AsmWriter.cpp revision 8fffff537194e2375e65600f27d716c99f0eb38a
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/Operator.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/Dwarf.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/FormattedStream.h"
38#include <algorithm>
39#include <cctype>
40#include <map>
41using namespace llvm;
42
43// Make virtual table appear in this compilation unit.
44AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
45
46//===----------------------------------------------------------------------===//
47// Helper Functions
48//===----------------------------------------------------------------------===//
49
50static const Module *getModuleFromVal(const Value *V) {
51  if (const Argument *MA = dyn_cast<Argument>(V))
52    return MA->getParent() ? MA->getParent()->getParent() : 0;
53
54  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55    return BB->getParent() ? BB->getParent()->getParent() : 0;
56
57  if (const Instruction *I = dyn_cast<Instruction>(V)) {
58    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59    return M ? M->getParent() : 0;
60  }
61
62  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63    return GV->getParent();
64  if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
65    return NMD->getParent();
66  return 0;
67}
68
69// PrintEscapedString - Print each character of the specified string, escaping
70// it if it is not printable or if it is an escape char.
71static void PrintEscapedString(const StringRef &Name,
72                               raw_ostream &Out) {
73  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
74    unsigned char C = Name[i];
75    if (isprint(C) && C != '\\' && C != '"')
76      Out << C;
77    else
78      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
79  }
80}
81
82enum PrefixType {
83  GlobalPrefix,
84  LabelPrefix,
85  LocalPrefix,
86  NoPrefix
87};
88
89/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
90/// prefixed with % (if the string only contains simple characters) or is
91/// surrounded with ""'s (if it has special chars in it).  Print it out.
92static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
93                          PrefixType Prefix) {
94  assert(Name.data() && "Cannot get empty name!");
95  switch (Prefix) {
96  default: llvm_unreachable("Bad prefix!");
97  case NoPrefix: break;
98  case GlobalPrefix: OS << '@'; break;
99  case LabelPrefix:  break;
100  case LocalPrefix:  OS << '%'; break;
101  }
102
103  // Scan the name to see if it needs quotes first.
104  bool NeedsQuotes = isdigit(Name[0]);
105  if (!NeedsQuotes) {
106    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
107      char C = Name[i];
108      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
109        NeedsQuotes = true;
110        break;
111      }
112    }
113  }
114
115  // If we didn't need any quotes, just write out the name in one blast.
116  if (!NeedsQuotes) {
117    OS << Name;
118    return;
119  }
120
121  // Okay, we need quotes.  Output the quotes and escape any scary characters as
122  // needed.
123  OS << '"';
124  PrintEscapedString(Name, OS);
125  OS << '"';
126}
127
128/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
129/// prefixed with % (if the string only contains simple characters) or is
130/// surrounded with ""'s (if it has special chars in it).  Print it out.
131static void PrintLLVMName(raw_ostream &OS, const Value *V) {
132  PrintLLVMName(OS, V->getName(),
133                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
134}
135
136//===----------------------------------------------------------------------===//
137// TypePrinting Class: Type printing machinery
138//===----------------------------------------------------------------------===//
139
140static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
141  return *static_cast<DenseMap<const Type *, std::string>*>(M);
142}
143
144void TypePrinting::clear() {
145  getTypeNamesMap(TypeNames).clear();
146}
147
148bool TypePrinting::hasTypeName(const Type *Ty) const {
149  return getTypeNamesMap(TypeNames).count(Ty);
150}
151
152void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
153  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
154}
155
156
157TypePrinting::TypePrinting() {
158  TypeNames = new DenseMap<const Type *, std::string>();
159}
160
161TypePrinting::~TypePrinting() {
162  delete &getTypeNamesMap(TypeNames);
163}
164
165/// CalcTypeName - Write the specified type to the specified raw_ostream, making
166/// use of type names or up references to shorten the type name where possible.
167void TypePrinting::CalcTypeName(const Type *Ty,
168                                SmallVectorImpl<const Type *> &TypeStack,
169                                raw_ostream &OS, bool IgnoreTopLevelName) {
170  // Check to see if the type is named.
171  if (!IgnoreTopLevelName) {
172    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
173    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
174    if (I != TM.end()) {
175      OS << I->second;
176      return;
177    }
178  }
179
180  // Check to see if the Type is already on the stack...
181  unsigned Slot = 0, CurSize = TypeStack.size();
182  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
183
184  // This is another base case for the recursion.  In this case, we know
185  // that we have looped back to a type that we have previously visited.
186  // Generate the appropriate upreference to handle this.
187  if (Slot < CurSize) {
188    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
189    return;
190  }
191
192  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
193
194  switch (Ty->getTypeID()) {
195  case Type::VoidTyID:      OS << "void"; break;
196  case Type::FloatTyID:     OS << "float"; break;
197  case Type::DoubleTyID:    OS << "double"; break;
198  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
199  case Type::FP128TyID:     OS << "fp128"; break;
200  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
201  case Type::LabelTyID:     OS << "label"; break;
202  case Type::MetadataTyID:  OS << "metadata"; break;
203  case Type::IntegerTyID:
204    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
205    break;
206
207  case Type::FunctionTyID: {
208    const FunctionType *FTy = cast<FunctionType>(Ty);
209    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
210    OS << " (";
211    for (FunctionType::param_iterator I = FTy->param_begin(),
212         E = FTy->param_end(); I != E; ++I) {
213      if (I != FTy->param_begin())
214        OS << ", ";
215      CalcTypeName(*I, TypeStack, OS);
216    }
217    if (FTy->isVarArg()) {
218      if (FTy->getNumParams()) OS << ", ";
219      OS << "...";
220    }
221    OS << ')';
222    break;
223  }
224  case Type::StructTyID: {
225    const StructType *STy = cast<StructType>(Ty);
226    if (STy->isPacked())
227      OS << '<';
228    OS << "{ ";
229    for (StructType::element_iterator I = STy->element_begin(),
230         E = STy->element_end(); I != E; ++I) {
231      CalcTypeName(*I, TypeStack, OS);
232      if (next(I) != STy->element_end())
233        OS << ',';
234      OS << ' ';
235    }
236    OS << '}';
237    if (STy->isPacked())
238      OS << '>';
239    break;
240  }
241  case Type::PointerTyID: {
242    const PointerType *PTy = cast<PointerType>(Ty);
243    CalcTypeName(PTy->getElementType(), TypeStack, OS);
244    if (unsigned AddressSpace = PTy->getAddressSpace())
245      OS << " addrspace(" << AddressSpace << ')';
246    OS << '*';
247    break;
248  }
249  case Type::ArrayTyID: {
250    const ArrayType *ATy = cast<ArrayType>(Ty);
251    OS << '[' << ATy->getNumElements() << " x ";
252    CalcTypeName(ATy->getElementType(), TypeStack, OS);
253    OS << ']';
254    break;
255  }
256  case Type::VectorTyID: {
257    const VectorType *PTy = cast<VectorType>(Ty);
258    OS << "<" << PTy->getNumElements() << " x ";
259    CalcTypeName(PTy->getElementType(), TypeStack, OS);
260    OS << '>';
261    break;
262  }
263  case Type::OpaqueTyID:
264    OS << "opaque";
265    break;
266  default:
267    OS << "<unrecognized-type>";
268    break;
269  }
270
271  TypeStack.pop_back();       // Remove self from stack.
272}
273
274/// printTypeInt - The internal guts of printing out a type that has a
275/// potentially named portion.
276///
277void TypePrinting::print(const Type *Ty, raw_ostream &OS,
278                         bool IgnoreTopLevelName) {
279  // Check to see if the type is named.
280  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
281  if (!IgnoreTopLevelName) {
282    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
283    if (I != TM.end()) {
284      OS << I->second;
285      return;
286    }
287  }
288
289  // Otherwise we have a type that has not been named but is a derived type.
290  // Carefully recurse the type hierarchy to print out any contained symbolic
291  // names.
