AsmWriter.cpp revision 58d74910c6b82e622ecbb57d6644d48fec5a5c0f
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Streams.h"
34#include <algorithm>
35#include <cctype>
36using namespace llvm;
37
38namespace llvm {
39
40// Make virtual table appear in this compilation unit.
41AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
42
43/// This class provides computation of slot numbers for LLVM Assembly writing.
44/// @brief LLVM Assembly Writing Slot Computation.
45class SlotMachine {
46
47/// @name Types
48/// @{
49public:
50
51  /// @brief A mapping of Values to slot numbers
52  typedef std::map<const Value*,unsigned> ValueMap;
53
54/// @}
55/// @name Constructors
56/// @{
57public:
58  /// @brief Construct from a module
59  explicit SlotMachine(const Module *M);
60
61  /// @brief Construct from a function, starting out in incorp state.
62  explicit SlotMachine(const Function *F);
63
64/// @}
65/// @name Accessors
66/// @{
67public:
68  /// Return the slot number of the specified value in it's type
69  /// plane.  If something is not in the SlotMachine, return -1.
70  int getLocalSlot(const Value *V);
71  int getGlobalSlot(const GlobalValue *V);
72
73/// @}
74/// @name Mutators
75/// @{
76public:
77  /// If you'd like to deal with a function instead of just a module, use
78  /// this method to get its data into the SlotMachine.
79  void incorporateFunction(const Function *F) {
80    TheFunction = F;
81    FunctionProcessed = false;
82  }
83
84  /// After calling incorporateFunction, use this method to remove the
85  /// most recently incorporated function from the SlotMachine. This
86  /// will reset the state of the machine back to just the module contents.
87  void purgeFunction();
88
89/// @}
90/// @name Implementation Details
91/// @{
92private:
93  /// This function does the actual initialization.
94  inline void initialize();
95
96  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
97  void CreateModuleSlot(const GlobalValue *V);
98
99  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
100  void CreateFunctionSlot(const Value *V);
101
102  /// Add all of the module level global variables (and their initializers)
103  /// and function declarations, but not the contents of those functions.
104  void processModule();
105
106  /// Add all of the functions arguments, basic blocks, and instructions
107  void processFunction();
108
109  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
110  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
111
112/// @}
113/// @name Data
114/// @{
115public:
116
117  /// @brief The module for which we are holding slot numbers
118  const Module* TheModule;
119
120  /// @brief The function for which we are holding slot numbers
121  const Function* TheFunction;
122  bool FunctionProcessed;
123
124  /// @brief The TypePlanes map for the module level data
125  ValueMap mMap;
126  unsigned mNext;
127
128  /// @brief The TypePlanes map for the function level data
129  ValueMap fMap;
130  unsigned fNext;
131
132/// @}
133
134};
135
136}  // end namespace llvm
137
138char PrintModulePass::ID = 0;
139static RegisterPass<PrintModulePass>
140X("printm", "Print module to stderr");
141char PrintFunctionPass::ID = 0;
142static RegisterPass<PrintFunctionPass>
143Y("print","Print function to stderr");
144
145static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
146                               std::map<const Type *, std::string> &TypeTable,
147                                   SlotMachine *Machine);
148
149static const Module *getModuleFromVal(const Value *V) {
150  if (const Argument *MA = dyn_cast<Argument>(V))
151    return MA->getParent() ? MA->getParent()->getParent() : 0;
152  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
153    return BB->getParent() ? BB->getParent()->getParent() : 0;
154  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
155    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
156    return M ? M->getParent() : 0;
157  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
158    return GV->getParent();
159  return 0;
160}
161
162static SlotMachine *createSlotMachine(const Value *V) {
163  if (const Argument *FA = dyn_cast<Argument>(V)) {
164    return new SlotMachine(FA->getParent());
165  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
166    return new SlotMachine(I->getParent()->getParent());
167  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
168    return new SlotMachine(BB->getParent());
169  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
170    return new SlotMachine(GV->getParent());
171  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
172    return new SlotMachine(GA->getParent());
173  } else if (const Function *Func = dyn_cast<Function>(V)) {
174    return new SlotMachine(Func);
175  }
176  return 0;
177}
178
179/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
180/// with ""'s.
181static std::string QuoteNameIfNeeded(const std::string &Name) {
182  std::string result;
183  bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
184  // Scan the name to see if it needs quotes and to replace funky chars with
185  // their octal equivalent.
186  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
187    char C = Name[i];
188    assert(C != '"' && "Illegal character in LLVM value name!");
189    if (isalnum(C) || C == '-' || C == '.' || C == '_')
190      result += C;
191    else if (C == '\\')  {
192      needsQuotes = true;
193      result += "\\\\";
194    } else if (isprint(C)) {
195      needsQuotes = true;
196      result += C;
197    } else {
198      needsQuotes = true;
199      result += "\\";
200      char hex1 = (C >> 4) & 0x0F;
201      if (hex1 < 10)
202        result += hex1 + '0';
203      else
204        result += hex1 - 10 + 'A';
205      char hex2 = C & 0x0F;
206      if (hex2 < 10)
207        result += hex2 + '0';
208      else
209        result += hex2 - 10 + 'A';
210    }
211  }
212  if (needsQuotes) {
213    result.insert(0,"\"");
214    result += '"';
215  }
216  return result;
217}
218
219enum PrefixType {
220  GlobalPrefix,
221  LabelPrefix,
222  LocalPrefix
223};
224
225/// getLLVMName - Turn the specified string into an 'LLVM name', which is either
226/// prefixed with % (if the string only contains simple characters) or is
227/// surrounded with ""'s (if it has special chars in it).
228static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
229  assert(!Name.empty() && "Cannot get empty name!");
230  switch (Prefix) {
231  default: assert(0 && "Bad prefix!");
232  case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name);
233  case LabelPrefix:  return QuoteNameIfNeeded(Name);
234  case LocalPrefix:  return '%' + QuoteNameIfNeeded(Name);
235  }
236}
237
238
239/// fillTypeNameTable - If the module has a symbol table, take all global types
240/// and stuff their names into the TypeNames map.
241///
242static void fillTypeNameTable(const Module *M,
243                              std::map<const Type *, std::string> &TypeNames) {
244  if (!M) return;
245  const TypeSymbolTable &ST = M->getTypeSymbolTable();
246  TypeSymbolTable::const_iterator TI = ST.begin();
247  for (; TI != ST.end(); ++TI) {
248    // As a heuristic, don't insert pointer to primitive types, because
249    // they are used too often to have a single useful name.
