AsmWriter.cpp revision 8f410cac044a21a94afece41345ccd9b72047675
1//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=//
2//
3// This library implements the functionality defined in llvm/Assembly/Writer.h
4//
5// This library uses the Analysis library to figure out offsets for
6// variables in the method tables...
7//
8// TODO: print out the type name instead of the full type if a particular type
9//       is in the symbol table...
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Assembly/Writer.h"
14#include "llvm/Analysis/SlotCalculator.h"
15#include "llvm/Module.h"
16#include "llvm/Method.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/BasicBlock.h"
19#include "llvm/ConstPoolVals.h"
20#include "llvm/iOther.h"
21#include "llvm/iMemory.h"
22#include "llvm/iTerminators.h"
23#include "llvm/SymbolTable.h"
24#include "llvm/Support/STLExtras.h"
25#include "llvm/Support/StringExtras.h"
26#include <algorithm>
27#include <map>
28
29static const Module *getModuleFromVal(const Value *V) {
30  if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V))
31    return MA->getParent() ? MA->getParent()->getParent() : 0;
32  else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
33    return BB->getParent() ? BB->getParent()->getParent() : 0;
34  else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
35    const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
36    return M ? M->getParent() : 0;
37  } else if (const GlobalValue *GV =dyn_cast<const GlobalValue>(V))
38    return GV->getParent();
39  else if (const Module *Mod  = dyn_cast<const Module>(V))
40    return Mod;
41  return 0;
42}
43
44static SlotCalculator *createSlotCalculator(const Value *V) {
45  assert(!isa<Type>(V) && "Can't create an SC for a type!");
46  if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V)){
47    return new SlotCalculator(MA->getParent(), true);
48  } else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
49    return new SlotCalculator(I->getParent()->getParent(), true);
50  } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
51    return new SlotCalculator(BB->getParent(), true);
52  } else if (const GlobalVariable *GV =dyn_cast<const GlobalVariable>(V)){
53    return new SlotCalculator(GV->getParent(), true);
54  } else if (const Method *Meth = dyn_cast<const Method>(V)) {
55    return new SlotCalculator(Meth, true);
56  } else if (const Module *Mod  = dyn_cast<const Module>(V)) {
57    return new SlotCalculator(Mod, true);
58  }
59  return 0;
60}
61
62// WriteAsOperand - Write the name of the specified value out to the specified
63// ostream.  This can be useful when you just want to print int %reg126, not the
64// whole instruction that generated it.
65//
66static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
67                                   SlotCalculator *Table) {
68  if (PrintName && V->hasName()) {
69    Out << " %" << V->getName();
70  } else {
71    if (const ConstPoolVal *CPV = dyn_cast<const ConstPoolVal>(V)) {
72      Out << " " << CPV->getStrValue();
73    } else {
74      int Slot;
75      if (Table) {
76	Slot = Table->getValSlot(V);
77      } else {
78        if (const Type *Ty = dyn_cast<const Type>(V)) {
79          Out << " " << Ty->getDescription();
80          return;
81        }
82
83        Table = createSlotCalculator(V);
84        if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
85
86	Slot = Table->getValSlot(V);
87	delete Table;
88      }
89      if (Slot >= 0)  Out << " %" << Slot;
90      else if (PrintName)
91        Out << "<badref>";     // Not embeded into a location?
92    }
93  }
94}
95
96
97// If the module has a symbol table, take all global types and stuff their
98// names into the TypeNames map.
99//
100static void fillTypeNameTable(const Module *M,
101                              map<const Type *, string> &TypeNames) {
102  if (M && M->hasSymbolTable()) {
103    const SymbolTable *ST = M->getSymbolTable();
104    SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
105    if (PI != ST->end()) {
106      SymbolTable::type_const_iterator I = PI->second.begin();
107      for (; I != PI->second.end(); ++I) {
108        // As a heuristic, don't insert pointer to primitive types, because
109        // they are used too often to have a single useful name.
110        //
111        const Type *Ty = cast<const Type>(I->second);
112        if (!isa<PointerType>(Ty) ||
113            !cast<PointerType>(Ty)->getValueType()->isPrimitiveType())
114          TypeNames.insert(make_pair(Ty, "%"+I->first));
115      }
116    }
117  }
118}
119
120
121
122static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
123                           map<const Type *, string> &TypeNames) {
124  if (Ty->isPrimitiveType()) return Ty->getDescription();  // Base case
125
126  // Check to see if the type is named.
127  map<const Type *, string>::iterator I = TypeNames.find(Ty);
128  if (I != TypeNames.end()) return I->second;
129
130  // Check to see if the Type is already on the stack...