292  SmallVector<const Type *, 16> TypeStack;
293  std::string TypeName;
294
295  raw_string_ostream TypeOS(TypeName);
296  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
297  OS << TypeOS.str();
298
299  // Cache type name for later use.
300  if (!IgnoreTopLevelName)
301    TM.insert(std::make_pair(Ty, TypeOS.str()));
302}
303
304namespace {
305  class TypeFinder {
306    // To avoid walking constant expressions multiple times and other IR
307    // objects, we keep several helper maps.
308    DenseSet<const Value*> VisitedConstants;
309    DenseSet<const Type*> VisitedTypes;
310
311    TypePrinting &TP;
312    std::vector<const Type*> &NumberedTypes;
313  public:
314    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
315      : TP(tp), NumberedTypes(numberedTypes) {}
316
317    void Run(const Module &M) {
318      // Get types from the type symbol table.  This gets opaque types referened
319      // only through derived named types.
320      const TypeSymbolTable &ST = M.getTypeSymbolTable();
321      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
322           TI != E; ++TI)
323        IncorporateType(TI->second);
324
325      // Get types from global variables.
326      for (Module::const_global_iterator I = M.global_begin(),
327           E = M.global_end(); I != E; ++I) {
328        IncorporateType(I->getType());
329        if (I->hasInitializer())
330          IncorporateValue(I->getInitializer());
331      }
332
333      // Get types from aliases.
334      for (Module::const_alias_iterator I = M.alias_begin(),
335           E = M.alias_end(); I != E; ++I) {
336        IncorporateType(I->getType());
337        IncorporateValue(I->getAliasee());
338      }
339
340      // Get types from functions.
341      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
342        IncorporateType(FI->getType());
343
344        for (Function::const_iterator BB = FI->begin(), E = FI->end();
345             BB != E;++BB)
346          for (BasicBlock::const_iterator II = BB->begin(),
347               E = BB->end(); II != E; ++II) {
348            const Instruction &I = *II;
349            // Incorporate the type of the instruction and all its operands.
350            IncorporateType(I.getType());
351            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
352                 OI != OE; ++OI)
353              IncorporateValue(*OI);
354          }
355      }
356    }
357
358  private:
359    void IncorporateType(const Type *Ty) {
360      // Check to see if we're already visited this type.
361      if (!VisitedTypes.insert(Ty).second)
362        return;
363
364      // If this is a structure or opaque type, add a name for the type.
365      if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
366            || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
367        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
368        NumberedTypes.push_back(Ty);
369      }
370
371      // Recursively walk all contained types.
372      for (Type::subtype_iterator I = Ty->subtype_begin(),
373           E = Ty->subtype_end(); I != E; ++I)
374        IncorporateType(*I);
375    }
376
377    /// IncorporateValue - This method is used to walk operand lists finding
378    /// types hiding in constant expressions and other operands that won't be
379    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
380    /// inst operands are all explicitly enumerated.
381    void IncorporateValue(const Value *V) {
382      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
383
384      // Already visited?
385      if (!VisitedConstants.insert(V).second)
386        return;
387
388      // Check this type.
389      IncorporateType(V->getType());
390
391      // Look in operands for types.
392      const Constant *C = cast<Constant>(V);
393      for (Constant::const_op_iterator I = C->op_begin(),
394           E = C->op_end(); I != E;++I)
395        IncorporateValue(*I);
396    }
397  };
398} // end anonymous namespace
399
400
401/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
402/// the specified module to the TypePrinter and all numbered types to it and the
403/// NumberedTypes table.
404static void AddModuleTypesToPrinter(TypePrinting &TP,
405                                    std::vector<const Type*> &NumberedTypes,
406                                    const Module *M) {
407  if (M == 0) return;
408
409  // If the module has a symbol table, take all global types and stuff their
410  // names into the TypeNames map.
411  const TypeSymbolTable &ST = M->getTypeSymbolTable();
412  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
413       TI != E; ++TI) {
414    const Type *Ty = cast<Type>(TI->second);
415
416    // As a heuristic, don't insert pointer to primitive types, because
417    // they are used too often to have a single useful name.
418    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
419      const Type *PETy = PTy->getElementType();
420      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
421          !isa<OpaqueType>(PETy))
422        continue;
423    }
424
425    // Likewise don't insert primitives either.
426    if (Ty->isInteger() || Ty->isPrimitiveType())
427      continue;
428
429    // Get the name as a string and insert it into TypeNames.
430    std::string NameStr;
431    raw_string_ostream NameROS(NameStr);
432    formatted_raw_ostream NameOS(NameROS);
433    PrintLLVMName(NameOS, TI->first, LocalPrefix);
434    NameOS.flush();
435    TP.addTypeName(Ty, NameStr);
436  }
437
438  // Walk the entire module to find references to unnamed structure and opaque
439  // types.  This is required for correctness by opaque types (because multiple
440  // uses of an unnamed opaque type needs to be referred to by the same ID) and
441  // it shrinks complex recursive structure types substantially in some cases.
442  TypeFinder(TP, NumberedTypes).Run(*M);
443}
444
445
446/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
447/// type, iff there is an entry in the modules symbol table for the specified
448/// type or one of it's component types.
449///
450void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
451  TypePrinting Printer;
452  std::vector<const Type*> NumberedTypes;
453  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
454  Printer.print(Ty, OS);
455}
456
457//===----------------------------------------------------------------------===//
458// SlotTracker Class: Enumerate slot numbers for unnamed values
459//===----------------------------------------------------------------------===//
460
461namespace {
462
463/// This class provides computation of slot numbers for LLVM Assembly writing.
464///
465class SlotTracker {
466public:
467  /// ValueMap - A mapping of Values to slot numbers.
468  typedef DenseMap<const Value*, unsigned> ValueMap;
469
470private:
471  /// TheModule - The module for which we are holding slot numbers.
472  const Module* TheModule;
473
474  /// TheFunction - The function for which we are holding slot numbers.
475  const Function* TheFunction;
476  bool FunctionProcessed;
477
478  /// mMap - The TypePlanes map for the module level data.
479  ValueMap mMap;
480  unsigned mNext;
481
482  /// fMap - The TypePlanes map for the function level data.
483  ValueMap fMap;
484  unsigned fNext;
485
486  /// mdnMap - Map for MDNodes.
487  DenseMap<const MDNode*, unsigned> mdnMap;
488  unsigned mdnNext;
489public:
490  /// Construct from a module
491  explicit SlotTracker(const Module *M);
492  /// Construct from a function, starting out in incorp state.
493  explicit SlotTracker(const Function *F);
494
495  /// Return the slot number of the specified value in it's type
496  /// plane.  If something is not in the SlotTracker, return -1.
497  int getLocalSlot(const Value *V);
498  int getGlobalSlot(const GlobalValue *V);
499  int getMetadataSlot(const MDNode *N);
500
501  /// If you'd like to deal with a function instead of just a module, use
502  /// this method to get its data into the SlotTracker.
503  void incorporateFunction(const Function *F) {
504    TheFunction = F;
505    FunctionProcessed = false;
506  }
507
508  /// After calling incorporateFunction, use this method to remove the
509  /// most recently incorporated function from the SlotTracker. This
510  /// will reset the state of the machine back to just the module contents.
511  void purgeFunction();
512
513  /// MDNode map iterators.
514  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
515  mdn_iterator mdn_begin() { return mdnMap.begin(); }
516  mdn_iterator mdn_end() { return mdnMap.end(); }
517  unsigned mdn_size() const { return mdnMap.size(); }
518  bool mdn_empty() const { return mdnMap.empty(); }
519
520  /// This function does the actual initialization.
521  inline void initialize();
522
523  // Implementation Details
524private:
525  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
526  void CreateModuleSlot(const GlobalValue *V);
527
528  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
529  void CreateMetadataSlot(const MDNode *N);
530
531  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
532  void CreateFunctionSlot(const Value *V);
533
534  /// Add all of the module level global variables (and their initializers)
535  /// and function declarations, but not the contents of those functions.
