AsmWriter.cpp revision 80a75bfae980df96f969f1c05b0c4a80ce975240
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/ParameterAttributes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/Streams.h"
35#include <algorithm>
36#include <cctype>
37using namespace llvm;
38
39namespace llvm {
40
41// Make virtual table appear in this compilation unit.
42AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
43
44/// This class provides computation of slot numbers for LLVM Assembly writing.
45/// @brief LLVM Assembly Writing Slot Computation.
46class SlotMachine {
47
48/// @name Types
49/// @{
50public:
51
52  /// @brief A mapping of Values to slot numbers
53  typedef std::map<const Value*,unsigned> ValueMap;
54
55/// @}
56/// @name Constructors
57/// @{
58public:
59  /// @brief Construct from a module
60  SlotMachine(const Module *M);
61
62  /// @brief Construct from a function, starting out in incorp state.
63  SlotMachine(const Function *F);
64
65/// @}
66/// @name Accessors
67/// @{
68public:
69  /// Return the slot number of the specified value in it's type
70  /// plane.  If something is not in the SlotMachine, return -1.
71  int getLocalSlot(const Value *V);
72  int getGlobalSlot(const GlobalValue *V);
73
74/// @}
75/// @name Mutators
76/// @{
77public:
78  /// If you'd like to deal with a function instead of just a module, use
79  /// this method to get its data into the SlotMachine.
80  void incorporateFunction(const Function *F) {
81    TheFunction = F;
82    FunctionProcessed = false;
83  }
84
85  /// After calling incorporateFunction, use this method to remove the
86  /// most recently incorporated function from the SlotMachine. This
87  /// will reset the state of the machine back to just the module contents.
88  void purgeFunction();
89
90/// @}
91/// @name Implementation Details
92/// @{
93private:
94  /// This function does the actual initialization.
95  inline void initialize();
96
97  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
98  void CreateModuleSlot(const GlobalValue *V);
99
100  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
101  void CreateFunctionSlot(const Value *V);
102
103  /// Add all of the module level global variables (and their initializers)
104  /// and function declarations, but not the contents of those functions.
105  void processModule();
106
107  /// Add all of the functions arguments, basic blocks, and instructions
108  void processFunction();
109
110  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
111  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
112
113/// @}
114/// @name Data
115/// @{
116public:
117
118  /// @brief The module for which we are holding slot numbers
119  const Module* TheModule;
120
121  /// @brief The function for which we are holding slot numbers
122  const Function* TheFunction;
123  bool FunctionProcessed;
124
125  /// @brief The TypePlanes map for the module level data
126  ValueMap mMap;
127  unsigned mNext;
128
129  /// @brief The TypePlanes map for the function level data
130  ValueMap fMap;
131  unsigned fNext;
132
133/// @}
134
135};
136
137}  // end namespace llvm
138
139char PrintModulePass::ID = 0;
140static RegisterPass<PrintModulePass>
141X("printm", "Print module to stderr");
142char PrintFunctionPass::ID = 0;
143static RegisterPass<PrintFunctionPass>
144Y("print","Print function to stderr");
145
146static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
147                               std::map<const Type *, std::string> &TypeTable,
148                                   SlotMachine *Machine);
149
150static const Module *getModuleFromVal(const Value *V) {
151  if (const Argument *MA = dyn_cast<Argument>(V))
152    return MA->getParent() ? MA->getParent()->getParent() : 0;
153  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
154    return BB->getParent() ? BB->getParent()->getParent() : 0;
155  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
156    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
157    return M ? M->getParent() : 0;
158  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
159    return GV->getParent();
160  return 0;
161}
162
163static SlotMachine *createSlotMachine(const Value *V) {
164  if (const Argument *FA = dyn_cast<Argument>(V)) {
165    return new SlotMachine(FA->getParent());
166  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
167    return new SlotMachine(I->getParent()->getParent());
168  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
169    return new SlotMachine(BB->getParent());
170  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
171    return new SlotMachine(GV->getParent());
172  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)){
173    return new SlotMachine(GA->getParent());
174  } else if (const Function *Func = dyn_cast<Function>(V)) {
175    return new SlotMachine(Func);
176  }
177  return 0;
178}
179
180/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
181/// with ""'s.
182static std::string QuoteNameIfNeeded(const std::string &Name) {
183  std::string result;
184  bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
185  // Scan the name to see if it needs quotes and to replace funky chars with
186  // their octal equivalent.
187  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
188    char C = Name[i];
189    assert(C != '"' && "Illegal character in LLVM value name!");
190    if (isalnum(C) || C == '-' || C == '.' || C == '_')
191      result += C;
192    else if (C == '\\')  {
193      needsQuotes = true;
194      result += "\\\\";
195    } else if (isprint(C)) {
196      needsQuotes = true;
197      result += C;
198    } else {
199      needsQuotes = true;
200      result += "\\";
201      char hex1 = (C >> 4) & 0x0F;
202      if (hex1 < 10)
203        result += hex1 + '0';
204      else
205        result += hex1 - 10 + 'A';
206      char hex2 = C & 0x0F;
207      if (hex2 < 10)
208        result += hex2 + '0';
209      else
210        result += hex2 - 10 + 'A';
211    }
212  }
213  if (needsQuotes) {
214    result.insert(0,"\"");
215    result += '"';
216  }
217  return result;
218}
219
220enum PrefixType {
221  GlobalPrefix,
222  LabelPrefix,
223  LocalPrefix
224};
225
226/// getLLVMName - Turn the specified string into an 'LLVM name', which is either
227/// prefixed with % (if the string only contains simple characters) or is
228/// surrounded with ""'s (if it has special chars in it).
229static std::string getLLVMName(const std::string &Name, PrefixType Prefix) {
230  assert(!Name.empty() && "Cannot get empty name!");
231  switch (Prefix) {
232  default: assert(0 && "Bad prefix!");
233  case GlobalPrefix: return '@' + QuoteNameIfNeeded(Name);
234  case LabelPrefix:  return QuoteNameIfNeeded(Name);
235  case LocalPrefix:  return '%' + QuoteNameIfNeeded(Name);
236  }
237}
238
239
240/// fillTypeNameTable - If the module has a symbol table, take all global types
241/// and stuff their names into the TypeNames map.
