AsmWriter.cpp revision 837eda93ee1d89689925e45e90c59cf948e531bb
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Operator.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Dwarf.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/FormattedStream.h"
37#include <algorithm>
38#include <cctype>
39#include <map>
40using namespace llvm;
41
42// Make virtual table appear in this compilation unit.
43AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
44
45//===----------------------------------------------------------------------===//
46// Helper Functions
47//===----------------------------------------------------------------------===//
48
49static const Module *getModuleFromVal(const Value *V) {
50  if (const Argument *MA = dyn_cast<Argument>(V))
51    return MA->getParent() ? MA->getParent()->getParent() : 0;
52
53  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
54    return BB->getParent() ? BB->getParent()->getParent() : 0;
55
56  if (const Instruction *I = dyn_cast<Instruction>(V)) {
57    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
58    return M ? M->getParent() : 0;
59  }
60
61  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
62    return GV->getParent();
63  return 0;
64}
65
66// PrintEscapedString - Print each character of the specified string, escaping
67// it if it is not printable or if it is an escape char.
68static void PrintEscapedString(const StringRef &Name,
69                               raw_ostream &Out) {
70  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
71    unsigned char C = Name[i];
72    if (isprint(C) && C != '\\' && C != '"')
73      Out << C;
74    else
75      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
76  }
77}
78
79enum PrefixType {
80  GlobalPrefix,
81  LabelPrefix,
82  LocalPrefix,
83  NoPrefix
84};
85
86/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
87/// prefixed with % (if the string only contains simple characters) or is
88/// surrounded with ""'s (if it has special chars in it).  Print it out.
89static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
90                          PrefixType Prefix) {
91  assert(Name.data() && "Cannot get empty name!");
92  switch (Prefix) {
93  default: llvm_unreachable("Bad prefix!");
94  case NoPrefix: break;
95  case GlobalPrefix: OS << '@'; break;
96  case LabelPrefix:  break;
97  case LocalPrefix:  OS << '%'; break;
98  }
99
100  // Scan the name to see if it needs quotes first.
101  bool NeedsQuotes = isdigit(Name[0]);
102  if (!NeedsQuotes) {
103    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
104      char C = Name[i];
105      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
106        NeedsQuotes = true;
107        break;
108      }
109    }
110  }
111
112  // If we didn't need any quotes, just write out the name in one blast.
113  if (!NeedsQuotes) {
114    OS << Name;
115    return;
116  }
117
118  // Okay, we need quotes.  Output the quotes and escape any scary characters as
119  // needed.
120  OS << '"';
121  PrintEscapedString(Name, OS);
122  OS << '"';
123}
124
125/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
126/// prefixed with % (if the string only contains simple characters) or is
127/// surrounded with ""'s (if it has special chars in it).  Print it out.
128static void PrintLLVMName(raw_ostream &OS, const Value *V) {
129  PrintLLVMName(OS, V->getName(),
130                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
131}
132
133//===----------------------------------------------------------------------===//
134// TypePrinting Class: Type printing machinery
135//===----------------------------------------------------------------------===//
136
137static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
138  return *static_cast<DenseMap<const Type *, std::string>*>(M);
139}
140
141void TypePrinting::clear() {
142  getTypeNamesMap(TypeNames).clear();
143}
144
145bool TypePrinting::hasTypeName(const Type *Ty) const {
146  return getTypeNamesMap(TypeNames).count(Ty);
147}
148
149void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
150  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
151}
152
153
154TypePrinting::TypePrinting() {
155  TypeNames = new DenseMap<const Type *, std::string>();
156}
157
158TypePrinting::~TypePrinting() {
159  delete &getTypeNamesMap(TypeNames);
160}
161
162/// CalcTypeName - Write the specified type to the specified raw_ostream, making
163/// use of type names or up references to shorten the type name where possible.
164void TypePrinting::CalcTypeName(const Type *Ty,
165                                SmallVectorImpl<const Type *> &TypeStack,
166                                raw_ostream &OS, bool IgnoreTopLevelName) {
167  // Check to see if the type is named.
168  if (!IgnoreTopLevelName) {
169    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
170    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
171    if (I != TM.end()) {
172      OS << I->second;
173      return;
174    }
175  }
176
177  // Check to see if the Type is already on the stack...
178  unsigned Slot = 0, CurSize = TypeStack.size();
179  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
180
181  // This is another base case for the recursion.  In this case, we know
182  // that we have looped back to a type that we have previously visited.
183  // Generate the appropriate upreference to handle this.
184  if (Slot < CurSize) {
185    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
186    return;
187  }
188
189  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
190
191  switch (Ty->getTypeID()) {
192  case Type::VoidTyID:      OS << "void"; break;
193  case Type::FloatTyID:     OS << "float"; break;
194  case Type::DoubleTyID:    OS << "double"; break;
195  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
196  case Type::FP128TyID:     OS << "fp128"; break;
197  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
198  case Type::LabelTyID:     OS << "label"; break;
199  case Type::MetadataTyID:  OS << "metadata"; break;
200  case Type::IntegerTyID:
201    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
202    break;
203
204  case Type::FunctionTyID: {
205    const FunctionType *FTy = cast<FunctionType>(Ty);
206    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
207    OS << " (";
208    for (FunctionType::param_iterator I = FTy->param_begin(),
209         E = FTy->param_end(); I != E; ++I) {
210      if (I != FTy->param_begin())
211        OS << ", ";
212      CalcTypeName(*I, TypeStack, OS);
213    }
214    if (FTy->isVarArg()) {
215      if (FTy->getNumParams()) OS << ", ";
216      OS << "...";
217    }
218    OS << ')';
219    break;
220  }
221  case Type::StructTyID: {
222    const StructType *STy = cast<StructType>(Ty);
223    if (STy->isPacked())
224      OS << '<';
225    OS << "{ ";
226    for (StructType::element_iterator I = STy->element_begin(),
227         E = STy->element_end(); I != E; ++I) {
228      CalcTypeName(*I, TypeStack, OS);
229      if (next(I) != STy->element_end())
230        OS << ',';
231      OS << ' ';
232    }
233    OS << '}';
234    if (STy->isPacked())
235      OS << '>';
236    break;
237  }
238  case Type::PointerTyID: {
239    const PointerType *PTy = cast<PointerType>(Ty);
240    CalcTypeName(PTy->getElementType(), TypeStack, OS);
241    if (unsigned AddressSpace = PTy->getAddressSpace())
242      OS << " addrspace(" << AddressSpace << ')';
243    OS << '*';
244    break;
245  }
246  case Type::ArrayTyID: {
247    const ArrayType *ATy = cast<ArrayType>(Ty);
248    OS << '[' << ATy->getNumElements() << " x ";
249    CalcTypeName(ATy->getElementType(), TypeStack, OS);
250    OS << ']';
251    break;
252  }
253  case Type::VectorTyID: {
254    const VectorType *PTy = cast<VectorType>(Ty);
255    OS << "<" << PTy->getNumElements() << " x ";
256    CalcTypeName(PTy->getElementType(), TypeStack, OS);
257    OS << '>';
258    break;
259  }
260  case Type::OpaqueTyID:
261    OS << "opaque";
262    break;
263  default:
264    OS << "<unrecognized-type>";
265    break;
266  }
267
268  TypeStack.pop_back();       // Remove self from stack.
269}
270
271/// printTypeInt - The internal guts of printing out a type that has a
272/// potentially named portion.
273///
274void TypePrinting::print(const Type *Ty, raw_ostream &OS,
275                         bool IgnoreTopLevelName) {
276  // Check to see if the type is named.
277  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
278  if (!IgnoreTopLevelName) {
279    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
280    if (I != TM.end()) {
281      OS << I->second;
282      return;
283    }
284  }
285
286  // Otherwise we have a type that has not been named but is a derived type.
287  // Carefully recurse the type hierarchy to print out any contained symbolic
288  // names.
289  SmallVector<const Type *, 16> TypeStack;
290  std::string TypeName;
291
292  raw_string_ostream TypeOS(TypeName);
293  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
294  OS << TypeOS.str();
295
296  // Cache type name for later use.
297  if (!IgnoreTopLevelName)
298    TM.insert(std::make_pair(Ty, TypeOS.str()));
299}
300
301namespace {
302  class TypeFinder {
303    // To avoid walking constant expressions multiple times and other IR
304    // objects, we keep several helper maps.