131  unsigned Slot = 0, CurSize = TypeStack.size();
132  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
133
134  // This is another base case for the recursion.  In this case, we know
135  // that we have looped back to a type that we have previously visited.
136  // Generate the appropriate upreference to handle this.
137  //
138  if (Slot < CurSize)
139    return "\\" + utostr(CurSize-Slot);       // Here's the upreference
140
141  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
142
143  string Result;
144  switch (Ty->getPrimitiveID()) {
145  case Type::MethodTyID: {
146    const MethodType *MTy = cast<const MethodType>(Ty);
147    Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " (";
148    for (MethodType::ParamTypes::const_iterator
149           I = MTy->getParamTypes().begin(),
150           E = MTy->getParamTypes().end(); I != E; ++I) {
151      if (I != MTy->getParamTypes().begin())
152        Result += ", ";
153      Result += calcTypeName(*I, TypeStack, TypeNames);
154    }
155    if (MTy->isVarArg()) {
156      if (!MTy->getParamTypes().empty()) Result += ", ";
157      Result += "...";
158    }
159    Result += ")";
160    break;
161  }
162  case Type::StructTyID: {
163    const StructType *STy = cast<const StructType>(Ty);
164    Result = "{ ";
165    for (StructType::ElementTypes::const_iterator
166           I = STy->getElementTypes().begin(),
167           E = STy->getElementTypes().end(); I != E; ++I) {
168      if (I != STy->getElementTypes().begin())
169        Result += ", ";
170      Result += calcTypeName(*I, TypeStack, TypeNames);
171    }
172    Result += " }";
173    break;
174  }
175  case Type::PointerTyID:
176    Result = calcTypeName(cast<const PointerType>(Ty)->getValueType(),
177                          TypeStack, TypeNames) + " *";
178    break;
179  case Type::ArrayTyID: {
180    const ArrayType *ATy = cast<const ArrayType>(Ty);
181    int NumElements = ATy->getNumElements();
182    Result = "[";
183    if (NumElements != -1) Result += itostr(NumElements) + " x ";
184    Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
185    break;
186  }
187  default:
188    assert(0 && "Unhandled case in getTypeProps!");
189    Result = "<error>";
190  }
191
192  TypeStack.pop_back();       // Remove self from stack...
193  return Result;
194}
195
196
197// printTypeInt - The internal guts of printing out a type that has a
198// potentially named portion.
199//
200static ostream &printTypeInt(ostream &Out, const Type *Ty,
201                             map<const Type *, string> &TypeNames) {
202  // Primitive types always print out their description, regardless of whether
203  // they have been named or not.
204  //
205  if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
206
207  // Check to see if the type is named.
208  map<const Type *, string>::iterator I = TypeNames.find(Ty);
209  if (I != TypeNames.end()) return Out << I->second;
210
211  // Otherwise we have a type that has not been named but is a derived type.
212  // Carefully recurse the type hierarchy to print out any contained symbolic
213  // names.
214  //
215  vector<const Type *> TypeStack;
216  string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
217  TypeNames.insert(make_pair(Ty, TypeName));   // Cache type name for later use
218  return Out << TypeName;
219}
220
221
222// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
223// type, iff there is an entry in the modules symbol table for the specified
224// type or one of it's component types.  This is slower than a simple x << Type;
225//
226ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
227  Out << " ";
228
229  // If they want us to print out a type, attempt to make it symbolic if there
230  // is a symbol table in the module...
231  if (M && M->hasSymbolTable()) {
232    map<const Type *, string> TypeNames;
233    fillTypeNameTable(M, TypeNames);
234
235    return printTypeInt(Out, Ty, TypeNames);
236  } else {
237    return Out << Ty->getDescription();
238  }
239}
240
241
242// WriteAsOperand - Write the name of the specified value out to the specified
243// ostream.  This can be useful when you just want to print int %reg126, not the
244// whole instruction that generated it.
245//
246ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
247			bool PrintName, SlotCalculator *Table) {
248  if (PrintType)
249    WriteTypeSymbolic(Out, V->getType(), getModuleFromVal(V));
250
251  WriteAsOperandInternal(Out, V, PrintName, Table);
252  return Out;
253}
254
255
256
257class AssemblyWriter {
258  ostream &Out;
259  SlotCalculator &Table;
260  const Module *TheModule;
261  map<const Type *, string> TypeNames;
262public:
263  inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
264    : Out(o), Table(Tab), TheModule(M) {
265
266    // If the module has a symbol table, take all global types and stuff their
267    // names into the TypeNames map.
