AsmWriter.cpp revision a3f332bdc3e8fd1ac78dd3dc868d871e9086c5fd
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/CachedWriter.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/Assembly/PrintModulePass.h"
20#include "llvm/Assembly/AsmAnnotationWriter.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/SymbolTable.h"
29#include "llvm/Assembly/Writer.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/MathExtras.h"
34#include <algorithm>
35using namespace llvm;
36
37namespace llvm {
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42/// This class provides computation of slot numbers for LLVM Assembly writing.
43/// @brief LLVM Assembly Writing Slot Computation.
44class SlotMachine {
45
46/// @name Types
47/// @{
48public:
49
50  /// @brief A mapping of Values to slot numbers
51  typedef std::map<const Value*, unsigned> ValueMap;
52  typedef std::map<const Type*, unsigned> TypeMap;
53
54  /// @brief A plane with next slot number and ValueMap
55  struct ValuePlane {
56    unsigned next_slot;        ///< The next slot number to use
57    ValueMap map;              ///< The map of Value* -> unsigned
58    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
59  };
60
61  struct TypePlane {
62    unsigned next_slot;
63    TypeMap map;
64    TypePlane() { next_slot = 0; }
65    void clear() { map.clear(); next_slot = 0; }
66  };
67
68  /// @brief The map of planes by Type
69  typedef std::map<const Type*, ValuePlane> TypedPlanes;
70
71/// @}
72/// @name Constructors
73/// @{
74public:
75  /// @brief Construct from a module
76  SlotMachine(const Module *M );
77
78  /// @brief Construct from a function, starting out in incorp state.
79  SlotMachine(const Function *F );
80
81/// @}
82/// @name Accessors
83/// @{
84public:
85  /// Return the slot number of the specified value in it's type
86  /// plane.  Its an error to ask for something not in the SlotMachine.
87  /// Its an error to ask for a Type*
88  int getSlot(const Value *V);
89  int getSlot(const Type*Ty);
90
91  /// Determine if a Value has a slot or not
92  bool hasSlot(const Value* V);
93  bool hasSlot(const Type* Ty);
94
95/// @}
96/// @name Mutators
97/// @{
98public:
99  /// If you'd like to deal with a function instead of just a module, use
100  /// this method to get its data into the SlotMachine.
101  void incorporateFunction(const Function *F) {
102    TheFunction = F;
103    FunctionProcessed = false;
104  }
105
106  /// After calling incorporateFunction, use this method to remove the
107  /// most recently incorporated function from the SlotMachine. This
108  /// will reset the state of the machine back to just the module contents.
109  void purgeFunction();
110
111/// @}
112/// @name Implementation Details
113/// @{
114private:
115  /// This function does the actual initialization.
116  inline void initialize();
117
118  /// Values can be crammed into here at will. If they haven't
119  /// been inserted already, they get inserted, otherwise they are ignored.
120  /// Either way, the slot number for the Value* is returned.
121  unsigned createSlot(const Value *V);
122  unsigned createSlot(const Type* Ty);
123
124  /// Insert a value into the value table. Return the slot number
125  /// that it now occupies.  BadThings(TM) will happen if you insert a
126  /// Value that's already been inserted.
127  unsigned insertValue( const Value *V );
128  unsigned insertValue( const Type* Ty);
129
130  /// Add all of the module level global variables (and their initializers)
131  /// and function declarations, but not the contents of those functions.
132  void processModule();
133
134  /// Add all of the functions arguments, basic blocks, and instructions
135  void processFunction();
136
137  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
138  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
139
140/// @}
141/// @name Data
142/// @{
143public:
144
145  /// @brief The module for which we are holding slot numbers
146  const Module* TheModule;
147
148  /// @brief The function for which we are holding slot numbers
149  const Function* TheFunction;
150  bool FunctionProcessed;
151
152  /// @brief The TypePlanes map for the module level data
153  TypedPlanes mMap;
154  TypePlane mTypes;
155
156  /// @brief The TypePlanes map for the function level data
157  TypedPlanes fMap;
158  TypePlane fTypes;
159
160/// @}
161
162};
163
164}  // end namespace llvm
165
166static RegisterPass<PrintModulePass>
167X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
168static RegisterPass<PrintFunctionPass>
169Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
170
171static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
172                                   bool PrintName,
173                                 std::map<const Type *, std::string> &TypeTable,
174                                   SlotMachine *Machine);
175
176static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
177                                   bool PrintName,
178                                 std::map<const Type *, std::string> &TypeTable,
179                                   SlotMachine *Machine);
180
181static const Module *getModuleFromVal(const Value *V) {
182  if (const Argument *MA = dyn_cast<Argument>(V))
183    return MA->getParent() ? MA->getParent()->getParent() : 0;
184  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
185    return BB->getParent() ? BB->getParent()->getParent() : 0;
186  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
187    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
188    return M ? M->getParent() : 0;
189  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
190    return GV->getParent();
191  return 0;
192}
193
194static SlotMachine *createSlotMachine(const Value *V) {
195  if (const Argument *FA = dyn_cast<Argument>(V)) {
196    return new SlotMachine(FA->getParent());
197  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
198    return new SlotMachine(I->getParent()->getParent());
199  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
200    return new SlotMachine(BB->getParent());
201  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
202    return new SlotMachine(GV->getParent());
203  } else if (const Function *Func = dyn_cast<Function>(V)) {
204    return new SlotMachine(Func);
205  }
206  return 0;
207}
208
209// getLLVMName - Turn the specified string into an 'LLVM name', which is either
210// prefixed with % (if the string only contains simple characters) or is
211// surrounded with ""'s (if it has special chars in it).
212static std::string getLLVMName(const std::string &Name,
213                               bool prefixName = true) {
214  assert(!Name.empty() && "Cannot get empty name!");
215
216  // First character cannot start with a number...
217  if (Name[0] >= '0' && Name[0] <= '9')
218    return "\"" + Name + "\"";
219
220  // Scan to see if we have any characters that are not on the "white list"
221  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
222    char C = Name[i];
223    assert(C != '"' && "Illegal character in LLVM value name!");
224    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
225        C != '-' && C != '.' && C != '_')
226      return "\"" + Name + "\"";
227  }
228
229  // If we get here, then the identifier is legal to use as a "VarID".
230  if (prefixName)
231    return "%"+Name;
232  else
233    return Name;
234}
235
236
237/// fillTypeNameTable - If the module has a symbol table, take all global types
238/// and stuff their names into the TypeNames map.
239///
240static void fillTypeNameTable(const Module *M,
241                              std::map<const Type *, std::string> &TypeNames) {
242  if (!M) return;
243  const SymbolTable &ST = M->getSymbolTable();
244  SymbolTable::type_const_iterator TI = ST.type_begin();
245  for (; TI != ST.type_end(); ++TI ) {
246    // As a heuristic, don't insert pointer to primitive types, because
247    // they are used too often to have a single useful name.