250    //
251    const Type *Ty = cast<Type>(TI->second);
252    if (!isa<PointerType>(Ty) ||
253        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
254        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
255        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
256      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
257  }
258}
259
260
261
262static void calcTypeName(const Type *Ty,
263                         std::vector<const Type *> &TypeStack,
264                         std::map<const Type *, std::string> &TypeNames,
265                         std::string & Result){
266  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
267    Result += Ty->getDescription();  // Base case
268    return;
269  }
270
271  // Check to see if the type is named.
272  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
273  if (I != TypeNames.end()) {
274    Result += I->second;
275    return;
276  }
277
278  if (isa<OpaqueType>(Ty)) {
279    Result += "opaque";
280    return;
281  }
282
283  // Check to see if the Type is already on the stack...
284  unsigned Slot = 0, CurSize = TypeStack.size();
285  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
286
287  // This is another base case for the recursion.  In this case, we know
288  // that we have looped back to a type that we have previously visited.
289  // Generate the appropriate upreference to handle this.
290  if (Slot < CurSize) {
291    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
292    return;
293  }
294
295  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
296
297  switch (Ty->getTypeID()) {
298  case Type::IntegerTyID: {
299    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
300    Result += "i" + utostr(BitWidth);
301    break;
302  }
303  case Type::FunctionTyID: {
304    const FunctionType *FTy = cast<FunctionType>(Ty);
305    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
306    Result += " (";
307    for (FunctionType::param_iterator I = FTy->param_begin(),
308         E = FTy->param_end(); I != E; ++I) {
309      if (I != FTy->param_begin())
310        Result += ", ";
311      calcTypeName(*I, TypeStack, TypeNames, Result);
312    }
313    if (FTy->isVarArg()) {
314      if (FTy->getNumParams()) Result += ", ";
315      Result += "...";
316    }
317    Result += ")";
318    break;
319  }
320  case Type::StructTyID: {
321    const StructType *STy = cast<StructType>(Ty);
322    if (STy->isPacked())
323      Result += '<';
324    Result += "{ ";
325    for (StructType::element_iterator I = STy->element_begin(),
326           E = STy->element_end(); I != E; ++I) {
327      if (I != STy->element_begin())
328        Result += ", ";
329      calcTypeName(*I, TypeStack, TypeNames, Result);
330    }
331    Result += " }";
332    if (STy->isPacked())
333      Result += '>';
334    break;
335  }
336  case Type::PointerTyID: {
337    const PointerType *PTy = cast<PointerType>(Ty);
338    calcTypeName(PTy->getElementType(),
339                          TypeStack, TypeNames, Result);
340    if (unsigned AddressSpace = PTy->getAddressSpace())
341      Result += " addrspace(" + utostr(AddressSpace) + ")";
342    Result += "*";
343    break;
344  }
345  case Type::ArrayTyID: {
346    const ArrayType *ATy = cast<ArrayType>(Ty);
347    Result += "[" + utostr(ATy->getNumElements()) + " x ";
348    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
349    Result += "]";
350    break;
351  }
352  case Type::VectorTyID: {
353    const VectorType *PTy = cast<VectorType>(Ty);
354    Result += "<" + utostr(PTy->getNumElements()) + " x ";
355    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
356    Result += ">";
357    break;
358  }
359  case Type::OpaqueTyID:
360    Result += "opaque";
361    break;
362  default:
363    Result += "<unrecognized-type>";
364    break;
365  }
366
367  TypeStack.pop_back();       // Remove self from stack...
368}
369
370
371/// printTypeInt - The internal guts of printing out a type that has a
372/// potentially named portion.
373///
374static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
375                              std::map<const Type *, std::string> &TypeNames) {
376  // Primitive types always print out their description, regardless of whether
377  // they have been named or not.
378  //
379  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
380    return Out << Ty->getDescription();
381
382  // Check to see if the type is named.
383  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
384  if (I != TypeNames.end()) return Out << I->second;
385
386  // Otherwise we have a type that has not been named but is a derived type.
387  // Carefully recurse the type hierarchy to print out any contained symbolic
388  // names.
389  //
390  std::vector<const Type *> TypeStack;
391  std::string TypeName;
392  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
393  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
394  return (Out << TypeName);
395}
396
397
398/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
399/// type, iff there is an entry in the modules symbol table for the specified
400/// type or one of it's component types. This is slower than a simple x << Type
401///
402std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
403                                      const Module *M) {
404  Out << ' ';
405
406  // If they want us to print out a type, but there is no context, we can't
407  // print it symbolically.
408  if (!M)
409    return Out << Ty->getDescription();
410
411  std::map<const Type *, std::string> TypeNames;
412  fillTypeNameTable(M, TypeNames);
413  return printTypeInt(Out, Ty, TypeNames);
414}
415
416// PrintEscapedString - Print each character of the specified string, escaping
417// it if it is not printable or if it is an escape char.
418static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
419  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
420    unsigned char C = Str[i];
421    if (isprint(C) && C != '"' && C != '\\') {
422      Out << C;
423    } else {
424      Out << '\\'
425          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
426          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
427    }
428  }
429}
430
431static const char *getPredicateText(unsigned predicate) {
432  const char * pred = "unknown";
433  switch (predicate) {
434    case FCmpInst::FCMP_FALSE: pred = "false"; break;
435    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
436    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
437    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
438    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
439    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
440    case FCmpInst::FCMP_ONE:   pred = "one"; break;
441    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
442    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
443    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
444    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
445    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
446    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
447    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
448    case FCmpInst::FCMP_UNE:   pred = "une"; break;
449    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
450    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
451    case ICmpInst::ICMP_NE:    pred = "ne"; break;
452    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
453    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
454    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
455    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
456    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
457    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
458    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
459    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
460  }
461  return pred;
462}
463
464/// @brief Internal constant writer.
465static void WriteConstantInt(std::ostream &Out, const Constant *CV,
466                             std::map<const Type *, std::string> &TypeTable,
467                             SlotMachine *Machine) {
468  const int IndentSize = 4;
469  static std::string Indent = "\n";
470  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
471    if (CI->getType() == Type::Int1Ty)
472      Out << (CI->getZExtValue() ? "true" : "false");
473    else
474      Out << CI->getValue().toStringSigned(10);
475  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
476    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
477        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
478      // We would like to output the FP constant value in exponential notation,
479      // but we cannot do this if doing so will lose precision.  Check here to
480      // make sure that we only output it in exponential format if we can parse
481      // the value back and get the same value.