536  void processModule();
537
538  /// Add all of the functions arguments, basic blocks, and instructions.
539  void processFunction();
540
541  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
542  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
543};
544
545}  // end anonymous namespace
546
547
548static SlotTracker *createSlotTracker(const Value *V) {
549  if (const Argument *FA = dyn_cast<Argument>(V))
550    return new SlotTracker(FA->getParent());
551
552  if (const Instruction *I = dyn_cast<Instruction>(V))
553    return new SlotTracker(I->getParent()->getParent());
554
555  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
556    return new SlotTracker(BB->getParent());
557
558  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
559    return new SlotTracker(GV->getParent());
560
561  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
562    return new SlotTracker(GA->getParent());
563
564  if (const Function *Func = dyn_cast<Function>(V))
565    return new SlotTracker(Func);
566
567  if (isa<MDNode>(V))
568    return new SlotTracker((Function *)0);
569
570  return 0;
571}
572
573#if 0
574#define ST_DEBUG(X) dbgs() << X
575#else
576#define ST_DEBUG(X)
577#endif
578
579// Module level constructor. Causes the contents of the Module (sans functions)
580// to be added to the slot table.
581SlotTracker::SlotTracker(const Module *M)
582  : TheModule(M), TheFunction(0), FunctionProcessed(false),
583    mNext(0), fNext(0),  mdnNext(0) {
584}
585
586// Function level constructor. Causes the contents of the Module and the one
587// function provided to be added to the slot table.
588SlotTracker::SlotTracker(const Function *F)
589  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
590    mNext(0), fNext(0), mdnNext(0) {
591}
592
593inline void SlotTracker::initialize() {
594  if (TheModule) {
595    processModule();
596    TheModule = 0; ///< Prevent re-processing next time we're called.
597  }
598
599  if (TheFunction && !FunctionProcessed)
600    processFunction();
601}
602
603// Iterate through all the global variables, functions, and global
604// variable initializers and create slots for them.
605void SlotTracker::processModule() {
606  ST_DEBUG("begin processModule!\n");
607
608  // Add all of the unnamed global variables to the value table.
609  for (Module::const_global_iterator I = TheModule->global_begin(),
610         E = TheModule->global_end(); I != E; ++I) {
611    if (!I->hasName())
612      CreateModuleSlot(I);
613  }
614
615  // Add metadata used by named metadata.
616  for (Module::const_named_metadata_iterator
617         I = TheModule->named_metadata_begin(),
618         E = TheModule->named_metadata_end(); I != E; ++I) {
619    const NamedMDNode *NMD = I;
620    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
621      if (MDNode *MD = NMD->getOperand(i))
622        CreateMetadataSlot(MD);
623    }
624  }
625
626  // Add all the unnamed functions to the table.
627  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
628       I != E; ++I)
629    if (!I->hasName())
630      CreateModuleSlot(I);
631
632  ST_DEBUG("end processModule!\n");
633}
634
635// Process the arguments, basic blocks, and instructions  of a function.
636void SlotTracker::processFunction() {
637  ST_DEBUG("begin processFunction!\n");
638  fNext = 0;
639
640  // Add all the function arguments with no names.
641  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
642      AE = TheFunction->arg_end(); AI != AE; ++AI)
643    if (!AI->hasName())
644      CreateFunctionSlot(AI);
645
646  ST_DEBUG("Inserting Instructions:\n");
647
648  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
649
650  // Add all of the basic blocks and instructions with no names.
651  for (Function::const_iterator BB = TheFunction->begin(),
652       E = TheFunction->end(); BB != E; ++BB) {
653    if (!BB->hasName())
654      CreateFunctionSlot(BB);
655
656    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
657         ++I) {
658      if (!I->getType()->isVoidTy() && !I->hasName())
659        CreateFunctionSlot(I);
660
661      // Intrinsics can directly use metadata.
662      if (isa<IntrinsicInst>(I))
663        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
664          if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
665            CreateMetadataSlot(N);
666
667      // Process metadata attached with this instruction.
668      I->getAllMetadata(MDForInst);
669      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
670        CreateMetadataSlot(MDForInst[i].second);
671      MDForInst.clear();
672    }
673  }
674
675  FunctionProcessed = true;
676
677  ST_DEBUG("end processFunction!\n");
678}
679
680/// Clean up after incorporating a function. This is the only way to get out of
681/// the function incorporation state that affects get*Slot/Create*Slot. Function
682/// incorporation state is indicated by TheFunction != 0.
683void SlotTracker::purgeFunction() {
684  ST_DEBUG("begin purgeFunction!\n");
685  fMap.clear(); // Simply discard the function level map
686  TheFunction = 0;
687  FunctionProcessed = false;
688  ST_DEBUG("end purgeFunction!\n");
689}
690
691/// getGlobalSlot - Get the slot number of a global value.
692int SlotTracker::getGlobalSlot(const GlobalValue *V) {
693  // Check for uninitialized state and do lazy initialization.
694  initialize();
695
696  // Find the type plane in the module map
697  ValueMap::iterator MI = mMap.find(V);
698  return MI == mMap.end() ? -1 : (int)MI->second;
699}
700
701/// getMetadataSlot - Get the slot number of a MDNode.
702int SlotTracker::getMetadataSlot(const MDNode *N) {
703  // Check for uninitialized state and do lazy initialization.
704  initialize();
705
706  // Find the type plane in the module map
707  mdn_iterator MI = mdnMap.find(N);
708  return MI == mdnMap.end() ? -1 : (int)MI->second;
709}
710
711
712/// getLocalSlot - Get the slot number for a value that is local to a function.
713int SlotTracker::getLocalSlot(const Value *V) {
714  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
715
716  // Check for uninitialized state and do lazy initialization.
717  initialize();
718
719  ValueMap::iterator FI = fMap.find(V);
720  return FI == fMap.end() ? -1 : (int)FI->second;
721}
722
723
724/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
725void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
726  assert(V && "Can't insert a null Value into SlotTracker!");
727  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
728  assert(!V->hasName() && "Doesn't need a slot!");
729
730  unsigned DestSlot = mNext++;
731  mMap[V] = DestSlot;
732
733  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
734           DestSlot << " [");
735  // G = Global, F = Function, A = Alias, o = other
736  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
737            (isa<Function>(V) ? 'F' :
738             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
739}
740
741/// CreateSlot - Create a new slot for the specified value if it has no name.
742void SlotTracker::CreateFunctionSlot(const Value *V) {
743  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
744
745  unsigned DestSlot = fNext++;
746  fMap[V] = DestSlot;
747
748  // G = Global, F = Function, o = other
749  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
750           DestSlot << " [o]\n");
751}
752
753/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
754void SlotTracker::CreateMetadataSlot(const MDNode *N) {
755  assert(N && "Can't insert a null Value into SlotTracker!");
756
757  // Don't insert if N is a function-local metadata, these are always printed
758  // inline.
759  if (N->isFunctionLocal())
760    return;
761
762  mdn_iterator I = mdnMap.find(N);
763  if (I != mdnMap.end())
764    return;
765
766  unsigned DestSlot = mdnNext++;
767  mdnMap[N] = DestSlot;
768
769  // Recursively add any MDNodes referenced by operands.
