AsmWriter.cpp revision bdff548e4dd577a72094d57b282de4e765643b96
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Operator.h"
27#include "llvm/Metadata.h"
28#include "llvm/Module.h"
29#include "llvm/ValueSymbolTable.h"
30#include "llvm/TypeSymbolTable.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/FormattedStream.h"
38#include <algorithm>
39#include <cctype>
40#include <map>
41using namespace llvm;
42
43// Make virtual table appear in this compilation unit.
44AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
45
46//===----------------------------------------------------------------------===//
47// Helper Functions
48//===----------------------------------------------------------------------===//
49
50static const Module *getModuleFromVal(const Value *V) {
51  if (const Argument *MA = dyn_cast<Argument>(V))
52    return MA->getParent() ? MA->getParent()->getParent() : 0;
53
54  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55    return BB->getParent() ? BB->getParent()->getParent() : 0;
56
57  if (const Instruction *I = dyn_cast<Instruction>(V)) {
58    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59    return M ? M->getParent() : 0;
60  }
61
62  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63    return GV->getParent();
64  return 0;
65}
66
67// PrintEscapedString - Print each character of the specified string, escaping
68// it if it is not printable or if it is an escape char.
69static void PrintEscapedString(const StringRef &Name,
70                               raw_ostream &Out) {
71  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
72    unsigned char C = Name[i];
73    if (isprint(C) && C != '\\' && C != '"')
74      Out << C;
75    else
76      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
77  }
78}
79
80enum PrefixType {
81  GlobalPrefix,
82  LabelPrefix,
83  LocalPrefix,
84  NoPrefix
85};
86
87/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
88/// prefixed with % (if the string only contains simple characters) or is
89/// surrounded with ""'s (if it has special chars in it).  Print it out.
90static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
91                          PrefixType Prefix) {
92  assert(Name.data() && "Cannot get empty name!");
93  switch (Prefix) {
94  default: llvm_unreachable("Bad prefix!");
95  case NoPrefix: break;
96  case GlobalPrefix: OS << '@'; break;
97  case LabelPrefix:  break;
98  case LocalPrefix:  OS << '%'; break;
99  }
100
101  // Scan the name to see if it needs quotes first.
102  bool NeedsQuotes = isdigit(Name[0]);
103  if (!NeedsQuotes) {
104    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
105      char C = Name[i];
106      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
107        NeedsQuotes = true;
108        break;
109      }
110    }
111  }
112
113  // If we didn't need any quotes, just write out the name in one blast.
114  if (!NeedsQuotes) {
115    OS << Name;
116    return;
117  }
118
119  // Okay, we need quotes.  Output the quotes and escape any scary characters as
120  // needed.
121  OS << '"';
122  PrintEscapedString(Name, OS);
123  OS << '"';
124}
125
126/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
127/// prefixed with % (if the string only contains simple characters) or is
128/// surrounded with ""'s (if it has special chars in it).  Print it out.
129static void PrintLLVMName(raw_ostream &OS, const Value *V) {
130  PrintLLVMName(OS, V->getName(),
131                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
132}
133
134//===----------------------------------------------------------------------===//
135// TypePrinting Class: Type printing machinery
136//===----------------------------------------------------------------------===//
137
138static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
139  return *static_cast<DenseMap<const Type *, std::string>*>(M);
140}
141
142void TypePrinting::clear() {
143  getTypeNamesMap(TypeNames).clear();
144}
145
146bool TypePrinting::hasTypeName(const Type *Ty) const {
147  return getTypeNamesMap(TypeNames).count(Ty);
148}
149
150void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
151  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
152}
153
154
155TypePrinting::TypePrinting() {
156  TypeNames = new DenseMap<const Type *, std::string>();
157}
158
159TypePrinting::~TypePrinting() {
160  delete &getTypeNamesMap(TypeNames);
161}
162
163/// CalcTypeName - Write the specified type to the specified raw_ostream, making
164/// use of type names or up references to shorten the type name where possible.
165void TypePrinting::CalcTypeName(const Type *Ty,
166                                SmallVectorImpl<const Type *> &TypeStack,
167                                raw_ostream &OS, bool IgnoreTopLevelName) {
168  // Check to see if the type is named.
169  if (!IgnoreTopLevelName) {
170    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
171    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
172    if (I != TM.end()) {
173      OS << I->second;
174      return;
175    }
176  }
177
178  // Check to see if the Type is already on the stack...
179  unsigned Slot = 0, CurSize = TypeStack.size();
180  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
181
182  // This is another base case for the recursion.  In this case, we know
183  // that we have looped back to a type that we have previously visited.
184  // Generate the appropriate upreference to handle this.
185  if (Slot < CurSize) {
186    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
187    return;
188  }
189
190  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
191
192  switch (Ty->getTypeID()) {
193  case Type::VoidTyID:      OS << "void"; break;
194  case Type::FloatTyID:     OS << "float"; break;
195  case Type::DoubleTyID:    OS << "double"; break;
196  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
197  case Type::FP128TyID:     OS << "fp128"; break;
198  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
199  case Type::LabelTyID:     OS << "label"; break;
200  case Type::MetadataTyID:  OS << "metadata"; break;
201  case Type::IntegerTyID:
202    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
203    break;
204
205  case Type::FunctionTyID: {
206    const FunctionType *FTy = cast<FunctionType>(Ty);
207    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
208    OS << " (";
209    for (FunctionType::param_iterator I = FTy->param_begin(),
210         E = FTy->param_end(); I != E; ++I) {
211      if (I != FTy->param_begin())
212        OS << ", ";
213      CalcTypeName(*I, TypeStack, OS);
214    }
215    if (FTy->isVarArg()) {
216      if (FTy->getNumParams()) OS << ", ";
217      OS << "...";
218    }
219    OS << ')';
220    break;
221  }
222  case Type::StructTyID: {
223    const StructType *STy = cast<StructType>(Ty);
224    if (STy->isPacked())
225      OS << '<';
226    OS << "{ ";
227    for (StructType::element_iterator I = STy->element_begin(),
228         E = STy->element_end(); I != E; ++I) {
229      CalcTypeName(*I, TypeStack, OS);
230      if (next(I) != STy->element_end())
231        OS << ',';
232      OS << ' ';
233    }
234    OS << '}';
235    if (STy->isPacked())
236      OS << '>';
237    break;
238  }
239  case Type::PointerTyID: {
240    const PointerType *PTy = cast<PointerType>(Ty);
241    CalcTypeName(PTy->getElementType(), TypeStack, OS);
242    if (unsigned AddressSpace = PTy->getAddressSpace())
243      OS << " addrspace(" << AddressSpace << ')';
244    OS << '*';
245    break;
246  }
247  case Type::ArrayTyID: {
248    const ArrayType *ATy = cast<ArrayType>(Ty);
249    OS << '[' << ATy->getNumElements() << " x ";
250    CalcTypeName(ATy->getElementType(), TypeStack, OS);
251    OS << ']';
252    break;
253  }
254  case Type::VectorTyID: {
255    const VectorType *PTy = cast<VectorType>(Ty);
256    OS << "<" << PTy->getNumElements() << " x ";
257    CalcTypeName(PTy->getElementType(), TypeStack, OS);
258    OS << '>';
259    break;
260  }
261  case Type::OpaqueTyID:
262    OS << "opaque";
263    break;
264  default:
265    OS << "<unrecognized-type>";
266    break;