242///
243static void fillTypeNameTable(const Module *M,
244                              std::map<const Type *, std::string> &TypeNames) {
245  if (!M) return;
246  const TypeSymbolTable &ST = M->getTypeSymbolTable();
247  TypeSymbolTable::const_iterator TI = ST.begin();
248  for (; TI != ST.end(); ++TI) {
249    // As a heuristic, don't insert pointer to primitive types, because
250    // they are used too often to have a single useful name.
251    //
252    const Type *Ty = cast<Type>(TI->second);
253    if (!isa<PointerType>(Ty) ||
254        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
255        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
256        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
257      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first, LocalPrefix)));
258  }
259}
260
261
262
263static void calcTypeName(const Type *Ty,
264                         std::vector<const Type *> &TypeStack,
265                         std::map<const Type *, std::string> &TypeNames,
266                         std::string & Result){
267  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
268    Result += Ty->getDescription();  // Base case
269    return;
270  }
271
272  // Check to see if the type is named.
273  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
274  if (I != TypeNames.end()) {
275    Result += I->second;
276    return;
277  }
278
279  if (isa<OpaqueType>(Ty)) {
280    Result += "opaque";
281    return;
282  }
283
284  // Check to see if the Type is already on the stack...
285  unsigned Slot = 0, CurSize = TypeStack.size();
286  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
287
288  // This is another base case for the recursion.  In this case, we know
289  // that we have looped back to a type that we have previously visited.
290  // Generate the appropriate upreference to handle this.
291  if (Slot < CurSize) {
292    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
293    return;
294  }
295
296  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
297
298  switch (Ty->getTypeID()) {
299  case Type::IntegerTyID: {
300    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
301    Result += "i" + utostr(BitWidth);
302    break;
303  }
304  case Type::FunctionTyID: {
305    const FunctionType *FTy = cast<FunctionType>(Ty);
306    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
307    Result += " (";
308    for (FunctionType::param_iterator I = FTy->param_begin(),
309         E = FTy->param_end(); I != E; ++I) {
310      if (I != FTy->param_begin())
311        Result += ", ";
312      calcTypeName(*I, TypeStack, TypeNames, Result);
313    }
314    if (FTy->isVarArg()) {
315      if (FTy->getNumParams()) Result += ", ";
316      Result += "...";
317    }
318    Result += ")";
319    break;
320  }
321  case Type::StructTyID: {
322    const StructType *STy = cast<StructType>(Ty);
323    if (STy->isPacked())
324      Result += '<';
325    Result += "{ ";
326    for (StructType::element_iterator I = STy->element_begin(),
327           E = STy->element_end(); I != E; ++I) {
328      if (I != STy->element_begin())
329        Result += ", ";
330      calcTypeName(*I, TypeStack, TypeNames, Result);
331    }
332    Result += " }";
333    if (STy->isPacked())
334      Result += '>';
335    break;
336  }
337  case Type::PointerTyID:
338    calcTypeName(cast<PointerType>(Ty)->getElementType(),
339                          TypeStack, TypeNames, Result);
340    Result += "*";
341    break;
342  case Type::ArrayTyID: {
343    const ArrayType *ATy = cast<ArrayType>(Ty);
344    Result += "[" + utostr(ATy->getNumElements()) + " x ";
345    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
346    Result += "]";
347    break;
348  }
349  case Type::VectorTyID: {
350    const VectorType *PTy = cast<VectorType>(Ty);
351    Result += "<" + utostr(PTy->getNumElements()) + " x ";
352    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
353    Result += ">";
354    break;
355  }
356  case Type::OpaqueTyID:
357    Result += "opaque";
358    break;
359  default:
360    Result += "<unrecognized-type>";
361    break;
362  }
363
364  TypeStack.pop_back();       // Remove self from stack...
365}
366
367
368/// printTypeInt - The internal guts of printing out a type that has a
369/// potentially named portion.
370///
371static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
372                              std::map<const Type *, std::string> &TypeNames) {
373  // Primitive types always print out their description, regardless of whether
374  // they have been named or not.
375  //
376  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
377    return Out << Ty->getDescription();
378
379  // Check to see if the type is named.
380  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
381  if (I != TypeNames.end()) return Out << I->second;
382
383  // Otherwise we have a type that has not been named but is a derived type.
384  // Carefully recurse the type hierarchy to print out any contained symbolic
385  // names.
386  //
387  std::vector<const Type *> TypeStack;
388  std::string TypeName;
389  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
390  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
391  return (Out << TypeName);
392}
393
394
395/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
396/// type, iff there is an entry in the modules symbol table for the specified
397/// type or one of it's component types. This is slower than a simple x << Type
398///
399std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
400                                      const Module *M) {
401  Out << ' ';
402
403  // If they want us to print out a type, but there is no context, we can't
404  // print it symbolically.
405  if (!M)
406    return Out << Ty->getDescription();
407
408  std::map<const Type *, std::string> TypeNames;
409  fillTypeNameTable(M, TypeNames);
410  return printTypeInt(Out, Ty, TypeNames);
411}
412
413// PrintEscapedString - Print each character of the specified string, escaping
414// it if it is not printable or if it is an escape char.
415static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
416  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
417    unsigned char C = Str[i];
418    if (isprint(C) && C != '"' && C != '\\') {
419      Out << C;
420    } else {
421      Out << '\\'
422          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
423          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
424    }
425  }
426}
427
428static const char *getPredicateText(unsigned predicate) {
429  const char * pred = "unknown";
430  switch (predicate) {
431    case FCmpInst::FCMP_FALSE: pred = "false"; break;
432    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
433    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
434    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
435    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
436    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
437    case FCmpInst::FCMP_ONE:   pred = "one"; break;
438    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
439    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
440    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
441    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
442    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
443    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
444    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
445    case FCmpInst::FCMP_UNE:   pred = "une"; break;
446    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
447    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
448    case ICmpInst::ICMP_NE:    pred = "ne"; break;
449    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
450    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
451    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
452    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
453    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
454    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
455    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
456    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
457  }
458  return pred;
459}
460
461/// @brief Internal constant writer.
462static void WriteConstantInt(std::ostream &Out, const Constant *CV,
463                             std::map<const Type *, std::string> &TypeTable,
464                             SlotMachine *Machine) {
465  const int IndentSize = 4;
466  static std::string Indent = "\n";
467  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
468    if (CI->getType() == Type::Int1Ty)
469      Out << (CI->getZExtValue() ? "true" : "false");
470    else
471      Out << CI->getValue().toStringSigned(10);
472  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
473    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
474        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
475      // We would like to output the FP constant value in exponential notation,
476      // but we cannot do this if doing so will lose precision.  Check here to
477      // make sure that we only output it in exponential format if we can parse
478      // the value back and get the same value.