248    //
249    const Type *Ty = cast<Type>(TI->second);
250    if (!isa<PointerType>(Ty) ||
251        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
252        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
253      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
254  }
255}
256
257
258
259static void calcTypeName(const Type *Ty,
260                         std::vector<const Type *> &TypeStack,
261                         std::map<const Type *, std::string> &TypeNames,
262                         std::string & Result){
263  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
264    Result += Ty->getDescription();  // Base case
265    return;
266  }
267
268  // Check to see if the type is named.
269  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
270  if (I != TypeNames.end()) {
271    Result += I->second;
272    return;
273  }
274
275  if (isa<OpaqueType>(Ty)) {
276    Result += "opaque";
277    return;
278  }
279
280  // Check to see if the Type is already on the stack...
281  unsigned Slot = 0, CurSize = TypeStack.size();
282  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
283
284  // This is another base case for the recursion.  In this case, we know
285  // that we have looped back to a type that we have previously visited.
286  // Generate the appropriate upreference to handle this.
287  if (Slot < CurSize) {
288    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
289    return;
290  }
291
292  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
293
294  switch (Ty->getTypeID()) {
295  case Type::FunctionTyID: {
296    const FunctionType *FTy = cast<FunctionType>(Ty);
297    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
298    Result += " (";
299    for (FunctionType::param_iterator I = FTy->param_begin(),
300           E = FTy->param_end(); I != E; ++I) {
301      if (I != FTy->param_begin())
302        Result += ", ";
303      calcTypeName(*I, TypeStack, TypeNames, Result);
304    }
305    if (FTy->isVarArg()) {
306      if (FTy->getNumParams()) Result += ", ";
307      Result += "...";
308    }
309    Result += ")";
310    break;
311  }
312  case Type::StructTyID: {
313    const StructType *STy = cast<StructType>(Ty);
314    Result += "{ ";
315    for (StructType::element_iterator I = STy->element_begin(),
316           E = STy->element_end(); I != E; ++I) {
317      if (I != STy->element_begin())
318        Result += ", ";
319      calcTypeName(*I, TypeStack, TypeNames, Result);
320    }
321    Result += " }";
322    break;
323  }
324  case Type::PointerTyID:
325    calcTypeName(cast<PointerType>(Ty)->getElementType(),
326                          TypeStack, TypeNames, Result);
327    Result += "*";
328    break;
329  case Type::ArrayTyID: {
330    const ArrayType *ATy = cast<ArrayType>(Ty);
331    Result += "[" + utostr(ATy->getNumElements()) + " x ";
332    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
333    Result += "]";
334    break;
335  }
336  case Type::PackedTyID: {
337    const PackedType *PTy = cast<PackedType>(Ty);
338    Result += "<" + utostr(PTy->getNumElements()) + " x ";
339    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
340    Result += ">";
341    break;
342  }
343  case Type::OpaqueTyID:
344    Result += "opaque";
345    break;
346  default:
347    Result += "<unrecognized-type>";
348  }
349
350  TypeStack.pop_back();       // Remove self from stack...
351  return;
352}
353
354
355/// printTypeInt - The internal guts of printing out a type that has a
356/// potentially named portion.
357///
358static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
359                              std::map<const Type *, std::string> &TypeNames) {
360  // Primitive types always print out their description, regardless of whether
361  // they have been named or not.
362  //
363  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
364    return Out << Ty->getDescription();
365
366  // Check to see if the type is named.
367  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
368  if (I != TypeNames.end()) return Out << I->second;
369
370  // Otherwise we have a type that has not been named but is a derived type.
371  // Carefully recurse the type hierarchy to print out any contained symbolic
372  // names.
373  //
374  std::vector<const Type *> TypeStack;
375  std::string TypeName;
376  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
377  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
378  return (Out << TypeName);
379}
380
381
382/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
383/// type, iff there is an entry in the modules symbol table for the specified
384/// type or one of it's component types. This is slower than a simple x << Type
385///
386std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
387                                      const Module *M) {
388  Out << ' ';
389
390  // If they want us to print out a type, attempt to make it symbolic if there
391  // is a symbol table in the module...
392  if (M) {
393    std::map<const Type *, std::string> TypeNames;
394    fillTypeNameTable(M, TypeNames);
395
396    return printTypeInt(Out, Ty, TypeNames);
397  } else {
398    return Out << Ty->getDescription();
399  }
400}
401
402// PrintEscapedString - Print each character of the specified string, escaping
403// it if it is not printable or if it is an escape char.
404static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
405  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
406    unsigned char C = Str[i];
407    if (isprint(C) && C != '"' && C != '\\') {
408      Out << C;
409    } else {
410      Out << '\\'
411          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
412          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
413    }
414  }
415}
416
417/// @brief Internal constant writer.
418static void WriteConstantInt(std::ostream &Out, const Constant *CV,
419                             bool PrintName,
420                             std::map<const Type *, std::string> &TypeTable,
421                             SlotMachine *Machine) {
422  static std::string Indent = "\n";
423  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
424    Out << (CB == ConstantBool::True ? "true" : "false");
425  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
426    Out << CI->getValue();
427  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
428    Out << CI->getValue();
429  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
430    // We would like to output the FP constant value in exponential notation,
431    // but we cannot do this if doing so will lose precision.  Check here to
432    // make sure that we only output it in exponential format if we can parse
433    // the value back and get the same value.
434    //
435    std::string StrVal = ftostr(CFP->getValue());
436
437    // Check to make sure that the stringized number is not some string like
438    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
439    // the string matches the "[-+]?[0-9]" regex.
440    //
441    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
442        ((StrVal[0] == '-' || StrVal[0] == '+') &&
443         (StrVal[1] >= '0' && StrVal[1] <= '9')))
444      // Reparse stringized version!
445      if (atof(StrVal.c_str()) == CFP->getValue()) {
446        Out << StrVal;
447        return;
448      }
449
450    // Otherwise we could not reparse it to exactly the same value, so we must
451    // output the string in hexadecimal format!
452    assert(sizeof(double) == sizeof(uint64_t) &&
453           "assuming that double is 64 bits!");
454    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
455
456  } else if (isa<ConstantAggregateZero>(CV)) {
457    Out << "zeroinitializer";
458  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
459    // As a special case, print the array as a string if it is an array of
460    // ubytes or an array of sbytes with positive values.
461    //
462    const Type *ETy = CA->getType()->getElementType();
463    if (CA->isString()) {
464      Out << "c\"";
465      PrintEscapedString(CA->getAsString(), Out);
466      Out << "\"";
467
468    } else {                // Cannot output in string format...