267  }
268
269  TypeStack.pop_back();       // Remove self from stack.
270}
271
272/// printTypeInt - The internal guts of printing out a type that has a
273/// potentially named portion.
274///
275void TypePrinting::print(const Type *Ty, raw_ostream &OS,
276                         bool IgnoreTopLevelName) {
277  // Check to see if the type is named.
278  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
279  if (!IgnoreTopLevelName) {
280    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
281    if (I != TM.end()) {
282      OS << I->second;
283      return;
284    }
285  }
286
287  // Otherwise we have a type that has not been named but is a derived type.
288  // Carefully recurse the type hierarchy to print out any contained symbolic
289  // names.
290  SmallVector<const Type *, 16> TypeStack;
291  std::string TypeName;
292
293  raw_string_ostream TypeOS(TypeName);
294  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
295  OS << TypeOS.str();
296
297  // Cache type name for later use.
298  if (!IgnoreTopLevelName)
299    TM.insert(std::make_pair(Ty, TypeOS.str()));
300}
301
302namespace {
303  class TypeFinder {
304    // To avoid walking constant expressions multiple times and other IR
305    // objects, we keep several helper maps.
306    DenseSet<const Value*> VisitedConstants;
307    DenseSet<const Type*> VisitedTypes;
308
309    TypePrinting &TP;
310    std::vector<const Type*> &NumberedTypes;
311  public:
312    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
313      : TP(tp), NumberedTypes(numberedTypes) {}
314
315    void Run(const Module &M) {
316      // Get types from the type symbol table.  This gets opaque types referened
317      // only through derived named types.
318      const TypeSymbolTable &ST = M.getTypeSymbolTable();
319      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
320           TI != E; ++TI)
321        IncorporateType(TI->second);
322
323      // Get types from global variables.
324      for (Module::const_global_iterator I = M.global_begin(),
325           E = M.global_end(); I != E; ++I) {
326        IncorporateType(I->getType());
327        if (I->hasInitializer())
328          IncorporateValue(I->getInitializer());
329      }
330
331      // Get types from aliases.
332      for (Module::const_alias_iterator I = M.alias_begin(),
333           E = M.alias_end(); I != E; ++I) {
334        IncorporateType(I->getType());
335        IncorporateValue(I->getAliasee());
336      }
337
338      // Get types from functions.
339      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
340        IncorporateType(FI->getType());
341
342        for (Function::const_iterator BB = FI->begin(), E = FI->end();
343             BB != E;++BB)
344          for (BasicBlock::const_iterator II = BB->begin(),
345               E = BB->end(); II != E; ++II) {
346            const Instruction &I = *II;
347            // Incorporate the type of the instruction and all its operands.
348            IncorporateType(I.getType());
349            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
350                 OI != OE; ++OI)
351              IncorporateValue(*OI);
352          }
353      }
354    }
355
356  private:
357    void IncorporateType(const Type *Ty) {
358      // Check to see if we're already visited this type.
359      if (!VisitedTypes.insert(Ty).second)
360        return;
361
362      // If this is a structure or opaque type, add a name for the type.
363      if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
364            || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
365        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
366        NumberedTypes.push_back(Ty);
367      }
368
369      // Recursively walk all contained types.
370      for (Type::subtype_iterator I = Ty->subtype_begin(),
371           E = Ty->subtype_end(); I != E; ++I)
372        IncorporateType(*I);
373    }
374
375    /// IncorporateValue - This method is used to walk operand lists finding
376    /// types hiding in constant expressions and other operands that won't be
377    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
378    /// inst operands are all explicitly enumerated.
379    void IncorporateValue(const Value *V) {
380      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
381
382      // Already visited?
383      if (!VisitedConstants.insert(V).second)
384        return;
385
386      // Check this type.
387      IncorporateType(V->getType());
388
389      // Look in operands for types.
390      const Constant *C = cast<Constant>(V);
391      for (Constant::const_op_iterator I = C->op_begin(),
392           E = C->op_end(); I != E;++I)
393        IncorporateValue(*I);
394    }
395  };
396} // end anonymous namespace
397
398
399/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
400/// the specified module to the TypePrinter and all numbered types to it and the
401/// NumberedTypes table.
402static void AddModuleTypesToPrinter(TypePrinting &TP,
403                                    std::vector<const Type*> &NumberedTypes,
404                                    const Module *M) {
405  if (M == 0) return;
406
407  // If the module has a symbol table, take all global types and stuff their
408  // names into the TypeNames map.
409  const TypeSymbolTable &ST = M->getTypeSymbolTable();
410  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
411       TI != E; ++TI) {
412    const Type *Ty = cast<Type>(TI->second);
413
414    // As a heuristic, don't insert pointer to primitive types, because
415    // they are used too often to have a single useful name.
416    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
417      const Type *PETy = PTy->getElementType();
418      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
419          !isa<OpaqueType>(PETy))
420        continue;
421    }
422
423    // Likewise don't insert primitives either.
