AsmWriter.cpp revision 9a40c023ccfe28cbaf4f6b2c92f033f2d6536231
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Module.h"
27#include "llvm/SymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Streams.h"
34#include <algorithm>
35using namespace llvm;
36
37namespace llvm {
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42/// This class provides computation of slot numbers for LLVM Assembly writing.
43/// @brief LLVM Assembly Writing Slot Computation.
44class SlotMachine {
45
46/// @name Types
47/// @{
48public:
49
50  /// @brief A mapping of Values to slot numbers
51  typedef std::map<const Value*, unsigned> ValueMap;
52
53  /// @brief A plane with next slot number and ValueMap
54  struct ValuePlane {
55    unsigned next_slot;        ///< The next slot number to use
56    ValueMap map;              ///< The map of Value* -> unsigned
57    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
58  };
59
60  /// @brief The map of planes by Type
61  typedef std::map<const Type*, ValuePlane> TypedPlanes;
62
63/// @}
64/// @name Constructors
65/// @{
66public:
67  /// @brief Construct from a module
68  SlotMachine(const Module *M);
69
70  /// @brief Construct from a function, starting out in incorp state.
71  SlotMachine(const Function *F);
72
73/// @}
74/// @name Accessors
75/// @{
76public:
77  /// Return the slot number of the specified value in it's type
78  /// plane.  If something is not in the SlotMachine, return -1.
79  int getLocalSlot(const Value *V);
80  int getGlobalSlot(const GlobalValue *V);
81
82/// @}
83/// @name Mutators
84/// @{
85public:
86  /// If you'd like to deal with a function instead of just a module, use
87  /// this method to get its data into the SlotMachine.
88  void incorporateFunction(const Function *F) {
89    TheFunction = F;
90    FunctionProcessed = false;
91  }
92
93  /// After calling incorporateFunction, use this method to remove the
94  /// most recently incorporated function from the SlotMachine. This
95  /// will reset the state of the machine back to just the module contents.
96  void purgeFunction();
97
98/// @}
99/// @name Implementation Details
100/// @{
101private:
102  /// This function does the actual initialization.
103  inline void initialize();
104
105  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
106  void CreateModuleSlot(const GlobalValue *V);
107
108  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
109  void CreateFunctionSlot(const Value *V);
110
111  /// Add all of the module level global variables (and their initializers)
112  /// and function declarations, but not the contents of those functions.
113  void processModule();
114
115  /// Add all of the functions arguments, basic blocks, and instructions
116  void processFunction();
117
118  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
119  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
120
121/// @}
122/// @name Data
123/// @{
124public:
125
126  /// @brief The module for which we are holding slot numbers
127  const Module* TheModule;
128
129  /// @brief The function for which we are holding slot numbers
130  const Function* TheFunction;
131  bool FunctionProcessed;
132
133  /// @brief The TypePlanes map for the module level data
134  TypedPlanes mMap;
135
136  /// @brief The TypePlanes map for the function level data
137  TypedPlanes fMap;
138
139/// @}
140
141};
142
143}  // end namespace llvm
144
145static RegisterPass<PrintModulePass>
146X("printm", "Print module to stderr");
147static RegisterPass<PrintFunctionPass>
148Y("print","Print function to stderr");
149
150static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
151                               std::map<const Type *, std::string> &TypeTable,
152                                   SlotMachine *Machine);
153
154static const Module *getModuleFromVal(const Value *V) {
155  if (const Argument *MA = dyn_cast<Argument>(V))
156    return MA->getParent() ? MA->getParent()->getParent() : 0;
157  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
158    return BB->getParent() ? BB->getParent()->getParent() : 0;
159  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
160    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
161    return M ? M->getParent() : 0;
162  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
163    return GV->getParent();
164  return 0;
165}
166
167static SlotMachine *createSlotMachine(const Value *V) {
168  if (const Argument *FA = dyn_cast<Argument>(V)) {
169    return new SlotMachine(FA->getParent());
170  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
171    return new SlotMachine(I->getParent()->getParent());
172  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
173    return new SlotMachine(BB->getParent());
174  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
175    return new SlotMachine(GV->getParent());
176  } else if (const Function *Func = dyn_cast<Function>(V)) {
177    return new SlotMachine(Func);
178  }
179  return 0;
180}
181
182// getLLVMName - Turn the specified string into an 'LLVM name', which is either
183// prefixed with % (if the string only contains simple characters) or is
184// surrounded with ""'s (if it has special chars in it).
185static std::string getLLVMName(const std::string &Name,
186                               bool prefixName = true) {
187  assert(!Name.empty() && "Cannot get empty name!");
188
189  // First character cannot start with a number...
190  if (Name[0] >= '0' && Name[0] <= '9')
191    return "\"" + Name + "\"";
192
193  // Scan to see if we have any characters that are not on the "white list"
194  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
195    char C = Name[i];
196    assert(C != '"' && "Illegal character in LLVM value name!");
197    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
198        C != '-' && C != '.' && C != '_')
199      return "\"" + Name + "\"";
200  }
201
202  // If we get here, then the identifier is legal to use as a "VarID".
203  if (prefixName)
204    return "%"+Name;
205  else
206    return Name;
207}
208
209
210/// fillTypeNameTable - If the module has a symbol table, take all global types
211/// and stuff their names into the TypeNames map.
212///
213static void fillTypeNameTable(const Module *M,
214                              std::map<const Type *, std::string> &TypeNames) {
215  if (!M) return;
216  const TypeSymbolTable &ST = M->getTypeSymbolTable();
217  TypeSymbolTable::const_iterator TI = ST.begin();
218  for (; TI != ST.end(); ++TI) {
219    // As a heuristic, don't insert pointer to primitive types, because
220    // they are used too often to have a single useful name.
221    //
222    const Type *Ty = cast<Type>(TI->second);
223    if (!isa<PointerType>(Ty) ||
224        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
225        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
226        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
227      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
228  }
229}
230
231
232
233static void calcTypeName(const Type *Ty,
234                         std::vector<const Type *> &TypeStack,
235                         std::map<const Type *, std::string> &TypeNames,
236                         std::string & Result){
237  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
238    Result += Ty->getDescription();  // Base case
239    return;
240  }
241
242  // Check to see if the type is named.