305    DenseSet<const Value*> VisitedConstants;
306    DenseSet<const Type*> VisitedTypes;
307
308    TypePrinting &TP;
309    std::vector<const Type*> &NumberedTypes;
310  public:
311    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
312      : TP(tp), NumberedTypes(numberedTypes) {}
313
314    void Run(const Module &M) {
315      // Get types from the type symbol table.  This gets opaque types referened
316      // only through derived named types.
317      const TypeSymbolTable &ST = M.getTypeSymbolTable();
318      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
319           TI != E; ++TI)
320        IncorporateType(TI->second);
321
322      // Get types from global variables.
323      for (Module::const_global_iterator I = M.global_begin(),
324           E = M.global_end(); I != E; ++I) {
325        IncorporateType(I->getType());
326        if (I->hasInitializer())
327          IncorporateValue(I->getInitializer());
328      }
329
330      // Get types from aliases.
331      for (Module::const_alias_iterator I = M.alias_begin(),
332           E = M.alias_end(); I != E; ++I) {
333        IncorporateType(I->getType());
334        IncorporateValue(I->getAliasee());
335      }
336
337      // Get types from functions.
338      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
339        IncorporateType(FI->getType());
340
341        for (Function::const_iterator BB = FI->begin(), E = FI->end();
342             BB != E;++BB)
343          for (BasicBlock::const_iterator II = BB->begin(),
344               E = BB->end(); II != E; ++II) {
345            const Instruction &I = *II;
346            // Incorporate the type of the instruction and all its operands.
347            IncorporateType(I.getType());
348            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
349                 OI != OE; ++OI)
350              IncorporateValue(*OI);
351          }
352      }
353    }
354
355  private:
356    void IncorporateType(const Type *Ty) {
357      // Check to see if we're already visited this type.
358      if (!VisitedTypes.insert(Ty).second)
359        return;
360
361      // If this is a structure or opaque type, add a name for the type.
362      if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
363            || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
364        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
365        NumberedTypes.push_back(Ty);
366      }
367
368      // Recursively walk all contained types.
369      for (Type::subtype_iterator I = Ty->subtype_begin(),
370           E = Ty->subtype_end(); I != E; ++I)
371        IncorporateType(*I);
372    }
373
374    /// IncorporateValue - This method is used to walk operand lists finding
375    /// types hiding in constant expressions and other operands that won't be
376    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
377    /// inst operands are all explicitly enumerated.
378    void IncorporateValue(const Value *V) {
379      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
380
381      // Already visited?
382      if (!VisitedConstants.insert(V).second)
383        return;
384
385      // Check this type.
386      IncorporateType(V->getType());
387
388      // Look in operands for types.
389      const Constant *C = cast<Constant>(V);
390      for (Constant::const_op_iterator I = C->op_begin(),
391           E = C->op_end(); I != E;++I)
392        IncorporateValue(*I);
393    }
394  };
395} // end anonymous namespace
396
397
398/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
399/// the specified module to the TypePrinter and all numbered types to it and the
400/// NumberedTypes table.
401static void AddModuleTypesToPrinter(TypePrinting &TP,
402                                    std::vector<const Type*> &NumberedTypes,
403                                    const Module *M) {
404  if (M == 0) return;
405
406  // If the module has a symbol table, take all global types and stuff their
407  // names into the TypeNames map.
408  const TypeSymbolTable &ST = M->getTypeSymbolTable();
409  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
410       TI != E; ++TI) {
411    const Type *Ty = cast<Type>(TI->second);
412
413    // As a heuristic, don't insert pointer to primitive types, because
414    // they are used too often to have a single useful name.
415    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
416      const Type *PETy = PTy->getElementType();
417      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
418          !isa<OpaqueType>(PETy))
419        continue;
420    }
421
422    // Likewise don't insert primitives either.
423    if (Ty->isInteger() || Ty->isPrimitiveType())
424      continue;
425
426    // Get the name as a string and insert it into TypeNames.
427    std::string NameStr;
428    raw_string_ostream NameROS(NameStr);
429    formatted_raw_ostream NameOS(NameROS);
430    PrintLLVMName(NameOS, TI->first, LocalPrefix);
431    NameOS.flush();
432    TP.addTypeName(Ty, NameStr);
433  }
434
435  // Walk the entire module to find references to unnamed structure and opaque
436  // types.  This is required for correctness by opaque types (because multiple
437  // uses of an unnamed opaque type needs to be referred to by the same ID) and
438  // it shrinks complex recursive structure types substantially in some cases.
439  TypeFinder(TP, NumberedTypes).Run(*M);
440}
441
442
443/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
444/// type, iff there is an entry in the modules symbol table for the specified
445/// type or one of it's component types.
446///
447void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
448  TypePrinting Printer;
449  std::vector<const Type*> NumberedTypes;
450  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
451  Printer.print(Ty, OS);
452}
453
454//===----------------------------------------------------------------------===//
455// SlotTracker Class: Enumerate slot numbers for unnamed values
456//===----------------------------------------------------------------------===//
457
458namespace {
459
460/// This class provides computation of slot numbers for LLVM Assembly writing.
461///
462class SlotTracker {
463public:
464  /// ValueMap - A mapping of Values to slot numbers.
465  typedef DenseMap<const Value*, unsigned> ValueMap;
466
467private:
468  /// TheModule - The module for which we are holding slot numbers.
469  const Module* TheModule;
470
471  /// TheFunction - The function for which we are holding slot numbers.
472  const Function* TheFunction;
473  bool FunctionProcessed;
474
475  /// TheMDNode - The MDNode for which we are holding slot numbers.
476  const MDNode *TheMDNode;
477
478  /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
479  const NamedMDNode *TheNamedMDNode;
480
481  /// mMap - The TypePlanes map for the module level data.
482  ValueMap mMap;
483  unsigned mNext;
484
485  /// fMap - The TypePlanes map for the function level data.
486  ValueMap fMap;
487  unsigned fNext;
488
489  /// mdnMap - Map for MDNodes.
490  ValueMap mdnMap;
491  unsigned mdnNext;
492public:
493  /// Construct from a module
494  explicit SlotTracker(const Module *M);
495  /// Construct from a function, starting out in incorp state.
496  explicit SlotTracker(const Function *F);
497  /// Construct from a mdnode.
498  explicit SlotTracker(const MDNode *N);
499  /// Construct from a named mdnode.
500  explicit SlotTracker(const NamedMDNode *N);
501
502  /// Return the slot number of the specified value in it's type
503  /// plane.  If something is not in the SlotTracker, return -1.
504  int getLocalSlot(const Value *V);
505  int getGlobalSlot(const GlobalValue *V);
506  int getMetadataSlot(const MDNode *N);
507
508  /// If you'd like to deal with a function instead of just a module, use
509  /// this method to get its data into the SlotTracker.
510  void incorporateFunction(const Function *F) {
511    TheFunction = F;
512    FunctionProcessed = false;
513  }
514
515  /// After calling incorporateFunction, use this method to remove the
516  /// most recently incorporated function from the SlotTracker. This
517  /// will reset the state of the machine back to just the module contents.
518  void purgeFunction();
519
520  /// MDNode map iterators.
521  ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
522  ValueMap::iterator mdnEnd() { return mdnMap.end(); }
523  unsigned mdnSize() const { return mdnMap.size(); }
524  bool mdnEmpty() const { return mdnMap.empty(); }
525
526  /// This function does the actual initialization.
527  inline void initialize();
528
529  // Implementation Details
530private:
531  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
532  void CreateModuleSlot(const GlobalValue *V);
533
534  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
535  void CreateMetadataSlot(const MDNode *N);
536
537  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
538  void CreateFunctionSlot(const Value *V);
539
540  /// Add all of the module level global variables (and their initializers)
541  /// and function declarations, but not the contents of those functions.
542  void processModule();
543
544  /// Add all of the functions arguments, basic blocks, and instructions.
545  void processFunction();
546
547  /// Add all MDNode operands.
548  void processMDNode();
549
550  /// Add all MDNode operands.