482      //
483      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
484      double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
485                                CFP->getValueAPF().convertToFloat();
486      std::string StrVal = ftostr(CFP->getValueAPF());
487
488      // Check to make sure that the stringized number is not some string like
489      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
490      // that the string matches the "[-+]?[0-9]" regex.
491      //
492      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
493          ((StrVal[0] == '-' || StrVal[0] == '+') &&
494           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
495        // Reparse stringized version!
496        if (atof(StrVal.c_str()) == Val) {
497          Out << StrVal;
498          return;
499        }
500      }
501      // Otherwise we could not reparse it to exactly the same value, so we must
502      // output the string in hexadecimal format!
503      assert(sizeof(double) == sizeof(uint64_t) &&
504             "assuming that double is 64 bits!");
505      Out << "0x" << utohexstr(DoubleToBits(Val));
506    } else {
507      // Some form of long double.  These appear as a magic letter identifying
508      // the type, then a fixed number of hex digits.
509      Out << "0x";
510      if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
511        Out << 'K';
512      else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
513        Out << 'L';
514      else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
515        Out << 'M';
516      else
517        assert(0 && "Unsupported floating point type");
518      // api needed to prevent premature destruction
519      APInt api = CFP->getValueAPF().convertToAPInt();
520      const uint64_t* p = api.getRawData();
521      uint64_t word = *p;
522      int shiftcount=60;
523      int width = api.getBitWidth();
524      for (int j=0; j<width; j+=4, shiftcount-=4) {
525        unsigned int nibble = (word>>shiftcount) & 15;
526        if (nibble < 10)
527          Out << (unsigned char)(nibble + '0');
528        else
529          Out << (unsigned char)(nibble - 10 + 'A');
530        if (shiftcount == 0) {
531          word = *(++p);
532          shiftcount = 64;
533          if (width-j-4 < 64)
534            shiftcount = width-j-4;
535        }
536      }
537    }
538  } else if (isa<ConstantAggregateZero>(CV)) {
539    Out << "zeroinitializer";
540  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
541    // As a special case, print the array as a string if it is an array of
542    // ubytes or an array of sbytes with positive values.
543    //
544    const Type *ETy = CA->getType()->getElementType();
545    if (CA->isString()) {
546      Out << "c\"";
547      PrintEscapedString(CA->getAsString(), Out);
548      Out << "\"";
549
550    } else {                // Cannot output in string format...
551      Out << '[';
552      if (CA->getNumOperands()) {
553        Out << ' ';
554        printTypeInt(Out, ETy, TypeTable);
555        WriteAsOperandInternal(Out, CA->getOperand(0),
556                               TypeTable, Machine);
557        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
558          Out << ", ";
559          printTypeInt(Out, ETy, TypeTable);
560          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
561        }
562      }
563      Out << " ]";
564    }
565  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
566    if (CS->getType()->isPacked())
567      Out << '<';
568    Out << '{';
569    unsigned N = CS->getNumOperands();
570    if (N) {
571      if (N > 2) {
572        Indent += std::string(IndentSize, ' ');
573        Out << Indent;
574      } else {
575        Out << ' ';
576      }
577      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
578
579      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
580
581      for (unsigned i = 1; i < N; i++) {
582        Out << ", ";
583        if (N > 2) Out << Indent;
584        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
585
586        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
587      }
588      if (N > 2) Indent.resize(Indent.size() - IndentSize);
589    }
590
591    Out << " }";
592    if (CS->getType()->isPacked())
593      Out << '>';
594  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
595      const Type *ETy = CP->getType()->getElementType();
596      assert(CP->getNumOperands() > 0 &&
597             "Number of operands for a PackedConst must be > 0");
598      Out << '<';
599      Out << ' ';
600      printTypeInt(Out, ETy, TypeTable);
601      WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
602      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
603          Out << ", ";
604          printTypeInt(Out, ETy, TypeTable);
605          WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
606      }
607      Out << " >";
608  } else if (isa<ConstantPointerNull>(CV)) {
609    Out << "null";
610
611  } else if (isa<UndefValue>(CV)) {
612    Out << "undef";
613
614  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
615    Out << CE->getOpcodeName();
616    if (CE->isCompare())
617      Out << " " << getPredicateText(CE->getPredicate());
618    Out << " (";
619
620    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
621      printTypeInt(Out, (*OI)->getType(), TypeTable);
622      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
623      if (OI+1 != CE->op_end())
624        Out << ", ";
625    }
626
627    if (CE->isCast()) {
628      Out << " to ";
629      printTypeInt(Out, CE->getType(), TypeTable);
630    }
631
632    Out << ')';
633
634  } else {
635    Out << "<placeholder or erroneous Constant>";
636  }
637}
638
639
640/// WriteAsOperand - Write the name of the specified value out to the specified
641/// ostream.  This can be useful when you just want to print int %reg126, not
642/// the whole instruction that generated it.
643///
644static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
645                                  std::map<const Type*, std::string> &TypeTable,
646                                   SlotMachine *Machine) {
647  Out << ' ';
648  if (V->hasName())
649    Out << getLLVMName(V->getName(),
650                       isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
651  else {
652    const Constant *CV = dyn_cast<Constant>(V);
653    if (CV && !isa<GlobalValue>(CV)) {
654      WriteConstantInt(Out, CV, TypeTable, Machine);
655    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
656      Out << "asm ";
657      if (IA->hasSideEffects())
658        Out << "sideeffect ";
659      Out << '"';
660      PrintEscapedString(IA->getAsmString(), Out);
661      Out << "\", \"";
662      PrintEscapedString(IA->getConstraintString(), Out);
663      Out << '"';
664    } else {
665      char Prefix = '%';
666      int Slot;
667      if (Machine) {
668        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
669          Slot = Machine->getGlobalSlot(GV);
670          Prefix = '@';
671        } else {
672          Slot = Machine->getLocalSlot(V);
673        }
674      } else {
675        Machine = createSlotMachine(V);
676        if (Machine) {
677          if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
678            Slot = Machine->getGlobalSlot(GV);
679            Prefix = '@';
680          } else {
681            Slot = Machine->getLocalSlot(V);
682          }
683        } else {
684          Slot = -1;
685        }
686        delete Machine;
687      }
688      if (Slot != -1)
689        Out << Prefix << Slot;
690      else
691        Out << "<badref>";
692    }
693  }
694}
695
696/// WriteAsOperand - Write the name of the specified value out to the specified
697/// ostream.  This can be useful when you just want to print int %reg126, not
698/// the whole instruction that generated it.