243  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
244  if (I != TypeNames.end()) {
245    Result += I->second;
246    return;
247  }
248
249  if (isa<OpaqueType>(Ty)) {
250    Result += "opaque";
251    return;
252  }
253
254  // Check to see if the Type is already on the stack...
255  unsigned Slot = 0, CurSize = TypeStack.size();
256  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
257
258  // This is another base case for the recursion.  In this case, we know
259  // that we have looped back to a type that we have previously visited.
260  // Generate the appropriate upreference to handle this.
261  if (Slot < CurSize) {
262    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
263    return;
264  }
265
266  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
267
268  switch (Ty->getTypeID()) {
269  case Type::IntegerTyID: {
270    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
271    Result += "i" + utostr(BitWidth);
272    break;
273  }
274  case Type::FunctionTyID: {
275    const FunctionType *FTy = cast<FunctionType>(Ty);
276    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
277    Result += " (";
278    unsigned Idx = 1;
279    for (FunctionType::param_iterator I = FTy->param_begin(),
280           E = FTy->param_end(); I != E; ++I) {
281      if (I != FTy->param_begin())
282        Result += ", ";
283      calcTypeName(*I, TypeStack, TypeNames, Result);
284      if (FTy->getParamAttrs(Idx)) {
285        Result += + " ";
286        Result += FunctionType::getParamAttrsText(FTy->getParamAttrs(Idx));
287      }
288      Idx++;
289    }
290    if (FTy->isVarArg()) {
291      if (FTy->getNumParams()) Result += ", ";
292      Result += "...";
293    }
294    Result += ")";
295    if (FTy->getParamAttrs(0)) {
296      Result += " ";
297      Result += FunctionType::getParamAttrsText(FTy->getParamAttrs(0));
298    }
299    break;
300  }
301  case Type::StructTyID: {
302    const StructType *STy = cast<StructType>(Ty);
303    if (STy->isPacked())
304      Result += '<';
305    Result += "{ ";
306    for (StructType::element_iterator I = STy->element_begin(),
307           E = STy->element_end(); I != E; ++I) {
308      if (I != STy->element_begin())
309        Result += ", ";
310      calcTypeName(*I, TypeStack, TypeNames, Result);
311    }
312    Result += " }";
313    if (STy->isPacked())
314      Result += '>';
315    break;
316  }
317  case Type::PointerTyID:
318    calcTypeName(cast<PointerType>(Ty)->getElementType(),
319                          TypeStack, TypeNames, Result);
320    Result += "*";
321    break;
322  case Type::ArrayTyID: {
323    const ArrayType *ATy = cast<ArrayType>(Ty);
324    Result += "[" + utostr(ATy->getNumElements()) + " x ";
325    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
326    Result += "]";
327    break;
328  }
329  case Type::PackedTyID: {
330    const PackedType *PTy = cast<PackedType>(Ty);
331    Result += "<" + utostr(PTy->getNumElements()) + " x ";
332    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
333    Result += ">";
334    break;
335  }
336  case Type::OpaqueTyID:
337    Result += "opaque";
338    break;
339  default:
340    Result += "<unrecognized-type>";
341    break;
342  }
343
344  TypeStack.pop_back();       // Remove self from stack...
345}
346
347
348/// printTypeInt - The internal guts of printing out a type that has a
349/// potentially named portion.
350///
351static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
352                              std::map<const Type *, std::string> &TypeNames) {
353  // Primitive types always print out their description, regardless of whether
354  // they have been named or not.
355  //
356  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)))
357    return Out << Ty->getDescription();
358
359  // Check to see if the type is named.
360  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
361  if (I != TypeNames.end()) return Out << I->second;
362
363  // Otherwise we have a type that has not been named but is a derived type.
364  // Carefully recurse the type hierarchy to print out any contained symbolic
365  // names.
366  //
367  std::vector<const Type *> TypeStack;
368  std::string TypeName;
369  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
370  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
371  return (Out << TypeName);
372}
373
374
375/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
376/// type, iff there is an entry in the modules symbol table for the specified
377/// type or one of it's component types. This is slower than a simple x << Type
378///
379std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
380                                      const Module *M) {
381  Out << ' ';
382
383  // If they want us to print out a type, but there is no context, we can't
384  // print it symbolically.
385  if (!M)
386    return Out << Ty->getDescription();
387
388  std::map<const Type *, std::string> TypeNames;
389  fillTypeNameTable(M, TypeNames);
390  return printTypeInt(Out, Ty, TypeNames);
391}
392
393// PrintEscapedString - Print each character of the specified string, escaping
394// it if it is not printable or if it is an escape char.
395static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
396  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
397    unsigned char C = Str[i];
398    if (isprint(C) && C != '"' && C != '\\') {
399      Out << C;
400    } else {
401      Out << '\\'
402          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
403          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
404    }
405  }
406}
407
408static const char *getPredicateText(unsigned predicate) {
409  const char * pred = "unknown";
410  switch (predicate) {
411    case FCmpInst::FCMP_FALSE: pred = "false"; break;
412    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
413    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
414    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
415    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
416    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
417    case FCmpInst::FCMP_ONE:   pred = "one"; break;
418    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
419    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
420    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
421    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
422    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
423    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
424    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
425    case FCmpInst::FCMP_UNE:   pred = "une"; break;
426    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
427    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
428    case ICmpInst::ICMP_NE:    pred = "ne"; break;
429    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
430    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
431    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
432    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
433    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
434    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
435    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
436    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
437  }
438  return pred;
439}
440
441/// @brief Internal constant writer.
442static void WriteConstantInt(std::ostream &Out, const Constant *CV,
443                             std::map<const Type *, std::string> &TypeTable,
444                             SlotMachine *Machine) {
445  const int IndentSize = 4;
446  static std::string Indent = "\n";
447  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
448    if (CI->getType() == Type::Int1Ty)
449      Out << (CI->getZExtValue() ? "true" : "false");
450    else
451      Out << CI->getSExtValue();
452  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
453    // We would like to output the FP constant value in exponential notation,
454    // but we cannot do this if doing so will lose precision.  Check here to
455    // make sure that we only output it in exponential format if we can parse
456    // the value back and get the same value.