469      Out << '[';
470      if (CA->getNumOperands()) {
471        Out << ' ';
472        printTypeInt(Out, ETy, TypeTable);
473        WriteAsOperandInternal(Out, CA->getOperand(0),
474                               PrintName, TypeTable, Machine);
475        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
476          Out << ", ";
477          printTypeInt(Out, ETy, TypeTable);
478          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
479                                 TypeTable, Machine);
480        }
481      }
482      Out << " ]";
483    }
484  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
485    Out << '{';
486    unsigned N = CS->getNumOperands();
487    if (N) {
488      if (N > 2) {
489        Indent += "    ";
490        Out << Indent;
491      } else {
492        Out << ' ';
493      }
494      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
495
496      WriteAsOperandInternal(Out, CS->getOperand(0),
497                             PrintName, TypeTable, Machine);
498
499      for (unsigned i = 1; i < N; i++) {
500        Out << ", ";
501        if (N > 2) Out << Indent;
502        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
503
504        WriteAsOperandInternal(Out, CS->getOperand(i),
505                               PrintName, TypeTable, Machine);
506      }
507      if (N > 2) Indent.resize(Indent.size() - 4);
508    }
509
510    Out << " }";
511  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
512      const Type *ETy = CP->getType()->getElementType();
513      assert(CP->getNumOperands() > 0 &&
514             "Number of operands for a PackedConst must be > 0");
515      Out << '<';
516      Out << ' ';
517      printTypeInt(Out, ETy, TypeTable);
518      WriteAsOperandInternal(Out, CP->getOperand(0),
519                             PrintName, TypeTable, Machine);
520      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
521          Out << ", ";
522          printTypeInt(Out, ETy, TypeTable);
523          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
524                                 TypeTable, Machine);
525      }
526      Out << " >";
527  } else if (isa<ConstantPointerNull>(CV)) {
528    Out << "null";
529
530  } else if (isa<UndefValue>(CV)) {
531    Out << "undef";
532
533  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
534    Out << CE->getOpcodeName() << " (";
535
536    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
537      printTypeInt(Out, (*OI)->getType(), TypeTable);
538      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
539      if (OI+1 != CE->op_end())
540        Out << ", ";
541    }
542
543    if (CE->getOpcode() == Instruction::Cast) {
544      Out << " to ";
545      printTypeInt(Out, CE->getType(), TypeTable);
546    }
547    Out << ')';
548
549  } else {
550    Out << "<placeholder or erroneous Constant>";
551  }
552}
553
554
555/// WriteAsOperand - Write the name of the specified value out to the specified
556/// ostream.  This can be useful when you just want to print int %reg126, not
557/// the whole instruction that generated it.
558///
559static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
560                                   bool PrintName,
561                                  std::map<const Type*, std::string> &TypeTable,
562                                   SlotMachine *Machine) {
563  Out << ' ';
564  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
565    Out << getLLVMName(V->getName());
566  else {
567    const Constant *CV = dyn_cast<Constant>(V);
568    if (CV && !isa<GlobalValue>(CV)) {
569      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
570    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
571      Out << "asm ";
572      if (IA->hasSideEffects())
573        Out << "sideeffect ";
574      Out << '"';
575      PrintEscapedString(IA->getAsmString(), Out);
576      Out << "\", \"";
577      PrintEscapedString(IA->getConstraintString(), Out);
578      Out << '"';
579    } else {
580      int Slot;
581      if (Machine) {
582        Slot = Machine->getSlot(V);
583      } else {
584        Machine = createSlotMachine(V);
585        if (Machine == 0)
586          Slot = Machine->getSlot(V);
587        else
588          Slot = -1;
589        delete Machine;
590      }
591      if (Slot != -1)
592        Out << '%' << Slot;
593      else
594        Out << "<badref>";
595    }
596  }
597}
598
599/// WriteAsOperand - Write the name of the specified value out to the specified
600/// ostream.  This can be useful when you just want to print int %reg126, not
601/// the whole instruction that generated it.
602///
603std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
604                                   bool PrintType, bool PrintName,
605                                   const Module *Context) {
606  std::map<const Type *, std::string> TypeNames;
607  if (Context == 0) Context = getModuleFromVal(V);
608
609  if (Context)
610    fillTypeNameTable(Context, TypeNames);
611
612  if (PrintType)
613    printTypeInt(Out, V->getType(), TypeNames);
614
615  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
616  return Out;
617}
618
619/// WriteAsOperandInternal - Write the name of the specified value out to
620/// the specified ostream.  This can be useful when you just want to print
621/// int %reg126, not the whole instruction that generated it.
622///
623static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
624                                   bool PrintName,
625                                  std::map<const Type*, std::string> &TypeTable,
626                                   SlotMachine *Machine) {
627  Out << ' ';
628  int Slot;
629  if (Machine) {
630    Slot = Machine->getSlot(T);
631    if (Slot != -1)
632      Out << '%' << Slot;
633    else
634      Out << "<badref>";
635  } else {
636    Out << T->getDescription();
637  }
638}
639
640/// WriteAsOperand - Write the name of the specified value out to the specified
641/// ostream.  This can be useful when you just want to print int %reg126, not
642/// the whole instruction that generated it.
643///
644std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
645                                   bool PrintType, bool PrintName,
646                                   const Module *Context) {
647  std::map<const Type *, std::string> TypeNames;
648  assert(Context != 0 && "Can't write types as operand without module context");
649
650  fillTypeNameTable(Context, TypeNames);
651
652  // if (PrintType)
653    // printTypeInt(Out, V->getType(), TypeNames);
654
655  printTypeInt(Out, Ty, TypeNames);
656
657  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
658  return Out;
659}
660
661namespace llvm {
662
663class AssemblyWriter {
664  std::ostream &Out;
665  SlotMachine &Machine;
666  const Module *TheModule;
667  std::map<const Type *, std::string> TypeNames;
668  AssemblyAnnotationWriter *AnnotationWriter;
669public:
670  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
671                        AssemblyAnnotationWriter *AAW)
672    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
673
674    // If the module has a symbol table, take all global types and stuff their
675    // names into the TypeNames map.
676    //
677    fillTypeNameTable(M, TypeNames);
678  }
679
680  inline void write(const Module *M)         { printModule(M);      }
681  inline void write(const GlobalVariable *G) { printGlobal(G);      }
682  inline void write(const Function *F)       { printFunction(F);    }
683  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
684  inline void write(const Instruction *I)    { printInstruction(*I); }
685  inline void write(const Constant *CPV)     { printConstant(CPV);  }
686  inline void write(const Type *Ty)          { printType(Ty);       }
687
688  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
689
690  const Module* getModule() { return TheModule; }
691
692private:
693  void printModule(const Module *M);
694  void printSymbolTable(const SymbolTable &ST);
695  void printConstant(const Constant *CPV);
696  void printGlobal(const GlobalVariable *GV);
697  void printFunction(const Function *F);
698  void printArgument(const Argument *FA);
699  void printBasicBlock(const BasicBlock *BB);
700  void printInstruction(const Instruction &I);
701
702  // printType - Go to extreme measures to attempt to print out a short,
703  // symbolic version of a type name.