268    //
269    fillTypeNameTable(M, TypeNames);
270  }
271
272  inline void write(const Module *M)         { printModule(M);      }
273  inline void write(const GlobalVariable *G) { printGlobal(G);      }
274  inline void write(const Method *M)         { printMethod(M);      }
275  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
276  inline void write(const Instruction *I)    { printInstruction(I); }
277  inline void write(const ConstPoolVal *CPV) { printConstant(CPV);  }
278
279private :
280  void printModule(const Module *M);
281  void printSymbolTable(const SymbolTable &ST);
282  void printConstant(const ConstPoolVal *CPV);
283  void printGlobal(const GlobalVariable *GV);
284  void printMethod(const Method *M);
285  void printMethodArgument(const MethodArgument *MA);
286  void printBasicBlock(const BasicBlock *BB);
287  void printInstruction(const Instruction *I);
288  ostream &printType(const Type *Ty);
289
290  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
291
292  // printInfoComment - Print a little comment after the instruction indicating
293  // which slot it occupies.
294  void printInfoComment(const Value *V);
295};
296
297
298void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
299				  bool PrintName) {
300  if (PrintType) { Out << " "; printType(Operand->getType()); }
301  WriteAsOperandInternal(Out, Operand, PrintName, &Table);
302}
303
304
305void AssemblyWriter::printModule(const Module *M) {
306  // Loop over the symbol table, emitting all named constants...
307  if (M->hasSymbolTable())
308    printSymbolTable(*M->getSymbolTable());
309
310  for_each(M->gbegin(), M->gend(),
311	   bind_obj(this, &AssemblyWriter::printGlobal));
312
313  Out << "implementation\n";
314
315  // Output all of the methods...
316  for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::printMethod));
317}
318
319void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
320  if (GV->hasName()) Out << "%" << GV->getName() << " = ";
321
322  if (!GV->hasInitializer()) Out << "uninitialized ";
323
324  Out << (GV->isConstant() ? "constant " : "global ");
325  printType(GV->getType()->getValueType());
326
327  if (GV->hasInitializer())
328    writeOperand(GV->getInitializer(), false, false);
329
330  printInfoComment(GV);
331  Out << endl;
332}
333
334
335// printSymbolTable - Run through symbol table looking for named constants
336// if a named constant is found, emit it's declaration...
337//
338void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
339  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
340    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
341    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
342
343    for (; I != End; ++I) {
344      const Value *V = I->second;
345      if (const ConstPoolVal *CPV = dyn_cast<const ConstPoolVal>(V)) {
346	printConstant(CPV);
347      } else if (const Type *Ty = dyn_cast<const Type>(V)) {
348	Out << "\t%" << I->first << " = type " << Ty->getDescription() << endl;
349      }
350    }
351  }
352}
353
354
355// printConstant - Print out a constant pool entry...
356//
357void AssemblyWriter::printConstant(const ConstPoolVal *CPV) {
358  // Don't print out unnamed constants, they will be inlined
359  if (!CPV->hasName()) return;
360
361  // Print out name...
362  Out << "\t%" << CPV->getName() << " = ";
363
364  // Print out the constant type...
365  printType(CPV->getType());
366
367  // Write the value out now...
368  writeOperand(CPV, false, false);
369
370  if (!CPV->hasName() && CPV->getType() != Type::VoidTy) {
371    int Slot = Table.getValSlot(CPV); // Print out the def slot taken...
372    Out << "\t\t; <";
373    printType(CPV->getType()) << ">:";
374    if (Slot >= 0) Out << Slot;
375    else Out << "<badref>";
376  }
377
378  Out << endl;
379}
380
381// printMethod - Print all aspects of a method.
382//
383void AssemblyWriter::printMethod(const Method *M) {
384  // Print out the return type and name...
385  Out << "\n" << (M->isExternal() ? "declare " : "");
386  printType(M->getReturnType()) << " \"" << M->getName() << "\"(";
387  Table.incorporateMethod(M);
388
389  // Loop over the arguments, printing them...
390  const MethodType *MT = cast<const MethodType>(M->getMethodType());
391
392  if (!M->isExternal()) {
393    for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
394	     bind_obj(this, &AssemblyWriter::printMethodArgument));
395  } else {
396    // Loop over the arguments, printing them...
397    const MethodType *MT = cast<const MethodType>(M->getMethodType());
398    for (MethodType::ParamTypes::const_iterator I = MT->getParamTypes().begin(),
399	   E = MT->getParamTypes().end(); I != E; ++I) {
400      if (I != MT->getParamTypes().begin()) Out << ", ";
401      printType(*I);
402    }
403  }
404
405  // Finish printing arguments...