457    //
458    std::string StrVal = ftostr(CFP->getValue());
459
460    // Check to make sure that the stringized number is not some string like
461    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
462    // the string matches the "[-+]?[0-9]" regex.
463    //
464    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
465        ((StrVal[0] == '-' || StrVal[0] == '+') &&
466         (StrVal[1] >= '0' && StrVal[1] <= '9')))
467      // Reparse stringized version!
468      if (atof(StrVal.c_str()) == CFP->getValue()) {
469        Out << StrVal;
470        return;
471      }
472
473    // Otherwise we could not reparse it to exactly the same value, so we must
474    // output the string in hexadecimal format!
475    assert(sizeof(double) == sizeof(uint64_t) &&
476           "assuming that double is 64 bits!");
477    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
478
479  } else if (isa<ConstantAggregateZero>(CV)) {
480    Out << "zeroinitializer";
481  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
482    // As a special case, print the array as a string if it is an array of
483    // ubytes or an array of sbytes with positive values.
484    //
485    const Type *ETy = CA->getType()->getElementType();
486    if (CA->isString()) {
487      Out << "c\"";
488      PrintEscapedString(CA->getAsString(), Out);
489      Out << "\"";
490
491    } else {                // Cannot output in string format...
492      Out << '[';
493      if (CA->getNumOperands()) {
494        Out << ' ';
495        printTypeInt(Out, ETy, TypeTable);
496        WriteAsOperandInternal(Out, CA->getOperand(0),
497                               TypeTable, Machine);
498        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
499          Out << ", ";
500          printTypeInt(Out, ETy, TypeTable);
501          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
502        }
503      }
504      Out << " ]";
505    }
506  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
507    if (CS->getType()->isPacked())
508      Out << '<';
509    Out << '{';
510    unsigned N = CS->getNumOperands();
511    if (N) {
512      if (N > 2) {
513        Indent += std::string(IndentSize, ' ');
514        Out << Indent;
515      } else {
516        Out << ' ';
517      }
518      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
519
520      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
521
522      for (unsigned i = 1; i < N; i++) {
523        Out << ", ";
524        if (N > 2) Out << Indent;
525        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
526
527        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
528      }
529      if (N > 2) Indent.resize(Indent.size() - IndentSize);
530    }
531
532    Out << " }";
533    if (CS->getType()->isPacked())
534      Out << '>';
535  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
536      const Type *ETy = CP->getType()->getElementType();
537      assert(CP->getNumOperands() > 0 &&
538             "Number of operands for a PackedConst must be > 0");
539      Out << '<';
540      Out << ' ';
541      printTypeInt(Out, ETy, TypeTable);
542      WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
543      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
544          Out << ", ";
545          printTypeInt(Out, ETy, TypeTable);
546          WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
547      }
548      Out << " >";
549  } else if (isa<ConstantPointerNull>(CV)) {
550    Out << "null";
551
552  } else if (isa<UndefValue>(CV)) {
553    Out << "undef";
554
555  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
556    Out << CE->getOpcodeName();
557    if (CE->isCompare())
558      Out << " " << getPredicateText(CE->getPredicate());
559    Out << " (";
560
561    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
562      printTypeInt(Out, (*OI)->getType(), TypeTable);
563      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
564      if (OI+1 != CE->op_end())
565        Out << ", ";
566    }
567
568    if (CE->isCast()) {
569      Out << " to ";
570      printTypeInt(Out, CE->getType(), TypeTable);
571    }
572
573    Out << ')';
574
575  } else {
576    Out << "<placeholder or erroneous Constant>";
577  }
578}
579
580
581/// WriteAsOperand - Write the name of the specified value out to the specified
582/// ostream.  This can be useful when you just want to print int %reg126, not
583/// the whole instruction that generated it.
584///
585static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
586                                  std::map<const Type*, std::string> &TypeTable,
587                                   SlotMachine *Machine) {
588  Out << ' ';
589  if (V->hasName())
590    Out << getLLVMName(V->getName());
591  else {
592    const Constant *CV = dyn_cast<Constant>(V);
593    if (CV && !isa<GlobalValue>(CV)) {
594      WriteConstantInt(Out, CV, TypeTable, Machine);
595    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
596      Out << "asm ";
597      if (IA->hasSideEffects())
598        Out << "sideeffect ";
599      Out << '"';
600      PrintEscapedString(IA->getAsmString(), Out);
601      Out << "\", \"";
602      PrintEscapedString(IA->getConstraintString(), Out);
603      Out << '"';
604    } else {
605      int Slot;
606      if (Machine) {
607        if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
608          Slot = Machine->getGlobalSlot(GV);
609        else
610          Slot = Machine->getLocalSlot(V);
611      } else {
612        Machine = createSlotMachine(V);
613        if (Machine) {
614          if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
615            Slot = Machine->getGlobalSlot(GV);
616          else
617            Slot = Machine->getLocalSlot(V);
618        } else {
619          Slot = -1;
620        }
621        delete Machine;
622      }
623      if (Slot != -1)
624        Out << '%' << Slot;
625      else
626        Out << "<badref>";
627    }
628  }
629}
630
631/// WriteAsOperand - Write the name of the specified value out to the specified
632/// ostream.  This can be useful when you just want to print int %reg126, not
633/// the whole instruction that generated it.
634///
635std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
636                                   bool PrintType, const Module *Context) {
637  std::map<const Type *, std::string> TypeNames;
638  if (Context == 0) Context = getModuleFromVal(V);
639
640  if (Context)
641    fillTypeNameTable(Context, TypeNames);
642
643  if (PrintType)
644    printTypeInt(Out, V->getType(), TypeNames);
645
646  WriteAsOperandInternal(Out, V, TypeNames, 0);
647  return Out;
648}
649
650
651namespace llvm {
652
653class AssemblyWriter {
654  std::ostream &Out;
655  SlotMachine &Machine;
656  const Module *TheModule;
657  std::map<const Type *, std::string> TypeNames;
658  AssemblyAnnotationWriter *AnnotationWriter;
659public:
660  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
661                        AssemblyAnnotationWriter *AAW)
662    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
663
664    // If the module has a symbol table, take all global types and stuff their
665    // names into the TypeNames map.