699///
700std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
701                                   bool PrintType, const Module *Context) {
702  std::map<const Type *, std::string> TypeNames;
703  if (Context == 0) Context = getModuleFromVal(V);
704
705  if (Context)
706    fillTypeNameTable(Context, TypeNames);
707
708  if (PrintType)
709    printTypeInt(Out, V->getType(), TypeNames);
710
711  WriteAsOperandInternal(Out, V, TypeNames, 0);
712  return Out;
713}
714
715
716namespace llvm {
717
718class AssemblyWriter {
719  std::ostream &Out;
720  SlotMachine &Machine;
721  const Module *TheModule;
722  std::map<const Type *, std::string> TypeNames;
723  AssemblyAnnotationWriter *AnnotationWriter;
724public:
725  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
726                        AssemblyAnnotationWriter *AAW)
727    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
728
729    // If the module has a symbol table, take all global types and stuff their
730    // names into the TypeNames map.
731    //
732    fillTypeNameTable(M, TypeNames);
733  }
734
735  inline void write(const Module *M)         { printModule(M);       }
736  inline void write(const GlobalVariable *G) { printGlobal(G);       }
737  inline void write(const GlobalAlias *G)    { printAlias(G);        }
738  inline void write(const Function *F)       { printFunction(F);     }
739  inline void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
740  inline void write(const Instruction *I)    { printInstruction(*I); }
741  inline void write(const Type *Ty)          { printType(Ty);        }
742
743  void writeOperand(const Value *Op, bool PrintType);
744  void writeParamOperand(const Value *Operand, ParameterAttributes Attrs);
745
746  const Module* getModule() { return TheModule; }
747
748private:
749  void printModule(const Module *M);
750  void printTypeSymbolTable(const TypeSymbolTable &ST);
751  void printGlobal(const GlobalVariable *GV);
752  void printAlias(const GlobalAlias *GV);
753  void printFunction(const Function *F);
754  void printArgument(const Argument *FA, ParameterAttributes Attrs);
755  void printBasicBlock(const BasicBlock *BB);
756  void printInstruction(const Instruction &I);
757
758  // printType - Go to extreme measures to attempt to print out a short,
759  // symbolic version of a type name.
760  //
761  std::ostream &printType(const Type *Ty) {
762    return printTypeInt(Out, Ty, TypeNames);
763  }
764
765  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
766  // without considering any symbolic types that we may have equal to it.
767  //
768  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
769
770  // printInfoComment - Print a little comment after the instruction indicating
771  // which slot it occupies.
772  void printInfoComment(const Value &V);
773};
774}  // end of llvm namespace
775
776/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
777/// without considering any symbolic types that we may have equal to it.
778///
779std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
780  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
781    Out << "i" << utostr(ITy->getBitWidth());
782  else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
783    printType(FTy->getReturnType());
784    Out << " (";
785    for (FunctionType::param_iterator I = FTy->param_begin(),
786           E = FTy->param_end(); I != E; ++I) {
787      if (I != FTy->param_begin())
788        Out << ", ";
789      printType(*I);
790    }
791    if (FTy->isVarArg()) {
792      if (FTy->getNumParams()) Out << ", ";
793      Out << "...";
794    }
795    Out << ')';
796  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
797    if (STy->isPacked())
798      Out << '<';
799    Out << "{ ";
800    for (StructType::element_iterator I = STy->element_begin(),
801           E = STy->element_end(); I != E; ++I) {
802      if (I != STy->element_begin())
803        Out << ", ";
804      printType(*I);
805    }
806    Out << " }";
807    if (STy->isPacked())
808      Out << '>';
809  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
810    printType(PTy->getElementType());
811    if (unsigned AddressSpace = PTy->getAddressSpace())
812      Out << " addrspace(" << AddressSpace << ")";
813    Out << '*';
814  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
815    Out << '[' << ATy->getNumElements() << " x ";
816    printType(ATy->getElementType()) << ']';
817  } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
818    Out << '<' << PTy->getNumElements() << " x ";
819    printType(PTy->getElementType()) << '>';
820  }
821  else if (isa<OpaqueType>(Ty)) {
822    Out << "opaque";
823  } else {
824    if (!Ty->isPrimitiveType())
825      Out << "<unknown derived type>";
826    printType(Ty);
827  }
828  return Out;
829}
830
831
832void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
833  if (Operand == 0) {
834    Out << "<null operand!>";
835  } else {
836    if (PrintType) { Out << ' '; printType(Operand->getType()); }
837    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
838  }
839}
840
841void AssemblyWriter::writeParamOperand(const Value *Operand,
842                                       ParameterAttributes Attrs) {
843  if (Operand == 0) {
844    Out << "<null operand!>";
845  } else {
846    Out << ' ';
847    // Print the type
848    printType(Operand->getType());
849    // Print parameter attributes list
850    if (Attrs != ParamAttr::None)
851      Out << ' ' << ParamAttr::getAsString(Attrs);
852    // Print the operand
853    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
854  }
855}
856
857void AssemblyWriter::printModule(const Module *M) {
858  if (!M->getModuleIdentifier().empty() &&
859      // Don't print the ID if it will start a new line (which would
860      // require a comment char before it).
861      M->getModuleIdentifier().find('\n') == std::string::npos)
862    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
863
864  if (!M->getDataLayout().empty())
865    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
866  if (!M->getTargetTriple().empty())
867    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
868
869  if (!M->getModuleInlineAsm().empty()) {
870    // Split the string into lines, to make it easier to read the .ll file.
871    std::string Asm = M->getModuleInlineAsm();
872    size_t CurPos = 0;
873    size_t NewLine = Asm.find_first_of('\n', CurPos);
874    while (NewLine != std::string::npos) {
875      // We found a newline, print the portion of the asm string from the
876      // last newline up to this newline.
877      Out << "module asm \"";
878      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
879                         Out);
880      Out << "\"\n";
881      CurPos = NewLine+1;
882      NewLine = Asm.find_first_of('\n', CurPos);
883    }
884    Out << "module asm \"";
885    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
886    Out << "\"\n";
887  }
888
889  // Loop over the dependent libraries and emit them.