704  //
705  std::ostream &printType(const Type *Ty) {
706    return printTypeInt(Out, Ty, TypeNames);
707  }
708
709  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
710  // without considering any symbolic types that we may have equal to it.
711  //
712  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
713
714  // printInfoComment - Print a little comment after the instruction indicating
715  // which slot it occupies.
716  void printInfoComment(const Value &V);
717};
718}  // end of llvm namespace
719
720/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
721/// without considering any symbolic types that we may have equal to it.
722///
723std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
724  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
725    printType(FTy->getReturnType()) << " (";
726    for (FunctionType::param_iterator I = FTy->param_begin(),
727           E = FTy->param_end(); I != E; ++I) {
728      if (I != FTy->param_begin())
729        Out << ", ";
730      printType(*I);
731    }
732    if (FTy->isVarArg()) {
733      if (FTy->getNumParams()) Out << ", ";
734      Out << "...";
735    }
736    Out << ')';
737  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
738    Out << "{ ";
739    for (StructType::element_iterator I = STy->element_begin(),
740           E = STy->element_end(); I != E; ++I) {
741      if (I != STy->element_begin())
742        Out << ", ";
743      printType(*I);
744    }
745    Out << " }";
746  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
747    printType(PTy->getElementType()) << '*';
748  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
749    Out << '[' << ATy->getNumElements() << " x ";
750    printType(ATy->getElementType()) << ']';
751  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
752    Out << '<' << PTy->getNumElements() << " x ";
753    printType(PTy->getElementType()) << '>';
754  }
755  else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
756    Out << "opaque";
757  } else {
758    if (!Ty->isPrimitiveType())
759      Out << "<unknown derived type>";
760    printType(Ty);
761  }
762  return Out;
763}
764
765
766void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
767                                  bool PrintName) {
768  if (Operand != 0) {
769    if (PrintType) { Out << ' '; printType(Operand->getType()); }
770    WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
771  } else {
772    Out << "<null operand!>";
773  }
774}
775
776
777void AssemblyWriter::printModule(const Module *M) {
778  if (!M->getModuleIdentifier().empty() &&
779      // Don't print the ID if it will start a new line (which would
780      // require a comment char before it).
781      M->getModuleIdentifier().find('\n') == std::string::npos)
782    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
783
784  switch (M->getEndianness()) {
785  case Module::LittleEndian: Out << "target endian = little\n"; break;
786  case Module::BigEndian:    Out << "target endian = big\n";    break;
787  case Module::AnyEndianness: break;
788  }
789  switch (M->getPointerSize()) {
790  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
791  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
792  case Module::AnyPointerSize: break;
793  }
794  if (!M->getTargetTriple().empty())
795    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
796
797  if (!M->getModuleInlineAsm().empty()) {
798    // Split the string into lines, to make it easier to read the .ll file.
799    std::string Asm = M->getModuleInlineAsm();
800    size_t CurPos = 0;
801    size_t NewLine = Asm.find_first_of('\n', CurPos);
802    while (NewLine != std::string::npos) {
803      // We found a newline, print the portion of the asm string from the
804      // last newline up to this newline.
805      Out << "module asm \"";
806      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
807                         Out);
808      Out << "\"\n";
809      CurPos = NewLine+1;
810      NewLine = Asm.find_first_of('\n', CurPos);
811    }
812    Out << "module asm \"";
813    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
814    Out << "\"\n";
815  }
816
817  // Loop over the dependent libraries and emit them.
818  Module::lib_iterator LI = M->lib_begin();
819  Module::lib_iterator LE = M->lib_end();
820  if (LI != LE) {
821    Out << "deplibs = [ ";
822    while (LI != LE) {
823      Out << '"' << *LI << '"';
824      ++LI;
825      if (LI != LE)
826        Out << ", ";
827    }
828    Out << " ]\n";
829  }
830
831  // Loop over the symbol table, emitting all named constants.
832  printSymbolTable(M->getSymbolTable());
833
834  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I)
835    printGlobal(I);
836
837  Out << "\nimplementation   ; Functions:\n";
838
839  // Output all of the functions.
840  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
841    printFunction(I);
842}
843
844void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
845  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
846
847  if (!GV->hasInitializer())
848    Out << "external ";
849  else
850    switch (GV->getLinkage()) {
851    case GlobalValue::InternalLinkage:  Out << "internal "; break;
852    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
853    case GlobalValue::WeakLinkage:      Out << "weak "; break;
854    case GlobalValue::AppendingLinkage: Out << "appending "; break;
855    case GlobalValue::ExternalLinkage: break;
856    case GlobalValue::GhostLinkage:
857      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
858      abort();
859    }
860
861  Out << (GV->isConstant() ? "constant " : "global ");
862  printType(GV->getType()->getElementType());
863
864  if (GV->hasInitializer()) {
865    Constant* C = cast<Constant>(GV->getInitializer());
866    assert(C &&  "GlobalVar initializer isn't constant?");
867    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
868  }
869
870  if (GV->hasSection())
871    Out << ", section \"" << GV->getSection() << '"';
872  if (GV->getAlignment())
873    Out << ", align " << GV->getAlignment();
874
875  printInfoComment(*GV);
876  Out << "\n";
877}
878
879
880// printSymbolTable - Run through symbol table looking for constants
881// and types. Emit their declarations.
882void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
883
884  // Print the types.
885  for (SymbolTable::type_const_iterator TI = ST.type_begin();
886       TI != ST.type_end(); ++TI ) {
887    Out << "\t" << getLLVMName(TI->first) << " = type ";
888
889    // Make sure we print out at least one level of the type structure, so
890    // that we do not get %FILE = type %FILE
891    //
892    printTypeAtLeastOneLevel(TI->second) << "\n";
893  }
894
895  // Print the constants, in type plane order.
896  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
897       PI != ST.plane_end(); ++PI ) {
898    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
899    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
900
901    for (; VI != VE; ++VI) {
902      const Value* V = VI->second;
903      const Constant *CPV = dyn_cast<Constant>(V) ;
904      if (CPV && !isa<GlobalValue>(V)) {
905        printConstant(CPV);
906      }
907    }
908  }
909}
910
911
912/// printConstant - Print out a constant pool entry...
913///
914void AssemblyWriter::printConstant(const Constant *CPV) {
915  // Don't print out unnamed constants, they will be inlined
916  if (!CPV->hasName()) return;
917
918  // Print out name...
919  Out << "\t" << getLLVMName(CPV->getName()) << " =";
920
921  // Write the value out now...
922  writeOperand(CPV, true, false);
923
924  printInfoComment(*CPV);
925  Out << "\n";
926}
927
928/// printFunction - Print all aspects of a function.