666    //
667    fillTypeNameTable(M, TypeNames);
668  }
669
670  inline void write(const Module *M)         { printModule(M);      }
671  inline void write(const GlobalVariable *G) { printGlobal(G);      }
672  inline void write(const Function *F)       { printFunction(F);    }
673  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
674  inline void write(const Instruction *I)    { printInstruction(*I); }
675  inline void write(const Constant *CPV)     { printConstant(CPV);  }
676  inline void write(const Type *Ty)          { printType(Ty);       }
677
678  void writeOperand(const Value *Op, bool PrintType);
679
680  const Module* getModule() { return TheModule; }
681
682private:
683  void printModule(const Module *M);
684  void printTypeSymbolTable(const TypeSymbolTable &ST);
685  void printValueSymbolTable(const SymbolTable &ST);
686  void printConstant(const Constant *CPV);
687  void printGlobal(const GlobalVariable *GV);
688  void printFunction(const Function *F);
689  void printArgument(const Argument *FA, FunctionType::ParameterAttributes A);
690  void printBasicBlock(const BasicBlock *BB);
691  void printInstruction(const Instruction &I);
692
693  // printType - Go to extreme measures to attempt to print out a short,
694  // symbolic version of a type name.
695  //
696  std::ostream &printType(const Type *Ty) {
697    return printTypeInt(Out, Ty, TypeNames);
698  }
699
700  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
701  // without considering any symbolic types that we may have equal to it.
702  //
703  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
704
705  // printInfoComment - Print a little comment after the instruction indicating
706  // which slot it occupies.
707  void printInfoComment(const Value &V);
708};
709}  // end of llvm namespace
710
711/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
712/// without considering any symbolic types that we may have equal to it.
713///
714std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
715  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
716    Out << "i" << utostr(ITy->getBitWidth());
717  else if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
718    printType(FTy->getReturnType());
719    Out << " (";
720    unsigned Idx = 1;
721    for (FunctionType::param_iterator I = FTy->param_begin(),
722           E = FTy->param_end(); I != E; ++I) {
723      if (I != FTy->param_begin())
724        Out << ", ";
725      printType(*I);
726      if (FTy->getParamAttrs(Idx)) {
727        Out << " " << FunctionType::getParamAttrsText(FTy->getParamAttrs(Idx));
728      }
729      Idx++;
730    }
731    if (FTy->isVarArg()) {
732      if (FTy->getNumParams()) Out << ", ";
733      Out << "...";
734    }
735    Out << ')';
736    if (FTy->getParamAttrs(0))
737      Out << ' ' << FunctionType::getParamAttrsText(FTy->getParamAttrs(0));
738  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
739    if (STy->isPacked())
740      Out << '<';
741    Out << "{ ";
742    for (StructType::element_iterator I = STy->element_begin(),
743           E = STy->element_end(); I != E; ++I) {
744      if (I != STy->element_begin())
745        Out << ", ";
746      printType(*I);
747    }
748    Out << " }";
749    if (STy->isPacked())
750      Out << '>';
751  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
752    printType(PTy->getElementType()) << '*';
753  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
754    Out << '[' << ATy->getNumElements() << " x ";
755    printType(ATy->getElementType()) << ']';
756  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
757    Out << '<' << PTy->getNumElements() << " x ";
758    printType(PTy->getElementType()) << '>';
759  }
760  else if (isa<OpaqueType>(Ty)) {
761    Out << "opaque";
762  } else {
763    if (!Ty->isPrimitiveType())
764      Out << "<unknown derived type>";
765    printType(Ty);
766  }
767  return Out;
768}
769
770
771void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
772  if (Operand == 0) {
773    Out << "<null operand!>";
774  } else {
775    if (PrintType) { Out << ' '; printType(Operand->getType()); }
776    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
777  }
778}
779
780
781void AssemblyWriter::printModule(const Module *M) {
782  if (!M->getModuleIdentifier().empty() &&
783      // Don't print the ID if it will start a new line (which would
784      // require a comment char before it).
785      M->getModuleIdentifier().find('\n') == std::string::npos)
786    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
787
788  if (!M->getDataLayout().empty())
789    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
790
791  switch (M->getEndianness()) {
792  case Module::LittleEndian: Out << "target endian = little\n"; break;
793  case Module::BigEndian:    Out << "target endian = big\n";    break;
794  case Module::AnyEndianness: break;
795  }
796  switch (M->getPointerSize()) {
797  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
798  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
799  case Module::AnyPointerSize: break;
800  }
801  if (!M->getTargetTriple().empty())
802    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
803
804  if (!M->getModuleInlineAsm().empty()) {
805    // Split the string into lines, to make it easier to read the .ll file.
806    std::string Asm = M->getModuleInlineAsm();
807    size_t CurPos = 0;
808    size_t NewLine = Asm.find_first_of('\n', CurPos);
809    while (NewLine != std::string::npos) {
810      // We found a newline, print the portion of the asm string from the
811      // last newline up to this newline.
812      Out << "module asm \"";
813      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
814                         Out);
815      Out << "\"\n";
816      CurPos = NewLine+1;
817      NewLine = Asm.find_first_of('\n', CurPos);
818    }
819    Out << "module asm \"";
820    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
821    Out << "\"\n";
822  }
823
824  // Loop over the dependent libraries and emit them.
825  Module::lib_iterator LI = M->lib_begin();
826  Module::lib_iterator LE = M->lib_end();
827  if (LI != LE) {
828    Out << "deplibs = [ ";
829    while (LI != LE) {
830      Out << '"' << *LI << '"';
831      ++LI;
832      if (LI != LE)
833        Out << ", ";
834    }
835    Out << " ]\n";
836  }
837
838  // Loop over the symbol table, emitting all named constants.
839  printTypeSymbolTable(M->getTypeSymbolTable());
840  printValueSymbolTable(M->getValueSymbolTable());
841
842  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
843       I != E; ++I)
844    printGlobal(I);
845
846  Out << "\nimplementation   ; Functions:\n";
847
848  // Output all of the functions.