890  Module::lib_iterator LI = M->lib_begin();
891  Module::lib_iterator LE = M->lib_end();
892  if (LI != LE) {
893    Out << "deplibs = [ ";
894    while (LI != LE) {
895      Out << '"' << *LI << '"';
896      ++LI;
897      if (LI != LE)
898        Out << ", ";
899    }
900    Out << " ]\n";
901  }
902
903  // Loop over the symbol table, emitting all named constants.
904  printTypeSymbolTable(M->getTypeSymbolTable());
905
906  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
907       I != E; ++I)
908    printGlobal(I);
909
910  // Output all aliases.
911  if (!M->alias_empty()) Out << "\n";
912  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
913       I != E; ++I)
914    printAlias(I);
915
916  // Output all of the functions.
917  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
918    printFunction(I);
919}
920
921void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
922  if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = ";
923
924  if (!GV->hasInitializer()) {
925    switch (GV->getLinkage()) {
926     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
927     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
928     default: Out << "external "; break;
929    }
930  } else {
931    switch (GV->getLinkage()) {
932    case GlobalValue::InternalLinkage:     Out << "internal "; break;
933    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
934    case GlobalValue::WeakLinkage:         Out << "weak "; break;
935    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
936    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
937    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
938    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
939    case GlobalValue::ExternalLinkage:     break;
940    case GlobalValue::GhostLinkage:
941      cerr << "GhostLinkage not allowed in AsmWriter!\n";
942      abort();
943    }
944    switch (GV->getVisibility()) {
945    default: assert(0 && "Invalid visibility style!");
946    case GlobalValue::DefaultVisibility: break;
947    case GlobalValue::HiddenVisibility: Out << "hidden "; break;
948    case GlobalValue::ProtectedVisibility: Out << "protected "; break;
949    }
950  }
951
952  if (GV->isThreadLocal()) Out << "thread_local ";
953  Out << (GV->isConstant() ? "constant " : "global ");
954  printType(GV->getType()->getElementType());
955
956  if (GV->hasInitializer()) {
957    Constant* C = cast<Constant>(GV->getInitializer());
958    assert(C &&  "GlobalVar initializer isn't constant?");
959    writeOperand(GV->getInitializer(), false);
960  }
961
962  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
963    Out << " addrspace(" << AddressSpace << ") ";
964
965  if (GV->hasSection())
966    Out << ", section \"" << GV->getSection() << '"';
967  if (GV->getAlignment())
968    Out << ", align " << GV->getAlignment();
969
970  printInfoComment(*GV);
971  Out << "\n";
972}
973
974void AssemblyWriter::printAlias(const GlobalAlias *GA) {
975  Out << getLLVMName(GA->getName(), GlobalPrefix) << " = ";
976  switch (GA->getVisibility()) {
977  default: assert(0 && "Invalid visibility style!");
978  case GlobalValue::DefaultVisibility: break;
979  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
980  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
981  }
982
983  Out << "alias ";
984
985  switch (GA->getLinkage()) {
986  case GlobalValue::WeakLinkage: Out << "weak "; break;
987  case GlobalValue::InternalLinkage: Out << "internal "; break;
988  case GlobalValue::ExternalLinkage: break;
989  default:
990   assert(0 && "Invalid alias linkage");
991  }
992
993  const Constant *Aliasee = GA->getAliasee();
994
995  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
996    printType(GV->getType());
997    Out << " " << getLLVMName(GV->getName(), GlobalPrefix);
998  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
999    printType(F->getFunctionType());
1000    Out << "* ";
1001
1002    if (!F->getName().empty())
1003      Out << getLLVMName(F->getName(), GlobalPrefix);
1004    else
1005      Out << "@\"\"";
1006  } else {
1007    const ConstantExpr *CE = 0;
1008    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1009        (CE->getOpcode() == Instruction::BitCast)) {
1010      writeOperand(CE, false);
1011    } else
1012      assert(0 && "Unsupported aliasee");
1013  }
1014
1015  printInfoComment(*GA);
1016  Out << "\n";
1017}
1018
1019void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1020  // Print the types.
1021  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1022       TI != TE; ++TI) {
1023    Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
1024
1025    // Make sure we print out at least one level of the type structure, so
1026    // that we do not get %FILE = type %FILE
1027    //
1028    printTypeAtLeastOneLevel(TI->second) << "\n";
1029  }
1030}
1031
1032/// printFunction - Print all aspects of a function.
1033///
1034void AssemblyWriter::printFunction(const Function *F) {
1035  // Print out the return type and name...
1036  Out << "\n";
1037
1038  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1039
1040  if (F->isDeclaration())
1041    Out << "declare ";
1042  else
1043    Out << "define ";
1044
1045  switch (F->getLinkage()) {
1046  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1047  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1048  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1049  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1050  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1051  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1052  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1053  case GlobalValue::ExternalLinkage: break;
1054  case GlobalValue::GhostLinkage:
1055    cerr << "GhostLinkage not allowed in AsmWriter!\n";
1056    abort();
1057  }
1058  switch (F->getVisibility()) {
1059  default: assert(0 && "Invalid visibility style!");
1060  case GlobalValue::DefaultVisibility: break;
1061  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1062  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1063  }
1064
1065  // Print the calling convention.
1066  switch (F->getCallingConv()) {
1067  case CallingConv::C: break;   // default
1068  case CallingConv::Fast:         Out << "fastcc "; break;
1069  case CallingConv::Cold:         Out << "coldcc "; break;
1070  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1071  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1072  default: Out << "cc" << F->getCallingConv() << " "; break;
1073  }
1074
1075  const FunctionType *FT = F->getFunctionType();
1076  const PAListPtr &Attrs = F->getParamAttrs();
1077  printType(F->getReturnType()) << ' ';
1078  if (!F->getName().empty())
1079    Out << getLLVMName(F->getName(), GlobalPrefix);
1080  else
1081    Out << "@\"\"";
1082  Out << '(';
1083  Machine.incorporateFunction(F);
1084
1085  // Loop over the arguments, printing them...
1086
1087  unsigned Idx = 1;
1088  if (!F->isDeclaration()) {
1089    // If this isn't a declaration, print the argument names as well.
1090    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1091         I != E; ++I) {
1092      // Insert commas as we go... the first arg doesn't get a comma
1093      if (I != F->arg_begin()) Out << ", ";
1094      printArgument(I, Attrs.getParamAttrs(Idx));
1095      Idx++;
1096    }
1097  } else {
1098    // Otherwise, print the types from the function type.