770  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
771    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
772      CreateMetadataSlot(Op);
773}
774
775//===----------------------------------------------------------------------===//
776// AsmWriter Implementation
777//===----------------------------------------------------------------------===//
778
779static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
780                                   TypePrinting *TypePrinter,
781                                   SlotTracker *Machine);
782
783
784
785static const char *getPredicateText(unsigned predicate) {
786  const char * pred = "unknown";
787  switch (predicate) {
788  case FCmpInst::FCMP_FALSE: pred = "false"; break;
789  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
790  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
791  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
792  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
793  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
794  case FCmpInst::FCMP_ONE:   pred = "one"; break;
795  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
796  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
797  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
798  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
799  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
800  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
801  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
802  case FCmpInst::FCMP_UNE:   pred = "une"; break;
803  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
804  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
805  case ICmpInst::ICMP_NE:    pred = "ne"; break;
806  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
807  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
808  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
809  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
810  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
811  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
812  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
813  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
814  }
815  return pred;
816}
817
818
819static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
820  if (const OverflowingBinaryOperator *OBO =
821        dyn_cast<OverflowingBinaryOperator>(U)) {
822    if (OBO->hasNoUnsignedWrap())
823      Out << " nuw";
824    if (OBO->hasNoSignedWrap())
825      Out << " nsw";
826  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
827    if (Div->isExact())
828      Out << " exact";
829  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
830    if (GEP->isInBounds())
831      Out << " inbounds";
832  }
833}
834
835static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
836                             TypePrinting &TypePrinter, SlotTracker *Machine) {
837  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
838    if (CI->getType()->isInteger(1)) {
839      Out << (CI->getZExtValue() ? "true" : "false");
840      return;
841    }
842    Out << CI->getValue();
843    return;
844  }
845
846  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
847    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
848        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
849      // We would like to output the FP constant value in exponential notation,
850      // but we cannot do this if doing so will lose precision.  Check here to
851      // make sure that we only output it in exponential format if we can parse
852      // the value back and get the same value.
853      //
854      bool ignored;
855      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
856      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
857                              CFP->getValueAPF().convertToFloat();
858      std::string StrVal = ftostr(CFP->getValueAPF());
859
860      // Check to make sure that the stringized number is not some string like
861      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
862      // that the string matches the "[-+]?[0-9]" regex.
863      //
864      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
865          ((StrVal[0] == '-' || StrVal[0] == '+') &&
866           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
867        // Reparse stringized version!
868        if (atof(StrVal.c_str()) == Val) {
869          Out << StrVal;
870          return;
871        }
872      }
873      // Otherwise we could not reparse it to exactly the same value, so we must
874      // output the string in hexadecimal format!  Note that loading and storing
875      // floating point types changes the bits of NaNs on some hosts, notably
876      // x86, so we must not use these types.
877      assert(sizeof(double) == sizeof(uint64_t) &&
878             "assuming that double is 64 bits!");
879      char Buffer[40];
880      APFloat apf = CFP->getValueAPF();
881      // Floats are represented in ASCII IR as double, convert.
882      if (!isDouble)
883        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
884                          &ignored);
885      Out << "0x" <<
886              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
887                            Buffer+40);
888      return;
889    }
890
891    // Some form of long double.  These appear as a magic letter identifying
892    // the type, then a fixed number of hex digits.
893    Out << "0x";
894    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
895      Out << 'K';
896      // api needed to prevent premature destruction
897      APInt api = CFP->getValueAPF().bitcastToAPInt();
898      const uint64_t* p = api.getRawData();
899      uint64_t word = p[1];
900      int shiftcount=12;
901      int width = api.getBitWidth();
902      for (int j=0; j<width; j+=4, shiftcount-=4) {
903        unsigned int nibble = (word>>shiftcount) & 15;
904        if (nibble < 10)
905          Out << (unsigned char)(nibble + '0');
906        else
907          Out << (unsigned char)(nibble - 10 + 'A');
908        if (shiftcount == 0 && j+4 < width) {
909          word = *p;
910          shiftcount = 64;
911          if (width-j-4 < 64)
912            shiftcount = width-j-4;
913        }
914      }
915      return;
916    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
917      Out << 'L';
918    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
919      Out << 'M';
920    else
921      llvm_unreachable("Unsupported floating point type");
922    // api needed to prevent premature destruction
923    APInt api = CFP->getValueAPF().bitcastToAPInt();
924    const uint64_t* p = api.getRawData();
925    uint64_t word = *p;
926    int shiftcount=60;
927    int width = api.getBitWidth();
928    for (int j=0; j<width; j+=4, shiftcount-=4) {
929      unsigned int nibble = (word>>shiftcount) & 15;
930      if (nibble < 10)
931        Out << (unsigned char)(nibble + '0');
932      else
933        Out << (unsigned char)(nibble - 10 + 'A');
934      if (shiftcount == 0 && j+4 < width) {
935        word = *(++p);
936        shiftcount = 64;
937        if (width-j-4 < 64)
938          shiftcount = width-j-4;
939      }
940    }
941    return;
942  }
943
944  if (isa<ConstantAggregateZero>(CV)) {
945    Out << "zeroinitializer";
946    return;
947  }
948
949  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
950    Out << "blockaddress(";
951    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
952    Out << ", ";
953    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
954    Out << ")";
955    return;
956  }
957
958  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
959    // As a special case, print the array as a string if it is an array of
960    // i8 with ConstantInt values.
961    //
962    const Type *ETy = CA->getType()->getElementType();
963    if (CA->isString()) {
964      Out << "c\"";
965      PrintEscapedString(CA->getAsString(), Out);
966      Out << '"';
967    } else {                // Cannot output in string format...
968      Out << '[';
969      if (CA->getNumOperands()) {
970        TypePrinter.print(ETy, Out);
971        Out << ' ';
972        WriteAsOperandInternal(Out, CA->getOperand(0),
973                               &TypePrinter, Machine);
974        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
975          Out << ", ";
976          TypePrinter.print(ETy, Out);
977          Out << ' ';
978          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
979        }
980      }
981      Out << ']';
982    }
983    return;
984  }
985
986  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
987    if (CS->getType()->isPacked())
988      Out << '<';
989    Out << '{';
990    unsigned N = CS->getNumOperands();
991    if (N) {
992      Out << ' ';
993      TypePrinter.print(CS->getOperand(0)->getType(), Out);
994      Out << ' ';
995
996      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
997
998      for (unsigned i = 1; i < N; i++) {
999        Out << ", ";
1000        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1001        Out << ' ';
1002
1003        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1004      }
1005      Out << ' ';
1006    }
1007
1008    Out << '}';
1009    if (CS->getType()->isPacked())
1010      Out << '>';
1011    return;
1012  }
1013
1014  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1015    const Type *ETy = CP->getType()->getElementType();
1016    assert(CP->getNumOperands() > 0 &&
1017           "Number of operands for a PackedConst must be > 0");
1018    Out << '<';
1019    TypePrinter.print(ETy, Out);
1020    Out << ' ';
1021    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1022    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1023      Out << ", ";
1024      TypePrinter.print(ETy, Out);
1025      Out << ' ';
1026      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1027    }
1028    Out << '>';
1029    return;
1030  }
1031
1032  if (isa<ConstantPointerNull>(CV)) {
1033    Out << "null";
1034    return;
1035  }
1036
1037  if (isa<UndefValue>(CV)) {
1038    Out << "undef";
1039    return;
1040  }
1041
1042  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1043    Out << "!" << Machine->getMetadataSlot(Node);
1044    return;
1045  }
1046
1047  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1048    Out << CE->getOpcodeName();
1049    WriteOptimizationInfo(Out, CE);
1050    if (CE->isCompare())
1051      Out << ' ' << getPredicateText(CE->getPredicate());
1052    Out << " (";
1053
1054    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1055      TypePrinter.print((*OI)->getType(), Out);
1056      Out << ' ';
1057      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1058      if (OI+1 != CE->op_end())
1059        Out << ", ";
1060    }
1061
1062    if (CE->hasIndices()) {
1063      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1064      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1065        Out << ", " << Indices[i];
1066    }
1067
1068    if (CE->isCast()) {
1069      Out << " to ";
1070      TypePrinter.print(CE->getType(), Out);
1071    }
1072
1073    Out << ')';
1074    return;
1075  }
1076
1077  Out << "<placeholder or erroneous Constant>";
1078}
1079
1080static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1081                                    TypePrinting *TypePrinter,
1082                                    SlotTracker *Machine) {
1083  Out << "!{";
1084  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1085    const Value *V = Node->getOperand(mi);
1086    if (V == 0)
1087      Out << "null";
1088    else {
1089      TypePrinter->print(V->getType(), Out);
1090      Out << ' ';
1091      WriteAsOperandInternal(Out, Node->getOperand(mi),
1092                             TypePrinter, Machine);
1093    }
1094    if (mi + 1 != me)
1095      Out << ", ";
1096  }
1097
1098  Out << "}";
1099}
1100
1101
1102/// WriteAsOperand - Write the name of the specified value out to the specified
1103/// ostream.  This can be useful when you just want to print int %reg126, not
1104/// the whole instruction that generated it.