929///
930void AssemblyWriter::printFunction(const Function *F) {
931  // Print out the return type and name...
932  Out << "\n";
933
934  // Ensure that no local symbols conflict with global symbols.
935  const_cast<Function*>(F)->renameLocalSymbols();
936
937  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
938
939  if (F->isExternal())
940    Out << "declare ";
941  else
942    switch (F->getLinkage()) {
943    case GlobalValue::InternalLinkage:  Out << "internal "; break;
944    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
945    case GlobalValue::WeakLinkage:      Out << "weak "; break;
946    case GlobalValue::AppendingLinkage: Out << "appending "; break;
947    case GlobalValue::ExternalLinkage: break;
948    case GlobalValue::GhostLinkage:
949      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
950      abort();
951    }
952
953  // Print the calling convention.
954  switch (F->getCallingConv()) {
955  case CallingConv::C: break;   // default
956  case CallingConv::Fast: Out << "fastcc "; break;
957  case CallingConv::Cold: Out << "coldcc "; break;
958  default: Out << "cc" << F->getCallingConv() << " "; break;
959  }
960
961  printType(F->getReturnType()) << ' ';
962  if (!F->getName().empty())
963    Out << getLLVMName(F->getName());
964  else
965    Out << "\"\"";
966  Out << '(';
967  Machine.incorporateFunction(F);
968
969  // Loop over the arguments, printing them...
970  const FunctionType *FT = F->getFunctionType();
971
972  for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
973    printArgument(I);
974
975  // Finish printing arguments...
976  if (FT->isVarArg()) {
977    if (FT->getNumParams()) Out << ", ";
978    Out << "...";  // Output varargs portion of signature!
979  }
980  Out << ')';
981
982  if (F->hasSection())
983    Out << " section \"" << F->getSection() << '"';
984  if (F->getAlignment())
985    Out << " align " << F->getAlignment();
986
987  if (F->isExternal()) {
988    Out << "\n";
989  } else {
990    Out << " {";
991
992    // Output all of its basic blocks... for the function
993    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
994      printBasicBlock(I);
995
996    Out << "}\n";
997  }
998
999  Machine.purgeFunction();
1000}
1001
1002/// printArgument - This member is called for every argument that is passed into
1003/// the function.  Simply print it out
1004///
1005void AssemblyWriter::printArgument(const Argument *Arg) {
1006  // Insert commas as we go... the first arg doesn't get a comma
1007  if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
1008
1009  // Output type...
1010  printType(Arg->getType());
1011
1012  // Output name, if available...
1013  if (Arg->hasName())
1014    Out << ' ' << getLLVMName(Arg->getName());
1015}
1016
1017/// printBasicBlock - This member is called for each basic block in a method.
1018///
1019void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1020  if (BB->hasName()) {              // Print out the label if it exists...
1021    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
1022  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1023    Out << "\n; <label>:";
1024    int Slot = Machine.getSlot(BB);
1025    if (Slot != -1)
1026      Out << Slot;
1027    else
1028      Out << "<badref>";
1029  }
1030
1031  if (BB->getParent() == 0)
1032    Out << "\t\t; Error: Block without parent!";
1033  else {
1034    if (BB != &BB->getParent()->front()) {  // Not the entry block?
1035      // Output predecessors for the block...
1036      Out << "\t\t;";
1037      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1038
1039      if (PI == PE) {
1040        Out << " No predecessors!";
1041      } else {
1042        Out << " preds =";
1043        writeOperand(*PI, false, true);
1044        for (++PI; PI != PE; ++PI) {
1045          Out << ',';
1046          writeOperand(*PI, false, true);
1047        }
1048      }
1049    }
1050  }
1051
1052  Out << "\n";
1053
1054  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1055
1056  // Output all of the instructions in the basic block...
1057  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1058    printInstruction(*I);
1059
1060  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1061}
1062
1063
1064/// printInfoComment - Print a little comment after the instruction indicating
1065/// which slot it occupies.
1066///
1067void AssemblyWriter::printInfoComment(const Value &V) {
1068  if (V.getType() != Type::VoidTy) {
1069    Out << "\t\t; <";
1070    printType(V.getType()) << '>';
1071
1072    if (!V.hasName()) {
1073      int SlotNum = Machine.getSlot(&V);
1074      if (SlotNum == -1)
1075        Out << ":<badref>";
1076      else
1077        Out << ':' << SlotNum; // Print out the def slot taken.
1078    }
1079    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1080  }
1081}
1082
1083/// printInstruction - This member is called for each Instruction in a function..
1084///
1085void AssemblyWriter::printInstruction(const Instruction &I) {
1086  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1087
1088  Out << "\t";
1089
1090  // Print out name if it exists...
1091  if (I.hasName())
1092    Out << getLLVMName(I.getName()) << " = ";
1093
1094  // If this is a volatile load or store, print out the volatile marker.
1095  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1096      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1097      Out << "volatile ";
1098  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1099    // If this is a call, check if it's a tail call.
1100    Out << "tail ";
1101  }
1102
1103  // Print out the opcode...
1104  Out << I.getOpcodeName();
1105
1106  // Print out the type of the operands...
1107  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1108
1109  // Special case conditional branches to swizzle the condition out to the front
1110  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1111    writeOperand(I.getOperand(2), true);
1112    Out << ',';
1113    writeOperand(Operand, true);
1114    Out << ',';
1115    writeOperand(I.getOperand(1), true);
1116
1117  } else if (isa<SwitchInst>(I)) {
1118    // Special case switch statement to get formatting nice and correct...
1119    writeOperand(Operand        , true); Out << ',';
1120    writeOperand(I.getOperand(1), true); Out << " [";
1121
1122    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1123      Out << "\n\t\t";
1124      writeOperand(I.getOperand(op  ), true); Out << ',';
1125      writeOperand(I.getOperand(op+1), true);
1126    }
1127    Out << "\n\t]";
1128  } else if (isa<PHINode>(I)) {
1129    Out << ' ';
1130    printType(I.getType());
1131    Out << ' ';
1132
1133    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1134      if (op) Out << ", ";
1135      Out << '[';
1136      writeOperand(I.getOperand(op  ), false); Out << ',';
1137      writeOperand(I.getOperand(op+1), false); Out << " ]";
1138    }
1139  } else if (isa<ReturnInst>(I) && !Operand) {
1140    Out << " void";
1141  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1142    // Print the calling convention being used.
1143    switch (CI->getCallingConv()) {
1144    case CallingConv::C: break;   // default
1145    case CallingConv::Fast: Out << " fastcc"; break;
1146    case CallingConv::Cold: Out << " coldcc"; break;
1147    default: Out << " cc" << CI->getCallingConv(); break;
1148    }
1149
1150    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1151    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1152    const Type       *RetTy = FTy->getReturnType();
1153
1154    // If possible, print out the short form of the call instruction.  We can
1155    // only do this if the first argument is a pointer to a nonvararg function,
1156    // and if the return type is not a pointer to a function.