551  void processNamedMDNode();
552
553  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
554  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
555};
556
557}  // end anonymous namespace
558
559
560static SlotTracker *createSlotTracker(const Value *V) {
561  if (const Argument *FA = dyn_cast<Argument>(V))
562    return new SlotTracker(FA->getParent());
563
564  if (const Instruction *I = dyn_cast<Instruction>(V))
565    return new SlotTracker(I->getParent()->getParent());
566
567  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
568    return new SlotTracker(BB->getParent());
569
570  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
571    return new SlotTracker(GV->getParent());
572
573  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
574    return new SlotTracker(GA->getParent());
575
576  if (const Function *Func = dyn_cast<Function>(V))
577    return new SlotTracker(Func);
578
579  return 0;
580}
581
582#if 0
583#define ST_DEBUG(X) errs() << X
584#else
585#define ST_DEBUG(X)
586#endif
587
588// Module level constructor. Causes the contents of the Module (sans functions)
589// to be added to the slot table.
590SlotTracker::SlotTracker(const Module *M)
591  : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
592    TheNamedMDNode(0), mNext(0), fNext(0),  mdnNext(0) {
593}
594
595// Function level constructor. Causes the contents of the Module and the one
596// function provided to be added to the slot table.
597SlotTracker::SlotTracker(const Function *F)
598  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
599    TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
600}
601
602// Constructor to handle single MDNode.
603SlotTracker::SlotTracker(const MDNode *C)
604  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
605    TheNamedMDNode(0), mNext(0), fNext(0),  mdnNext(0) {
606}
607
608// Constructor to handle single NamedMDNode.
609SlotTracker::SlotTracker(const NamedMDNode *N)
610  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
611    TheNamedMDNode(N), mNext(0), fNext(0),  mdnNext(0) {
612}
613
614inline void SlotTracker::initialize() {
615  if (TheModule) {
616    processModule();
617    TheModule = 0; ///< Prevent re-processing next time we're called.
618  }
619
620  if (TheFunction && !FunctionProcessed)
621    processFunction();
622
623  if (TheMDNode)
624    processMDNode();
625
626  if (TheNamedMDNode)
627    processNamedMDNode();
628}
629
630// Iterate through all the global variables, functions, and global
631// variable initializers and create slots for them.
632void SlotTracker::processModule() {
633  ST_DEBUG("begin processModule!\n");
634
635  // Add all of the unnamed global variables to the value table.
636  for (Module::const_global_iterator I = TheModule->global_begin(),
637         E = TheModule->global_end(); I != E; ++I) {
638    if (!I->hasName())
639      CreateModuleSlot(I);
640    if (I->hasInitializer()) {
641      if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
642        CreateMetadataSlot(N);
643    }
644  }
645
646  // Add metadata used by named metadata.
647  for (Module::const_named_metadata_iterator
648         I = TheModule->named_metadata_begin(),
649         E = TheModule->named_metadata_end(); I != E; ++I) {
650    const NamedMDNode *NMD = I;
651    for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
652      MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
653      if (MD)
654        CreateMetadataSlot(MD);
655    }
656  }
657
658  // Add all the unnamed functions to the table.
659  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
660       I != E; ++I)
661    if (!I->hasName())
662      CreateModuleSlot(I);
663
664  ST_DEBUG("end processModule!\n");
665}
666
667// Process the arguments, basic blocks, and instructions  of a function.
668void SlotTracker::processFunction() {
669  ST_DEBUG("begin processFunction!\n");
670  fNext = 0;
671
672  // Add all the function arguments with no names.
673  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
674      AE = TheFunction->arg_end(); AI != AE; ++AI)
675    if (!AI->hasName())
676      CreateFunctionSlot(AI);
677
678  ST_DEBUG("Inserting Instructions:\n");
679
680  SmallVector<std::pair<unsigned, MDNode*>, 2> MDForInst;
681
682  // Add all of the basic blocks and instructions with no names.
683  for (Function::const_iterator BB = TheFunction->begin(),
684       E = TheFunction->end(); BB != E; ++BB) {
685    if (!BB->hasName())
686      CreateFunctionSlot(BB);
687
688    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
689         ++I) {
690      if (!I->getType()->isVoidTy() && !I->hasName())
691        CreateFunctionSlot(I);
692
693      // Intrinsics can directly use metadata.
694      if (isa<IntrinsicInst>(I))
695        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
696          if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
697            CreateMetadataSlot(N);
698
699      // Process metadata attached with this instruction.
700      MDForInst.clear();
701      I->getAllMetadata(MDForInst);
702      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
703        CreateMetadataSlot(MDForInst[i].second);
704    }
705  }
706
707  FunctionProcessed = true;
708
709  ST_DEBUG("end processFunction!\n");
710}
711
712/// processMDNode - Process TheMDNode.
713void SlotTracker::processMDNode() {
714  ST_DEBUG("begin processMDNode!\n");
715  mdnNext = 0;
716  CreateMetadataSlot(TheMDNode);
717  TheMDNode = 0;
718  ST_DEBUG("end processMDNode!\n");
719}
720
721/// processNamedMDNode - Process TheNamedMDNode.
722void SlotTracker::processNamedMDNode() {
723  ST_DEBUG("begin processNamedMDNode!\n");
724  mdnNext = 0;
725  for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
726    MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
727    if (MD)
728      CreateMetadataSlot(MD);
729  }
730  TheNamedMDNode = 0;
731  ST_DEBUG("end processNamedMDNode!\n");
732}
733
734/// Clean up after incorporating a function. This is the only way to get out of
735/// the function incorporation state that affects get*Slot/Create*Slot. Function
736/// incorporation state is indicated by TheFunction != 0.
737void SlotTracker::purgeFunction() {
738  ST_DEBUG("begin purgeFunction!\n");
739  fMap.clear(); // Simply discard the function level map
740  TheFunction = 0;
741  FunctionProcessed = false;
742  ST_DEBUG("end purgeFunction!\n");
743}
744
745/// getGlobalSlot - Get the slot number of a global value.
746int SlotTracker::getGlobalSlot(const GlobalValue *V) {
747  // Check for uninitialized state and do lazy initialization.
748  initialize();
749
750  // Find the type plane in the module map
751  ValueMap::iterator MI = mMap.find(V);
752  return MI == mMap.end() ? -1 : (int)MI->second;
753}
754
755/// getGlobalSlot - Get the slot number of a MDNode.
756int SlotTracker::getMetadataSlot(const MDNode *N) {
757  // Check for uninitialized state and do lazy initialization.
758  initialize();
759
760  // Find the type plane in the module map
761  ValueMap::iterator MI = mdnMap.find(N);
762  return MI == mdnMap.end() ? -1 : (int)MI->second;
763}
764
765
766/// getLocalSlot - Get the slot number for a value that is local to a function.
767int SlotTracker::getLocalSlot(const Value *V) {
768  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
769
770  // Check for uninitialized state and do lazy initialization.
771  initialize();
772
773  ValueMap::iterator FI = fMap.find(V);
774  return FI == fMap.end() ? -1 : (int)FI->second;
775}
776
777
778/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
779void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
780  assert(V && "Can't insert a null Value into SlotTracker!");
781  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
782  assert(!V->hasName() && "Doesn't need a slot!");
783
784  unsigned DestSlot = mNext++;
785  mMap[V] = DestSlot;
786
787  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
788           DestSlot << " [");
789  // G = Global, F = Function, A = Alias, o = other
790  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
791            (isa<Function>(V) ? 'F' :
792             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
793}
794
795/// CreateSlot - Create a new slot for the specified value if it has no name.
796void SlotTracker::CreateFunctionSlot(const Value *V) {
797  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
798
799  unsigned DestSlot = fNext++;
800  fMap[V] = DestSlot;
801
802  // G = Global, F = Function, o = other
803  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
804           DestSlot << " [o]\n");
805}
806
807/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
808void SlotTracker::CreateMetadataSlot(const MDNode *N) {
809  assert(N && "Can't insert a null Value into SlotTracker!");
810
811  // Don't insert if N is a function-local metadata.