424    if (Ty->isInteger() || Ty->isPrimitiveType())
425      continue;
426
427    // Get the name as a string and insert it into TypeNames.
428    std::string NameStr;
429    raw_string_ostream NameROS(NameStr);
430    formatted_raw_ostream NameOS(NameROS);
431    PrintLLVMName(NameOS, TI->first, LocalPrefix);
432    NameOS.flush();
433    TP.addTypeName(Ty, NameStr);
434  }
435
436  // Walk the entire module to find references to unnamed structure and opaque
437  // types.  This is required for correctness by opaque types (because multiple
438  // uses of an unnamed opaque type needs to be referred to by the same ID) and
439  // it shrinks complex recursive structure types substantially in some cases.
440  TypeFinder(TP, NumberedTypes).Run(*M);
441}
442
443
444/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
445/// type, iff there is an entry in the modules symbol table for the specified
446/// type or one of it's component types.
447///
448void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
449  TypePrinting Printer;
450  std::vector<const Type*> NumberedTypes;
451  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
452  Printer.print(Ty, OS);
453}
454
455//===----------------------------------------------------------------------===//
456// SlotTracker Class: Enumerate slot numbers for unnamed values
457//===----------------------------------------------------------------------===//
458
459namespace {
460
461/// This class provides computation of slot numbers for LLVM Assembly writing.
462///
463class SlotTracker {
464public:
465  /// ValueMap - A mapping of Values to slot numbers.
466  typedef DenseMap<const Value*, unsigned> ValueMap;
467
468private:
469  /// TheModule - The module for which we are holding slot numbers.
470  const Module* TheModule;
471
472  /// TheFunction - The function for which we are holding slot numbers.
473  const Function* TheFunction;
474  bool FunctionProcessed;
475
476  /// TheMDNode - The MDNode for which we are holding slot numbers.
477  const MDNode *TheMDNode;
478
479  /// TheNamedMDNode - The MDNode for which we are holding slot numbers.
480  const NamedMDNode *TheNamedMDNode;
481
482  /// mMap - The TypePlanes map for the module level data.
483  ValueMap mMap;
484  unsigned mNext;
485
486  /// fMap - The TypePlanes map for the function level data.
487  ValueMap fMap;
488  unsigned fNext;
489
490  /// mdnMap - Map for MDNodes.
491  ValueMap mdnMap;
492  unsigned mdnNext;
493public:
494  /// Construct from a module
495  explicit SlotTracker(const Module *M);
496  /// Construct from a function, starting out in incorp state.
497  explicit SlotTracker(const Function *F);
498  /// Construct from a mdnode.
499  explicit SlotTracker(const MDNode *N);
500  /// Construct from a named mdnode.
501  explicit SlotTracker(const NamedMDNode *N);
502
503  /// Return the slot number of the specified value in it's type
504  /// plane.  If something is not in the SlotTracker, return -1.
505  int getLocalSlot(const Value *V);
506  int getGlobalSlot(const GlobalValue *V);
507  int getMetadataSlot(const MDNode *N);
508
509  /// If you'd like to deal with a function instead of just a module, use
510  /// this method to get its data into the SlotTracker.
511  void incorporateFunction(const Function *F) {
512    TheFunction = F;
513    FunctionProcessed = false;
514  }
515
516  /// After calling incorporateFunction, use this method to remove the
517  /// most recently incorporated function from the SlotTracker. This
518  /// will reset the state of the machine back to just the module contents.
519  void purgeFunction();
520
521  /// MDNode map iterators.
522  ValueMap::iterator mdnBegin() { return mdnMap.begin(); }
523  ValueMap::iterator mdnEnd() { return mdnMap.end(); }
524  unsigned mdnSize() const { return mdnMap.size(); }
525  bool mdnEmpty() const { return mdnMap.empty(); }
526
527  /// This function does the actual initialization.
528  inline void initialize();
529
530  // Implementation Details
531private:
532  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
533  void CreateModuleSlot(const GlobalValue *V);
534
535  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
536  void CreateMetadataSlot(const MDNode *N);
537
538  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
539  void CreateFunctionSlot(const Value *V);
540
541  /// Add all of the module level global variables (and their initializers)
542  /// and function declarations, but not the contents of those functions.
543  void processModule();
544
545  /// Add all of the functions arguments, basic blocks, and instructions.
546  void processFunction();
547
548  /// Add all MDNode operands.
549  void processMDNode();
550
551  /// Add all MDNode operands.
552  void processNamedMDNode();
553
554  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
555  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
556};
557
558}  // end anonymous namespace
559
560
561static SlotTracker *createSlotTracker(const Value *V) {
562  if (const Argument *FA = dyn_cast<Argument>(V))
563    return new SlotTracker(FA->getParent());
564
565  if (const Instruction *I = dyn_cast<Instruction>(V))
566    return new SlotTracker(I->getParent()->getParent());
567
568  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
569    return new SlotTracker(BB->getParent());
570
571  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
572    return new SlotTracker(GV->getParent());
573
574  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
575    return new SlotTracker(GA->getParent());
576
577  if (const Function *Func = dyn_cast<Function>(V))
578    return new SlotTracker(Func);
579
580  return 0;
581}
582
583#if 0
584#define ST_DEBUG(X) errs() << X
585#else
586#define ST_DEBUG(X)
587#endif
588
589// Module level constructor. Causes the contents of the Module (sans functions)
590// to be added to the slot table.
591SlotTracker::SlotTracker(const Module *M)
592  : TheModule(M), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
593    TheNamedMDNode(0), mNext(0), fNext(0),  mdnNext(0) {
594}
595
596// Function level constructor. Causes the contents of the Module and the one
597// function provided to be added to the slot table.
598SlotTracker::SlotTracker(const Function *F)
599  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
600    TheMDNode(0), TheNamedMDNode(0), mNext(0), fNext(0), mdnNext(0) {
601}
602
603// Constructor to handle single MDNode.
604SlotTracker::SlotTracker(const MDNode *C)
605  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(C),
606    TheNamedMDNode(0), mNext(0), fNext(0),  mdnNext(0) {
607}
608
609// Constructor to handle single NamedMDNode.