849  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
850    printFunction(I);
851}
852
853void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
854  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
855
856  if (!GV->hasInitializer())
857    switch (GV->getLinkage()) {
858     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
859     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
860     default: Out << "external "; break;
861    } else {
862    switch (GV->getLinkage()) {
863    case GlobalValue::InternalLinkage:     Out << "internal "; break;
864    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
865    case GlobalValue::WeakLinkage:         Out << "weak "; break;
866    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
867    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
868    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
869    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
870    case GlobalValue::ExternalLinkage:     break;
871    case GlobalValue::GhostLinkage:
872      cerr << "GhostLinkage not allowed in AsmWriter!\n";
873      abort();
874    }
875    switch (GV->getVisibility()) {
876    default: assert(0 && "Invalid visibility style!");
877    case GlobalValue::DefaultVisibility: break;
878    case GlobalValue::HiddenVisibility: Out << "hidden "; break;
879    }
880  }
881
882  Out << (GV->isConstant() ? "constant " : "global ");
883  printType(GV->getType()->getElementType());
884
885  if (GV->hasInitializer()) {
886    Constant* C = cast<Constant>(GV->getInitializer());
887    assert(C &&  "GlobalVar initializer isn't constant?");
888    writeOperand(GV->getInitializer(), false);
889  }
890
891  if (GV->hasSection())
892    Out << ", section \"" << GV->getSection() << '"';
893  if (GV->getAlignment())
894    Out << ", align " << GV->getAlignment();
895
896  printInfoComment(*GV);
897  Out << "\n";
898}
899
900void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
901  // Print the types.
902  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
903       TI != TE; ++TI) {
904    Out << "\t" << getLLVMName(TI->first) << " = type ";
905
906    // Make sure we print out at least one level of the type structure, so
907    // that we do not get %FILE = type %FILE
908    //
909    printTypeAtLeastOneLevel(TI->second) << "\n";
910  }
911}
912
913// printSymbolTable - Run through symbol table looking for constants
914// and types. Emit their declarations.
915void AssemblyWriter::printValueSymbolTable(const SymbolTable &ST) {
916
917  // Print the constants, in type plane order.
918  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
919       PI != ST.plane_end(); ++PI) {
920    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
921    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
922
923    for (; VI != VE; ++VI) {
924      const Value* V = VI->second;
925      const Constant *CPV = dyn_cast<Constant>(V) ;
926      if (CPV && !isa<GlobalValue>(V)) {
927        printConstant(CPV);
928      }
929    }
930  }
931}
932
933
934/// printConstant - Print out a constant pool entry...
935///
936void AssemblyWriter::printConstant(const Constant *CPV) {
937  // Don't print out unnamed constants, they will be inlined
938  if (!CPV->hasName()) return;
939
940  // Print out name...
941  Out << "\t" << getLLVMName(CPV->getName()) << " =";
942
943  // Write the value out now.
944  writeOperand(CPV, true);
945
946  printInfoComment(*CPV);
947  Out << "\n";
948}
949
950/// printFunction - Print all aspects of a function.
951///
952void AssemblyWriter::printFunction(const Function *F) {
953  // Print out the return type and name...
954  Out << "\n";
955
956  // Ensure that no local symbols conflict with global symbols.
957  const_cast<Function*>(F)->renameLocalSymbols();
958
959  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
960
961  if (F->isExternal())
962    switch (F->getLinkage()) {
963    case GlobalValue::DLLImportLinkage:    Out << "declare dllimport "; break;
964    case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
965    default: Out << "declare ";
966    }
967  else {
968    Out << "define ";
969    switch (F->getLinkage()) {
970    case GlobalValue::InternalLinkage:     Out << "internal "; break;
971    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
972    case GlobalValue::WeakLinkage:         Out << "weak "; break;
973    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
974    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
975    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
976    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
977    case GlobalValue::ExternalLinkage: break;
978    case GlobalValue::GhostLinkage:
979      cerr << "GhostLinkage not allowed in AsmWriter!\n";
980      abort();
981    }
982    switch (F->getVisibility()) {
983    default: assert(0 && "Invalid visibility style!");
984    case GlobalValue::DefaultVisibility: break;
985    case GlobalValue::HiddenVisibility: Out << "hidden "; break;
986    }
987  }
988
989  // Print the calling convention.
990  switch (F->getCallingConv()) {
991  case CallingConv::C: break;   // default
992  case CallingConv::CSRet:        Out << "csretcc "; break;
993  case CallingConv::Fast:         Out << "fastcc "; break;
994  case CallingConv::Cold:         Out << "coldcc "; break;
995  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
996  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
997  default: Out << "cc" << F->getCallingConv() << " "; break;
998  }
999
1000  const FunctionType *FT = F->getFunctionType();
1001  printType(F->getReturnType()) << ' ';
1002  if (!F->getName().empty())
1003    Out << getLLVMName(F->getName());
1004  else
1005    Out << "\"\"";
1006  Out << '(';
1007  Machine.incorporateFunction(F);
1008
1009  // Loop over the arguments, printing them...
1010
1011  unsigned Idx = 1;
1012  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1013       I != E; ++I) {
1014    // Insert commas as we go... the first arg doesn't get a comma
1015    if (I != F->arg_begin()) Out << ", ";
1016    printArgument(I, FT->getParamAttrs(Idx));
1017    Idx++;
1018  }
1019
1020  // Finish printing arguments...
1021  if (FT->isVarArg()) {
1022    if (FT->getNumParams()) Out << ", ";
1023    Out << "...";  // Output varargs portion of signature!
1024  }
1025  Out << ')';
1026  if (FT->getParamAttrs(0))
1027    Out << ' ' << FunctionType::getParamAttrsText(FT->getParamAttrs(0));
1028  if (F->hasSection())
1029    Out << " section \"" << F->getSection() << '"';
1030  if (F->getAlignment())
1031    Out << " align " << F->getAlignment();
1032
1033  if (F->isExternal()) {
1034    Out << "\n";
1035  } else {
1036    Out << " {";
1037
1038    // Output all of its basic blocks... for the function
1039    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1040      printBasicBlock(I);
1041
1042    Out << "}\n";
1043  }
1044
1045  Machine.purgeFunction();
1046}
1047
1048/// printArgument - This member is called for every argument that is passed into
1049/// the function.  Simply print it out
1050///
1051void AssemblyWriter::printArgument(const Argument *Arg,
1052                                   FunctionType::ParameterAttributes attrs) {
1053  // Output type...