406  if (MT->isVarArg()) {
407    if (MT->getParamTypes().size()) Out << ", ";
408    Out << "...";  // Output varargs portion of signature!
409  }
410  Out << ")\n";
411
412  if (!M->isExternal()) {
413    // Loop over the symbol table, emitting all named constants...
414    if (M->hasSymbolTable())
415      printSymbolTable(*M->getSymbolTable());
416
417    Out << "begin";
418
419    // Output all of its basic blocks... for the method
420    for_each(M->begin(), M->end(),
421	     bind_obj(this, &AssemblyWriter::printBasicBlock));
422
423    Out << "end\n";
424  }
425
426  Table.purgeMethod();
427}
428
429// printMethodArgument - This member is called for every argument that
430// is passed into the method.  Simply print it out
431//
432void AssemblyWriter::printMethodArgument(const MethodArgument *Arg) {
433  // Insert commas as we go... the first arg doesn't get a comma
434  if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";
435
436  // Output type...
437  printType(Arg->getType());
438
439  // Output name, if available...
440  if (Arg->hasName())
441    Out << " %" << Arg->getName();
442  else if (Table.getValSlot(Arg) < 0)
443    Out << "<badref>";
444}
445
446// printBasicBlock - This member is called for each basic block in a methd.
447//
448void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
449  if (BB->hasName()) {              // Print out the label if it exists...
450    Out << "\n" << BB->getName() << ":";
451  } else {
452    int Slot = Table.getValSlot(BB);
453    Out << "\n; <label>:";
454    if (Slot >= 0)
455      Out << Slot;         // Extra newline seperates out label's
456    else
457      Out << "<badref>";
458  }
459  Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]\n";  // Output # uses
460
461  // Output all of the instructions in the basic block...
462  for_each(BB->begin(), BB->end(),
463	   bind_obj(this, &AssemblyWriter::printInstruction));
464}
465
466
467// printInfoComment - Print a little comment after the instruction indicating
468// which slot it occupies.
469//
470void AssemblyWriter::printInfoComment(const Value *V) {
471  if (V->getType() != Type::VoidTy) {
472    Out << "\t\t; <";
473    printType(V->getType()) << ">";
474
475    if (!V->hasName()) {
476      int Slot = Table.getValSlot(V); // Print out the def slot taken...
477      if (Slot >= 0) Out << ":" << Slot;
478      else Out << ":<badref>";
479    }
480    Out << "\t[#uses=" << V->use_size() << "]";  // Output # uses
481  }
482}
483
484// printInstruction - This member is called for each Instruction in a methd.
485//
486void AssemblyWriter::printInstruction(const Instruction *I) {
487  Out << "\t";
488
489  // Print out name if it exists...
490  if (I && I->hasName())
491    Out << "%" << I->getName() << " = ";
492
493  // Print out the opcode...
494  Out << I->getOpcodeName();
495
496  // Print out the type of the operands...
497  const Value *Operand = I->getNumOperands() ? I->getOperand(0) : 0;
498
499  // Special case conditional branches to swizzle the condition out to the front
500  if (I->getOpcode() == Instruction::Br && I->getNumOperands() > 1) {
501    writeOperand(I->getOperand(2), true);
502    Out << ",";
503    writeOperand(Operand, true);
504    Out << ",";
505    writeOperand(I->getOperand(1), true);
506
507  } else if (I->getOpcode() == Instruction::Switch) {
508    // Special case switch statement to get formatting nice and correct...