1157    //
1158    if (!FTy->isVarArg() &&
1159        (!isa<PointerType>(RetTy) ||
1160         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1161      Out << ' '; printType(RetTy);
1162      writeOperand(Operand, false);
1163    } else {
1164      writeOperand(Operand, true);
1165    }
1166    Out << '(';
1167    if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
1168    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
1169      Out << ',';
1170      writeOperand(I.getOperand(op), true);
1171    }
1172
1173    Out << " )";
1174  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1175    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1176    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1177    const Type       *RetTy = FTy->getReturnType();
1178
1179    // Print the calling convention being used.
1180    switch (II->getCallingConv()) {
1181    case CallingConv::C: break;   // default
1182    case CallingConv::Fast: Out << " fastcc"; break;
1183    case CallingConv::Cold: Out << " coldcc"; break;
1184    default: Out << " cc" << II->getCallingConv(); break;
1185    }
1186
1187    // If possible, print out the short form of the invoke instruction. We can
1188    // only do this if the first argument is a pointer to a nonvararg function,
1189    // and if the return type is not a pointer to a function.
1190    //
1191    if (!FTy->isVarArg() &&
1192        (!isa<PointerType>(RetTy) ||
1193         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1194      Out << ' '; printType(RetTy);
1195      writeOperand(Operand, false);
1196    } else {
1197      writeOperand(Operand, true);
1198    }
1199
1200    Out << '(';
1201    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
1202    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
1203      Out << ',';
1204      writeOperand(I.getOperand(op), true);
1205    }
1206
1207    Out << " )\n\t\t\tto";
1208    writeOperand(II->getNormalDest(), true);
1209    Out << " unwind";
1210    writeOperand(II->getUnwindDest(), true);
1211
1212  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1213    Out << ' ';
1214    printType(AI->getType()->getElementType());
1215    if (AI->isArrayAllocation()) {
1216      Out << ',';
1217      writeOperand(AI->getArraySize(), true);
1218    }
1219    if (AI->getAlignment()) {
1220      Out << ", align " << AI->getAlignment();
1221    }
1222  } else if (isa<CastInst>(I)) {
1223    if (Operand) writeOperand(Operand, true);   // Work with broken code
1224    Out << " to ";
1225    printType(I.getType());
1226  } else if (isa<VAArgInst>(I)) {
1227    if (Operand) writeOperand(Operand, true);   // Work with broken code
1228    Out << ", ";
1229    printType(I.getType());
1230  } else if (Operand) {   // Print the normal way...
1231
1232    // PrintAllTypes - Instructions who have operands of all the same type
1233    // omit the type from all but the first operand.  If the instruction has
1234    // different type operands (for example br), then they are all printed.
1235    bool PrintAllTypes = false;
1236    const Type *TheType = Operand->getType();
1237
1238    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1239    // types even if all operands are bools.
1240    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I)) {
1241      PrintAllTypes = true;
1242    } else {
1243      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1244        Operand = I.getOperand(i);
1245        if (Operand->getType() != TheType) {
1246          PrintAllTypes = true;    // We have differing types!  Print them all!
1247          break;
1248        }
1249      }
1250    }
1251
1252    if (!PrintAllTypes) {
1253      Out << ' ';
1254      printType(TheType);
1255    }
1256
1257    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1258      if (i) Out << ',';
1259      writeOperand(I.getOperand(i), PrintAllTypes);
1260    }
1261  }
1262
1263  printInfoComment(I);
1264  Out << "\n";
1265}
1266
1267
1268//===----------------------------------------------------------------------===//
1269//                       External Interface declarations
1270//===----------------------------------------------------------------------===//
1271
1272void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1273  SlotMachine SlotTable(this);
1274  AssemblyWriter W(o, SlotTable, this, AAW);
1275  W.write(this);
1276}
1277
1278void GlobalVariable::print(std::ostream &o) const {
1279  SlotMachine SlotTable(getParent());
1280  AssemblyWriter W(o, SlotTable, getParent(), 0);
1281  W.write(this);
1282}
1283
1284void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1285  SlotMachine SlotTable(getParent());
1286  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1287
1288  W.write(this);
1289}
1290
1291void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1292  WriteAsOperand(o, this, true, true, 0);
1293}
1294
1295void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1296  SlotMachine SlotTable(getParent());
1297  AssemblyWriter W(o, SlotTable,
1298                   getParent() ? getParent()->getParent() : 0, AAW);
1299  W.write(this);
1300}
1301
1302void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1303  const Function *F = getParent() ? getParent()->getParent() : 0;
1304  SlotMachine SlotTable(F);
1305  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1306
1307  W.write(this);
1308}
1309
1310void Constant::print(std::ostream &o) const {
1311  if (this == 0) { o << "<null> constant value\n"; return; }
1312
1313  o << ' ' << getType()->getDescription() << ' ';
1314
1315  std::map<const Type *, std::string> TypeTable;
1316  WriteConstantInt(o, this, false, TypeTable, 0);
1317}
1318
1319void Type::print(std::ostream &o) const {
1320  if (this == 0)
1321    o << "<null Type>";
1322  else
1323    o << getDescription();
1324}
1325
1326void Argument::print(std::ostream &o) const {
1327  WriteAsOperand(o, this, true, true,
1328                 getParent() ? getParent()->getParent() : 0);
1329}
1330
1331// Value::dump - allow easy printing of  Values from the debugger.
1332// Located here because so much of the needed functionality is here.
1333void Value::dump() const { print(std::cerr); }
1334
1335// Type::dump - allow easy printing of  Values from the debugger.
1336// Located here because so much of the needed functionality is here.
1337void Type::dump() const { print(std::cerr); }
1338
1339//===----------------------------------------------------------------------===//
1340//  CachedWriter Class Implementation
1341//===----------------------------------------------------------------------===//
1342
1343void CachedWriter::setModule(const Module *M) {
1344  delete SC; delete AW;
1345  if (M) {
1346    SC = new SlotMachine(M );
1347    AW = new AssemblyWriter(Out, *SC, M, 0);
1348  } else {
1349    SC = 0; AW = 0;
1350  }
1351}
1352
1353CachedWriter::~CachedWriter() {
1354  delete AW;
1355  delete SC;
1356}
1357
1358CachedWriter &CachedWriter::operator<<(const Value &V) {
1359  assert(AW && SC && "CachedWriter does not have a current module!");
1360  if (const Instruction *I = dyn_cast<Instruction>(&V))
1361    AW->write(I);
1362  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
1363    AW->write(BB);
1364  else if (const Function *F = dyn_cast<Function>(&V))
1365    AW->write(F);
1366  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
1367    AW->write(GV);
1368  else
1369    AW->writeOperand(&V, true, true);
1370  return *this;
1371}
1372
1373CachedWriter& CachedWriter::operator<<(const Type &Ty) {
1374  if (SymbolicTypes) {
1375    const Module *M = AW->getModule();
1376    if (M) WriteTypeSymbolic(Out, &Ty, M);
1377  } else {
1378    AW->write(&Ty);
1379  }
1380  return *this;
1381}
1382
1383//===----------------------------------------------------------------------===//
1384//===--                    SlotMachine Implementation
1385//===----------------------------------------------------------------------===//
1386
1387#if 0
1388#define SC_DEBUG(X) std::cerr << X
1389#else
1390#define SC_DEBUG(X)
1391#endif
1392
1393// Module level constructor. Causes the contents of the Module (sans functions)
1394// to be added to the slot table.