812  if (N->isFunctionLocal())
813    return;
814
815  ValueMap::iterator I = mdnMap.find(N);
816  if (I != mdnMap.end())
817    return;
818
819  unsigned DestSlot = mdnNext++;
820  mdnMap[N] = DestSlot;
821
822  for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
823    const Value *TV = N->getElement(i);
824    if (TV)
825      if (const MDNode *N2 = dyn_cast<MDNode>(TV))
826        CreateMetadataSlot(N2);
827  }
828}
829
830//===----------------------------------------------------------------------===//
831// AsmWriter Implementation
832//===----------------------------------------------------------------------===//
833
834static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
835                                   TypePrinting *TypePrinter,
836                                   SlotTracker *Machine);
837
838
839
840static const char *getPredicateText(unsigned predicate) {
841  const char * pred = "unknown";
842  switch (predicate) {
843    case FCmpInst::FCMP_FALSE: pred = "false"; break;
844    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
845    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
846    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
847    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
848    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
849    case FCmpInst::FCMP_ONE:   pred = "one"; break;
850    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
851    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
852    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
853    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
854    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
855    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
856    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
857    case FCmpInst::FCMP_UNE:   pred = "une"; break;
858    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
859    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
860    case ICmpInst::ICMP_NE:    pred = "ne"; break;
861    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
862    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
863    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
864    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
865    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
866    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
867    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
868    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
869  }
870  return pred;
871}
872
873static void WriteMDNodeComment(const MDNode *Node,
874			       formatted_raw_ostream &Out) {
875  if (Node->getNumElements() < 1)
876    return;
877  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getElement(0));
878  if (!CI) return;
879  unsigned Val = CI->getZExtValue();
880  unsigned Tag = Val & ~LLVMDebugVersionMask;
881  if (Val < LLVMDebugVersion)
882    return;
883
884  Out.PadToColumn(50);
885  if (Tag == dwarf::DW_TAG_auto_variable)
886    Out << "; [ DW_TAG_auto_variable ]";
887  else if (Tag == dwarf::DW_TAG_arg_variable)
888    Out << "; [ DW_TAG_arg_variable ]";
889  else if (Tag == dwarf::DW_TAG_return_variable)
890    Out << "; [ DW_TAG_return_variable ]";
891  else if (Tag == dwarf::DW_TAG_vector_type)
892    Out << "; [ DW_TAG_vector_type ]";
893  else if (Tag == dwarf::DW_TAG_user_base)
894    Out << "; [ DW_TAG_user_base ]";
895  else if (const char *TagName = dwarf::TagString(Tag))
896    Out << "; [ " << TagName << " ]";
897}
898
899static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter,
900                         SlotTracker &Machine) {
901  SmallVector<const MDNode *, 16> Nodes;
902  Nodes.resize(Machine.mdnSize());
903  for (SlotTracker::ValueMap::iterator I =
904         Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
905    Nodes[I->second] = cast<MDNode>(I->first);
906
907  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
908    Out << '!' << i << " = metadata ";
909    const MDNode *Node = Nodes[i];
910    Out << "!{";
911    for (unsigned mi = 0, me = Node->getNumElements(); mi != me; ++mi) {
912      const Value *V = Node->getElement(mi);
913      if (!V)
914        Out << "null";
915      else if (const MDNode *N = dyn_cast<MDNode>(V)) {
916        Out << "metadata ";
917        Out << '!' << Machine.getMetadataSlot(N);
918      }
919      else {
920        TypePrinter.print(V->getType(), Out);
921        Out << ' ';
922        WriteAsOperandInternal(Out, Node->getElement(mi),
923                               &TypePrinter, &Machine);
924      }
925      if (mi + 1 != me)
926        Out << ", ";
927    }
928
929    Out << "}";
930    WriteMDNodeComment(Node, Out);
931    Out << "\n";
932  }
933}
934
935static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
936  if (const OverflowingBinaryOperator *OBO =
937        dyn_cast<OverflowingBinaryOperator>(U)) {
938    if (OBO->hasNoUnsignedWrap())
939      Out << " nuw";
940    if (OBO->hasNoSignedWrap())
941      Out << " nsw";
942  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
943    if (Div->isExact())
944      Out << " exact";
945  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
946    if (GEP->isInBounds())
947      Out << " inbounds";
948  }
949}
950
951static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
952                             TypePrinting &TypePrinter, SlotTracker *Machine) {
953  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
954    if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
955      Out << (CI->getZExtValue() ? "true" : "false");
956      return;
957    }
958    Out << CI->getValue();
959    return;
960  }
961
962  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
963    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
964        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
965      // We would like to output the FP constant value in exponential notation,
966      // but we cannot do this if doing so will lose precision.  Check here to
967      // make sure that we only output it in exponential format if we can parse
968      // the value back and get the same value.
969      //
970      bool ignored;
971      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
972      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
973                              CFP->getValueAPF().convertToFloat();
974      std::string StrVal = ftostr(CFP->getValueAPF());
975
976      // Check to make sure that the stringized number is not some string like
977      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
978      // that the string matches the "[-+]?[0-9]" regex.
979      //
980      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
981          ((StrVal[0] == '-' || StrVal[0] == '+') &&
982           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
983        // Reparse stringized version!
984        if (atof(StrVal.c_str()) == Val) {
985          Out << StrVal;
986          return;
987        }
988      }
989      // Otherwise we could not reparse it to exactly the same value, so we must
990      // output the string in hexadecimal format!  Note that loading and storing
991      // floating point types changes the bits of NaNs on some hosts, notably
992      // x86, so we must not use these types.
993      assert(sizeof(double) == sizeof(uint64_t) &&
994             "assuming that double is 64 bits!");
995      char Buffer[40];
996      APFloat apf = CFP->getValueAPF();
997      // Floats are represented in ASCII IR as double, convert.
998      if (!isDouble)
999        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1000                          &ignored);
1001      Out << "0x" <<
1002              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
1003                            Buffer+40);
1004      return;
1005    }
1006
1007    // Some form of long double.  These appear as a magic letter identifying
1008    // the type, then a fixed number of hex digits.
1009    Out << "0x";
1010    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1011      Out << 'K';
1012      // api needed to prevent premature destruction
1013      APInt api = CFP->getValueAPF().bitcastToAPInt();
1014      const uint64_t* p = api.getRawData();
1015      uint64_t word = p[1];
1016      int shiftcount=12;
1017      int width = api.getBitWidth();
1018      for (int j=0; j<width; j+=4, shiftcount-=4) {
1019        unsigned int nibble = (word>>shiftcount) & 15;
1020        if (nibble < 10)
1021          Out << (unsigned char)(nibble + '0');
1022        else
1023          Out << (unsigned char)(nibble - 10 + 'A');
1024        if (shiftcount == 0 && j+4 < width) {
1025          word = *p;
1026          shiftcount = 64;
1027          if (width-j-4 < 64)
1028            shiftcount = width-j-4;
1029        }
1030      }
1031      return;
1032    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
1033      Out << 'L';
1034    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
1035      Out << 'M';
1036    else
1037      llvm_unreachable("Unsupported floating point type");
1038    // api needed to prevent premature destruction
1039    APInt api = CFP->getValueAPF().bitcastToAPInt();
1040    const uint64_t* p = api.getRawData();
1041    uint64_t word = *p;
1042    int shiftcount=60;
1043    int width = api.getBitWidth();
1044    for (int j=0; j<width; j+=4, shiftcount-=4) {
1045      unsigned int nibble = (word>>shiftcount) & 15;
1046      if (nibble < 10)
1047        Out << (unsigned char)(nibble + '0');
1048      else
1049        Out << (unsigned char)(nibble - 10 + 'A');
1050      if (shiftcount == 0 && j+4 < width) {
1051        word = *(++p);
1052        shiftcount = 64;
1053        if (width-j-4 < 64)
1054          shiftcount = width-j-4;
1055      }
1056    }
1057    return;
1058  }
1059
1060  if (isa<ConstantAggregateZero>(CV)) {
1061    Out << "zeroinitializer";
1062    return;
1063  }
1064
1065  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1066    Out << "blockaddress(";
1067    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
1068    Out << ", ";
1069    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
1070    Out << ")";
1071    return;
1072  }
1073
1074  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1075    // As a special case, print the array as a string if it is an array of
1076    // i8 with ConstantInt values.
1077    //
1078    const Type *ETy = CA->getType()->getElementType();
1079    if (CA->isString()) {
1080      Out << "c\"";
1081      PrintEscapedString(CA->getAsString(), Out);
1082      Out << '"';
1083    } else {                // Cannot output in string format...