479      //
480      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
481      double Val = (isDouble) ? CFP->getValueAPF().convertToDouble() :
482                                CFP->getValueAPF().convertToFloat();
483      std::string StrVal = ftostr(CFP->getValueAPF());
484
485      // Check to make sure that the stringized number is not some string like
486      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
487      // that the string matches the "[-+]?[0-9]" regex.
488      //
489      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
490          ((StrVal[0] == '-' || StrVal[0] == '+') &&
491           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
492        // Reparse stringized version!
493        if (atof(StrVal.c_str()) == Val) {
494          Out << StrVal;
495          return;
496        }
497      }
498      // Otherwise we could not reparse it to exactly the same value, so we must
499      // output the string in hexadecimal format!
500      assert(sizeof(double) == sizeof(uint64_t) &&
501             "assuming that double is 64 bits!");
502      Out << "0x" << utohexstr(DoubleToBits(Val));
503    } else {
504      // Some form of long double.  These appear as a magic letter identifying
505      // the type, then a fixed number of hex digits.
506      Out << "0x";
507      if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
508        Out << 'K';
509      else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
510        Out << 'L';
511      else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
512        Out << 'M';
513      else
514        assert(0 && "Unsupported floating point type");
515      // api needed to prevent premature destruction
516      APInt api = CFP->getValueAPF().convertToAPInt();
517      const uint64_t* p = api.getRawData();
518      uint64_t word = *p;
519      int shiftcount=60;
520      int width = api.getBitWidth();
521      for (int j=0; j<width; j+=4, shiftcount-=4) {
522        unsigned int nibble = (word>>shiftcount) & 15;
523        if (nibble < 10)
524          Out << (unsigned char)(nibble + '0');
525        else
526          Out << (unsigned char)(nibble - 10 + 'A');
527        if (shiftcount == 0) {
528          word = *(++p);
529          shiftcount = 64;
530          if (width-j-4 < 64)
531            shiftcount = width-j-4;
532        }
533      }
534    }
535  } else if (isa<ConstantAggregateZero>(CV)) {
536    Out << "zeroinitializer";
537  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
538    // As a special case, print the array as a string if it is an array of
539    // ubytes or an array of sbytes with positive values.
540    //
541    const Type *ETy = CA->getType()->getElementType();
542    if (CA->isString()) {
543      Out << "c\"";
544      PrintEscapedString(CA->getAsString(), Out);
545      Out << "\"";
546
547    } else {                // Cannot output in string format...
548      Out << '[';
549      if (CA->getNumOperands()) {
550        Out << ' ';
551        printTypeInt(Out, ETy, TypeTable);
552        WriteAsOperandInternal(Out, CA->getOperand(0),
553                               TypeTable, Machine);
554        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
555          Out << ", ";
556          printTypeInt(Out, ETy, TypeTable);
557          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
558        }
559      }
560      Out << " ]";
561    }
562  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
563    if (CS->getType()->isPacked())
564      Out << '<';
565    Out << '{';
566    unsigned N = CS->getNumOperands();
567    if (N) {
568      if (N > 2) {
569        Indent += std::string(IndentSize, ' ');
570        Out << Indent;
571      } else {
572        Out << ' ';
573      }
574      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
575
576      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
577
578      for (unsigned i = 1; i < N; i++) {
579        Out << ", ";
580        if (N > 2) Out << Indent;
581        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
582
583        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
584      }
585      if (N > 2) Indent.resize(Indent.size() - IndentSize);
586    }
587
588    Out << " }";
589    if (CS->getType()->isPacked())
590      Out << '>';
591  } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
592      const Type *ETy = CP->getType()->getElementType();
593      assert(CP->getNumOperands() > 0 &&
594             "Number of operands for a PackedConst must be > 0");
595      Out << '<';
596      Out << ' ';
597      printTypeInt(Out, ETy, TypeTable);
598      WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
599      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
600          Out << ", ";
601          printTypeInt(Out, ETy, TypeTable);
602          WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
603      }
604      Out << " >";
605  } else if (isa<ConstantPointerNull>(CV)) {
606    Out << "null";
607
608  } else if (isa<UndefValue>(CV)) {
609    Out << "undef";
610
611  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
612    Out << CE->getOpcodeName();
613    if (CE->isCompare())
614      Out << " " << getPredicateText(CE->getPredicate());
615    Out << " (";
616
617    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
618      printTypeInt(Out, (*OI)->getType(), TypeTable);
619      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
620      if (OI+1 != CE->op_end())
621        Out << ", ";
622    }
623
624    if (CE->isCast()) {
625      Out << " to ";
626      printTypeInt(Out, CE->getType(), TypeTable);
627    }
628
629    Out << ')';
630
631  } else {
632    Out << "<placeholder or erroneous Constant>";
633  }
634}
635
636
637/// WriteAsOperand - Write the name of the specified value out to the specified
638/// ostream.  This can be useful when you just want to print int %reg126, not
639/// the whole instruction that generated it.
640///
641static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
642                                  std::map<const Type*, std::string> &TypeTable,
643                                   SlotMachine *Machine) {
644  Out << ' ';
645  if (V->hasName())
646    Out << getLLVMName(V->getName(),
647                       isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
648  else {
649    const Constant *CV = dyn_cast<Constant>(V);
650    if (CV && !isa<GlobalValue>(CV)) {
651      WriteConstantInt(Out, CV, TypeTable, Machine);
652    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
653      Out << "asm ";
654      if (IA->hasSideEffects())
655        Out << "sideeffect ";
656      Out << '"';
657      PrintEscapedString(IA->getAsmString(), Out);
658      Out << "\", \"";
659      PrintEscapedString(IA->getConstraintString(), Out);
660      Out << '"';
661    } else {
662      char Prefix = '%';
663      int Slot;
664      if (Machine) {
665        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
666          Slot = Machine->getGlobalSlot(GV);
667          Prefix = '@';
668        } else {
669          Slot = Machine->getLocalSlot(V);
670        }
671      } else {
672        Machine = createSlotMachine(V);
673        if (Machine) {
674          if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
675            Slot = Machine->getGlobalSlot(GV);
676            Prefix = '@';
677          } else {
678            Slot = Machine->getLocalSlot(V);
679          }
680        } else {
681          Slot = -1;
682        }
683        delete Machine;
684      }
685      if (Slot != -1)
686        Out << Prefix << Slot;
687      else
688        Out << "<badref>";
689    }
690  }
691}
692
693/// WriteAsOperand - Write the name of the specified value out to the specified
694/// ostream.  This can be useful when you just want to print int %reg126, not
695/// the whole instruction that generated it.