610SlotTracker::SlotTracker(const NamedMDNode *N)
611  : TheModule(0), TheFunction(0), FunctionProcessed(false), TheMDNode(0),
612    TheNamedMDNode(N), mNext(0), fNext(0),  mdnNext(0) {
613}
614
615inline void SlotTracker::initialize() {
616  if (TheModule) {
617    processModule();
618    TheModule = 0; ///< Prevent re-processing next time we're called.
619  }
620
621  if (TheFunction && !FunctionProcessed)
622    processFunction();
623
624  if (TheMDNode)
625    processMDNode();
626
627  if (TheNamedMDNode)
628    processNamedMDNode();
629}
630
631// Iterate through all the global variables, functions, and global
632// variable initializers and create slots for them.
633void SlotTracker::processModule() {
634  ST_DEBUG("begin processModule!\n");
635
636  // Add all of the unnamed global variables to the value table.
637  for (Module::const_global_iterator I = TheModule->global_begin(),
638         E = TheModule->global_end(); I != E; ++I) {
639    if (!I->hasName())
640      CreateModuleSlot(I);
641    if (I->hasInitializer()) {
642      if (MDNode *N = dyn_cast<MDNode>(I->getInitializer()))
643        CreateMetadataSlot(N);
644    }
645  }
646
647  // Add metadata used by named metadata.
648  for (Module::const_named_metadata_iterator
649         I = TheModule->named_metadata_begin(),
650         E = TheModule->named_metadata_end(); I != E; ++I) {
651    const NamedMDNode *NMD = I;
652    for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
653      MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
654      if (MD)
655        CreateMetadataSlot(MD);
656    }
657  }
658
659  // Add all the unnamed functions to the table.
660  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
661       I != E; ++I)
662    if (!I->hasName())
663      CreateModuleSlot(I);
664
665  ST_DEBUG("end processModule!\n");
666}
667
668// Process the arguments, basic blocks, and instructions  of a function.
669void SlotTracker::processFunction() {
670  ST_DEBUG("begin processFunction!\n");
671  fNext = 0;
672
673  // Add all the function arguments with no names.
674  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
675      AE = TheFunction->arg_end(); AI != AE; ++AI)
676    if (!AI->hasName())
677      CreateFunctionSlot(AI);
678
679  ST_DEBUG("Inserting Instructions:\n");
680
681  // Add all of the basic blocks and instructions with no names.
682  for (Function::const_iterator BB = TheFunction->begin(),
683       E = TheFunction->end(); BB != E; ++BB) {
684    if (!BB->hasName())
685      CreateFunctionSlot(BB);
686    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
687         ++I) {
688      if (I->getType() != Type::getVoidTy(TheFunction->getContext()) &&
689          !I->hasName())
690        CreateFunctionSlot(I);
691      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
692        if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
693          CreateMetadataSlot(N);
694    }
695  }
696
697  FunctionProcessed = true;
698
699  ST_DEBUG("end processFunction!\n");
700}
701
702/// processMDNode - Process TheMDNode.
703void SlotTracker::processMDNode() {
704  ST_DEBUG("begin processMDNode!\n");
705  mdnNext = 0;
706  CreateMetadataSlot(TheMDNode);
707  TheMDNode = 0;
708  ST_DEBUG("end processMDNode!\n");
709}
710
711/// processNamedMDNode - Process TheNamedMDNode.
712void SlotTracker::processNamedMDNode() {
713  ST_DEBUG("begin processNamedMDNode!\n");
714  mdnNext = 0;
715  for (unsigned i = 0, e = TheNamedMDNode->getNumElements(); i != e; ++i) {
716    MDNode *MD = dyn_cast_or_null<MDNode>(TheNamedMDNode->getElement(i));
717    if (MD)
718      CreateMetadataSlot(MD);
719  }
720  TheNamedMDNode = 0;
721  ST_DEBUG("end processNamedMDNode!\n");
722}
723
724/// Clean up after incorporating a function. This is the only way to get out of
725/// the function incorporation state that affects get*Slot/Create*Slot. Function
726/// incorporation state is indicated by TheFunction != 0.
727void SlotTracker::purgeFunction() {
728  ST_DEBUG("begin purgeFunction!\n");
729  fMap.clear(); // Simply discard the function level map
730  TheFunction = 0;
731  FunctionProcessed = false;
732  ST_DEBUG("end purgeFunction!\n");
733}
734
735/// getGlobalSlot - Get the slot number of a global value.
736int SlotTracker::getGlobalSlot(const GlobalValue *V) {
737  // Check for uninitialized state and do lazy initialization.
738  initialize();
739
740  // Find the type plane in the module map
741  ValueMap::iterator MI = mMap.find(V);
742  return MI == mMap.end() ? -1 : (int)MI->second;
743}
744
745/// getGlobalSlot - Get the slot number of a MDNode.
746int SlotTracker::getMetadataSlot(const MDNode *N) {
747  // Check for uninitialized state and do lazy initialization.
748  initialize();
749
750  // Find the type plane in the module map
751  ValueMap::iterator MI = mdnMap.find(N);
752  return MI == mdnMap.end() ? -1 : (int)MI->second;
753}
754
755
756/// getLocalSlot - Get the slot number for a value that is local to a function.
757int SlotTracker::getLocalSlot(const Value *V) {
758  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
759
760  // Check for uninitialized state and do lazy initialization.
761  initialize();
762
763  ValueMap::iterator FI = fMap.find(V);
764  return FI == fMap.end() ? -1 : (int)FI->second;
765}
766
767
768/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
769void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
770  assert(V && "Can't insert a null Value into SlotTracker!");
771  assert(V->getType() != Type::getVoidTy(V->getContext()) &&
772         "Doesn't need a slot!");
773  assert(!V->hasName() && "Doesn't need a slot!");
774
775  unsigned DestSlot = mNext++;
776  mMap[V] = DestSlot;
777
778  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
779           DestSlot << " [");
780  // G = Global, F = Function, A = Alias, o = other
781  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
782            (isa<Function>(V) ? 'F' :
783             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
784}
785
786/// CreateSlot - Create a new slot for the specified value if it has no name.