1099    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1100      // Insert commas as we go... the first arg doesn't get a comma
1101      if (i) Out << ", ";
1102
1103      // Output type...
1104      printType(FT->getParamType(i));
1105
1106      ParameterAttributes ArgAttrs = Attrs.getParamAttrs(i+1);
1107      if (ArgAttrs != ParamAttr::None)
1108        Out << ' ' << ParamAttr::getAsString(ArgAttrs);
1109    }
1110  }
1111
1112  // Finish printing arguments...
1113  if (FT->isVarArg()) {
1114    if (FT->getNumParams()) Out << ", ";
1115    Out << "...";  // Output varargs portion of signature!
1116  }
1117  Out << ')';
1118  ParameterAttributes RetAttrs = Attrs.getParamAttrs(0);
1119  if (RetAttrs != ParamAttr::None)
1120    Out << ' ' << ParamAttr::getAsString(Attrs.getParamAttrs(0));
1121  if (F->hasSection())
1122    Out << " section \"" << F->getSection() << '"';
1123  if (F->getAlignment())
1124    Out << " align " << F->getAlignment();
1125  if (F->hasCollector())
1126    Out << " gc \"" << F->getCollector() << '"';
1127
1128  if (F->isDeclaration()) {
1129    Out << "\n";
1130  } else {
1131    Out << " {\n";
1132
1133    // Output all of its basic blocks... for the function
1134    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1135      printBasicBlock(I);
1136
1137    Out << "}\n";
1138  }
1139
1140  Machine.purgeFunction();
1141}
1142
1143/// printArgument - This member is called for every argument that is passed into
1144/// the function.  Simply print it out
1145///
1146void AssemblyWriter::printArgument(const Argument *Arg,
1147                                   ParameterAttributes Attrs) {
1148  // Output type...
1149  printType(Arg->getType());
1150
1151  // Output parameter attributes list
1152  if (Attrs != ParamAttr::None)
1153    Out << ' ' << ParamAttr::getAsString(Attrs);
1154
1155  // Output name, if available...
1156  if (Arg->hasName())
1157    Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix);
1158}
1159
1160/// printBasicBlock - This member is called for each basic block in a method.
1161///
1162void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1163  if (BB->hasName())              // Print out the label if it exists...
1164    Out << getLLVMName(BB->getName(), LabelPrefix) << ':';
1165
1166  if (const BasicBlock* unwindDest = BB->getUnwindDest()) {
1167    if (BB->hasName())
1168      Out << ' ';
1169
1170    Out << "unwinds to";
1171    writeOperand(unwindDest, false);
1172  }
1173
1174  if (!BB->hasName() && !BB->use_empty()) { // Don't print block # of no uses...
1175    Out << "; <label>:";
1176    int Slot = Machine.getLocalSlot(BB);
1177    if (Slot != -1)
1178      Out << Slot;
1179    else
1180      Out << "<badref>";
1181  }
1182
1183  if (BB->getParent() == 0)
1184    Out << "\t\t; Error: Block without parent!";
1185  else {
1186    if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1187      // Output predecessors for the block...
1188      Out << "\t\t;";
1189      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1190
1191      if (PI == PE) {
1192        Out << " No predecessors!";
1193      } else {
1194        Out << " preds =";
1195        writeOperand(*PI, false);
1196        for (++PI; PI != PE; ++PI) {
1197          Out << ',';
1198          writeOperand(*PI, false);
1199        }
1200      }
1201    }
1202  }
1203
1204  if (BB->hasName() || !BB->use_empty() || BB->getUnwindDest() ||
1205      BB != &BB->getParent()->getEntryBlock())
1206    Out << "\n";
1207
1208  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1209
1210  // Output all of the instructions in the basic block...
1211  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1212    printInstruction(*I);
1213
1214  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1215}
1216
1217
1218/// printInfoComment - Print a little comment after the instruction indicating
1219/// which slot it occupies.
1220///
1221void AssemblyWriter::printInfoComment(const Value &V) {
1222  if (V.getType() != Type::VoidTy) {
1223    Out << "\t\t; <";
1224    printType(V.getType()) << '>';
1225
1226    if (!V.hasName()) {
1227      int SlotNum;
1228      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1229        SlotNum = Machine.getGlobalSlot(GV);
1230      else
1231        SlotNum = Machine.getLocalSlot(&V);
1232      if (SlotNum == -1)
1233        Out << ":<badref>";
1234      else
1235        Out << ':' << SlotNum; // Print out the def slot taken.
1236    }
1237    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1238  }
1239}
1240
1241// This member is called for each Instruction in a function..
1242void AssemblyWriter::printInstruction(const Instruction &I) {
1243  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1244
1245  Out << "\t";
1246
1247  // Print out name if it exists...
1248  if (I.hasName())
1249    Out << getLLVMName(I.getName(), LocalPrefix) << " = ";
1250
1251  // If this is a volatile load or store, print out the volatile marker.
1252  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1253      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1254      Out << "volatile ";
1255  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1256    // If this is a call, check if it's a tail call.
1257    Out << "tail ";
1258  }
1259
1260  // Print out the opcode...
1261  Out << I.getOpcodeName();
1262
1263  // Print out the compare instruction predicates
1264  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1265    Out << " " << getPredicateText(FCI->getPredicate());
1266  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1267    Out << " " << getPredicateText(ICI->getPredicate());
1268  }
1269
1270  // Print out the type of the operands...
1271  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1272
1273  // Special case conditional branches to swizzle the condition out to the front
1274  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1275    writeOperand(I.getOperand(2), true);
1276    Out << ',';
1277    writeOperand(Operand, true);
1278    Out << ',';
1279    writeOperand(I.getOperand(1), true);
1280
1281  } else if (isa<SwitchInst>(I)) {
1282    // Special case switch statement to get formatting nice and correct...