696///
697std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
698                                   bool PrintType, const Module *Context) {
699  std::map<const Type *, std::string> TypeNames;
700  if (Context == 0) Context = getModuleFromVal(V);
701
702  if (Context)
703    fillTypeNameTable(Context, TypeNames);
704
705  if (PrintType)
706    printTypeInt(Out, V->getType(), TypeNames);
707
708  WriteAsOperandInternal(Out, V, TypeNames, 0);
709  return Out;
710}
711
712
713namespace llvm {
714
715class AssemblyWriter {
716  std::ostream &Out;
717  SlotMachine &Machine;
718  const Module *TheModule;
719  std::map<const Type *, std::string> TypeNames;
720  AssemblyAnnotationWriter *AnnotationWriter;
721public:
722  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
723                        AssemblyAnnotationWriter *AAW)
724    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
725
726    // If the module has a symbol table, take all global types and stuff their
727    // names into the TypeNames map.
728    //
729    fillTypeNameTable(M, TypeNames);
730  }
731
732  inline void write(const Module *M)         { printModule(M);       }
733  inline void write(const GlobalVariable *G) { printGlobal(G);       }
734  inline void write(const GlobalAlias *G)    { printAlias(G);        }
735  inline void write(const Function *F)       { printFunction(F);     }
736  inline void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
737  inline void write(const Instruction *I)    { printInstruction(*I); }
738  inline void write(const Type *Ty)          { printType(Ty);        }
739
740  void writeOperand(const Value *Op, bool PrintType);
741  void writeParamOperand(const Value *Operand, uint16_t Attrs);
742
743  const Module* getModule() { return TheModule; }
744
745private:
746  void printModule(const Module *M);
747  void printTypeSymbolTable(const TypeSymbolTable &ST);
748  void printGlobal(const GlobalVariable *GV);
749  void printAlias(const GlobalAlias *GV);
750  void printFunction(const Function *F);
751  void printArgument(const Argument *FA, uint16_t ParamAttrs);
752  void printBasicBlock(const BasicBlock *BB);
753  void printInstruction(const Instruction &I);
754
755  // printType - Go to extreme measures to attempt to print out a short,
756  // symbolic version of a type name.
757  //
758  std::ostream &printType(const Type *Ty) {
759    return printTypeInt(Out, Ty, TypeNames);
760  }
761
762  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
763  // without considering any symbolic types that we may have equal to it.
764  //
765  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
766
767  // printInfoComment - Print a little comment after the instruction indicating
768  // which slot it occupies.
769  void printInfoComment(const Value &V);
770};
771}  // end of llvm namespace
772
773/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
774/// without considering any symbolic types that we may have equal to it.
775///
776std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
777  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
778    Out << "i" << utostr(ITy->getBitWidth());
779  else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
780    printType(FTy->getReturnType());
781    Out << " (";
782    for (FunctionType::param_iterator I = FTy->param_begin(),
783           E = FTy->param_end(); I != E; ++I) {
784      if (I != FTy->param_begin())
785        Out << ", ";
786      printType(*I);
787    }
788    if (FTy->isVarArg()) {
789      if (FTy->getNumParams()) Out << ", ";
790      Out << "...";
791    }
792    Out << ')';
793  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
794    if (STy->isPacked())
795      Out << '<';
796    Out << "{ ";
797    for (StructType::element_iterator I = STy->element_begin(),
798           E = STy->element_end(); I != E; ++I) {
799      if (I != STy->element_begin())
800        Out << ", ";
801      printType(*I);
802    }
803    Out << " }";
804    if (STy->isPacked())
805      Out << '>';
806  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
807    printType(PTy->getElementType()) << '*';
808  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
809    Out << '[' << ATy->getNumElements() << " x ";
810    printType(ATy->getElementType()) << ']';
811  } else if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
812    Out << '<' << PTy->getNumElements() << " x ";
813    printType(PTy->getElementType()) << '>';
814  }
815  else if (isa<OpaqueType>(Ty)) {
816    Out << "opaque";
817  } else {
818    if (!Ty->isPrimitiveType())
819      Out << "<unknown derived type>";
820    printType(Ty);
821  }
822  return Out;
823}
824
825
826void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
827  if (Operand == 0) {
828    Out << "<null operand!>";
829  } else {
830    if (PrintType) { Out << ' '; printType(Operand->getType()); }
831    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
832  }
833}
834
835void AssemblyWriter::writeParamOperand(const Value *Operand, uint16_t Attrs) {
836  if (Operand == 0) {
837    Out << "<null operand!>";
838  } else {
839    Out << ' ';
840    // Print the type
841    printType(Operand->getType());
842    // Print parameter attributes list
843    if (Attrs != ParamAttr::None)
844      Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
845    // Print the operand
846    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
847  }
848}
849
850void AssemblyWriter::printModule(const Module *M) {
851  if (!M->getModuleIdentifier().empty() &&
852      // Don't print the ID if it will start a new line (which would
853      // require a comment char before it).
854      M->getModuleIdentifier().find('\n') == std::string::npos)
855    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
856
857  if (!M->getDataLayout().empty())
858    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
859  if (!M->getTargetTriple().empty())
860    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
861
862  if (!M->getModuleInlineAsm().empty()) {
863    // Split the string into lines, to make it easier to read the .ll file.
864    std::string Asm = M->getModuleInlineAsm();
865    size_t CurPos = 0;
866    size_t NewLine = Asm.find_first_of('\n', CurPos);
867    while (NewLine != std::string::npos) {
868      // We found a newline, print the portion of the asm string from the
869      // last newline up to this newline.
870      Out << "module asm \"";
871      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
872                         Out);
873      Out << "\"\n";
874      CurPos = NewLine+1;
875      NewLine = Asm.find_first_of('\n', CurPos);
876    }
877    Out << "module asm \"";
878    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
879    Out << "\"\n";
880  }
881
882  // Loop over the dependent libraries and emit them.