787void SlotTracker::CreateFunctionSlot(const Value *V) {
788  assert(V->getType() != Type::getVoidTy(TheFunction->getContext()) &&
789         !V->hasName() && "Doesn't need a slot!");
790
791  unsigned DestSlot = fNext++;
792  fMap[V] = DestSlot;
793
794  // G = Global, F = Function, o = other
795  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
796           DestSlot << " [o]\n");
797}
798
799/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
800void SlotTracker::CreateMetadataSlot(const MDNode *N) {
801  assert(N && "Can't insert a null Value into SlotTracker!");
802
803  ValueMap::iterator I = mdnMap.find(N);
804  if (I != mdnMap.end())
805    return;
806
807  unsigned DestSlot = mdnNext++;
808  mdnMap[N] = DestSlot;
809
810  for (MDNode::const_elem_iterator MDI = N->elem_begin(),
811         MDE = N->elem_end(); MDI != MDE; ++MDI) {
812    const Value *TV = *MDI;
813    if (TV)
814      if (const MDNode *N2 = dyn_cast<MDNode>(TV))
815        CreateMetadataSlot(N2);
816  }
817}
818
819//===----------------------------------------------------------------------===//
820// AsmWriter Implementation
821//===----------------------------------------------------------------------===//
822
823static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
824                                   TypePrinting *TypePrinter,
825                                   SlotTracker *Machine);
826
827
828
829static const char *getPredicateText(unsigned predicate) {
830  const char * pred = "unknown";
831  switch (predicate) {
832    case FCmpInst::FCMP_FALSE: pred = "false"; break;
833    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
834    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
835    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
836    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
837    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
838    case FCmpInst::FCMP_ONE:   pred = "one"; break;
839    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
840    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
841    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
842    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
843    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
844    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
845    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
846    case FCmpInst::FCMP_UNE:   pred = "une"; break;
847    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
848    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
849    case ICmpInst::ICMP_NE:    pred = "ne"; break;
850    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
851    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
852    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
853    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
854    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
855    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
856    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
857    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
858  }
859  return pred;
860}
861
862static void WriteMDNodes(formatted_raw_ostream &Out, TypePrinting &TypePrinter,
863                         SlotTracker &Machine) {
864  SmallVector<const MDNode *, 16> Nodes;
865  Nodes.resize(Machine.mdnSize());
866  for (SlotTracker::ValueMap::iterator I =
867         Machine.mdnBegin(), E = Machine.mdnEnd(); I != E; ++I)
868    Nodes[I->second] = cast<MDNode>(I->first);
869
870  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
871    Out << '!' << i << " = metadata ";
872    const MDNode *Node = Nodes[i];
873    Out << "!{";
874    for (MDNode::const_elem_iterator NI = Node->elem_begin(),
875           NE = Node->elem_end(); NI != NE;) {
876      const Value *V = *NI;
877      if (!V)
878        Out << "null";
879      else if (const MDNode *N = dyn_cast<MDNode>(V)) {
880        Out << "metadata ";
881        Out << '!' << Machine.getMetadataSlot(N);
882      }
883      else {
884        TypePrinter.print((*NI)->getType(), Out);
885        Out << ' ';
886        WriteAsOperandInternal(Out, *NI, &TypePrinter, &Machine);
887      }
888      if (++NI != NE)
889        Out << ", ";
890    }
891    Out << "}\n";
892  }
893}
894
895static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
896  if (const OverflowingBinaryOperator *OBO =
897        dyn_cast<OverflowingBinaryOperator>(U)) {
898    if (OBO->hasNoUnsignedWrap())
899      Out << " nuw";
900    if (OBO->hasNoSignedWrap())
901      Out << " nsw";
902  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
903    if (Div->isExact())
904      Out << " exact";
905  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
906    if (GEP->isInBounds())
907      Out << " inbounds";
908  }
909}
910
911static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
912                             TypePrinting &TypePrinter, SlotTracker *Machine) {
913  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
914    if (CI->getType() == Type::getInt1Ty(CV->getContext())) {
915      Out << (CI->getZExtValue() ? "true" : "false");
916      return;
917    }
918    Out << CI->getValue();
919    return;
920  }
921
922  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
923    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
924        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
925      // We would like to output the FP constant value in exponential notation,
926      // but we cannot do this if doing so will lose precision.  Check here to
927      // make sure that we only output it in exponential format if we can parse
928      // the value back and get the same value.
929      //
930      bool ignored;
931      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
932      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
933                              CFP->getValueAPF().convertToFloat();
934      std::string StrVal = ftostr(CFP->getValueAPF());
935
936      // Check to make sure that the stringized number is not some string like
937      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
938      // that the string matches the "[-+]?[0-9]" regex.
939      //
940      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
941          ((StrVal[0] == '-' || StrVal[0] == '+') &&
942           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
943        // Reparse stringized version!
944        if (atof(StrVal.c_str()) == Val) {
945          Out << StrVal;
946          return;
947        }
948      }
949      // Otherwise we could not reparse it to exactly the same value, so we must
950      // output the string in hexadecimal format!  Note that loading and storing
951      // floating point types changes the bits of NaNs on some hosts, notably
952      // x86, so we must not use these types.
953      assert(sizeof(double) == sizeof(uint64_t) &&
954             "assuming that double is 64 bits!");
955      char Buffer[40];
956      APFloat apf = CFP->getValueAPF();
957      // Floats are represented in ASCII IR as double, convert.
958      if (!isDouble)
959        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
960                          &ignored);
961      Out << "0x" <<
962              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
963                            Buffer+40);
964      return;
965    }
966
967    // Some form of long double.  These appear as a magic letter identifying
968    // the type, then a fixed number of hex digits.