1105///
1106static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1107                                   TypePrinting *TypePrinter,
1108                                   SlotTracker *Machine) {
1109  if (V->hasName()) {
1110    PrintLLVMName(Out, V);
1111    return;
1112  }
1113
1114  const Constant *CV = dyn_cast<Constant>(V);
1115  if (CV && !isa<GlobalValue>(CV)) {
1116    assert(TypePrinter && "Constants require TypePrinting!");
1117    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1118    return;
1119  }
1120
1121  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1122    Out << "asm ";
1123    if (IA->hasSideEffects())
1124      Out << "sideeffect ";
1125    if (IA->isAlignStack())
1126      Out << "alignstack ";
1127    Out << '"';
1128    PrintEscapedString(IA->getAsmString(), Out);
1129    Out << "\", \"";
1130    PrintEscapedString(IA->getConstraintString(), Out);
1131    Out << '"';
1132    return;
1133  }
1134
1135  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1136    if (N->isFunctionLocal()) {
1137      // Print metadata inline, not via slot reference number.
1138      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine);
1139      return;
1140    }
1141
1142    if (!Machine)
1143      Machine = createSlotTracker(V);
1144    Out << '!' << Machine->getMetadataSlot(N);
1145    return;
1146  }
1147
1148  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1149    Out << "!\"";
1150    PrintEscapedString(MDS->getString(), Out);
1151    Out << '"';
1152    return;
1153  }
1154
1155  if (V->getValueID() == Value::PseudoSourceValueVal ||
1156      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1157    V->print(Out);
1158    return;
1159  }
1160
1161  char Prefix = '%';
1162  int Slot;
1163  if (Machine) {
1164    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1165      Slot = Machine->getGlobalSlot(GV);
1166      Prefix = '@';
1167    } else {
1168      Slot = Machine->getLocalSlot(V);
1169    }
1170  } else {
1171    Machine = createSlotTracker(V);
1172    if (Machine) {
1173      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1174        Slot = Machine->getGlobalSlot(GV);
1175        Prefix = '@';
1176      } else {
1177        Slot = Machine->getLocalSlot(V);
1178      }
1179      delete Machine;
1180    } else {
1181      Slot = -1;
1182    }
1183  }
1184
1185  if (Slot != -1)
1186    Out << Prefix << Slot;
1187  else
1188    Out << "<badref>";
1189}
1190
1191void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1192                          bool PrintType, const Module *Context) {
1193
1194  // Fast path: Don't construct and populate a TypePrinting object if we
1195  // won't be needing any types printed.
1196  if (!PrintType &&
1197      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1198    WriteAsOperandInternal(Out, V, 0, 0);
1199    return;
1200  }
1201
1202  if (Context == 0) Context = getModuleFromVal(V);
1203
1204  TypePrinting TypePrinter;
1205  std::vector<const Type*> NumberedTypes;
1206  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1207  if (PrintType) {
1208    TypePrinter.print(V->getType(), Out);
1209    Out << ' ';
1210  }
1211
1212  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1213}
1214
1215namespace {
1216
1217class AssemblyWriter {
1218  formatted_raw_ostream &Out;
1219  SlotTracker &Machine;
1220  const Module *TheModule;
1221  TypePrinting TypePrinter;
1222  AssemblyAnnotationWriter *AnnotationWriter;
1223  std::vector<const Type*> NumberedTypes;
1224  SmallVector<StringRef, 8> MDNames;
1225
1226public:
1227  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1228                        const Module *M,
1229                        AssemblyAnnotationWriter *AAW)
1230    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1231    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1232    if (M)
1233      M->getMDKindNames(MDNames);
1234  }
1235
1236  void printMDNodeBody(const MDNode *MD);
1237  void printNamedMDNode(const NamedMDNode *NMD);
1238
1239  void printModule(const Module *M);
1240
1241  void writeOperand(const Value *Op, bool PrintType);
1242  void writeParamOperand(const Value *Operand, Attributes Attrs);
1243
1244  void writeAllMDNodes();
1245
1246  void printTypeSymbolTable(const TypeSymbolTable &ST);
1247  void printGlobal(const GlobalVariable *GV);
1248  void printAlias(const GlobalAlias *GV);
1249  void printFunction(const Function *F);
1250  void printArgument(const Argument *FA, Attributes Attrs);
1251  void printBasicBlock(const BasicBlock *BB);
1252  void printInstruction(const Instruction &I);
1253private:
1254
1255  // printInfoComment - Print a little comment after the instruction indicating
1256  // which slot it occupies.
1257  void printInfoComment(const Value &V);
1258};
1259}  // end of anonymous namespace
1260
1261
1262void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1263  if (Operand == 0) {
1264    Out << "<null operand!>";
1265    return;
1266  }
1267  if (PrintType) {
1268    TypePrinter.print(Operand->getType(), Out);
1269    Out << ' ';
1270  }
1271  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1272}
1273
1274void AssemblyWriter::writeParamOperand(const Value *Operand,
1275                                       Attributes Attrs) {
1276  if (Operand == 0) {
1277    Out << "<null operand!>";
1278    return;
1279  }
1280
1281  // Print the type
1282  TypePrinter.print(Operand->getType(), Out);
1283  // Print parameter attributes list
1284  if (Attrs != Attribute::None)
1285    Out << ' ' << Attribute::getAsString(Attrs);
1286  Out << ' ';
1287  // Print the operand
1288  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1289}
1290
1291void AssemblyWriter::printModule(const Module *M) {
1292  if (!M->getModuleIdentifier().empty() &&
1293      // Don't print the ID if it will start a new line (which would
1294      // require a comment char before it).
1295      M->getModuleIdentifier().find('\n') == std::string::npos)
1296    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1297
1298  if (!M->getDataLayout().empty())
1299    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1300  if (!M->getTargetTriple().empty())
1301    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1302
1303  if (!M->getModuleInlineAsm().empty()) {
1304    // Split the string into lines, to make it easier to read the .ll file.
1305    std::string Asm = M->getModuleInlineAsm();
1306    size_t CurPos = 0;
1307    size_t NewLine = Asm.find_first_of('\n', CurPos);
1308    Out << '\n';
1309    while (NewLine != std::string::npos) {
1310      // We found a newline, print the portion of the asm string from the
1311      // last newline up to this newline.
1312      Out << "module asm \"";
1313      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1314                         Out);
1315      Out << "\"\n";
1316      CurPos = NewLine+1;
1317      NewLine = Asm.find_first_of('\n', CurPos);
1318    }
1319    Out << "module asm \"";
1320    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1321    Out << "\"\n";
1322  }
1323
1324  // Loop over the dependent libraries and emit them.
1325  Module::lib_iterator LI = M->lib_begin();
1326  Module::lib_iterator LE = M->lib_end();
1327  if (LI != LE) {
1328    Out << '\n';
1329    Out << "deplibs = [ ";
1330    while (LI != LE) {
1331      Out << '"' << *LI << '"';
1332      ++LI;
1333      if (LI != LE)
1334        Out << ", ";
1335    }
1336    Out << " ]";
1337  }
1338
1339  // Loop over the symbol table, emitting all id'd types.
1340  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1341  printTypeSymbolTable(M->getTypeSymbolTable());
1342
1343  // Output all globals.
1344  if (!M->global_empty()) Out << '\n';
1345  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1346       I != E; ++I)
1347    printGlobal(I);
1348
1349  // Output all aliases.