1395SlotMachine::SlotMachine(const Module *M)
1396  : TheModule(M)    ///< Saved for lazy initialization.
1397  , TheFunction(0)
1398  , FunctionProcessed(false)
1399  , mMap()
1400  , mTypes()
1401  , fMap()
1402  , fTypes()
1403{
1404}
1405
1406// Function level constructor. Causes the contents of the Module and the one
1407// function provided to be added to the slot table.
1408SlotMachine::SlotMachine(const Function *F )
1409  : TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
1410  , TheFunction(F) ///< Saved for lazy initialization
1411  , FunctionProcessed(false)
1412  , mMap()
1413  , mTypes()
1414  , fMap()
1415  , fTypes()
1416{
1417}
1418
1419inline void SlotMachine::initialize(void) {
1420  if ( TheModule) {
1421    processModule();
1422    TheModule = 0; ///< Prevent re-processing next time we're called.
1423  }
1424  if ( TheFunction && ! FunctionProcessed) {
1425    processFunction();
1426  }
1427}
1428
1429// Iterate through all the global variables, functions, and global
1430// variable initializers and create slots for them.
1431void SlotMachine::processModule() {
1432  SC_DEBUG("begin processModule!\n");
1433
1434  // Add all of the global variables to the value table...
1435  for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
1436       I != E; ++I)
1437    createSlot(I);
1438
1439  // Add all the functions to the table
1440  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1441       I != E; ++I)
1442    createSlot(I);
1443
1444  SC_DEBUG("end processModule!\n");
1445}
1446
1447
1448// Process the arguments, basic blocks, and instructions  of a function.
1449void SlotMachine::processFunction() {
1450  SC_DEBUG("begin processFunction!\n");
1451
1452  // Add all the function arguments
1453  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1454      AE = TheFunction->arg_end(); AI != AE; ++AI)
1455    createSlot(AI);
1456
1457  SC_DEBUG("Inserting Instructions:\n");
1458
1459  // Add all of the basic blocks and instructions
1460  for (Function::const_iterator BB = TheFunction->begin(),
1461       E = TheFunction->end(); BB != E; ++BB) {
1462    createSlot(BB);
1463    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
1464      createSlot(I);
1465    }
1466  }
1467
1468  FunctionProcessed = true;
1469
1470  SC_DEBUG("end processFunction!\n");
1471}
1472
1473// Clean up after incorporating a function. This is the only way
1474// to get out of the function incorporation state that affects the
1475// getSlot/createSlot lock. Function incorporation state is indicated
1476// by TheFunction != 0.
1477void SlotMachine::purgeFunction() {
1478  SC_DEBUG("begin purgeFunction!\n");
1479  fMap.clear(); // Simply discard the function level map
1480  fTypes.clear();
1481  TheFunction = 0;
1482  FunctionProcessed = false;
1483  SC_DEBUG("end purgeFunction!\n");
1484}
1485
1486/// Get the slot number for a value. This function will assert if you
1487/// ask for a Value that hasn't previously been inserted with createSlot.
1488/// Types are forbidden because Type does not inherit from Value (any more).
1489int SlotMachine::getSlot(const Value *V) {
1490  assert( V && "Can't get slot for null Value" );
1491  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1492    "Can't insert a non-GlobalValue Constant into SlotMachine");
1493
1494  // Check for uninitialized state and do lazy initialization
1495  this->initialize();
1496
1497  // Get the type of the value
1498  const Type* VTy = V->getType();
1499
1500  // Find the type plane in the module map
1501  TypedPlanes::const_iterator MI = mMap.find(VTy);
1502
1503  if ( TheFunction ) {
1504    // Lookup the type in the function map too
1505    TypedPlanes::const_iterator FI = fMap.find(VTy);
1506    // If there is a corresponding type plane in the function map
1507    if ( FI != fMap.end() ) {
1508      // Lookup the Value in the function map
1509      ValueMap::const_iterator FVI = FI->second.map.find(V);
1510      // If the value doesn't exist in the function map
1511      if ( FVI == FI->second.map.end() ) {
1512        // Look up the value in the module map.
1513        if (MI == mMap.end()) return -1;
1514        ValueMap::const_iterator MVI = MI->second.map.find(V);
1515        // If we didn't find it, it wasn't inserted
1516        if (MVI == MI->second.map.end()) return -1;
1517        assert( MVI != MI->second.map.end() && "Value not found");
1518        // We found it only at the module level
1519        return MVI->second;
1520
1521      // else the value exists in the function map
1522      } else {
1523        // Return the slot number as the module's contribution to
1524        // the type plane plus the index in the function's contribution
1525        // to the type plane.
1526        if (MI != mMap.end())
1527          return MI->second.next_slot + FVI->second;
1528        else
1529          return FVI->second;
1530      }
1531    }
1532  }
1533
1534  // N.B. Can get here only if either !TheFunction or the function doesn't
1535  // have a corresponding type plane for the Value
1536
1537  // Make sure the type plane exists
1538  if (MI == mMap.end()) return -1;
1539  // Lookup the value in the module's map
1540  ValueMap::const_iterator MVI = MI->second.map.find(V);
1541  // Make sure we found it.
1542  if (MVI == MI->second.map.end()) return -1;
1543  // Return it.
1544  return MVI->second;
1545}
1546
1547/// Get the slot number for a value. This function will assert if you
1548/// ask for a Value that hasn't previously been inserted with createSlot.
1549/// Types are forbidden because Type does not inherit from Value (any more).
1550int SlotMachine::getSlot(const Type *Ty) {
1551  assert( Ty && "Can't get slot for null Type" );
1552
1553  // Check for uninitialized state and do lazy initialization
1554  this->initialize();
1555
1556  if ( TheFunction ) {
1557    // Lookup the Type in the function map
1558    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1559    // If the Type doesn't exist in the function map
1560    if ( FTI == fTypes.map.end() ) {
1561      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1562      // If we didn't find it, it wasn't inserted
1563      if (MTI == mTypes.map.end())
1564        return -1;
1565      // We found it only at the module level
1566      return MTI->second;
1567
1568    // else the value exists in the function map
1569    } else {
1570      // Return the slot number as the module's contribution to
1571      // the type plane plus the index in the function's contribution
1572      // to the type plane.