1084      Out << '[';
1085      if (CA->getNumOperands()) {
1086        TypePrinter.print(ETy, Out);
1087        Out << ' ';
1088        WriteAsOperandInternal(Out, CA->getOperand(0),
1089                               &TypePrinter, Machine);
1090        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1091          Out << ", ";
1092          TypePrinter.print(ETy, Out);
1093          Out << ' ';
1094          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
1095        }
1096      }
1097      Out << ']';
1098    }
1099    return;
1100  }
1101
1102  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1103    if (CS->getType()->isPacked())
1104      Out << '<';
1105    Out << '{';
1106    unsigned N = CS->getNumOperands();
1107    if (N) {
1108      Out << ' ';
1109      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1110      Out << ' ';
1111
1112      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1113
1114      for (unsigned i = 1; i < N; i++) {
1115        Out << ", ";
1116        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1117        Out << ' ';
1118
1119        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1120      }
1121      Out << ' ';
1122    }
1123
1124    Out << '}';
1125    if (CS->getType()->isPacked())
1126      Out << '>';
1127    return;
1128  }
1129
1130  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1131    const Type *ETy = CP->getType()->getElementType();
1132    assert(CP->getNumOperands() > 0 &&
1133           "Number of operands for a PackedConst must be > 0");
1134    Out << '<';
1135    TypePrinter.print(ETy, Out);
1136    Out << ' ';
1137    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1138    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1139      Out << ", ";
1140      TypePrinter.print(ETy, Out);
1141      Out << ' ';
1142      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1143    }
1144    Out << '>';
1145    return;
1146  }
1147
1148  if (isa<ConstantPointerNull>(CV)) {
1149    Out << "null";
1150    return;
1151  }
1152
1153  if (isa<UndefValue>(CV)) {
1154    Out << "undef";
1155    return;
1156  }
1157
1158  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1159    Out << "!" << Machine->getMetadataSlot(Node);
1160    return;
1161  }
1162
1163  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1164    Out << CE->getOpcodeName();
1165    WriteOptimizationInfo(Out, CE);
1166    if (CE->isCompare())
1167      Out << ' ' << getPredicateText(CE->getPredicate());
1168    Out << " (";
1169
1170    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1171      TypePrinter.print((*OI)->getType(), Out);
1172      Out << ' ';
1173      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1174      if (OI+1 != CE->op_end())
1175        Out << ", ";
1176    }
1177
1178    if (CE->hasIndices()) {
1179      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1180      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1181        Out << ", " << Indices[i];
1182    }
1183
1184    if (CE->isCast()) {
1185      Out << " to ";
1186      TypePrinter.print(CE->getType(), Out);
1187    }
1188
1189    Out << ')';
1190    return;
1191  }
1192
1193  Out << "<placeholder or erroneous Constant>";
1194}
1195
1196
1197/// WriteAsOperand - Write the name of the specified value out to the specified
1198/// ostream.  This can be useful when you just want to print int %reg126, not
1199/// the whole instruction that generated it.
1200///
1201static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1202                                   TypePrinting *TypePrinter,
1203                                   SlotTracker *Machine) {
1204  if (V->hasName()) {
1205    PrintLLVMName(Out, V);
1206    return;
1207  }
1208
1209  const Constant *CV = dyn_cast<Constant>(V);
1210  if (CV && !isa<GlobalValue>(CV)) {
1211    assert(TypePrinter && "Constants require TypePrinting!");
1212    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1213    return;
1214  }
1215
1216  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1217    Out << "asm ";
1218    if (IA->hasSideEffects())
1219      Out << "sideeffect ";
1220    if (IA->isAlignStack())
1221      Out << "alignstack ";
1222    Out << '"';
1223    PrintEscapedString(IA->getAsmString(), Out);
1224    Out << "\", \"";
1225    PrintEscapedString(IA->getConstraintString(), Out);
1226    Out << '"';
1227    return;
1228  }
1229
1230  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1231    if (N->isFunctionLocal()) {
1232      // Print metadata inline, not via slot reference number.
1233      Out << "!{";
1234      for (unsigned mi = 0, me = N->getNumElements(); mi != me; ++mi) {
1235        const Value *Val = N->getElement(mi);
1236        if (!Val)
1237          Out << "null";
1238        else {
1239          TypePrinter->print(N->getElement(0)->getType(), Out);
1240          Out << ' ';
1241          WriteAsOperandInternal(Out, N->getElement(0), TypePrinter, Machine);
1242        }
1243        if (mi + 1 != me)
1244          Out << ", ";
1245      }
1246      Out << '}';
1247      return;
1248    }
1249
1250    Out << '!' << Machine->getMetadataSlot(N);
1251    return;
1252  }
1253
1254  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1255    Out << "!\"";
1256    PrintEscapedString(MDS->getString(), Out);
1257    Out << '"';
1258    return;
1259  }
1260
1261  if (V->getValueID() == Value::PseudoSourceValueVal ||
1262      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1263    V->print(Out);
1264    return;
1265  }
1266
1267  char Prefix = '%';
1268  int Slot;
1269  if (Machine) {
1270    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1271      Slot = Machine->getGlobalSlot(GV);
1272      Prefix = '@';
1273    } else {
1274      Slot = Machine->getLocalSlot(V);
1275    }
1276  } else {
1277    Machine = createSlotTracker(V);
1278    if (Machine) {
1279      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1280        Slot = Machine->getGlobalSlot(GV);
1281        Prefix = '@';
1282      } else {
1283        Slot = Machine->getLocalSlot(V);
1284      }
1285      delete Machine;
1286    } else {
1287      Slot = -1;
1288    }
1289  }
1290
1291  if (Slot != -1)
1292    Out << Prefix << Slot;
1293  else
1294    Out << "<badref>";
1295}
1296
1297void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1298                          bool PrintType, const Module *Context) {
1299
1300  // Fast path: Don't construct and populate a TypePrinting object if we
1301  // won't be needing any types printed.
1302  if (!PrintType &&
1303      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1304    WriteAsOperandInternal(Out, V, 0, 0);
1305    return;
1306  }
1307
1308  if (Context == 0) Context = getModuleFromVal(V);
1309
1310  TypePrinting TypePrinter;
1311  std::vector<const Type*> NumberedTypes;
1312  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1313  if (PrintType) {
1314    TypePrinter.print(V->getType(), Out);
1315    Out << ' ';
1316  }
1317
1318  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1319}
1320
1321namespace {
1322
1323class AssemblyWriter {
1324  formatted_raw_ostream &Out;
1325  SlotTracker &Machine;
1326  const Module *TheModule;
1327  TypePrinting TypePrinter;
1328  AssemblyAnnotationWriter *AnnotationWriter;
1329  std::vector<const Type*> NumberedTypes;
1330  SmallVector<StringRef, 8> MDNames;
1331
1332public:
1333  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1334                        const Module *M,
1335                        AssemblyAnnotationWriter *AAW)
1336    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1337    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1338    // FIXME: Provide MDPrinter
1339    if (M)
1340      M->getMDKindNames(MDNames);
1341  }
1342
1343  void write(const Module *M) { printModule(M); }
1344
1345  void write(const GlobalValue *G) {
1346    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1347      printGlobal(GV);
1348    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1349      printAlias(GA);
1350    else if (const Function *F = dyn_cast<Function>(G))
1351      printFunction(F);
1352    else
1353      llvm_unreachable("Unknown global");
1354  }
1355
1356  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
1357  void write(const Instruction *I)    { printInstruction(*I); }
1358
1359  void writeOperand(const Value *Op, bool PrintType);
1360  void writeParamOperand(const Value *Operand, Attributes Attrs);
1361
1362private:
1363  void printModule(const Module *M);
1364  void printTypeSymbolTable(const TypeSymbolTable &ST);
1365  void printGlobal(const GlobalVariable *GV);
1366  void printAlias(const GlobalAlias *GV);
1367  void printFunction(const Function *F);
1368  void printArgument(const Argument *FA, Attributes Attrs);
1369  void printBasicBlock(const BasicBlock *BB);
1370  void printInstruction(const Instruction &I);
1371
1372  // printInfoComment - Print a little comment after the instruction indicating
1373  // which slot it occupies.