883  Module::lib_iterator LI = M->lib_begin();
884  Module::lib_iterator LE = M->lib_end();
885  if (LI != LE) {
886    Out << "deplibs = [ ";
887    while (LI != LE) {
888      Out << '"' << *LI << '"';
889      ++LI;
890      if (LI != LE)
891        Out << ", ";
892    }
893    Out << " ]\n";
894  }
895
896  // Loop over the symbol table, emitting all named constants.
897  printTypeSymbolTable(M->getTypeSymbolTable());
898
899  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
900       I != E; ++I)
901    printGlobal(I);
902
903  // Output all aliases.
904  if (!M->alias_empty()) Out << "\n";
905  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
906       I != E; ++I)
907    printAlias(I);
908
909  // Output all of the functions.
910  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
911    printFunction(I);
912}
913
914void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
915  if (GV->hasName()) Out << getLLVMName(GV->getName(), GlobalPrefix) << " = ";
916
917  if (!GV->hasInitializer())
918    switch (GV->getLinkage()) {
919     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
920     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
921     default: Out << "external "; break;
922    } else {
923    switch (GV->getLinkage()) {
924    case GlobalValue::InternalLinkage:     Out << "internal "; break;
925    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
926    case GlobalValue::WeakLinkage:         Out << "weak "; break;
927    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
928    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
929    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
930    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
931    case GlobalValue::ExternalLinkage:     break;
932    case GlobalValue::GhostLinkage:
933      cerr << "GhostLinkage not allowed in AsmWriter!\n";
934      abort();
935    }
936    switch (GV->getVisibility()) {
937    default: assert(0 && "Invalid visibility style!");
938    case GlobalValue::DefaultVisibility: break;
939    case GlobalValue::HiddenVisibility: Out << "hidden "; break;
940    case GlobalValue::ProtectedVisibility: Out << "protected "; break;
941    }
942  }
943
944  if (GV->isThreadLocal()) Out << "thread_local ";
945  Out << (GV->isConstant() ? "constant " : "global ");
946  printType(GV->getType()->getElementType());
947
948  if (GV->hasInitializer()) {
949    Constant* C = cast<Constant>(GV->getInitializer());
950    assert(C &&  "GlobalVar initializer isn't constant?");
951    writeOperand(GV->getInitializer(), false);
952  }
953
954  if (GV->hasSection())
955    Out << ", section \"" << GV->getSection() << '"';
956  if (GV->getAlignment())
957    Out << ", align " << GV->getAlignment();
958
959  printInfoComment(*GV);
960  Out << "\n";
961}
962
963void AssemblyWriter::printAlias(const GlobalAlias *GA) {
964  Out << getLLVMName(GA->getName(), GlobalPrefix) << " = ";
965  switch (GA->getVisibility()) {
966  default: assert(0 && "Invalid visibility style!");
967  case GlobalValue::DefaultVisibility: break;
968  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
969  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
970  }
971
972  Out << "alias ";
973
974  switch (GA->getLinkage()) {
975  case GlobalValue::WeakLinkage: Out << "weak "; break;
976  case GlobalValue::InternalLinkage: Out << "internal "; break;
977  case GlobalValue::ExternalLinkage: break;
978  default:
979   assert(0 && "Invalid alias linkage");
980  }
981
982  const Constant *Aliasee = GA->getAliasee();
983
984  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
985    printType(GV->getType());
986    Out << " " << getLLVMName(GV->getName(), GlobalPrefix);
987  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
988    printType(F->getFunctionType());
989    Out << "* ";
990
991    if (!F->getName().empty())
992      Out << getLLVMName(F->getName(), GlobalPrefix);
993    else
994      Out << "@\"\"";
995  } else {
996    const ConstantExpr *CE = 0;
997    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
998        (CE->getOpcode() == Instruction::BitCast)) {
999      writeOperand(CE, false);
1000    } else
1001      assert(0 && "Unsupported aliasee");
1002  }
1003
1004  printInfoComment(*GA);
1005  Out << "\n";
1006}
1007
1008void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1009  // Print the types.
1010  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1011       TI != TE; ++TI) {
1012    Out << "\t" << getLLVMName(TI->first, LocalPrefix) << " = type ";
1013
1014    // Make sure we print out at least one level of the type structure, so
1015    // that we do not get %FILE = type %FILE
1016    //
1017    printTypeAtLeastOneLevel(TI->second) << "\n";
1018  }
1019}
1020
1021/// printFunction - Print all aspects of a function.
1022///
1023void AssemblyWriter::printFunction(const Function *F) {
1024  // Print out the return type and name...
1025  Out << "\n";
1026
1027  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1028
1029  if (F->isDeclaration())
1030    Out << "declare ";
1031  else
1032    Out << "define ";
1033
1034  switch (F->getLinkage()) {
1035  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1036  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1037  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1038  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1039  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1040  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1041  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1042  case GlobalValue::ExternalLinkage: break;
1043  case GlobalValue::GhostLinkage:
1044    cerr << "GhostLinkage not allowed in AsmWriter!\n";
1045    abort();
1046  }
1047  switch (F->getVisibility()) {
1048  default: assert(0 && "Invalid visibility style!");
1049  case GlobalValue::DefaultVisibility: break;
1050  case GlobalValue::HiddenVisibility: Out << "hidden "; break;
1051  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1052  }
1053
1054  // Print the calling convention.
1055  switch (F->getCallingConv()) {
1056  case CallingConv::C: break;   // default
1057  case CallingConv::Fast:         Out << "fastcc "; break;
1058  case CallingConv::Cold:         Out << "coldcc "; break;
1059  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1060  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1061  default: Out << "cc" << F->getCallingConv() << " "; break;
1062  }
1063
1064  const FunctionType *FT = F->getFunctionType();
1065  const ParamAttrsList *Attrs = F->getParamAttrs();
1066  printType(F->getReturnType()) << ' ';
1067  if (!F->getName().empty())
1068    Out << getLLVMName(F->getName(), GlobalPrefix);
1069  else
1070    Out << "@\"\"";
1071  Out << '(';
1072  Machine.incorporateFunction(F);
1073
1074  // Loop over the arguments, printing them...
1075
1076  unsigned Idx = 1;
1077  if (!F->isDeclaration()) {
1078    // If this isn't a declaration, print the argument names as well.
1079    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1080         I != E; ++I) {
1081      // Insert commas as we go... the first arg doesn't get a comma
1082      if (I != F->arg_begin()) Out << ", ";
1083      printArgument(I, (Attrs ? Attrs->getParamAttrs(Idx)
1084                              : uint16_t(ParamAttr::None)));
1085      Idx++;
1086    }
1087  } else {
1088    // Otherwise, print the types from the function type.