969    Out << "0x";
970    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
971      Out << 'K';
972      // api needed to prevent premature destruction
973      APInt api = CFP->getValueAPF().bitcastToAPInt();
974      const uint64_t* p = api.getRawData();
975      uint64_t word = p[1];
976      int shiftcount=12;
977      int width = api.getBitWidth();
978      for (int j=0; j<width; j+=4, shiftcount-=4) {
979        unsigned int nibble = (word>>shiftcount) & 15;
980        if (nibble < 10)
981          Out << (unsigned char)(nibble + '0');
982        else
983          Out << (unsigned char)(nibble - 10 + 'A');
984        if (shiftcount == 0 && j+4 < width) {
985          word = *p;
986          shiftcount = 64;
987          if (width-j-4 < 64)
988            shiftcount = width-j-4;
989        }
990      }
991      return;
992    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
993      Out << 'L';
994    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
995      Out << 'M';
996    else
997      llvm_unreachable("Unsupported floating point type");
998    // api needed to prevent premature destruction
999    APInt api = CFP->getValueAPF().bitcastToAPInt();
1000    const uint64_t* p = api.getRawData();
1001    uint64_t word = *p;
1002    int shiftcount=60;
1003    int width = api.getBitWidth();
1004    for (int j=0; j<width; j+=4, shiftcount-=4) {
1005      unsigned int nibble = (word>>shiftcount) & 15;
1006      if (nibble < 10)
1007        Out << (unsigned char)(nibble + '0');
1008      else
1009        Out << (unsigned char)(nibble - 10 + 'A');
1010      if (shiftcount == 0 && j+4 < width) {
1011        word = *(++p);
1012        shiftcount = 64;
1013        if (width-j-4 < 64)
1014          shiftcount = width-j-4;
1015      }
1016    }
1017    return;
1018  }
1019
1020  if (isa<ConstantAggregateZero>(CV)) {
1021    Out << "zeroinitializer";
1022    return;
1023  }
1024
1025  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1026    // As a special case, print the array as a string if it is an array of
1027    // i8 with ConstantInt values.
1028    //
1029    const Type *ETy = CA->getType()->getElementType();
1030    if (CA->isString()) {
1031      Out << "c\"";
1032      PrintEscapedString(CA->getAsString(), Out);
1033      Out << '"';
1034    } else {                // Cannot output in string format...
1035      Out << '[';
1036      if (CA->getNumOperands()) {
1037        TypePrinter.print(ETy, Out);
1038        Out << ' ';
1039        WriteAsOperandInternal(Out, CA->getOperand(0),
1040                               &TypePrinter, Machine);
1041        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1042          Out << ", ";
1043          TypePrinter.print(ETy, Out);
1044          Out << ' ';
1045          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
1046        }
1047      }
1048      Out << ']';
1049    }
1050    return;
1051  }
1052
1053  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1054    if (CS->getType()->isPacked())
1055      Out << '<';
1056    Out << '{';
1057    unsigned N = CS->getNumOperands();
1058    if (N) {
1059      Out << ' ';
1060      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1061      Out << ' ';
1062
1063      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1064
1065      for (unsigned i = 1; i < N; i++) {
1066        Out << ", ";
1067        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1068        Out << ' ';
1069
1070        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1071      }
1072      Out << ' ';
1073    }
1074
1075    Out << '}';
1076    if (CS->getType()->isPacked())
1077      Out << '>';
1078    return;
1079  }
1080
1081  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1082    const Type *ETy = CP->getType()->getElementType();
1083    assert(CP->getNumOperands() > 0 &&
1084           "Number of operands for a PackedConst must be > 0");
1085    Out << '<';
1086    TypePrinter.print(ETy, Out);
1087    Out << ' ';
1088    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1089    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1090      Out << ", ";
1091      TypePrinter.print(ETy, Out);
1092      Out << ' ';
1093      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1094    }
1095    Out << '>';
1096    return;
1097  }
1098
1099  if (isa<ConstantPointerNull>(CV)) {
1100    Out << "null";
1101    return;
1102  }
1103
1104  if (isa<UndefValue>(CV)) {
1105    Out << "undef";
1106    return;
1107  }
1108
1109  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1110    Out << "!" << Machine->getMetadataSlot(Node);
1111    return;
1112  }
1113
1114  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1115    Out << CE->getOpcodeName();
1116    WriteOptimizationInfo(Out, CE);
1117    if (CE->isCompare())
1118      Out << ' ' << getPredicateText(CE->getPredicate());
1119    Out << " (";
1120
1121    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1122      TypePrinter.print((*OI)->getType(), Out);
1123      Out << ' ';
1124      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1125      if (OI+1 != CE->op_end())
1126        Out << ", ";
1127    }
1128
1129    if (CE->hasIndices()) {
1130      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1131      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1132        Out << ", " << Indices[i];
1133    }
1134
1135    if (CE->isCast()) {
1136      Out << " to ";
1137      TypePrinter.print(CE->getType(), Out);
1138    }
1139
1140    Out << ')';
1141    return;
1142  }
1143
1144  Out << "<placeholder or erroneous Constant>";
1145}
1146
1147
1148/// WriteAsOperand - Write the name of the specified value out to the specified
1149/// ostream.  This can be useful when you just want to print int %reg126, not
1150/// the whole instruction that generated it.
1151///
1152static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1153                                   TypePrinting *TypePrinter,
1154                                   SlotTracker *Machine) {
1155  if (V->hasName()) {
1156    PrintLLVMName(Out, V);
1157    return;
1158  }
1159
1160  const Constant *CV = dyn_cast<Constant>(V);
1161  if (CV && !isa<GlobalValue>(CV)) {
1162    assert(TypePrinter && "Constants require TypePrinting!");
1163    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1164    return;
1165  }
1166
1167  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1168    Out << "asm ";
1169    if (IA->hasSideEffects())
1170      Out << "sideeffect ";
1171    Out << '"';
1172    PrintEscapedString(IA->getAsmString(), Out);
1173    Out << "\", \"";
1174    PrintEscapedString(IA->getConstraintString(), Out);
1175    Out << '"';
1176    return;
1177  }
1178
1179  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1180    Out << '!' << Machine->getMetadataSlot(N);
1181    return;
1182  }
1183
1184  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1185    Out << "!\"";
1186    PrintEscapedString(MDS->getString(), Out);
1187    Out << '"';
1188    return;
1189  }
1190
1191  char Prefix = '%';
1192  int Slot;
1193  if (Machine) {
1194    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1195      Slot = Machine->getGlobalSlot(GV);
1196      Prefix = '@';
1197    } else {
1198      Slot = Machine->getLocalSlot(V);
1199    }
1200  } else {
1201    Machine = createSlotTracker(V);
1202    if (Machine) {
1203      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1204        Slot = Machine->getGlobalSlot(GV);
1205        Prefix = '@';
1206      } else {
1207        Slot = Machine->getLocalSlot(V);
1208      }
1209      delete Machine;
1210    } else {
1211      Slot = -1;
1212    }
1213  }
1214
1215  if (Slot != -1)
1216    Out << Prefix << Slot;
1217  else
1218    Out << "<badref>";
1219}
1220
1221/// WriteAsOperand - Write the name of the specified value out to the specified
1222/// ostream.  This can be useful when you just want to print int %reg126, not
1223/// the whole instruction that generated it.