1374  void printInfoComment(const Value &V);
1375};
1376}  // end of anonymous namespace
1377
1378
1379void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1380  if (Operand == 0) {
1381    Out << "<null operand!>";
1382  } else {
1383    if (PrintType) {
1384      TypePrinter.print(Operand->getType(), Out);
1385      Out << ' ';
1386    }
1387    WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1388  }
1389}
1390
1391void AssemblyWriter::writeParamOperand(const Value *Operand,
1392                                       Attributes Attrs) {
1393  if (Operand == 0) {
1394    Out << "<null operand!>";
1395  } else {
1396    // Print the type
1397    TypePrinter.print(Operand->getType(), Out);
1398    // Print parameter attributes list
1399    if (Attrs != Attribute::None)
1400      Out << ' ' << Attribute::getAsString(Attrs);
1401    Out << ' ';
1402    // Print the operand
1403    WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1404  }
1405}
1406
1407void AssemblyWriter::printModule(const Module *M) {
1408  if (!M->getModuleIdentifier().empty() &&
1409      // Don't print the ID if it will start a new line (which would
1410      // require a comment char before it).
1411      M->getModuleIdentifier().find('\n') == std::string::npos)
1412    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1413
1414  if (!M->getDataLayout().empty())
1415    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1416  if (!M->getTargetTriple().empty())
1417    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1418
1419  if (!M->getModuleInlineAsm().empty()) {
1420    // Split the string into lines, to make it easier to read the .ll file.
1421    std::string Asm = M->getModuleInlineAsm();
1422    size_t CurPos = 0;
1423    size_t NewLine = Asm.find_first_of('\n', CurPos);
1424    Out << '\n';
1425    while (NewLine != std::string::npos) {
1426      // We found a newline, print the portion of the asm string from the
1427      // last newline up to this newline.
1428      Out << "module asm \"";
1429      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1430                         Out);
1431      Out << "\"\n";
1432      CurPos = NewLine+1;
1433      NewLine = Asm.find_first_of('\n', CurPos);
1434    }
1435    Out << "module asm \"";
1436    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1437    Out << "\"\n";
1438  }
1439
1440  // Loop over the dependent libraries and emit them.
1441  Module::lib_iterator LI = M->lib_begin();
1442  Module::lib_iterator LE = M->lib_end();
1443  if (LI != LE) {
1444    Out << '\n';
1445    Out << "deplibs = [ ";
1446    while (LI != LE) {
1447      Out << '"' << *LI << '"';
1448      ++LI;
1449      if (LI != LE)
1450        Out << ", ";
1451    }
1452    Out << " ]";
1453  }
1454
1455  // Loop over the symbol table, emitting all id'd types.
1456  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1457  printTypeSymbolTable(M->getTypeSymbolTable());
1458
1459  // Output all globals.
1460  if (!M->global_empty()) Out << '\n';
1461  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1462       I != E; ++I)
1463    printGlobal(I);
1464
1465  // Output all aliases.
1466  if (!M->alias_empty()) Out << "\n";
1467  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1468       I != E; ++I)
1469    printAlias(I);
1470
1471  // Output all of the functions.
1472  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1473    printFunction(I);
1474
1475  // Output named metadata.
1476  if (!M->named_metadata_empty()) Out << '\n';
1477  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1478         E = M->named_metadata_end(); I != E; ++I) {
1479    const NamedMDNode *NMD = I;
1480    Out << "!" << NMD->getName() << " = !{";
1481    for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
1482      if (i) Out << ", ";
1483      MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
1484      Out << '!' << Machine.getMetadataSlot(MD);
1485    }
1486    Out << "}\n";
1487  }
1488
1489  // Output metadata.
1490  if (!Machine.mdnEmpty()) Out << '\n';
1491  WriteMDNodes(Out, TypePrinter, Machine);
1492}
1493
1494static void PrintLinkage(GlobalValue::LinkageTypes LT,
1495                         formatted_raw_ostream &Out) {
1496  switch (LT) {
1497  case GlobalValue::ExternalLinkage: break;
1498  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1499  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1500  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1501  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1502  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1503  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1504  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1505  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1506  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1507  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1508  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1509  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1510  case GlobalValue::AvailableExternallyLinkage:
1511    Out << "available_externally ";
1512    break;
1513    // This is invalid syntax and just a debugging aid.
1514  case GlobalValue::GhostLinkage:	  Out << "ghost ";	    break;
1515  }
1516}
1517
1518
1519static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1520                            formatted_raw_ostream &Out) {
1521  switch (Vis) {
1522  case GlobalValue::DefaultVisibility: break;
1523  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1524  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1525  }
1526}
1527
1528void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1529  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1530  Out << " = ";
1531
1532  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1533    Out << "external ";
1534
1535  PrintLinkage(GV->getLinkage(), Out);
1536  PrintVisibility(GV->getVisibility(), Out);
1537
1538  if (GV->isThreadLocal()) Out << "thread_local ";
1539  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1540    Out << "addrspace(" << AddressSpace << ") ";
1541  Out << (GV->isConstant() ? "constant " : "global ");
1542  TypePrinter.print(GV->getType()->getElementType(), Out);
1543
1544  if (GV->hasInitializer()) {
1545    Out << ' ';
1546    writeOperand(GV->getInitializer(), false);
1547  }
1548
1549  if (GV->hasSection())
1550    Out << ", section \"" << GV->getSection() << '"';
1551  if (GV->getAlignment())
1552    Out << ", align " << GV->getAlignment();
1553
1554  printInfoComment(*GV);
1555  Out << '\n';
1556}
1557
1558void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1559  // Don't crash when dumping partially built GA
1560  if (!GA->hasName())
1561    Out << "<<nameless>> = ";
1562  else {
1563    PrintLLVMName(Out, GA);
1564    Out << " = ";
1565  }
1566  PrintVisibility(GA->getVisibility(), Out);
1567
1568  Out << "alias ";
1569
1570  PrintLinkage(GA->getLinkage(), Out);
1571
1572  const Constant *Aliasee = GA->getAliasee();
1573
1574  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1575    TypePrinter.print(GV->getType(), Out);
1576    Out << ' ';
1577    PrintLLVMName(Out, GV);
1578  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1579    TypePrinter.print(F->getFunctionType(), Out);
1580    Out << "* ";
1581
1582    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1583  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1584    TypePrinter.print(GA->getType(), Out);
1585    Out << ' ';
1586    PrintLLVMName(Out, GA);
1587  } else {
1588    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1589    // The only valid GEP is an all zero GEP.
1590    assert((CE->getOpcode() == Instruction::BitCast ||
1591            CE->getOpcode() == Instruction::GetElementPtr) &&
1592           "Unsupported aliasee");
1593    writeOperand(CE, false);
1594  }
1595
1596  printInfoComment(*GA);
1597  Out << '\n';
1598}
1599
1600void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1601  // Emit all numbered types.
1602  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1603    Out << '%' << i << " = type ";
1604
1605    // Make sure we print out at least one level of the type structure, so
1606    // that we do not get %2 = type %2
1607    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1608    Out << '\n';
1609  }
1610
1611  // Print the named types.
1612  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1613       TI != TE; ++TI) {
1614    PrintLLVMName(Out, TI->first, LocalPrefix);
1615    Out << " = type ";
1616
1617    // Make sure we print out at least one level of the type structure, so
1618    // that we do not get %FILE = type %FILE
1619    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1620    Out << '\n';
1621  }
1622}
1623
1624/// printFunction - Print all aspects of a function.
1625///
1626void AssemblyWriter::printFunction(const Function *F) {
1627  // Print out the return type and name.
1628  Out << '\n';
1629
1630  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1631
1632  if (F->isDeclaration())
1633    Out << "declare ";
1634  else
1635    Out << "define ";
1636
1637  PrintLinkage(F->getLinkage(), Out);
1638  PrintVisibility(F->getVisibility(), Out);
1639
1640  // Print the calling convention.
1641  switch (F->getCallingConv()) {
1642  case CallingConv::C: break;   // default
1643  case CallingConv::Fast:         Out << "fastcc "; break;
1644  case CallingConv::Cold:         Out << "coldcc "; break;
1645  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1646  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1647  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1648  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1649  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1650  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1651  default: Out << "cc" << F->getCallingConv() << " "; break;
1652  }
1653
1654  const FunctionType *FT = F->getFunctionType();
1655  const AttrListPtr &Attrs = F->getAttributes();
1656  Attributes RetAttrs = Attrs.getRetAttributes();
1657  if (RetAttrs != Attribute::None)
1658    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1659  TypePrinter.print(F->getReturnType(), Out);
1660  Out << ' ';
1661  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1662  Out << '(';
1663  Machine.incorporateFunction(F);
1664
1665  // Loop over the arguments, printing them...
1666
1667  unsigned Idx = 1;
1668  if (!F->isDeclaration()) {
1669    // If this isn't a declaration, print the argument names as well.