1054  printType(Arg->getType());
1055
1056  if (attrs != FunctionType::NoAttributeSet)
1057    Out << ' ' << FunctionType::getParamAttrsText(attrs);
1058
1059  // Output name, if available...
1060  if (Arg->hasName())
1061    Out << ' ' << getLLVMName(Arg->getName());
1062}
1063
1064/// printBasicBlock - This member is called for each basic block in a method.
1065///
1066void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1067  if (BB->hasName()) {              // Print out the label if it exists...
1068    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
1069  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1070    Out << "\n; <label>:";
1071    int Slot = Machine.getLocalSlot(BB);
1072    if (Slot != -1)
1073      Out << Slot;
1074    else
1075      Out << "<badref>";
1076  }
1077
1078  if (BB->getParent() == 0)
1079    Out << "\t\t; Error: Block without parent!";
1080  else {
1081    if (BB != &BB->getParent()->front()) {  // Not the entry block?
1082      // Output predecessors for the block...
1083      Out << "\t\t;";
1084      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1085
1086      if (PI == PE) {
1087        Out << " No predecessors!";
1088      } else {
1089        Out << " preds =";
1090        writeOperand(*PI, false);
1091        for (++PI; PI != PE; ++PI) {
1092          Out << ',';
1093          writeOperand(*PI, false);
1094        }
1095      }
1096    }
1097  }
1098
1099  Out << "\n";
1100
1101  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1102
1103  // Output all of the instructions in the basic block...
1104  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1105    printInstruction(*I);
1106
1107  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1108}
1109
1110
1111/// printInfoComment - Print a little comment after the instruction indicating
1112/// which slot it occupies.
1113///
1114void AssemblyWriter::printInfoComment(const Value &V) {
1115  if (V.getType() != Type::VoidTy) {
1116    Out << "\t\t; <";
1117    printType(V.getType()) << '>';
1118
1119    if (!V.hasName()) {
1120      int SlotNum;
1121      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1122        SlotNum = Machine.getGlobalSlot(GV);
1123      else
1124        SlotNum = Machine.getLocalSlot(&V);
1125      if (SlotNum == -1)
1126        Out << ":<badref>";
1127      else
1128        Out << ':' << SlotNum; // Print out the def slot taken.
1129    }
1130    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1131  }
1132}
1133
1134// This member is called for each Instruction in a function..
1135void AssemblyWriter::printInstruction(const Instruction &I) {
1136  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1137
1138  Out << "\t";
1139
1140  // Print out name if it exists...
1141  if (I.hasName())
1142    Out << getLLVMName(I.getName()) << " = ";
1143
1144  // If this is a volatile load or store, print out the volatile marker.
1145  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1146      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1147      Out << "volatile ";
1148  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1149    // If this is a call, check if it's a tail call.
1150    Out << "tail ";
1151  }
1152
1153  // Print out the opcode...
1154  Out << I.getOpcodeName();
1155
1156  // Print out the compare instruction predicates
1157  if (const FCmpInst *FCI = dyn_cast<FCmpInst>(&I)) {
1158    Out << " " << getPredicateText(FCI->getPredicate());
1159  } else if (const ICmpInst *ICI = dyn_cast<ICmpInst>(&I)) {
1160    Out << " " << getPredicateText(ICI->getPredicate());
1161  }
1162
1163  // Print out the type of the operands...
1164  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1165
1166  // Special case conditional branches to swizzle the condition out to the front
1167  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1168    writeOperand(I.getOperand(2), true);
1169    Out << ',';
1170    writeOperand(Operand, true);
1171    Out << ',';
1172    writeOperand(I.getOperand(1), true);
1173
1174  } else if (isa<SwitchInst>(I)) {
1175    // Special case switch statement to get formatting nice and correct...
1176    writeOperand(Operand        , true); Out << ',';
1177    writeOperand(I.getOperand(1), true); Out << " [";
1178
1179    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1180      Out << "\n\t\t";
1181      writeOperand(I.getOperand(op  ), true); Out << ',';
1182      writeOperand(I.getOperand(op+1), true);
1183    }
1184    Out << "\n\t]";
1185  } else if (isa<PHINode>(I)) {
1186    Out << ' ';
1187    printType(I.getType());
1188    Out << ' ';
1189
1190    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1191      if (op) Out << ", ";
1192      Out << '[';
1193      writeOperand(I.getOperand(op  ), false); Out << ',';
1194      writeOperand(I.getOperand(op+1), false); Out << " ]";
1195    }
1196  } else if (isa<ReturnInst>(I) && !Operand) {
1197    Out << " void";
1198  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1199    // Print the calling convention being used.
1200    switch (CI->getCallingConv()) {
1201    case CallingConv::C: break;   // default
1202    case CallingConv::CSRet: Out << " csretcc"; break;
1203    case CallingConv::Fast:  Out << " fastcc"; break;
1204    case CallingConv::Cold:  Out << " coldcc"; break;
1205    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1206    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1207    default: Out << " cc" << CI->getCallingConv(); break;
1208    }
1209
1210    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1211    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1212    const Type       *RetTy = FTy->getReturnType();
1213
1214    // If possible, print out the short form of the call instruction.  We can
1215    // only do this if the first argument is a pointer to a nonvararg function,
1216    // and if the return type is not a pointer to a function.
1217    //
1218    if (!FTy->isVarArg() &&
1219        (!isa<PointerType>(RetTy) ||
1220         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1221      Out << ' '; printType(RetTy);
1222      writeOperand(Operand, false);
1223    } else {
1224      writeOperand(Operand, true);
1225    }
1226    Out << '(';
1227    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1228      if (op > 1)
1229        Out << ',';
1230      writeOperand(I.getOperand(op), true);
1231      if (FTy->getParamAttrs(op) != FunctionType::NoAttributeSet)
1232        Out << " " << FTy->getParamAttrsText(FTy->getParamAttrs(op));
1233    }
1234    Out << " )";
1235    if (FTy->getParamAttrs(0) != FunctionType::NoAttributeSet)
1236      Out << ' ' << FTy->getParamAttrsText(FTy->getParamAttrs(0));
1237  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1238    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1239    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1240    const Type       *RetTy = FTy->getReturnType();
1241
1242    // Print the calling convention being used.