1350  if (!M->alias_empty()) Out << "\n";
1351  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1352       I != E; ++I)
1353    printAlias(I);
1354
1355  // Output all of the functions.
1356  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1357    printFunction(I);
1358
1359  // Output named metadata.
1360  if (!M->named_metadata_empty()) Out << '\n';
1361
1362  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1363       E = M->named_metadata_end(); I != E; ++I)
1364    printNamedMDNode(I);
1365
1366  // Output metadata.
1367  if (!Machine.mdn_empty()) {
1368    Out << '\n';
1369    writeAllMDNodes();
1370  }
1371}
1372
1373void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1374  Out << "!" << NMD->getName() << " = !{";
1375  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1376    if (i) Out << ", ";
1377    if (MDNode *MD = NMD->getOperand(i))
1378      Out << '!' << Machine.getMetadataSlot(MD);
1379    else
1380      Out << "null";
1381  }
1382  Out << "}\n";
1383}
1384
1385
1386static void PrintLinkage(GlobalValue::LinkageTypes LT,
1387                         formatted_raw_ostream &Out) {
1388  switch (LT) {
1389  case GlobalValue::ExternalLinkage: break;
1390  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1391  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1392  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1393  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1394  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1395  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1396  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1397  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1398  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1399  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1400  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1401  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1402  case GlobalValue::AvailableExternallyLinkage:
1403    Out << "available_externally ";
1404    break;
1405    // This is invalid syntax and just a debugging aid.
1406  case GlobalValue::GhostLinkage:	  Out << "ghost ";	    break;
1407  }
1408}
1409
1410
1411static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1412                            formatted_raw_ostream &Out) {
1413  switch (Vis) {
1414  case GlobalValue::DefaultVisibility: break;
1415  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1416  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1417  }
1418}
1419
1420void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1421  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1422  Out << " = ";
1423
1424  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1425    Out << "external ";
1426
1427  PrintLinkage(GV->getLinkage(), Out);
1428  PrintVisibility(GV->getVisibility(), Out);
1429
1430  if (GV->isThreadLocal()) Out << "thread_local ";
1431  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1432    Out << "addrspace(" << AddressSpace << ") ";
1433  Out << (GV->isConstant() ? "constant " : "global ");
1434  TypePrinter.print(GV->getType()->getElementType(), Out);
1435
1436  if (GV->hasInitializer()) {
1437    Out << ' ';
1438    writeOperand(GV->getInitializer(), false);
1439  }
1440
1441  if (GV->hasSection())
1442    Out << ", section \"" << GV->getSection() << '"';
1443  if (GV->getAlignment())
1444    Out << ", align " << GV->getAlignment();
1445
1446  printInfoComment(*GV);
1447  Out << '\n';
1448}
1449
1450void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1451  // Don't crash when dumping partially built GA
1452  if (!GA->hasName())
1453    Out << "<<nameless>> = ";
1454  else {
1455    PrintLLVMName(Out, GA);
1456    Out << " = ";
1457  }
1458  PrintVisibility(GA->getVisibility(), Out);
1459
1460  Out << "alias ";
1461
1462  PrintLinkage(GA->getLinkage(), Out);
1463
1464  const Constant *Aliasee = GA->getAliasee();
1465
1466  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1467    TypePrinter.print(GV->getType(), Out);
1468    Out << ' ';
1469    PrintLLVMName(Out, GV);
1470  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1471    TypePrinter.print(F->getFunctionType(), Out);
1472    Out << "* ";
1473
1474    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1475  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1476    TypePrinter.print(GA->getType(), Out);
1477    Out << ' ';
1478    PrintLLVMName(Out, GA);
1479  } else {
1480    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1481    // The only valid GEP is an all zero GEP.
1482    assert((CE->getOpcode() == Instruction::BitCast ||
1483            CE->getOpcode() == Instruction::GetElementPtr) &&
1484           "Unsupported aliasee");
1485    writeOperand(CE, false);
1486  }
1487
1488  printInfoComment(*GA);
1489  Out << '\n';
1490}
1491
1492void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1493  // Emit all numbered types.
1494  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1495    Out << '%' << i << " = type ";
1496
1497    // Make sure we print out at least one level of the type structure, so
1498    // that we do not get %2 = type %2
1499    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1500    Out << '\n';
1501  }
1502
1503  // Print the named types.
1504  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1505       TI != TE; ++TI) {
1506    PrintLLVMName(Out, TI->first, LocalPrefix);
1507    Out << " = type ";
1508
1509    // Make sure we print out at least one level of the type structure, so
1510    // that we do not get %FILE = type %FILE
1511    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1512    Out << '\n';
1513  }
1514}
1515
1516/// printFunction - Print all aspects of a function.
1517///
1518void AssemblyWriter::printFunction(const Function *F) {
1519  // Print out the return type and name.
1520  Out << '\n';
1521
1522  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1523
1524  if (F->isDeclaration())
1525    Out << "declare ";
1526  else
1527    Out << "define ";
1528
1529  PrintLinkage(F->getLinkage(), Out);
1530  PrintVisibility(F->getVisibility(), Out);
1531
1532  // Print the calling convention.
1533  switch (F->getCallingConv()) {
1534  case CallingConv::C: break;   // default
1535  case CallingConv::Fast:         Out << "fastcc "; break;
1536  case CallingConv::Cold:         Out << "coldcc "; break;
1537  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1538  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1539  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1540  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1541  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1542  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1543  default: Out << "cc" << F->getCallingConv() << " "; break;
1544  }
1545
1546  const FunctionType *FT = F->getFunctionType();
1547  const AttrListPtr &Attrs = F->getAttributes();
1548  Attributes RetAttrs = Attrs.getRetAttributes();
1549  if (RetAttrs != Attribute::None)
1550    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1551  TypePrinter.print(F->getReturnType(), Out);
1552  Out << ' ';
1553  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1554  Out << '(';
1555  Machine.incorporateFunction(F);
1556
1557  // Loop over the arguments, printing them...
1558
1559  unsigned Idx = 1;
1560  if (!F->isDeclaration()) {
1561    // If this isn't a declaration, print the argument names as well.
1562    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1563         I != E; ++I) {
1564      // Insert commas as we go... the first arg doesn't get a comma
1565      if (I != F->arg_begin()) Out << ", ";
1566      printArgument(I, Attrs.getParamAttributes(Idx));
1567      Idx++;
1568    }
1569  } else {
1570    // Otherwise, print the types from the function type.
1571    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1572      // Insert commas as we go... the first arg doesn't get a comma
1573      if (i) Out << ", ";
1574
1575      // Output type...
1576      TypePrinter.print(FT->getParamType(i), Out);
1577
1578      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1579      if (ArgAttrs != Attribute::None)
1580        Out << ' ' << Attribute::getAsString(ArgAttrs);
1581    }
1582  }
1583
1584  // Finish printing arguments...
1585  if (FT->isVarArg()) {
1586    if (FT->getNumParams()) Out << ", ";
1587    Out << "...";  // Output varargs portion of signature!
1588  }
1589  Out << ')';
1590  Attributes FnAttrs = Attrs.getFnAttributes();
1591  if (FnAttrs != Attribute::None)
1592    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1593  if (F->hasSection())
1594    Out << " section \"" << F->getSection() << '"';
1595  if (F->getAlignment())
1596    Out << " align " << F->getAlignment();
1597  if (F->hasGC())
1598    Out << " gc \"" << F->getGC() << '"';
1599  if (F->isDeclaration()) {
1600    Out << "\n";
1601  } else {
1602    Out << " {";
1603
1604    // Output all of its basic blocks... for the function
1605    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1606      printBasicBlock(I);
1607
1608    Out << "}\n";
1609  }
1610
1611  Machine.purgeFunction();
1612}
1613
1614/// printArgument - This member is called for every argument that is passed into
1615/// the function.  Simply print it out
1616///
1617void AssemblyWriter::printArgument(const Argument *Arg,
1618                                   Attributes Attrs) {
1619  // Output type...