1573      return mTypes.next_slot + FTI->second;
1574    }
1575  }
1576
1577  // N.B. Can get here only if either !TheFunction
1578
1579  // Lookup the value in the module's map
1580  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1581  // Make sure we found it.
1582  if (MTI == mTypes.map.end()) return -1;
1583  // Return it.
1584  return MTI->second;
1585}
1586
1587// Create a new slot, or return the existing slot if it is already
1588// inserted. Note that the logic here parallels getSlot but instead
1589// of asserting when the Value* isn't found, it inserts the value.
1590unsigned SlotMachine::createSlot(const Value *V) {
1591  assert( V && "Can't insert a null Value to SlotMachine");
1592  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1593    "Can't insert a non-GlobalValue Constant into SlotMachine");
1594
1595  const Type* VTy = V->getType();
1596
1597  // Just ignore void typed things
1598  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
1599
1600  // Look up the type plane for the Value's type from the module map
1601  TypedPlanes::const_iterator MI = mMap.find(VTy);
1602
1603  if ( TheFunction ) {
1604    // Get the type plane for the Value's type from the function map
1605    TypedPlanes::const_iterator FI = fMap.find(VTy);
1606    // If there is a corresponding type plane in the function map
1607    if ( FI != fMap.end() ) {
1608      // Lookup the Value in the function map
1609      ValueMap::const_iterator FVI = FI->second.map.find(V);
1610      // If the value doesn't exist in the function map
1611      if ( FVI == FI->second.map.end() ) {
1612        // If there is no corresponding type plane in the module map
1613        if ( MI == mMap.end() )
1614          return insertValue(V);
1615        // Look up the value in the module map
1616        ValueMap::const_iterator MVI = MI->second.map.find(V);
1617        // If we didn't find it, it wasn't inserted
1618        if ( MVI == MI->second.map.end() )
1619          return insertValue(V);
1620        else
1621          // We found it only at the module level
1622          return MVI->second;
1623
1624      // else the value exists in the function map
1625      } else {
1626        if ( MI == mMap.end() )
1627          return FVI->second;
1628        else
1629          // Return the slot number as the module's contribution to
1630          // the type plane plus the index in the function's contribution
1631          // to the type plane.
1632          return MI->second.next_slot + FVI->second;
1633      }
1634
1635    // else there is not a corresponding type plane in the function map
1636    } else {
1637      // If the type plane doesn't exists at the module level
1638      if ( MI == mMap.end() ) {
1639        return insertValue(V);
1640      // else type plane exists at the module level, examine it
1641      } else {
1642        // Look up the value in the module's map
1643        ValueMap::const_iterator MVI = MI->second.map.find(V);
1644        // If we didn't find it there either
1645        if ( MVI == MI->second.map.end() )
1646          // Return the slot number as the module's contribution to
1647          // the type plane plus the index of the function map insertion.
1648          return MI->second.next_slot + insertValue(V);
1649        else
1650          return MVI->second;
1651      }
1652    }
1653  }
1654
1655  // N.B. Can only get here if !TheFunction
1656
1657  // If the module map's type plane is not for the Value's type
1658  if ( MI != mMap.end() ) {
1659    // Lookup the value in the module's map
1660    ValueMap::const_iterator MVI = MI->second.map.find(V);
1661    if ( MVI != MI->second.map.end() )
1662      return MVI->second;
1663  }
1664
1665  return insertValue(V);
1666}
1667
1668// Create a new slot, or return the existing slot if it is already
1669// inserted. Note that the logic here parallels getSlot but instead
1670// of asserting when the Value* isn't found, it inserts the value.
1671unsigned SlotMachine::createSlot(const Type *Ty) {
1672  assert( Ty && "Can't insert a null Type to SlotMachine");
1673
1674  if ( TheFunction ) {
1675    // Lookup the Type in the function map
1676    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1677    // If the type doesn't exist in the function map
1678    if ( FTI == fTypes.map.end() ) {
1679      // Look up the type in the module map
1680      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1681      // If we didn't find it, it wasn't inserted
1682      if ( MTI == mTypes.map.end() )
1683        return insertValue(Ty);
1684      else
1685        // We found it only at the module level
1686        return MTI->second;
1687
1688    // else the value exists in the function map
1689    } else {
1690      // Return the slot number as the module's contribution to
1691      // the type plane plus the index in the function's contribution
1692      // to the type plane.
1693      return mTypes.next_slot + FTI->second;
1694    }
1695  }
1696
1697  // N.B. Can only get here if !TheFunction
1698
1699  // Lookup the type in the module's map
1700  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1701  if ( MTI != mTypes.map.end() )
1702    return MTI->second;
1703
1704  return insertValue(Ty);
1705}
1706
1707// Low level insert function. Minimal checking is done. This
1708// function is just for the convenience of createSlot (above).
1709unsigned SlotMachine::insertValue(const Value *V ) {
1710  assert(V && "Can't insert a null Value into SlotMachine!");
1711  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1712    "Can't insert a non-GlobalValue Constant into SlotMachine");
1713
1714  // If this value does not contribute to a plane (is void)
1715  // or if the value already has a name then ignore it.
1716  if (V->getType() == Type::VoidTy || V->hasName() ) {
1717      SC_DEBUG("ignored value " << *V << "\n");
1718      return 0;   // FIXME: Wrong return value
1719  }
1720
1721  const Type *VTy = V->getType();
1722  unsigned DestSlot = 0;
1723
1724  if ( TheFunction ) {
1725    TypedPlanes::iterator I = fMap.find( VTy );
1726    if ( I == fMap.end() )
1727      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
1728    DestSlot = I->second.map[V] = I->second.next_slot++;
1729  } else {
1730    TypedPlanes::iterator I = mMap.find( VTy );
1731    if ( I == mMap.end() )
1732      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
1733    DestSlot = I->second.map[V] = I->second.next_slot++;
1734  }
1735
1736  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1737           DestSlot << " [");
1738  // G = Global, C = Constant, T = Type, F = Function, o = other
1739  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
1740           (isa<Constant>(V) ? 'C' : 'o'))));
1741  SC_DEBUG("]\n");
1742  return DestSlot;
1743}
1744
1745// Low level insert function. Minimal checking is done. This
1746// function is just for the convenience of createSlot (above).
1747unsigned SlotMachine::insertValue(const Type *Ty ) {
1748  assert(Ty && "Can't insert a null Type into SlotMachine!");
1749
1750  unsigned DestSlot = 0;
1751
1752  if ( TheFunction ) {
1753    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1754  } else {
1755    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1756  }
1757  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
1758  return DestSlot;
1759}
1760
1761// vim: sw=2
1762