1243    switch (II->getCallingConv()) {
1244    case CallingConv::C: break;   // default
1245    case CallingConv::CSRet: Out << " csretcc"; break;
1246    case CallingConv::Fast:  Out << " fastcc"; break;
1247    case CallingConv::Cold:  Out << " coldcc"; break;
1248    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1249    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1250    default: Out << " cc" << II->getCallingConv(); break;
1251    }
1252
1253    // If possible, print out the short form of the invoke instruction. We can
1254    // only do this if the first argument is a pointer to a nonvararg function,
1255    // and if the return type is not a pointer to a function.
1256    //
1257    if (!FTy->isVarArg() &&
1258        (!isa<PointerType>(RetTy) ||
1259         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1260      Out << ' '; printType(RetTy);
1261      writeOperand(Operand, false);
1262    } else {
1263      writeOperand(Operand, true);
1264    }
1265
1266    Out << '(';
1267    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1268      if (op > 3)
1269        Out << ',';
1270      writeOperand(I.getOperand(op), true);
1271      if (FTy->getParamAttrs(op-2) != FunctionType::NoAttributeSet)
1272        Out << " " << FTy->getParamAttrsText(FTy->getParamAttrs(op-2));
1273    }
1274
1275    Out << " )";
1276    if (FTy->getParamAttrs(0) != FunctionType::NoAttributeSet)
1277      Out << " " << FTy->getParamAttrsText(FTy->getParamAttrs(0));
1278    Out << "\n\t\t\tto";
1279    writeOperand(II->getNormalDest(), true);
1280    Out << " unwind";
1281    writeOperand(II->getUnwindDest(), true);
1282
1283  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1284    Out << ' ';
1285    printType(AI->getType()->getElementType());
1286    if (AI->isArrayAllocation()) {
1287      Out << ',';
1288      writeOperand(AI->getArraySize(), true);
1289    }
1290    if (AI->getAlignment()) {
1291      Out << ", align " << AI->getAlignment();
1292    }
1293  } else if (isa<CastInst>(I)) {
1294    if (Operand) writeOperand(Operand, true);   // Work with broken code
1295    Out << " to ";
1296    printType(I.getType());
1297  } else if (isa<VAArgInst>(I)) {
1298    if (Operand) writeOperand(Operand, true);   // Work with broken code
1299    Out << ", ";
1300    printType(I.getType());
1301  } else if (Operand) {   // Print the normal way...
1302
1303    // PrintAllTypes - Instructions who have operands of all the same type
1304    // omit the type from all but the first operand.  If the instruction has
1305    // different type operands (for example br), then they are all printed.
1306    bool PrintAllTypes = false;
1307    const Type *TheType = Operand->getType();
1308
1309    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1310    // types even if all operands are bools.
1311    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
1312        isa<ShuffleVectorInst>(I)) {
1313      PrintAllTypes = true;
1314    } else {
1315      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1316        Operand = I.getOperand(i);
1317        if (Operand->getType() != TheType) {
1318          PrintAllTypes = true;    // We have differing types!  Print them all!
1319          break;
1320        }
1321      }
1322    }
1323
1324    if (!PrintAllTypes) {
1325      Out << ' ';
1326      printType(TheType);
1327    }
1328
1329    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1330      if (i) Out << ',';
1331      writeOperand(I.getOperand(i), PrintAllTypes);
1332    }
1333  }
1334
1335  printInfoComment(I);
1336  Out << "\n";
1337}
1338
1339
1340//===----------------------------------------------------------------------===//
1341//                       External Interface declarations
1342//===----------------------------------------------------------------------===//
1343
1344void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1345  SlotMachine SlotTable(this);
1346  AssemblyWriter W(o, SlotTable, this, AAW);
1347  W.write(this);
1348}
1349
1350void GlobalVariable::print(std::ostream &o) const {
1351  SlotMachine SlotTable(getParent());
1352  AssemblyWriter W(o, SlotTable, getParent(), 0);
1353  W.write(this);
1354}
1355
1356void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1357  SlotMachine SlotTable(getParent());
1358  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1359
1360  W.write(this);
1361}
1362
1363void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1364  WriteAsOperand(o, this, true, 0);
1365}
1366
1367void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1368  SlotMachine SlotTable(getParent());
1369  AssemblyWriter W(o, SlotTable,
1370                   getParent() ? getParent()->getParent() : 0, AAW);
1371  W.write(this);
1372}
1373
1374void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1375  const Function *F = getParent() ? getParent()->getParent() : 0;
1376  SlotMachine SlotTable(F);
1377  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1378
1379  W.write(this);
1380}
1381
1382void Constant::print(std::ostream &o) const {
1383  if (this == 0) { o << "<null> constant value\n"; return; }
1384
1385  o << ' ' << getType()->getDescription() << ' ';
1386
1387  std::map<const Type *, std::string> TypeTable;
1388  WriteConstantInt(o, this, TypeTable, 0);
1389}
1390
1391void Type::print(std::ostream &o) const {
1392  if (this == 0)
1393    o << "<null Type>";
1394  else
1395    o << getDescription();
1396}
1397
1398void Argument::print(std::ostream &o) const {
1399  WriteAsOperand(o, this, true, getParent() ? getParent()->getParent() : 0);
1400}
1401
1402// Value::dump - allow easy printing of  Values from the debugger.
1403// Located here because so much of the needed functionality is here.
1404void Value::dump() const { print(*cerr.stream()); cerr << '\n'; }
1405
1406// Type::dump - allow easy printing of  Values from the debugger.
1407// Located here because so much of the needed functionality is here.
1408void Type::dump() const { print(*cerr.stream()); cerr << '\n'; }
1409
1410//===----------------------------------------------------------------------===//
1411//                         SlotMachine Implementation
1412//===----------------------------------------------------------------------===//
1413
1414#if 0
1415#define SC_DEBUG(X) cerr << X
1416#else
1417#define SC_DEBUG(X)
1418#endif
1419
1420// Module level constructor. Causes the contents of the Module (sans functions)
1421// to be added to the slot table.