1089    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1090      // Insert commas as we go... the first arg doesn't get a comma
1091      if (i) Out << ", ";
1092
1093      // Output type...
1094      printType(FT->getParamType(i));
1095
1096      unsigned ArgAttrs = ParamAttr::None;
1097      if (Attrs) ArgAttrs = Attrs->getParamAttrs(i+1);
1098      if (ArgAttrs != ParamAttr::None)
1099        Out << ' ' << ParamAttrsList::getParamAttrsText(ArgAttrs);
1100    }
1101  }
1102
1103  // Finish printing arguments...
1104  if (FT->isVarArg()) {
1105    if (FT->getNumParams()) Out << ", ";
1106    Out << "...";  // Output varargs portion of signature!
1107  }
1108  Out << ')';
1109  if (Attrs && Attrs->getParamAttrs(0) != ParamAttr::None)
1110    Out << ' ' << Attrs->getParamAttrsTextByIndex(0);
1111  if (F->hasSection())
1112    Out << " section \"" << F->getSection() << '"';
1113  if (F->getAlignment())
1114    Out << " align " << F->getAlignment();
1115  if (F->hasCollector())
1116    Out << " gc \"" << F->getCollector() << '"';
1117
1118  if (F->isDeclaration()) {
1119    Out << "\n";
1120  } else {
1121    Out << " {";
1122
1123    // Output all of its basic blocks... for the function
1124    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1125      printBasicBlock(I);
1126
1127    Out << "}\n";
1128  }
1129
1130  Machine.purgeFunction();
1131}
1132
1133/// printArgument - This member is called for every argument that is passed into
1134/// the function.  Simply print it out
1135///
1136void AssemblyWriter::printArgument(const Argument *Arg, uint16_t Attrs) {
1137  // Output type...
1138  printType(Arg->getType());
1139
1140  // Output parameter attributes list
1141  if (Attrs != ParamAttr::None)
1142    Out << ' ' << ParamAttrsList::getParamAttrsText(Attrs);
1143
1144  // Output name, if available...
1145  if (Arg->hasName())
1146    Out << ' ' << getLLVMName(Arg->getName(), LocalPrefix);
1147}
1148
1149/// printBasicBlock - This member is called for each basic block in a method.
1150///
1151void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1152  if (BB->hasName()) {              // Print out the label if it exists...
1153    Out << "\n" << getLLVMName(BB->getName(), LabelPrefix) << ':';
1154  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1155    Out << "\n; <label>:";
1156    int Slot = Machine.getLocalSlot(BB);
1157    if (Slot != -1)
1158      Out << Slot;
1159    else
1160      Out << "<badref>";
1161  }
1162
1163  if (BB->getParent() == 0)
1164    Out << "\t\t; Error: Block without parent!";
1165  else {
1166    if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1167      // Output predecessors for the block...
1168      Out << "\t\t;";
1169      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1170
1171      if (PI == PE) {
1172        Out << " No predecessors!";
1173      } else {
1174        Out << " preds =";
1175        writeOperand(*PI, false);
1176        for (++PI; PI != PE; ++PI) {
1177          Out << ',';
1178          writeOperand(*PI, false);
1179        }
1180      }
1181    }
1182  }
1183
1184  Out << "\n";
1185
1186  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1187
1188  // Output all of the instructions in the basic block...
1189  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1190    printInstruction(*I);
1191
1192  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1193}
1194
1195
1196/// printInfoComment - Print a little comment after the instruction indicating
1197/// which slot it occupies.
1198///
1199void AssemblyWriter::printInfoComment(const Value &V) {
1200  if (V.getType() != Type::VoidTy) {
1201    Out << "\t\t; <";
1202    printType(V.getType()) << '>';
1203
1204    if (!V.hasName()) {
1205      int SlotNum;
1206      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1207        SlotNum = Machine.getGlobalSlot(GV);
1208      else
1209        SlotNum = Machine.getLocalSlot(&V);
1210      if (SlotNum == -1)
1211        Out << ":<badref>";
1212      else
1213        Out << ':' << SlotNum; // Print out the def slot taken.
1214    }
1215    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1216  }
1217}
1218
1219// This member is called for each Instruction in a function..
1220void AssemblyWriter::printInstruction(const Instruction &I) {
1221  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1222
1223  Out << "\t";
1224
1225  // Print out name if it exists...
1226  if (I.hasName())
1227    Out << getLLVMName(I.getName(), LocalPrefix) << " = ";
1228
1229  // If this is a volatile load or store, print out the volatile marker.
1230  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1231      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1232      Out << "volatile ";
1233  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1234    // If this is a call, check if it's a tail call.
1235    Out << "tail ";
1236  }
1237
1238  // Print out the opcode...
1239  Out << I.getOpcodeName();
1240
1241  // Print out the compare instruction predicates
1242  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1243    Out << " " << getPredicateText(FCI->getPredicate());
1244  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1245    Out << " " << getPredicateText(ICI->getPredicate());
1246  }
1247
1248  // Print out the type of the operands...
1249  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1250
1251  // Special case conditional branches to swizzle the condition out to the front
1252  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1253    writeOperand(I.getOperand(2), true);
1254    Out << ',';
1255    writeOperand(Operand, true);
1256    Out << ',';
1257    writeOperand(I.getOperand(1), true);
1258
1259  } else if (isa<SwitchInst>(I)) {
1260    // Special case switch statement to get formatting nice and correct...
1261    writeOperand(Operand        , true); Out << ',';
1262    writeOperand(I.getOperand(1), true); Out << " [";
1263
1264    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1265      Out << "\n\t\t";
1266      writeOperand(I.getOperand(op  ), true); Out << ',';
1267      writeOperand(I.getOperand(op+1), true);
1268    }
1269    Out << "\n\t]";
1270  } else if (isa<PHINode>(I)) {
1271    Out << ' ';
1272    printType(I.getType());
1273    Out << ' ';
1274
1275    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1276      if (op) Out << ", ";
1277      Out << '[';
1278      writeOperand(I.getOperand(op  ), false); Out << ',';
1279      writeOperand(I.getOperand(op+1), false); Out << " ]";
1280    }
1281  } else if (isa<ReturnInst>(I) && !Operand) {
1282    Out << " void";
1283  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1284    // Print the calling convention being used.