1283    writeOperand(Operand        , true); Out << ',';
1284    writeOperand(I.getOperand(1), true); Out << " [";
1285
1286    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1287      Out << "\n\t\t";
1288      writeOperand(I.getOperand(op  ), true); Out << ',';
1289      writeOperand(I.getOperand(op+1), true);
1290    }
1291    Out << "\n\t]";
1292  } else if (isa<PHINode>(I)) {
1293    Out << ' ';
1294    printType(I.getType());
1295    Out << ' ';
1296
1297    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1298      if (op) Out << ", ";
1299      Out << '[';
1300      writeOperand(I.getOperand(op  ), false); Out << ',';
1301      writeOperand(I.getOperand(op+1), false); Out << " ]";
1302    }
1303  } else if (const GetResultInst *GRI = dyn_cast<GetResultInst>(&I)) {
1304    writeOperand(I.getOperand(0), true);
1305    Out << ", " << GRI->getIndex();
1306  } else if (isa<ReturnInst>(I) && !Operand) {
1307    Out << " void";
1308  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1309    // Print the calling convention being used.
1310    switch (CI->getCallingConv()) {
1311    case CallingConv::C: break;   // default
1312    case CallingConv::Fast:  Out << " fastcc"; break;
1313    case CallingConv::Cold:  Out << " coldcc"; break;
1314    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1315    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1316    default: Out << " cc" << CI->getCallingConv(); break;
1317    }
1318
1319    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1320    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1321    const Type         *RetTy = FTy->getReturnType();
1322    const PAListPtr &PAL = CI->getParamAttrs();
1323
1324    // If possible, print out the short form of the call instruction.  We can
1325    // only do this if the first argument is a pointer to a nonvararg function,
1326    // and if the return type is not a pointer to a function.
1327    //
1328    if (!FTy->isVarArg() &&
1329        (!isa<PointerType>(RetTy) ||
1330         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1331      Out << ' '; printType(RetTy);
1332      writeOperand(Operand, false);
1333    } else {
1334      writeOperand(Operand, true);
1335    }
1336    Out << '(';
1337    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1338      if (op > 1)
1339        Out << ',';
1340      writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op));
1341    }
1342    Out << " )";
1343    if (PAL.getParamAttrs(0) != ParamAttr::None)
1344      Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1345  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1346    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1347    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1348    const Type         *RetTy = FTy->getReturnType();
1349    const PAListPtr &PAL = II->getParamAttrs();
1350
1351    // Print the calling convention being used.
1352    switch (II->getCallingConv()) {
1353    case CallingConv::C: break;   // default
1354    case CallingConv::Fast:  Out << " fastcc"; break;
1355    case CallingConv::Cold:  Out << " coldcc"; break;
1356    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1357    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1358    default: Out << " cc" << II->getCallingConv(); break;
1359    }
1360
1361    // If possible, print out the short form of the invoke instruction. We can
1362    // only do this if the first argument is a pointer to a nonvararg function,
1363    // and if the return type is not a pointer to a function.
1364    //
1365    if (!FTy->isVarArg() &&
1366        (!isa<PointerType>(RetTy) ||
1367         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1368      Out << ' '; printType(RetTy);
1369      writeOperand(Operand, false);
1370    } else {
1371      writeOperand(Operand, true);
1372    }
1373
1374    Out << '(';
1375    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1376      if (op > 3)
1377        Out << ',';
1378      writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op-2));
1379    }
1380
1381    Out << " )";
1382    if (PAL.getParamAttrs(0) != ParamAttr::None)
1383      Out << " " << ParamAttr::getAsString(PAL.getParamAttrs(0));
1384    Out << "\n\t\t\tto";
1385    writeOperand(II->getNormalDest(), true);
1386    Out << " unwind";
1387    writeOperand(II->getUnwindDest(), true);
1388
1389  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1390    Out << ' ';
1391    printType(AI->getType()->getElementType());
1392    if (AI->isArrayAllocation()) {
1393      Out << ',';
1394      writeOperand(AI->getArraySize(), true);
1395    }
1396    if (AI->getAlignment()) {
1397      Out << ", align " << AI->getAlignment();
1398    }
1399  } else if (isa<CastInst>(I)) {
1400    if (Operand) writeOperand(Operand, true);   // Work with broken code
1401    Out << " to ";
1402    printType(I.getType());
1403  } else if (isa<VAArgInst>(I)) {
1404    if (Operand) writeOperand(Operand, true);   // Work with broken code
1405    Out << ", ";
1406    printType(I.getType());
1407  } else if (Operand) {   // Print the normal way...
1408
1409    // PrintAllTypes - Instructions who have operands of all the same type
1410    // omit the type from all but the first operand.  If the instruction has
1411    // different type operands (for example br), then they are all printed.
1412    bool PrintAllTypes = false;
1413    const Type *TheType = Operand->getType();
1414
1415    // Select, Store and ShuffleVector always print all types.
1416    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1417        || isa<ReturnInst>(I)) {
1418      PrintAllTypes = true;
1419    } else {
1420      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1421        Operand = I.getOperand(i);
1422        if (Operand->getType() != TheType) {
1423          PrintAllTypes = true;    // We have differing types!  Print them all!
1424          break;
1425        }
1426      }
1427    }
1428
1429    if (!PrintAllTypes) {
1430      Out << ' ';
1431      printType(TheType);
1432    }
1433
1434    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1435      if (i) Out << ',';
1436      writeOperand(I.getOperand(i), PrintAllTypes);
1437    }
1438  }
1439
1440  // Print post operand alignment for load/store
1441  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1442    Out << ", align " << cast<LoadInst>(I).getAlignment();
1443  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1444    Out << ", align " << cast<StoreInst>(I).getAlignment();
1445  }
1446
1447  printInfoComment(I);
1448  Out << "\n";
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//                       External Interface declarations
1454//===----------------------------------------------------------------------===//
1455
1456void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1457  SlotMachine SlotTable(this);
1458  AssemblyWriter W(o, SlotTable, this, AAW);
1459  W.write(this);
1460}
1461
1462void GlobalVariable::print(std::ostream &o) const {
1463  SlotMachine SlotTable(getParent());
1464  AssemblyWriter W(o, SlotTable, getParent(), 0);
1465  W.write(this);
1466}
1467
1468void GlobalAlias::print(std::ostream &o) const {
1469  SlotMachine SlotTable(getParent());
1470  AssemblyWriter W(o, SlotTable, getParent(), 0);
1471  W.write(this);
1472}
1473
1474void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1475  SlotMachine SlotTable(getParent());
1476  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1477
1478  W.write(this);
1479}
1480
1481void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1482  WriteAsOperand(o, this, true, 0);
1483}
1484
1485void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1486  SlotMachine SlotTable(getParent());
1487  AssemblyWriter W(o, SlotTable,
1488                   getParent() ? getParent()->getParent() : 0, AAW);
1489  W.write(this);
1490}
1491
1492void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1493  const Function *F = getParent() ? getParent()->getParent() : 0;
1494  SlotMachine SlotTable(F);
1495  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1496
1497  W.write(this);
1498}
1499
1500void Constant::print(std::ostream &o) const {
1501  if (this == 0) { o << "<null> constant value\n"; return; }
1502
1503  o << ' ' << getType()->getDescription() << ' ';
1504
1505  std::map<const Type *, std::string> TypeTable;
1506  WriteConstantInt(o, this, TypeTable, 0);
1507}
1508
1509void Type::print(std::ostream &o) const {
1510  if (this == 0)
1511    o << "<null Type>";
1512  else
1513    o << getDescription();
1514}
1515
1516void Argument::print(std::ostream &o) const {
1517  WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1518}
1519
1520// Value::dump - allow easy printing of  Values from the debugger.