1670    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1671         I != E; ++I) {
1672      // Insert commas as we go... the first arg doesn't get a comma
1673      if (I != F->arg_begin()) Out << ", ";
1674      printArgument(I, Attrs.getParamAttributes(Idx));
1675      Idx++;
1676    }
1677  } else {
1678    // Otherwise, print the types from the function type.
1679    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1680      // Insert commas as we go... the first arg doesn't get a comma
1681      if (i) Out << ", ";
1682
1683      // Output type...
1684      TypePrinter.print(FT->getParamType(i), Out);
1685
1686      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1687      if (ArgAttrs != Attribute::None)
1688        Out << ' ' << Attribute::getAsString(ArgAttrs);
1689    }
1690  }
1691
1692  // Finish printing arguments...
1693  if (FT->isVarArg()) {
1694    if (FT->getNumParams()) Out << ", ";
1695    Out << "...";  // Output varargs portion of signature!
1696  }
1697  Out << ')';
1698  Attributes FnAttrs = Attrs.getFnAttributes();
1699  if (FnAttrs != Attribute::None)
1700    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1701  if (F->hasSection())
1702    Out << " section \"" << F->getSection() << '"';
1703  if (F->getAlignment())
1704    Out << " align " << F->getAlignment();
1705  if (F->hasGC())
1706    Out << " gc \"" << F->getGC() << '"';
1707  if (F->isDeclaration()) {
1708    Out << "\n";
1709  } else {
1710    Out << " {";
1711
1712    // Output all of its basic blocks... for the function
1713    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1714      printBasicBlock(I);
1715
1716    Out << "}\n";
1717  }
1718
1719  Machine.purgeFunction();
1720}
1721
1722/// printArgument - This member is called for every argument that is passed into
1723/// the function.  Simply print it out
1724///
1725void AssemblyWriter::printArgument(const Argument *Arg,
1726                                   Attributes Attrs) {
1727  // Output type...
1728  TypePrinter.print(Arg->getType(), Out);
1729
1730  // Output parameter attributes list
1731  if (Attrs != Attribute::None)
1732    Out << ' ' << Attribute::getAsString(Attrs);
1733
1734  // Output name, if available...
1735  if (Arg->hasName()) {
1736    Out << ' ';
1737    PrintLLVMName(Out, Arg);
1738  }
1739}
1740
1741/// printBasicBlock - This member is called for each basic block in a method.
1742///
1743void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1744  if (BB->hasName()) {              // Print out the label if it exists...
1745    Out << "\n";
1746    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1747    Out << ':';
1748  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1749    Out << "\n; <label>:";
1750    int Slot = Machine.getLocalSlot(BB);
1751    if (Slot != -1)
1752      Out << Slot;
1753    else
1754      Out << "<badref>";
1755  }
1756
1757  if (BB->getParent() == 0) {
1758    Out.PadToColumn(50);
1759    Out << "; Error: Block without parent!";
1760  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1761    // Output predecessors for the block...
1762    Out.PadToColumn(50);
1763    Out << ";";
1764    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1765
1766    if (PI == PE) {
1767      Out << " No predecessors!";
1768    } else {
1769      Out << " preds = ";
1770      writeOperand(*PI, false);
1771      for (++PI; PI != PE; ++PI) {
1772        Out << ", ";
1773        writeOperand(*PI, false);
1774      }
1775    }
1776  }
1777
1778  Out << "\n";
1779
1780  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1781
1782  // Output all of the instructions in the basic block...
1783  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1784    printInstruction(*I);
1785    Out << '\n';
1786  }
1787
1788  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1789}
1790
1791
1792/// printInfoComment - Print a little comment after the instruction indicating
1793/// which slot it occupies.
1794///
1795void AssemblyWriter::printInfoComment(const Value &V) {
1796  if (V.getType()->isVoidTy()) return;
1797
1798  Out.PadToColumn(50);
1799  Out << "; <";
1800  TypePrinter.print(V.getType(), Out);
1801  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1802}
1803
1804// This member is called for each Instruction in a function..
1805void AssemblyWriter::printInstruction(const Instruction &I) {
1806  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1807
1808  // Print out indentation for an instruction.
1809  Out << "  ";
1810
1811  // Print out name if it exists...
1812  if (I.hasName()) {
1813    PrintLLVMName(Out, &I);
1814    Out << " = ";
1815  } else if (!I.getType()->isVoidTy()) {
1816    // Print out the def slot taken.
1817    int SlotNum = Machine.getLocalSlot(&I);
1818    if (SlotNum == -1)
1819      Out << "<badref> = ";
1820    else
1821      Out << '%' << SlotNum << " = ";
1822  }
1823
1824  // If this is a volatile load or store, print out the volatile marker.
1825  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1826      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1827      Out << "volatile ";
1828  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1829    // If this is a call, check if it's a tail call.
1830    Out << "tail ";
1831  }
1832
1833  // Print out the opcode...
1834  Out << I.getOpcodeName();
1835
1836  // Print out optimization information.
1837  WriteOptimizationInfo(Out, &I);
1838
1839  // Print out the compare instruction predicates
1840  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1841    Out << ' ' << getPredicateText(CI->getPredicate());
1842
1843  // Print out the type of the operands...
1844  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1845
1846  // Special case conditional branches to swizzle the condition out to the front
1847  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1848    BranchInst &BI(cast<BranchInst>(I));
1849    Out << ' ';
1850    writeOperand(BI.getCondition(), true);
1851    Out << ", ";
1852    writeOperand(BI.getSuccessor(0), true);
1853    Out << ", ";
1854    writeOperand(BI.getSuccessor(1), true);
1855
1856  } else if (isa<SwitchInst>(I)) {
1857    // Special case switch instruction to get formatting nice and correct.
1858    Out << ' ';
1859    writeOperand(Operand        , true);
1860    Out << ", ";
1861    writeOperand(I.getOperand(1), true);
1862    Out << " [";
1863
1864    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1865      Out << "\n    ";
1866      writeOperand(I.getOperand(op  ), true);
1867      Out << ", ";
1868      writeOperand(I.getOperand(op+1), true);
1869    }
1870    Out << "\n  ]";
1871  } else if (isa<IndirectBrInst>(I)) {
1872    // Special case indirectbr instruction to get formatting nice and correct.
1873    Out << ' ';
1874    writeOperand(Operand, true);
1875    Out << ", [";
1876
1877    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1878      if (i != 1)
1879        Out << ", ";
1880      writeOperand(I.getOperand(i), true);
1881    }
1882    Out << ']';
1883  } else if (isa<PHINode>(I)) {
1884    Out << ' ';
1885    TypePrinter.print(I.getType(), Out);
1886    Out << ' ';
1887
1888    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1889      if (op) Out << ", ";
1890      Out << "[ ";
1891      writeOperand(I.getOperand(op  ), false); Out << ", ";
1892      writeOperand(I.getOperand(op+1), false); Out << " ]";
1893    }
1894  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1895    Out << ' ';
1896    writeOperand(I.getOperand(0), true);
1897    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1898      Out << ", " << *i;
1899  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1900    Out << ' ';
1901    writeOperand(I.getOperand(0), true); Out << ", ";
1902    writeOperand(I.getOperand(1), true);
1903    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1904      Out << ", " << *i;
1905  } else if (isa<ReturnInst>(I) && !Operand) {
1906    Out << " void";
1907  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1908    // Print the calling convention being used.
1909    switch (CI->getCallingConv()) {
1910    case CallingConv::C: break;   // default
1911    case CallingConv::Fast:  Out << " fastcc"; break;
1912    case CallingConv::Cold:  Out << " coldcc"; break;
1913    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1914    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1915    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1916    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1917    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1918    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1919    default: Out << " cc" << CI->getCallingConv(); break;
1920    }
1921
1922    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1923    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1924    const Type         *RetTy = FTy->getReturnType();
1925    const AttrListPtr &PAL = CI->getAttributes();
1926
1927    if (PAL.getRetAttributes() != Attribute::None)
1928      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1929
1930    // If possible, print out the short form of the call instruction.  We can
1931    // only do this if the first argument is a pointer to a nonvararg function,
1932    // and if the return type is not a pointer to a function.