1422SlotMachine::SlotMachine(const Module *M)
1423  : TheModule(M)    ///< Saved for lazy initialization.
1424  , TheFunction(0)
1425  , FunctionProcessed(false)
1426{
1427}
1428
1429// Function level constructor. Causes the contents of the Module and the one
1430// function provided to be added to the slot table.
1431SlotMachine::SlotMachine(const Function *F)
1432  : TheModule(F ? F->getParent() : 0) ///< Saved for lazy initialization
1433  , TheFunction(F) ///< Saved for lazy initialization
1434  , FunctionProcessed(false)
1435{
1436}
1437
1438inline void SlotMachine::initialize() {
1439  if (TheModule) {
1440    processModule();
1441    TheModule = 0; ///< Prevent re-processing next time we're called.
1442  }
1443  if (TheFunction && !FunctionProcessed)
1444    processFunction();
1445}
1446
1447// Iterate through all the global variables, functions, and global
1448// variable initializers and create slots for them.
1449void SlotMachine::processModule() {
1450  SC_DEBUG("begin processModule!\n");
1451
1452  // Add all of the unnamed global variables to the value table.
1453  for (Module::const_global_iterator I = TheModule->global_begin(),
1454       E = TheModule->global_end(); I != E; ++I)
1455    if (!I->hasName())
1456      CreateModuleSlot(I);
1457
1458  // Add all the unnamed functions to the table.
1459  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1460       I != E; ++I)
1461    if (!I->hasName())
1462      CreateModuleSlot(I);
1463
1464  SC_DEBUG("end processModule!\n");
1465}
1466
1467
1468// Process the arguments, basic blocks, and instructions  of a function.
1469void SlotMachine::processFunction() {
1470  SC_DEBUG("begin processFunction!\n");
1471
1472  // Add all the function arguments with no names.
1473  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1474      AE = TheFunction->arg_end(); AI != AE; ++AI)
1475    if (!AI->hasName())
1476      CreateFunctionSlot(AI);
1477
1478  SC_DEBUG("Inserting Instructions:\n");
1479
1480  // Add all of the basic blocks and instructions with no names.
1481  for (Function::const_iterator BB = TheFunction->begin(),
1482       E = TheFunction->end(); BB != E; ++BB) {
1483    if (!BB->hasName())
1484      CreateFunctionSlot(BB);
1485    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1486      if (I->getType() != Type::VoidTy && !I->hasName())
1487        CreateFunctionSlot(I);
1488  }
1489
1490  FunctionProcessed = true;
1491
1492  SC_DEBUG("end processFunction!\n");
1493}
1494
1495/// Clean up after incorporating a function. This is the only way to get out of
1496/// the function incorporation state that affects get*Slot/Create*Slot. Function
1497/// incorporation state is indicated by TheFunction != 0.
1498void SlotMachine::purgeFunction() {
1499  SC_DEBUG("begin purgeFunction!\n");
1500  fMap.clear(); // Simply discard the function level map
1501  TheFunction = 0;
1502  FunctionProcessed = false;
1503  SC_DEBUG("end purgeFunction!\n");
1504}
1505
1506/// getGlobalSlot - Get the slot number of a global value.
1507int SlotMachine::getGlobalSlot(const GlobalValue *V) {
1508  // Check for uninitialized state and do lazy initialization.
1509  initialize();
1510
1511  // Find the type plane in the module map
1512  TypedPlanes::const_iterator MI = mMap.find(V->getType());
1513  if (MI == mMap.end()) return -1;
1514
1515  // Lookup the value in the module plane's map.
1516  ValueMap::const_iterator MVI = MI->second.map.find(V);
1517  return MVI != MI->second.map.end() ? int(MVI->second) : -1;
1518}
1519
1520
1521/// getLocalSlot - Get the slot number for a value that is local to a function.
1522int SlotMachine::getLocalSlot(const Value *V) {
1523  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1524
1525  // Check for uninitialized state and do lazy initialization.
1526  initialize();
1527
1528  // Get the type of the value
1529  const Type *VTy = V->getType();
1530
1531  TypedPlanes::const_iterator FI = fMap.find(VTy);
1532  if (FI == fMap.end()) return -1;
1533
1534  // Lookup the Value in the function and module maps.
1535  ValueMap::const_iterator FVI = FI->second.map.find(V);
1536  TypedPlanes::const_iterator MI = mMap.find(VTy);
1537
1538  // If the value doesn't exist in the function map, it is a <badref>
1539  if (FVI == FI->second.map.end()) return -1;
1540
1541  // Return the slot number as the module's contribution to
1542  // the type plane plus the index in the function's contribution
1543  // to the type plane.
1544  if (MI != mMap.end())
1545    return MI->second.next_slot + FVI->second;
1546  else
1547    return FVI->second;
1548}
1549
1550
1551/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1552void SlotMachine::CreateModuleSlot(const GlobalValue *V) {
1553  assert(V && "Can't insert a null Value into SlotMachine!");
1554
1555  unsigned DestSlot = 0;
1556  const Type *VTy = V->getType();
1557
1558  ValuePlane &PlaneMap = mMap[VTy];
1559  DestSlot = PlaneMap.map[V] = PlaneMap.next_slot++;
1560
1561  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1562           DestSlot << " [");
1563  // G = Global, F = Function, o = other
1564  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : 'F') << "]\n");
1565}
1566
1567
1568/// CreateSlot - Create a new slot for the specified value if it has no name.
1569void SlotMachine::CreateFunctionSlot(const Value *V) {
1570  const Type *VTy = V->getType();
1571  assert(VTy != Type::VoidTy && !V->hasName() && "Doesn't need a slot!");
1572
1573  unsigned DestSlot = 0;
1574
1575  ValuePlane &PlaneMap = fMap[VTy];
1576  DestSlot = PlaneMap.map[V] = PlaneMap.next_slot++;
1577
1578  // G = Global, F = Function, o = other
1579  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1580           DestSlot << " [o]\n");
1581}
1582