1620  TypePrinter.print(Arg->getType(), Out);
1621
1622  // Output parameter attributes list
1623  if (Attrs != Attribute::None)
1624    Out << ' ' << Attribute::getAsString(Attrs);
1625
1626  // Output name, if available...
1627  if (Arg->hasName()) {
1628    Out << ' ';
1629    PrintLLVMName(Out, Arg);
1630  }
1631}
1632
1633/// printBasicBlock - This member is called for each basic block in a method.
1634///
1635void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1636  if (BB->hasName()) {              // Print out the label if it exists...
1637    Out << "\n";
1638    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1639    Out << ':';
1640  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1641    Out << "\n; <label>:";
1642    int Slot = Machine.getLocalSlot(BB);
1643    if (Slot != -1)
1644      Out << Slot;
1645    else
1646      Out << "<badref>";
1647  }
1648
1649  if (BB->getParent() == 0) {
1650    Out.PadToColumn(50);
1651    Out << "; Error: Block without parent!";
1652  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1653    // Output predecessors for the block...
1654    Out.PadToColumn(50);
1655    Out << ";";
1656    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1657
1658    if (PI == PE) {
1659      Out << " No predecessors!";
1660    } else {
1661      Out << " preds = ";
1662      writeOperand(*PI, false);
1663      for (++PI; PI != PE; ++PI) {
1664        Out << ", ";
1665        writeOperand(*PI, false);
1666      }
1667    }
1668  }
1669
1670  Out << "\n";
1671
1672  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1673
1674  // Output all of the instructions in the basic block...
1675  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1676    printInstruction(*I);
1677    Out << '\n';
1678  }
1679
1680  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1681}
1682
1683
1684/// printInfoComment - Print a little comment after the instruction indicating
1685/// which slot it occupies.
1686///
1687void AssemblyWriter::printInfoComment(const Value &V) {
1688  if (V.getType()->isVoidTy()) return;
1689
1690  Out.PadToColumn(50);
1691  Out << "; <";
1692  TypePrinter.print(V.getType(), Out);
1693  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1694}
1695
1696// This member is called for each Instruction in a function..
1697void AssemblyWriter::printInstruction(const Instruction &I) {
1698  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1699
1700  // Print out indentation for an instruction.
1701  Out << "  ";
1702
1703  // Print out name if it exists...
1704  if (I.hasName()) {
1705    PrintLLVMName(Out, &I);
1706    Out << " = ";
1707  } else if (!I.getType()->isVoidTy()) {
1708    // Print out the def slot taken.
1709    int SlotNum = Machine.getLocalSlot(&I);
1710    if (SlotNum == -1)
1711      Out << "<badref> = ";
1712    else
1713      Out << '%' << SlotNum << " = ";
1714  }
1715
1716  // If this is a volatile load or store, print out the volatile marker.
1717  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1718      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1719      Out << "volatile ";
1720  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1721    // If this is a call, check if it's a tail call.
1722    Out << "tail ";
1723  }
1724
1725  // Print out the opcode...
1726  Out << I.getOpcodeName();
1727
1728  // Print out optimization information.
1729  WriteOptimizationInfo(Out, &I);
1730
1731  // Print out the compare instruction predicates
1732  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1733    Out << ' ' << getPredicateText(CI->getPredicate());
1734
1735  // Print out the type of the operands...
1736  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1737
1738  // Special case conditional branches to swizzle the condition out to the front
1739  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1740    BranchInst &BI(cast<BranchInst>(I));
1741    Out << ' ';
1742    writeOperand(BI.getCondition(), true);
1743    Out << ", ";
1744    writeOperand(BI.getSuccessor(0), true);
1745    Out << ", ";
1746    writeOperand(BI.getSuccessor(1), true);
1747
1748  } else if (isa<SwitchInst>(I)) {
1749    // Special case switch instruction to get formatting nice and correct.
1750    Out << ' ';
1751    writeOperand(Operand        , true);
1752    Out << ", ";
1753    writeOperand(I.getOperand(1), true);
1754    Out << " [";
1755
1756    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1757      Out << "\n    ";
1758      writeOperand(I.getOperand(op  ), true);
1759      Out << ", ";
1760      writeOperand(I.getOperand(op+1), true);
1761    }
1762    Out << "\n  ]";
1763  } else if (isa<IndirectBrInst>(I)) {
1764    // Special case indirectbr instruction to get formatting nice and correct.
1765    Out << ' ';
1766    writeOperand(Operand, true);
1767    Out << ", [";
1768
1769    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1770      if (i != 1)
1771        Out << ", ";
1772      writeOperand(I.getOperand(i), true);
1773    }
1774    Out << ']';
1775  } else if (isa<PHINode>(I)) {
1776    Out << ' ';
1777    TypePrinter.print(I.getType(), Out);
1778    Out << ' ';
1779
1780    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1781      if (op) Out << ", ";
1782      Out << "[ ";
1783      writeOperand(I.getOperand(op  ), false); Out << ", ";
1784      writeOperand(I.getOperand(op+1), false); Out << " ]";
1785    }
1786  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1787    Out << ' ';
1788    writeOperand(I.getOperand(0), true);
1789    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1790      Out << ", " << *i;
1791  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1792    Out << ' ';
1793    writeOperand(I.getOperand(0), true); Out << ", ";
1794    writeOperand(I.getOperand(1), true);
1795    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1796      Out << ", " << *i;
1797  } else if (isa<ReturnInst>(I) && !Operand) {
1798    Out << " void";
1799  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1800    // Print the calling convention being used.
1801    switch (CI->getCallingConv()) {
1802    case CallingConv::C: break;   // default
1803    case CallingConv::Fast:  Out << " fastcc"; break;
1804    case CallingConv::Cold:  Out << " coldcc"; break;
1805    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1806    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1807    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1808    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1809    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1810    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1811    default: Out << " cc" << CI->getCallingConv(); break;
1812    }
1813
1814    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1815    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1816    const Type         *RetTy = FTy->getReturnType();
1817    const AttrListPtr &PAL = CI->getAttributes();
1818
1819    if (PAL.getRetAttributes() != Attribute::None)
1820      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1821
1822    // If possible, print out the short form of the call instruction.  We can
1823    // only do this if the first argument is a pointer to a nonvararg function,
1824    // and if the return type is not a pointer to a function.
1825    //
1826    Out << ' ';
1827    if (!FTy->isVarArg() &&
1828        (!isa<PointerType>(RetTy) ||
1829         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1830      TypePrinter.print(RetTy, Out);
1831      Out << ' ';
1832      writeOperand(Operand, false);
1833    } else {
1834      writeOperand(Operand, true);
1835    }
1836    Out << '(';
1837    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1838      if (op > 1)
1839        Out << ", ";
1840      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1841    }
1842    Out << ')';
1843    if (PAL.getFnAttributes() != Attribute::None)
1844      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1845  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1846    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1847    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1848    const Type         *RetTy = FTy->getReturnType();
1849    const AttrListPtr &PAL = II->getAttributes();
1850
1851    // Print the calling convention being used.
1852    switch (II->getCallingConv()) {
1853    case CallingConv::C: break;   // default
1854    case CallingConv::Fast:  Out << " fastcc"; break;
1855    case CallingConv::Cold:  Out << " coldcc"; break;
1856    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1857    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1858    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1859    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1860    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1861    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1862    default: Out << " cc" << II->getCallingConv(); break;
1863    }
1864
1865    if (PAL.getRetAttributes() != Attribute::None)
1866      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1867
1868    // If possible, print out the short form of the invoke instruction. We can
1869    // only do this if the first argument is a pointer to a nonvararg function,
1870    // and if the return type is not a pointer to a function.