1521// Located here because so much of the needed functionality is here.
1522void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1523
1524// Type::dump - allow easy printing of  Values from the debugger.
1525// Located here because so much of the needed functionality is here.
1526void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1527
1528//===----------------------------------------------------------------------===//
1529//                         SlotMachine Implementation
1530//===----------------------------------------------------------------------===//
1531
1532#if 0
1533#define SC_DEBUG(X) cerr << X
1534#else
1535#define SC_DEBUG(X)
1536#endif
1537
1538// Module level constructor. Causes the contents of the Module (sans functions)
1539// to be added to the slot table.
1540SlotMachine::SlotMachine(const Module *M)
1541  : TheModule(M)    ///< Saved for lazy initialization.
1542  , TheFunction(0)
1543  , FunctionProcessed(false)
1544  , mMap(), mNext(0), fMap(), fNext(0)
1545{
1546}
1547
1548// Function level constructor. Causes the contents of the Module and the one
1549// function provided to be added to the slot table.
1550SlotMachine::SlotMachine(const Function *F)
1551  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1552  , TheFunction(F) ///< Saved for lazy initialization
1553  , FunctionProcessed(false)
1554  , mMap(), mNext(0), fMap(), fNext(0)
1555{
1556}
1557
1558inline void SlotMachine::initialize() {
1559  if (TheModule) {
1560    processModule();
1561    TheModule = 0; ///< Prevent re-processing next time we're called.
1562  }
1563  if (TheFunction && !FunctionProcessed)
1564    processFunction();
1565}
1566
1567// Iterate through all the global variables, functions, and global
1568// variable initializers and create slots for them.
1569void SlotMachine::processModule() {
1570  SC_DEBUG("begin processModule!\n");
1571
1572  // Add all of the unnamed global variables to the value table.
1573  for (Module::const_global_iterator I = TheModule->global_begin(),
1574       E = TheModule->global_end(); I != E; ++I)
1575    if (!I->hasName())
1576      CreateModuleSlot(I);
1577
1578  // Add all the unnamed functions to the table.
1579  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1580       I != E; ++I)
1581    if (!I->hasName())
1582      CreateModuleSlot(I);
1583
1584  SC_DEBUG("end processModule!\n");
1585}
1586
1587
1588// Process the arguments, basic blocks, and instructions  of a function.
1589void SlotMachine::processFunction() {
1590  SC_DEBUG("begin processFunction!\n");
1591  fNext = 0;
1592
1593  // Add all the function arguments with no names.
1594  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1595      AE = TheFunction->arg_end(); AI != AE; ++AI)
1596    if (!AI->hasName())
1597      CreateFunctionSlot(AI);
1598
1599  SC_DEBUG("Inserting Instructions:\n");
1600
1601  // Add all of the basic blocks and instructions with no names.
1602  for (Function::const_iterator BB = TheFunction->begin(),
1603       E = TheFunction->end(); BB != E; ++BB) {
1604    if (!BB->hasName())
1605      CreateFunctionSlot(BB);
1606    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1607      if (I->getType() != Type::VoidTy && !I->hasName())
1608        CreateFunctionSlot(I);
1609  }
1610
1611  FunctionProcessed = true;
1612
1613  SC_DEBUG("end processFunction!\n");
1614}
1615
1616/// Clean up after incorporating a function. This is the only way to get out of
1617/// the function incorporation state that affects get*Slot/Create*Slot. Function
1618/// incorporation state is indicated by TheFunction != 0.
1619void SlotMachine::purgeFunction() {
1620  SC_DEBUG("begin purgeFunction!\n");
1621  fMap.clear(); // Simply discard the function level map
1622  TheFunction = 0;
1623  FunctionProcessed = false;
1624  SC_DEBUG("end purgeFunction!\n");
1625}
1626
1627/// getGlobalSlot - Get the slot number of a global value.
1628int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1629  // Check for uninitialized state and do lazy initialization.
1630  initialize();
1631
1632  // Find the type plane in the module map
1633  ValueMap::const_iterator MI = mMap.find(V);
1634  if (MI == mMap.end()) return -1;
1635
1636  return MI->second;
1637}
1638
1639
1640/// getLocalSlot - Get the slot number for a value that is local to a function.
1641int SlotMachine::getLocalSlot(const Value *V) {
1642  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1643
1644  // Check for uninitialized state and do lazy initialization.
1645  initialize();
1646
1647  ValueMap::const_iterator FI = fMap.find(V);
1648  if (FI == fMap.end()) return -1;
1649
1650  return FI->second;
1651}
1652
1653
1654/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1655void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1656  assert(V && "Can't insert a null Value into SlotMachine!");
1657  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
1658  assert(!V->hasName() && "Doesn't need a slot!");
1659
1660  unsigned DestSlot = mNext++;
1661  mMap[V] = DestSlot;
1662
1663  SC_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1664           DestSlot << " [");
1665  // G = Global, F = Function, A = Alias, o = other
1666  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1667            (isa<Function> ? 'F' :
1668             (isa<GlobalAlias> ? 'A' : 'o'))) << "]\n");
1669}
1670
1671
1672/// CreateSlot - Create a new slot for the specified value if it has no name.
1673void SlotMachine::CreateFunctionSlot(const Value *V) {
1674  const Type *VTy = V->getType();
1675  assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1676
1677  unsigned DestSlot = fNext++;
1678  fMap[V] = DestSlot;
1679
1680  // G = Global, F = Function, o = other
1681  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1682           DestSlot << " [o]\n");
1683}
1684