1933    //
1934    Out << ' ';
1935    if (!FTy->isVarArg() &&
1936        (!isa<PointerType>(RetTy) ||
1937         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1938      TypePrinter.print(RetTy, Out);
1939      Out << ' ';
1940      writeOperand(Operand, false);
1941    } else {
1942      writeOperand(Operand, true);
1943    }
1944    Out << '(';
1945    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1946      if (op > 1)
1947        Out << ", ";
1948      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1949    }
1950    Out << ')';
1951    if (PAL.getFnAttributes() != Attribute::None)
1952      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1953  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1954    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1955    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1956    const Type         *RetTy = FTy->getReturnType();
1957    const AttrListPtr &PAL = II->getAttributes();
1958
1959    // Print the calling convention being used.
1960    switch (II->getCallingConv()) {
1961    case CallingConv::C: break;   // default
1962    case CallingConv::Fast:  Out << " fastcc"; break;
1963    case CallingConv::Cold:  Out << " coldcc"; break;
1964    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1965    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1966    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1967    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1968    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1969    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1970    default: Out << " cc" << II->getCallingConv(); break;
1971    }
1972
1973    if (PAL.getRetAttributes() != Attribute::None)
1974      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1975
1976    // If possible, print out the short form of the invoke instruction. We can
1977    // only do this if the first argument is a pointer to a nonvararg function,
1978    // and if the return type is not a pointer to a function.
1979    //
1980    Out << ' ';
1981    if (!FTy->isVarArg() &&
1982        (!isa<PointerType>(RetTy) ||
1983         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1984      TypePrinter.print(RetTy, Out);
1985      Out << ' ';
1986      writeOperand(Operand, false);
1987    } else {
1988      writeOperand(Operand, true);
1989    }
1990    Out << '(';
1991    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1992      if (op > 3)
1993        Out << ", ";
1994      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1995    }
1996
1997    Out << ')';
1998    if (PAL.getFnAttributes() != Attribute::None)
1999      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
2000
2001    Out << "\n          to ";
2002    writeOperand(II->getNormalDest(), true);
2003    Out << " unwind ";
2004    writeOperand(II->getUnwindDest(), true);
2005
2006  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
2007    Out << ' ';
2008    TypePrinter.print(AI->getType()->getElementType(), Out);
2009    if (!AI->getArraySize() || AI->isArrayAllocation()) {
2010      Out << ", ";
2011      writeOperand(AI->getArraySize(), true);
2012    }
2013    if (AI->getAlignment()) {
2014      Out << ", align " << AI->getAlignment();
2015    }
2016  } else if (isa<CastInst>(I)) {
2017    if (Operand) {
2018      Out << ' ';
2019      writeOperand(Operand, true);   // Work with broken code
2020    }
2021    Out << " to ";
2022    TypePrinter.print(I.getType(), Out);
2023  } else if (isa<VAArgInst>(I)) {
2024    if (Operand) {
2025      Out << ' ';
2026      writeOperand(Operand, true);   // Work with broken code
2027    }
2028    Out << ", ";
2029    TypePrinter.print(I.getType(), Out);
2030  } else if (Operand) {   // Print the normal way.
2031
2032    // PrintAllTypes - Instructions who have operands of all the same type
2033    // omit the type from all but the first operand.  If the instruction has
2034    // different type operands (for example br), then they are all printed.
2035    bool PrintAllTypes = false;
2036    const Type *TheType = Operand->getType();
2037
2038    // Select, Store and ShuffleVector always print all types.
2039    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2040        || isa<ReturnInst>(I)) {
2041      PrintAllTypes = true;
2042    } else {
2043      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2044        Operand = I.getOperand(i);
2045        // note that Operand shouldn't be null, but the test helps make dump()
2046        // more tolerant of malformed IR
2047        if (Operand && Operand->getType() != TheType) {
2048          PrintAllTypes = true;    // We have differing types!  Print them all!
2049          break;
2050        }
2051      }
2052    }
2053
2054    if (!PrintAllTypes) {
2055      Out << ' ';
2056      TypePrinter.print(TheType, Out);
2057    }
2058
2059    Out << ' ';
2060    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2061      if (i) Out << ", ";
2062      writeOperand(I.getOperand(i), PrintAllTypes);
2063    }
2064  }
2065
2066  // Print post operand alignment for load/store.
2067  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
2068    Out << ", align " << cast<LoadInst>(I).getAlignment();
2069  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
2070    Out << ", align " << cast<StoreInst>(I).getAlignment();
2071  }
2072
2073  // Print Metadata info.
2074  if (!MDNames.empty()) {
2075    SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2076    I.getAllMetadata(InstMD);
2077    for (unsigned i = 0, e = InstMD.size(); i != e; ++i)
2078      Out << ", !" << MDNames[InstMD[i].first]
2079          << " !" << Machine.getMetadataSlot(InstMD[i].second);
2080  }
2081  printInfoComment(I);
2082}
2083
2084
2085//===----------------------------------------------------------------------===//
2086//                       External Interface declarations
2087//===----------------------------------------------------------------------===//
2088
2089void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2090  SlotTracker SlotTable(this);
2091  formatted_raw_ostream OS(ROS);
2092  AssemblyWriter W(OS, SlotTable, this, AAW);
2093  W.write(this);
2094}
2095
2096void Type::print(raw_ostream &OS) const {
2097  if (this == 0) {
2098    OS << "<null Type>";
2099    return;
2100  }
2101  TypePrinting().print(this, OS);
2102}
2103
2104void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2105  if (this == 0) {
2106    ROS << "printing a <null> value\n";
2107    return;
2108  }
2109  formatted_raw_ostream OS(ROS);
2110  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2111    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2112    SlotTracker SlotTable(F);
2113    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2114    W.write(I);
2115  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2116    SlotTracker SlotTable(BB->getParent());
2117    AssemblyWriter W(OS, SlotTable,
2118                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
2119    W.write(BB);
2120  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2121    SlotTracker SlotTable(GV->getParent());
2122    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2123    W.write(GV);
2124  } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
2125    TypePrinting TypePrinter;
2126    TypePrinter.print(MDS->getType(), OS);
2127    OS << ' ';
2128    OS << "!\"";
2129    PrintEscapedString(MDS->getString(), OS);
2130    OS << '"';
2131  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2132    SlotTracker SlotTable(N);
2133    TypePrinting TypePrinter;
2134    SlotTable.initialize();
2135    WriteMDNodes(OS, TypePrinter, SlotTable);
2136  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2137    SlotTracker SlotTable(N);
2138    TypePrinting TypePrinter;
2139    SlotTable.initialize();
2140    OS << "!" << N->getName() << " = !{";
2141    for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
2142      if (i) OS << ", ";
2143      MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
2144      if (MD)
2145        OS << '!' << SlotTable.getMetadataSlot(MD);
2146      else
2147        OS << "null";
2148    }
2149    OS << "}\n";
2150    WriteMDNodes(OS, TypePrinter, SlotTable);
2151  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2152    TypePrinting TypePrinter;
2153    TypePrinter.print(C->getType(), OS);
2154    OS << ' ';
2155    WriteConstantInt(OS, C, TypePrinter, 0);
2156  } else if (const Argument *A = dyn_cast<Argument>(this)) {
2157    WriteAsOperand(OS, this, true,
2158                   A->getParent() ? A->getParent()->getParent() : 0);
2159  } else if (isa<InlineAsm>(this)) {
2160    WriteAsOperand(OS, this, true, 0);
2161  } else {
2162    // Otherwise we don't know what it is. Call the virtual function to
2163    // allow a subclass to print itself.
2164    printCustom(OS);
2165  }
2166}
2167
2168// Value::printCustom - subclasses should override this to implement printing.
2169void Value::printCustom(raw_ostream &OS) const {
2170  llvm_unreachable("Unknown value to print out!");
2171}
2172
2173// Value::dump - allow easy printing of Values from the debugger.
2174void Value::dump() const { print(errs()); errs() << '\n'; }
2175
2176// Type::dump - allow easy printing of Types from the debugger.
2177// This one uses type names from the given context module
2178void Type::dump(const Module *Context) const {
2179  WriteTypeSymbolic(errs(), this, Context);
2180  errs() << '\n';
2181}
2182
2183// Type::dump - allow easy printing of Types from the debugger.
2184void Type::dump() const { dump(0); }
2185
2186// Module::dump() - Allow printing of Modules from the debugger.
2187void Module::dump() const { print(errs(), 0); }
2188