParent()->getParent() : 0, AAW);
1341  W.write(this);
1342}
1343
1344void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1345  const Function *F = getParent() ? getParent()->getParent() : 0;
1346  SlotMachine SlotTable(F);
1347  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1348
1349  W.write(this);
1350}
1351
1352void Constant::print(std::ostream &o) const {
1353  if (this == 0) { o << "<null> constant value\n"; return; }
1354
1355  o << ' ' << getType()->getDescription() << ' ';
1356
1357  std::map<const Type *, std::string> TypeTable;
1358  WriteConstantInt(o, this, TypeTable, 0);
1359}
1360
1361void Type::print(std::ostream &o) const {
1362  if (this == 0)
1363    o << "<null Type>";
1364  else
1365    o << getDescription();
1366}
1367
1368void Argument::print(std::ostream &o) const {
1369  WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1370}
1371
1372// Value::dump - allow easy printing of  Values from the debugger.
1373// Located here because so much of the needed functionality is here.
1374void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1375
1376// Type::dump - allow easy printing of  Values from the debugger.
1377// Located here because so much of the needed functionality is here.
1378void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1379
1380//===----------------------------------------------------------------------===//
1381//                         SlotMachine Implementation
1382//===----------------------------------------------------------------------===//
1383
1384#if 0
1385#define SC_DEBUG(X) cerr << X
1386#else
1387#define SC_DEBUG(X)
1388#endif
1389
1390// Module level constructor. Causes the contents of the Module (sans functions)
1391// to be added to the slot table.
1392SlotMachine::SlotMachine(const Module *M)
1393  : TheModule(M)    ///< Saved for lazy initialization.
1394  , TheFunction(0)
1395  , FunctionProcessed(false)
1396{
1397}
1398
1399// Function level constructor. Causes the contents of the Module and the one
1400// function provided to be added to the slot table.
1401SlotMachine::SlotMachine(const Function *F)
1402  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1403  , TheFunction(F) ///< Saved for lazy initialization
1404  , FunctionProcessed(false)
1405{
1406}
1407
1408inline void SlotMachine::initialize(void) {
1409  if (TheModule) {
1410    processModule();
1411    TheModule = 0; ///< Prevent re-processing next time we're called.
1412  }
1413  if (TheFunction && !FunctionProcessed)
1414    processFunction();
1415}
1416
1417// Iterate through all the global variables, functions, and global
1418// variable initializers and create slots for them.
1419void SlotMachine::processModule() {
1420  SC_DEBUG("begin processModule!\n");
1421
1422  // Add all of the unnamed global variables to the value table.
1423  for (Module::const_global_iterator I = TheModule->global_begin(),
1424       E = TheModule->global_end(); I != E; ++I)
1425    if (!I->hasName())
1426      CreateModuleSlot(I);
1427
1428  // Add all the unnamed functions to the table.
1429  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1430       I != E; ++I)
1431    if (!I->hasName())
1432      CreateModuleSlot(I);
1433
1434  SC_DEBUG("end processModule!\n");
1435}
1436
1437
1438// Process the arguments, basic blocks, and instructions  of a function.
1439void SlotMachine::processFunction() {
1440  SC_DEBUG("begin processFunction!\n");
1441
1442  // Add all the function arguments with no names.
1443  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1444      AE = TheFunction->arg_end(); AI != AE; ++AI)
1445    if (!AI->hasName())
1446      CreateFunctionSlot(AI);
1447
1448  SC_DEBUG("Inserting Instructions:\n");
1449
1450  // Add all of the basic blocks and instructions with no names.
1451  for (Function::const_iterator BB = TheFunction->begin(),
1452       E = TheFunction->end(); BB != E; ++BB) {
1453    if (!BB->hasName())
1454      CreateFunctionSlot(BB);
1455    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1456      if (I->getType() != Type::VoidTy && !I->hasName())
1457        CreateFunctionSlot(I);
1458  }
1459
1460  FunctionProcessed = true;
1461
1462  SC_DEBUG("end processFunction!\n");
1463}
1464
1465/// Clean up after incorporating a function. This is the only way to get out of
1466/// the function incorporation state that affects getSlot/Create*Slot. Function
1467/// incorporation state is indicated by TheFunction != 0.