1224///
1225void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
1226                          const Module *Context) {
1227  raw_os_ostream OS(Out);
1228  WriteAsOperand(OS, V, PrintType, Context);
1229}
1230
1231void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1232                          bool PrintType, const Module *Context) {
1233
1234  // Fast path: Don't construct and populate a TypePrinting object if we
1235  // won't be needing any types printed.
1236  if (!PrintType &&
1237      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1238    WriteAsOperandInternal(Out, V, 0, 0);
1239    return;
1240  }
1241
1242  if (Context == 0) Context = getModuleFromVal(V);
1243
1244  TypePrinting TypePrinter;
1245  std::vector<const Type*> NumberedTypes;
1246  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1247  if (PrintType) {
1248    TypePrinter.print(V->getType(), Out);
1249    Out << ' ';
1250  }
1251
1252  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1253}
1254
1255namespace {
1256
1257class AssemblyWriter {
1258  formatted_raw_ostream &Out;
1259  SlotTracker &Machine;
1260  const Module *TheModule;
1261  TypePrinting TypePrinter;
1262  AssemblyAnnotationWriter *AnnotationWriter;
1263  std::vector<const Type*> NumberedTypes;
1264
1265  // Each MDNode is assigned unique MetadataIDNo.
1266  std::map<const MDNode *, unsigned> MDNodes;
1267  unsigned MetadataIDNo;
1268public:
1269  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1270                        const Module *M,
1271                        AssemblyAnnotationWriter *AAW)
1272    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
1273    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1274  }
1275
1276  void write(const Module *M) { printModule(M); }
1277
1278  void write(const GlobalValue *G) {
1279    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1280      printGlobal(GV);
1281    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1282      printAlias(GA);
1283    else if (const Function *F = dyn_cast<Function>(G))
1284      printFunction(F);
1285    else
1286      llvm_unreachable("Unknown global");
1287  }
1288
1289  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
1290  void write(const Instruction *I)    { printInstruction(*I); }
1291
1292  void writeOperand(const Value *Op, bool PrintType);
1293  void writeParamOperand(const Value *Operand, Attributes Attrs);
1294
1295  const Module* getModule() { return TheModule; }
1296
1297private:
1298  void printModule(const Module *M);
1299  void printTypeSymbolTable(const TypeSymbolTable &ST);
1300  void printGlobal(const GlobalVariable *GV);
1301  void printAlias(const GlobalAlias *GV);
1302  void printFunction(const Function *F);
1303  void printArgument(const Argument *FA, Attributes Attrs);
1304  void printBasicBlock(const BasicBlock *BB);
1305  void printInstruction(const Instruction &I);
1306
1307  // printInfoComment - Print a little comment after the instruction indicating
1308  // which slot it occupies.
1309  void printInfoComment(const Value &V);
1310};
1311}  // end of anonymous namespace
1312
1313
1314void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1315  if (Operand == 0) {
1316    Out << "<null operand!>";
1317  } else {
1318    if (PrintType) {
1319      TypePrinter.print(Operand->getType(), Out);
1320      Out << ' ';
1321    }
1322    WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1323  }
1324}
1325
1326void AssemblyWriter::writeParamOperand(const Value *Operand,
1327                                       Attributes Attrs) {
1328  if (Operand == 0) {
1329    Out << "<null operand!>";
1330  } else {
1331    // Print the type
1332    TypePrinter.print(Operand->getType(), Out);
1333    // Print parameter attributes list
1334    if (Attrs != Attribute::None)
1335      Out << ' ' << Attribute::getAsString(Attrs);
1336    Out << ' ';
1337    // Print the operand
1338    WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1339  }
1340}
1341
1342void AssemblyWriter::printModule(const Module *M) {
1343  if (!M->getModuleIdentifier().empty() &&
1344      // Don't print the ID if it will start a new line (which would
1345      // require a comment char before it).
1346      M->getModuleIdentifier().find('\n') == std::string::npos)
1347    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1348
1349  if (!M->getDataLayout().empty())
1350    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1351  if (!M->getTargetTriple().empty())
1352    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1353
1354  if (!M->getModuleInlineAsm().empty()) {
1355    // Split the string into lines, to make it easier to read the .ll file.
1356    std::string Asm = M->getModuleInlineAsm();
1357    size_t CurPos = 0;
1358    size_t NewLine = Asm.find_first_of('\n', CurPos);
1359    Out << '\n';
1360    while (NewLine != std::string::npos) {
1361      // We found a newline, print the portion of the asm string from the
1362      // last newline up to this newline.
1363      Out << "module asm \"";
1364      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1365                         Out);
1366      Out << "\"\n";
1367      CurPos = NewLine+1;
1368      NewLine = Asm.find_first_of('\n', CurPos);
1369    }
1370    Out << "module asm \"";
1371    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1372    Out << "\"\n";
1373  }
1374
1375  // Loop over the dependent libraries and emit them.
1376  Module::lib_iterator LI = M->lib_begin();
1377  Module::lib_iterator LE = M->lib_end();
1378  if (LI != LE) {
1379    Out << '\n';
1380    Out << "deplibs = [ ";
1381    while (LI != LE) {
1382      Out << '"' << *LI << '"';
1383      ++LI;
1384      if (LI != LE)
1385        Out << ", ";
1386    }
1387    Out << " ]";
1388  }
1389
1390  // Loop over the symbol table, emitting all id'd types.
1391  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1392  printTypeSymbolTable(M->getTypeSymbolTable());
1393
1394  // Output all globals.
1395  if (!M->global_empty()) Out << '\n';
1396  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1397       I != E; ++I)
1398    printGlobal(I);
1399
1400  // Output all aliases.