509    writeOperand(Operand         , true); Out << ",";
510    writeOperand(I->getOperand(1), true); Out << " [";
511
512    for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
513      Out << "\n\t\t";
514      writeOperand(I->getOperand(op  ), true); Out << ",";
515      writeOperand(I->getOperand(op+1), true);
516    }
517    Out << "\n\t]";
518  } else if (isa<PHINode>(I)) {
519    Out << " ";
520    printType(I->getType());
521
522    for (unsigned op = 0, Eop = I->getNumOperands(); op < Eop; op += 2) {
523      if (op) Out << ", ";
524      Out << "[";
525      writeOperand(I->getOperand(op  ), false); Out << ",";
526      writeOperand(I->getOperand(op+1), false); Out << " ]";
527    }
528  } else if (isa<ReturnInst>(I) && !Operand) {
529    Out << " void";
530  } else if (isa<CallInst>(I)) {
531    // TODO: Should try to print out short form of the Call instruction
532    writeOperand(Operand, true);
533    Out << "(";
534    if (I->getNumOperands() > 1) writeOperand(I->getOperand(1), true);
535    for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
536      Out << ",";
537      writeOperand(I->getOperand(op), true);
538    }
539
540    Out << " )";
541  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
542    // TODO: Should try to print out short form of the Invoke instruction
543    writeOperand(Operand, true);
544    Out << "(";
545    if (I->getNumOperands() > 3) writeOperand(I->getOperand(3), true);
546    for (unsigned op = 4, Eop = I->getNumOperands(); op < Eop; ++op) {
547      Out << ",";
548      writeOperand(I->getOperand(op), true);
549    }
550
551    Out << " )\n\t\t\tto";
552    writeOperand(II->getNormalDest(), true);
553    Out << " except";
554    writeOperand(II->getExceptionalDest(), true);
555
556  } else if (I->getOpcode() == Instruction::Malloc ||
557	     I->getOpcode() == Instruction::Alloca) {
558    Out << " ";
559    printType(cast<const PointerType>(I->getType())->getValueType());
560    if (I->getNumOperands()) {
561      Out << ",";
562      writeOperand(I->getOperand(0), true);
563    }
564  } else if (isa<CastInst>(I)) {
565    writeOperand(Operand, true);
566    Out << " to ";
567    printType(I->getType());
568  } else if (Operand) {   // Print the normal way...
569
570    // PrintAllTypes - Instructions who have operands of all the same type
571    // omit the type from all but the first operand.  If the instruction has
572    // different type operands (for example br), then they are all printed.
573    bool PrintAllTypes = false;
574    const Type *TheType = Operand->getType();
575
576    for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
577      Operand = I->getOperand(i);
578      if (Operand->getType() != TheType) {
579	PrintAllTypes = true;       // We have differing types!  Print them all!
580	break;
581      }
582    }
583
584    // Shift Left & Right print both types even for Ubyte LHS
585    if (isa<ShiftInst>(I)) PrintAllTypes = true;
586
587    if (!PrintAllTypes) {
588      Out << " ";
589      printType(I->getOperand(0)->getType());
590    }
591
592    for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) {
593      if (i) Out << ",";
594      writeOperand(I->getOperand(i), PrintAllTypes);
595    }
596  }
597
598  printInfoComment(I);
599  Out << endl;
600}
601
602
603// printType - Go to extreme measures to attempt to print out a short, symbolic
604// version of a type name.
605//
606ostream &AssemblyWriter::printType(const Type *Ty) {
607  return printTypeInt(Out, Ty, TypeNames);
608}
609
610
611//===----------------------------------------------------------------------===//
612//                       External Interface declarations
613//===----------------------------------------------------------------------===//
614
615
616
617void WriteToAssembly(const Module *M, ostream &o) {
618  if (M == 0) { o << "<null> module\n"; return; }
619  SlotCalculator SlotTable(M, true);
620  AssemblyWriter W(o, SlotTable, M);
621
622  W.write(M);
623}
624
625void WriteToAssembly(const GlobalVariable *G, ostream &o) {
626  if (G == 0) { o << "<null> global variable\n"; return; }
627  SlotCalculator SlotTable(G->getParent(), true);
628  AssemblyWriter W(o, SlotTable, G->getParent());
629  W.write(G);
630}
631
632void WriteToAssembly(const Method *M, ostream &o) {
633  if (M == 0) { o << "<null> method\n"; return; }
634  SlotCalculator SlotTable(M->getParent(), true);
635  AssemblyWriter W(o, SlotTable, M->getParent());
636
637  W.write(M);
638}
639
640
641void WriteToAssembly(const BasicBlock *BB, ostream &o) {
642  if (BB == 0) { o << "<null> basic block\n"; return; }
643
644  SlotCalculator SlotTable(BB->getParent(), true);
645  AssemblyWriter W(o, SlotTable,
646                   BB->getParent() ? BB->getParent()->getParent() : 0);
647
648  W.write(BB);
649}
650
651void WriteToAssembly(const ConstPoolVal *CPV, ostream &o) {
652  if (CPV == 0) { o << "<null> constant pool value\n"; return; }
653  o << " " << CPV->getType()->getDescription() << " " << CPV->getStrValue();
654}
655
656void WriteToAssembly(const Instruction *I, ostream &o) {
657  if (I == 0) { o << "<null> instruction\n"; return; }
658
659  const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
660  SlotCalculator SlotTable(M, true);
661  AssemblyWriter W(o, SlotTable, M ? M->getParent() : 0);
662
663  W.write(I);
664}
665