1871    //
1872    Out << ' ';
1873    if (!FTy->isVarArg() &&
1874        (!isa<PointerType>(RetTy) ||
1875         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1876      TypePrinter.print(RetTy, Out);
1877      Out << ' ';
1878      writeOperand(Operand, false);
1879    } else {
1880      writeOperand(Operand, true);
1881    }
1882    Out << '(';
1883    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1884      if (op > 3)
1885        Out << ", ";
1886      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1887    }
1888
1889    Out << ')';
1890    if (PAL.getFnAttributes() != Attribute::None)
1891      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1892
1893    Out << "\n          to ";
1894    writeOperand(II->getNormalDest(), true);
1895    Out << " unwind ";
1896    writeOperand(II->getUnwindDest(), true);
1897
1898  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1899    Out << ' ';
1900    TypePrinter.print(AI->getType()->getElementType(), Out);
1901    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1902      Out << ", ";
1903      writeOperand(AI->getArraySize(), true);
1904    }
1905    if (AI->getAlignment()) {
1906      Out << ", align " << AI->getAlignment();
1907    }
1908  } else if (isa<CastInst>(I)) {
1909    if (Operand) {
1910      Out << ' ';
1911      writeOperand(Operand, true);   // Work with broken code
1912    }
1913    Out << " to ";
1914    TypePrinter.print(I.getType(), Out);
1915  } else if (isa<VAArgInst>(I)) {
1916    if (Operand) {
1917      Out << ' ';
1918      writeOperand(Operand, true);   // Work with broken code
1919    }
1920    Out << ", ";
1921    TypePrinter.print(I.getType(), Out);
1922  } else if (Operand) {   // Print the normal way.
1923
1924    // PrintAllTypes - Instructions who have operands of all the same type
1925    // omit the type from all but the first operand.  If the instruction has
1926    // different type operands (for example br), then they are all printed.
1927    bool PrintAllTypes = false;
1928    const Type *TheType = Operand->getType();
1929
1930    // Select, Store and ShuffleVector always print all types.
1931    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1932        || isa<ReturnInst>(I)) {
1933      PrintAllTypes = true;
1934    } else {
1935      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1936        Operand = I.getOperand(i);
1937        // note that Operand shouldn't be null, but the test helps make dump()
1938        // more tolerant of malformed IR
1939        if (Operand && Operand->getType() != TheType) {
1940          PrintAllTypes = true;    // We have differing types!  Print them all!
1941          break;
1942        }
1943      }
1944    }
1945
1946    if (!PrintAllTypes) {
1947      Out << ' ';
1948      TypePrinter.print(TheType, Out);
1949    }
1950
1951    Out << ' ';
1952    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1953      if (i) Out << ", ";
1954      writeOperand(I.getOperand(i), PrintAllTypes);
1955    }
1956  }
1957
1958  // Print post operand alignment for load/store.
1959  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1960    Out << ", align " << cast<LoadInst>(I).getAlignment();
1961  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1962    Out << ", align " << cast<StoreInst>(I).getAlignment();
1963  }
1964
1965  // Print Metadata info.
1966  if (!MDNames.empty()) {
1967    SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
1968    I.getAllMetadata(InstMD);
1969    for (unsigned i = 0, e = InstMD.size(); i != e; ++i)
1970      Out << ", !" << MDNames[InstMD[i].first]
1971          << " !" << Machine.getMetadataSlot(InstMD[i].second);
1972  }
1973  printInfoComment(I);
1974}
1975
1976static void WriteMDNodeComment(const MDNode *Node,
1977			       formatted_raw_ostream &Out) {
1978  if (Node->getNumOperands() < 1)
1979    return;
1980  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
1981  if (!CI) return;
1982  unsigned Val = CI->getZExtValue();
1983  unsigned Tag = Val & ~LLVMDebugVersionMask;
1984  if (Val < LLVMDebugVersion)
1985    return;
1986
1987  Out.PadToColumn(50);
1988  if (Tag == dwarf::DW_TAG_auto_variable)
1989    Out << "; [ DW_TAG_auto_variable ]";
1990  else if (Tag == dwarf::DW_TAG_arg_variable)
1991    Out << "; [ DW_TAG_arg_variable ]";
1992  else if (Tag == dwarf::DW_TAG_return_variable)
1993    Out << "; [ DW_TAG_return_variable ]";
1994  else if (Tag == dwarf::DW_TAG_vector_type)
1995    Out << "; [ DW_TAG_vector_type ]";
1996  else if (Tag == dwarf::DW_TAG_user_base)
1997    Out << "; [ DW_TAG_user_base ]";
1998  else if (const char *TagName = dwarf::TagString(Tag))
1999    Out << "; [ " << TagName << " ]";
2000}
2001
2002void AssemblyWriter::writeAllMDNodes() {
2003  SmallVector<const MDNode *, 16> Nodes;
2004  Nodes.resize(Machine.mdn_size());
2005  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2006       I != E; ++I)
2007    Nodes[I->second] = cast<MDNode>(I->first);
2008
2009  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2010    Out << '!' << i << " = metadata ";
2011    printMDNodeBody(Nodes[i]);
2012  }
2013}
2014
2015void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2016  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine);
2017  WriteMDNodeComment(Node, Out);
2018  Out << "\n";
2019}
2020
2021//===----------------------------------------------------------------------===//
2022//                       External Interface declarations
2023//===----------------------------------------------------------------------===//
2024
2025void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2026  SlotTracker SlotTable(this);
2027  formatted_raw_ostream OS(ROS);
2028  AssemblyWriter W(OS, SlotTable, this, AAW);
2029  W.printModule(this);
2030}
2031
2032void Type::print(raw_ostream &OS) const {
2033  if (this == 0) {
2034    OS << "<null Type>";
2035    return;
2036  }
2037  TypePrinting().print(this, OS);
2038}
2039
2040void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2041  if (this == 0) {
2042    ROS << "printing a <null> value\n";
2043    return;
2044  }
2045  formatted_raw_ostream OS(ROS);
2046  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2047    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2048    SlotTracker SlotTable(F);
2049    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2050    W.printInstruction(*I);
2051  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2052    SlotTracker SlotTable(BB->getParent());
2053    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2054    W.printBasicBlock(BB);
2055  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2056    SlotTracker SlotTable(GV->getParent());
2057    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2058    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2059      W.printGlobal(V);
2060    else if (const Function *F = dyn_cast<Function>(GV))
2061      W.printFunction(F);
2062    else
2063      W.printAlias(cast<GlobalAlias>(GV));
2064  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2065    const Function *F = N->getFunction();
2066    SlotTracker SlotTable(F);
2067    AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW);
2068    W.printMDNodeBody(N);
2069  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2070    SlotTracker SlotTable(N->getParent());
2071    AssemblyWriter W(OS, SlotTable, N->getParent(), AAW);
2072    W.printNamedMDNode(N);
2073  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2074    TypePrinting TypePrinter;
2075    TypePrinter.print(C->getType(), OS);
2076    OS << ' ';
2077    WriteConstantInt(OS, C, TypePrinter, 0);
2078  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2079             isa<Argument>(this)) {
2080    WriteAsOperand(OS, this, true, 0);
2081  } else {
2082    // Otherwise we don't know what it is. Call the virtual function to
2083    // allow a subclass to print itself.
2084    printCustom(OS);
2085  }
2086}
2087
2088// Value::printCustom - subclasses should override this to implement printing.
2089void Value::printCustom(raw_ostream &OS) const {
2090  llvm_unreachable("Unknown value to print out!");
2091}
2092
2093// Value::dump - allow easy printing of Values from the debugger.
2094void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2095
2096// Type::dump - allow easy printing of Types from the debugger.
2097// This one uses type names from the given context module
2098void Type::dump(const Module *Context) const {
2099  WriteTypeSymbolic(dbgs(), this, Context);
2100  dbgs() << '\n';
2101}
2102
2103// Type::dump - allow easy printing of Types from the debugger.
2104void Type::dump() const { dump(0); }
2105
2106// Module::dump() - Allow printing of Modules from the debugger.
2107void Module::dump() const { print(dbgs(), 0); }
2108