1468void SlotMachine::purgeFunction() {
1469  SC_DEBUG("begin purgeFunction!\n");
1470  fMap.clear(); // Simply discard the function level map
1471  TheFunction = 0;
1472  FunctionProcessed = false;
1473  SC_DEBUG("end purgeFunction!\n");
1474}
1475
1476/// Get the slot number for a value. This function will assert if you
1477/// ask for a Value that hasn't previously been inserted with Create*Slot.
1478int SlotMachine::getSlot(const Value *V) {
1479  assert(V && "Can't get slot for null Value");
1480  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1481    "Can't insert a non-GlobalValue Constant into SlotMachine");
1482
1483  // Check for uninitialized state and do lazy initialization
1484  this->initialize();
1485
1486  // Get the type of the value
1487  const Type* VTy = V->getType();
1488
1489  // Find the type plane in the module map
1490  TypedPlanes::const_iterator MI = mMap.find(VTy);
1491
1492  if (TheFunction) {
1493    // Lookup the type in the function map too
1494    TypedPlanes::const_iterator FI = fMap.find(VTy);
1495    // If there is a corresponding type plane in the function map
1496    if (FI != fMap.end()) {
1497      // Lookup the Value in the function map
1498      ValueMap::const_iterator FVI = FI->second.map.find(V);
1499      // If the value doesn't exist in the function map
1500      if (FVI == FI->second.map.end()) {
1501        // Look up the value in the module map.
1502        if (MI == mMap.end()) return -1;
1503        ValueMap::const_iterator MVI = MI->second.map.find(V);
1504        // If we didn't find it, it wasn't inserted
1505        if (MVI == MI->second.map.end()) return -1;
1506        assert(MVI != MI->second.map.end() && "Value not found");
1507        // We found it only at the module level
1508        return MVI->second;
1509
1510      // else the value exists in the function map
1511      } else {
1512        // Return the slot number as the module's contribution to
1513        // the type plane plus the index in the function's contribution
1514        // to the type plane.
1515        if (MI != mMap.end())
1516          return MI->second.next_slot + FVI->second;
1517        else
1518          return FVI->second;
1519      }
1520    }
1521  }
1522
1523  // N.B. Can get here only if either !TheFunction or the function doesn't
1524  // have a corresponding type plane for the Value
1525
1526  // Make sure the type plane exists
1527  if (MI == mMap.end()) return -1;
1528  // Lookup the value in the module's map
1529  ValueMap::const_iterator MVI = MI->second.map.find(V);
1530  // Make sure we found it.
1531  if (MVI == MI->second.map.end()) return -1;
1532  // Return it.
1533  return MVI->second;
1534}
1535
1536
1537/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1538void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1539  assert(V && "Can't insert a null Value into SlotMachine!");
1540
1541  unsigned DestSlot = 0;
1542  const Type *VTy = V->getType();
1543
1544  ValuePlane &PlaneMap = mMap[VTy];
1545  DestSlot = PlaneMap.map[V] = PlaneMap.next_slot++;
1546
1547  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1548           DestSlot << " [");
1549  // G = Global, F = Function, o = other
1550  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : 'F') << "]\n");
1551}
1552
1553
1554/// CreateSlot - Create a new slot for the specified value if it has no name.
1555void SlotMachine::CreateFunctionSlot(const Value *V) {
1556  const Type *VTy = V->getType();
1557  assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1558
1559  unsigned DestSlot = 0;
1560
1561  ValuePlane &PlaneMap = fMap[VTy];
1562  DestSlot = PlaneMap.map[V] = PlaneMap.next_slot++;
1563
1564  // G = Global, F = Function, o = other
1565  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1566           DestSlot << " [o]\n");
1567}
1568