1285    switch (CI->getCallingConv()) {
1286    case CallingConv::C: break;   // default
1287    case CallingConv::Fast:  Out << " fastcc"; break;
1288    case CallingConv::Cold:  Out << " coldcc"; break;
1289    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1290    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1291    default: Out << " cc" << CI->getCallingConv(); break;
1292    }
1293
1294    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1295    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1296    const Type         *RetTy = FTy->getReturnType();
1297    const ParamAttrsList *PAL = CI->getParamAttrs();
1298
1299    // If possible, print out the short form of the call instruction.  We can
1300    // only do this if the first argument is a pointer to a nonvararg function,
1301    // and if the return type is not a pointer to a function.
1302    //
1303    if (!FTy->isVarArg() &&
1304        (!isa<PointerType>(RetTy) ||
1305         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1306      Out << ' '; printType(RetTy);
1307      writeOperand(Operand, false);
1308    } else {
1309      writeOperand(Operand, true);
1310    }
1311    Out << '(';
1312    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1313      if (op > 1)
1314        Out << ',';
1315      writeParamOperand(I.getOperand(op), PAL ? PAL->getParamAttrs(op) : 0);
1316    }
1317    Out << " )";
1318    if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1319      Out << ' ' << PAL->getParamAttrsTextByIndex(0);
1320  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1321    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1322    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1323    const Type         *RetTy = FTy->getReturnType();
1324    const ParamAttrsList *PAL = II->getParamAttrs();
1325
1326    // Print the calling convention being used.
1327    switch (II->getCallingConv()) {
1328    case CallingConv::C: break;   // default
1329    case CallingConv::Fast:  Out << " fastcc"; break;
1330    case CallingConv::Cold:  Out << " coldcc"; break;
1331    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1332    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1333    default: Out << " cc" << II->getCallingConv(); break;
1334    }
1335
1336    // If possible, print out the short form of the invoke instruction. We can
1337    // only do this if the first argument is a pointer to a nonvararg function,
1338    // and if the return type is not a pointer to a function.
1339    //
1340    if (!FTy->isVarArg() &&
1341        (!isa<PointerType>(RetTy) ||
1342         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1343      Out << ' '; printType(RetTy);
1344      writeOperand(Operand, false);
1345    } else {
1346      writeOperand(Operand, true);
1347    }
1348
1349    Out << '(';
1350    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1351      if (op > 3)
1352        Out << ',';
1353      writeParamOperand(I.getOperand(op), PAL ? PAL->getParamAttrs(op-2) : 0);
1354    }
1355
1356    Out << " )";
1357    if (PAL && PAL->getParamAttrs(0) != ParamAttr::None)
1358      Out << " " << PAL->getParamAttrsTextByIndex(0);
1359    Out << "\n\t\t\tto";
1360    writeOperand(II->getNormalDest(), true);
1361    Out << " unwind";
1362    writeOperand(II->getUnwindDest(), true);
1363
1364  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1365    Out << ' ';
1366    printType(AI->getType()->getElementType());
1367    if (AI->isArrayAllocation()) {
1368      Out << ',';
1369      writeOperand(AI->getArraySize(), true);
1370    }
1371    if (AI->getAlignment()) {
1372      Out << ", align " << AI->getAlignment();
1373    }
1374  } else if (isa<CastInst>(I)) {
1375    if (Operand) writeOperand(Operand, true);   // Work with broken code
1376    Out << " to ";
1377    printType(I.getType());
1378  } else if (isa<VAArgInst>(I)) {
1379    if (Operand) writeOperand(Operand, true);   // Work with broken code
1380    Out << ", ";
1381    printType(I.getType());
1382  } else if (Operand) {   // Print the normal way...
1383
1384    // PrintAllTypes - Instructions who have operands of all the same type
1385    // omit the type from all but the first operand.  If the instruction has
1386    // different type operands (for example br), then they are all printed.
1387    bool PrintAllTypes = false;
1388    const Type *TheType = Operand->getType();
1389
1390    // Select, Store and ShuffleVector always print all types.
1391    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)) {
1392      PrintAllTypes = true;
1393    } else {
1394      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1395        Operand = I.getOperand(i);
1396        if (Operand->getType() != TheType) {
1397          PrintAllTypes = true;    // We have differing types!  Print them all!
1398          break;
1399        }
1400      }
1401    }
1402
1403    if (!PrintAllTypes) {
1404      Out << ' ';
1405      printType(TheType);
1406    }
1407
1408    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1409      if (i) Out << ',';
1410      writeOperand(I.getOperand(i), PrintAllTypes);
1411    }
1412  }
1413
1414  // Print post operand alignment for load/store
1415  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1416    Out << ", align " << cast<LoadInst>(I).getAlignment();
1417  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1418    Out << ", align " << cast<StoreInst>(I).getAlignment();
1419  }
1420
1421  printInfoComment(I);
1422  Out << "\n";
1423}
1424
1425
1426//===----------------------------------------------------------------------===//
1427//                       External Interface declarations
1428//===----------------------------------------------------------------------===//
1429
1430void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1431  SlotMachine SlotTable(this);
1432  AssemblyWriter W(o, SlotTable, this, AAW);
1433  W.write(this);
1434}
1435
1436void GlobalVariable::print(std::ostream &o) const {
1437  SlotMachine SlotTable(getParent());
1438  AssemblyWriter W(o, SlotTable, getParent(), 0);
1439  W.write(this);
1440}
1441
1442void GlobalAlias::print(std::ostream &o) const {
1443  SlotMachine SlotTable(getParent());
1444  AssemblyWriter W(o, SlotTable, getParent(), 0);
1445  W.write(this);
1446}
1447
1448void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1449  SlotMachine SlotTable(getParent());
1450  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1451
1452  W.write(this);
1453}
1454
1455void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1456  WriteAsOperand(o, this, true, 0);
1457}
1458
1459void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1460  SlotMachine SlotTable(getParent());
1461  AssemblyWriter W(o, SlotTable,
1462                   getParent() ? getParent()->getParent() : 0, AAW);
1463  W.write(this);
1464}
1465
1466void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1467  const Function *F = getParent() ? getParent()->getParent() : 0;
1468  SlotMachine SlotTable(F);
1469  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1470
1471  W.write(this);
1472}
1473
1474void Constant::print(std::ostream &o) const {
1475  if (this == 0) { o << "<null> constant value\n"; return; }
1476
1477  o << ' ' << getType()->getDescription() << ' ';
1478
1479  std::map<const Type *, std::string> TypeTable;
1480  WriteConstantInt(o, this, TypeTable, 0);
1481}
1482
1483void Type::print(std::ostream &o) const {
1484  if (this == 0)
1485    o << "<null Type>";
1486  else
1487    o << getDescription();
1488}
1489
1490void Argument::print(std::ostream &o) const {
1491  WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1492}
1493
1494// Value::dump - allow easy printing of  Values from the debugger.
1495// Located here because so much of the needed functionality is here.
1496void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1497
1498// Type::dump - allow easy printing of  Values from the debugger.
1499// Located here because so much of the needed functionality is here.
1500void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1501
1502void
1503ParamAttrsList::dump() const {
1504  cerr << "PAL[ ";
1505  for (unsigned i = 0; i < attrs.size(); ++i) {
1506    uint16_t index = getParamIndex(i);
1507    uint16_t attrs = getParamAttrs(index);
1508    cerr << "{" << index << "," << attrs << "} ";
1509  }
1510  cerr << "]\n";
1511}
1512
1513//===----------------------------------------------------------------------===//
1514//                         SlotMachine Implementation
1515//===----------------------------------------------------------------------===//
1516
1517#if 0
1518#define SC_DEBUG(X) cerr << X
1519#else
1520#define SC_DEBUG(X)
1521#endif
1522
1523// Module level constructor. Causes the contents of the Module (sans functions)
1524// to be added to the slot table.
1525SlotMachine::SlotMachine(const Module *M)
1526  : TheModule(M)    ///< Saved for lazy initialization.
1527  , TheFunction(0)
1528  , FunctionProcessed(false)
1529  , mMap(), mNext(0), fMap(), fNext(0)
1530{
1531}
1532
1533// Function level constructor. Causes the contents of the Module and the one
1534// function provided to be added to the slot table.
1535SlotMachine::SlotMachine(const Function *F)
1536  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1537  , TheFunction(F) ///< Saved for lazy initialization
1538  , FunctionProcessed(false)
1539  , mMap(), mNext(0), fMap(), fNext(0)
1540{
1541}
1542
1543inline void SlotMachine::initialize() {
1544  if (TheModule) {
1545    processModule();
1546    TheModule = 0; ///< Prevent re-processing next time we're called.
1547  }
1548  if (TheFunction && !FunctionProcessed)
1549    processFunction();
1550}
1551
1552// Iterate through all the global variables, functions, and global
1553// variable initializers and create slots for them.
1554void SlotMachine::processModule() {
1555  SC_DEBUG("begin processModule!\n");
1556
1557  // Add all of the unnamed global variables to the value table.
1558  for (Module::const_global_iterator I = TheModule->global_begin(),
1559       E = TheModule->global_end(); I != E; ++I)
1560    if (!I->hasName())
1561      CreateModuleSlot(I);
1562
1563  // Add all the unnamed functions to the table.
1564  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1565       I != E; ++I)
1566    if (!I->hasName())
1567      CreateModuleSlot(I);
1568
1569  SC_DEBUG("end processModule!\n");
1570}
1571
1572
1573// Process the arguments, basic blocks, and instructions  of a function.
1574void SlotMachine::processFunction() {
1575  SC_DEBUG("begin processFunction!\n");
1576  fNext = 0;
1577
1578  // Add all the function arguments with no names.
1579  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1580      AE = TheFunction->arg_end(); AI != AE; ++AI)
1581    if (!AI->hasName())
1582      CreateFunctionSlot(AI);
1583
1584  SC_DEBUG("Inserting Instructions:\n");
1585
1586  // Add all of the basic blocks and instructions with no names.
1587  for (Function::const_iterator BB = TheFunction->begin(),
1588       E = TheFunction->end(); BB != E; ++BB) {
1589    if (!BB->hasName())
1590      CreateFunctionSlot(BB);
1591    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1592      if (I->getType() != Type::VoidTy && !I->hasName())
1593        CreateFunctionSlot(I);
1594  }
1595
1596  FunctionProcessed = true;
1597
1598  SC_DEBUG("end processFunction!\n");
1599}
1600
1601/// Clean up after incorporating a function. This is the only way to get out of
1602/// the function incorporation state that affects get*Slot/Create*Slot. Function
1603/// incorporation state is indicated by TheFunction != 0.
1604void SlotMachine::purgeFunction() {
1605  SC_DEBUG("begin purgeFunction!\n");
1606  fMap.clear(); // Simply discard the function level map
1607  TheFunction = 0;
1608  FunctionProcessed = false;
1609  SC_DEBUG("end purgeFunction!\n");
1610}
1611
1612/// getGlobalSlot - Get the slot number of a global value.
1613int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1614  // Check for uninitialized state and do lazy initialization.
1615  initialize();
1616
1617  // Find the type plane in the module map
1618  ValueMap::const_iterator MI = mMap.find(V);
1619  if (MI == mMap.end()) return -1;
1620
1621  return MI->second;
1622}
1623
1624
1625/// getLocalSlot - Get the slot number for a value that is local to a function.
1626int SlotMachine::getLocalSlot(const Value *V) {
1627  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1628
1629  // Check for uninitialized state and do lazy initialization.
1630  initialize();
1631
1632  ValueMap::const_iterator FI = fMap.find(V);
1633  if (FI == fMap.end()) return -1;
1634
1635  return FI->second;
1636}
1637
1638
1639/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1640void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1641  assert(V && "Can't insert a null Value into SlotMachine!");
1642  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
1643  assert(!V->hasName() && "Doesn't need a slot!");
1644
1645  unsigned DestSlot = mNext++;
1646  mMap[V] = DestSlot;
1647
1648  SC_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1649           DestSlot << " [");
1650  // G = Global, F = Function, A = Alias, o = other
1651  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1652            (isa<Function> ? 'F' :
1653             (isa<GlobalAlias> ? 'A' : 'o'))) << "]\n");
1654}
1655
1656
1657/// CreateSlot - Create a new slot for the specified value if it has no name.
1658void SlotMachine::CreateFunctionSlot(const Value *V) {
1659  const Type *VTy = V->getType();
1660  assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1661
1662  unsigned DestSlot = fNext++;
1663  fMap[V] = DestSlot;
1664
1665  // G = Global, F = Function, o = other
1666  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1667           DestSlot << " [o]\n");
1668}
1669