1401  if (!M->alias_empty()) Out << "\n";
1402  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1403       I != E; ++I)
1404    printAlias(I);
1405
1406  // Output all of the functions.
1407  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1408    printFunction(I);
1409
1410  // Output named metadata.
1411  if (!M->named_metadata_empty()) Out << '\n';
1412  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1413         E = M->named_metadata_end(); I != E; ++I) {
1414    const NamedMDNode *NMD = I;
1415    Out << "!" << NMD->getName() << " = !{";
1416    for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) {
1417      if (i) Out << ", ";
1418      MDNode *MD = dyn_cast_or_null<MDNode>(NMD->getElement(i));
1419      Out << '!' << Machine.getMetadataSlot(MD);
1420    }
1421    Out << "}\n";
1422  }
1423
1424  // Output metadata.
1425  if (!Machine.mdnEmpty()) Out << '\n';
1426  WriteMDNodes(Out, TypePrinter, Machine);
1427}
1428
1429static void PrintLinkage(GlobalValue::LinkageTypes LT,
1430                         formatted_raw_ostream &Out) {
1431  switch (LT) {
1432  case GlobalValue::ExternalLinkage: break;
1433  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1434  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1435  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1436  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1437  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1438  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1439  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1440  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1441  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1442  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1443  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1444  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1445  case GlobalValue::AvailableExternallyLinkage:
1446    Out << "available_externally ";
1447    break;
1448  case GlobalValue::GhostLinkage:
1449    llvm_unreachable("GhostLinkage not allowed in AsmWriter!");
1450  }
1451}
1452
1453
1454static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1455                            formatted_raw_ostream &Out) {
1456  switch (Vis) {
1457  default: llvm_unreachable("Invalid visibility style!");
1458  case GlobalValue::DefaultVisibility: break;
1459  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1460  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1461  }
1462}
1463
1464void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1465  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1466  Out << " = ";
1467
1468  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1469    Out << "external ";
1470
1471  PrintLinkage(GV->getLinkage(), Out);
1472  PrintVisibility(GV->getVisibility(), Out);
1473
1474  if (GV->isThreadLocal()) Out << "thread_local ";
1475  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1476    Out << "addrspace(" << AddressSpace << ") ";
1477  Out << (GV->isConstant() ? "constant " : "global ");
1478  TypePrinter.print(GV->getType()->getElementType(), Out);
1479
1480  if (GV->hasInitializer()) {
1481    Out << ' ';
1482    writeOperand(GV->getInitializer(), false);
1483  }
1484
1485  if (GV->hasSection())
1486    Out << ", section \"" << GV->getSection() << '"';
1487  if (GV->getAlignment())
1488    Out << ", align " << GV->getAlignment();
1489
1490  printInfoComment(*GV);
1491  Out << '\n';
1492}
1493
1494void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1495  // Don't crash when dumping partially built GA
1496  if (!GA->hasName())
1497    Out << "<<nameless>> = ";
1498  else {
1499    PrintLLVMName(Out, GA);
1500    Out << " = ";
1501  }
1502  PrintVisibility(GA->getVisibility(), Out);
1503
1504  Out << "alias ";
1505
1506  PrintLinkage(GA->getLinkage(), Out);
1507
1508  const Constant *Aliasee = GA->getAliasee();
1509
1510  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1511    TypePrinter.print(GV->getType(), Out);
1512    Out << ' ';
1513    PrintLLVMName(Out, GV);
1514  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1515    TypePrinter.print(F->getFunctionType(), Out);
1516    Out << "* ";
1517
1518    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1519  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1520    TypePrinter.print(GA->getType(), Out);
1521    Out << ' ';
1522    PrintLLVMName(Out, GA);
1523  } else {
1524    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1525    // The only valid GEP is an all zero GEP.
1526    assert((CE->getOpcode() == Instruction::BitCast ||
1527            CE->getOpcode() == Instruction::GetElementPtr) &&
1528           "Unsupported aliasee");
1529    writeOperand(CE, false);
1530  }
1531
1532  printInfoComment(*GA);
1533  Out << '\n';
1534}
1535
1536void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1537  // Emit all numbered types.
1538  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1539    Out << '%' << i << " = type ";
1540
1541    // Make sure we print out at least one level of the type structure, so
1542    // that we do not get %2 = type %2
1543    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1544    Out << '\n';
1545  }
1546
1547  // Print the named types.
1548  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1549       TI != TE; ++TI) {
1550    PrintLLVMName(Out, TI->first, LocalPrefix);
1551    Out << " = type ";
1552
1553    // Make sure we print out at least one level of the type structure, so
1554    // that we do not get %FILE = type %FILE
1555    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1556    Out << '\n';
1557  }
1558}
1559
1560/// printFunction - Print all aspects of a function.
1561///
1562void AssemblyWriter::printFunction(const Function *F) {
1563  // Print out the return type and name.
1564  Out << '\n';
1565
1566  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1567
1568  if (F->isDeclaration())
1569    Out << "declare ";
1570  else
1571    Out << "define ";
1572
1573  PrintLinkage(F->getLinkage(), Out);
1574  PrintVisibility(F->getVisibility(), Out);
1575
1576  // Print the calling convention.
1577  switch (F->getCallingConv()) {
1578  case CallingConv::C: break;   // default
1579  case CallingConv::Fast:         Out << "fastcc "; break;
1580  case CallingConv::Cold:         Out << "coldcc "; break;
1581  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1582  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1583  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1584  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1585  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1586  default: Out << "cc" << F->getCallingConv() << " "; break;
1587  }
1588
1589  const FunctionType *FT = F->getFunctionType();
1590  const AttrListPtr &Attrs = F->getAttributes();
1591  Attributes RetAttrs = Attrs.getRetAttributes();
1592  if (RetAttrs != Attribute::None)
1593    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1594  TypePrinter.print(F->getReturnType(), Out);
1595  Out << ' ';
1596  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1597  Out << '(';
1598  Machine.incorporateFunction(F);
1599
1600  // Loop over the arguments, printing them...
1601
1602  unsigned Idx = 1;
1603  if (!F->isDeclaration()) {
1604    // If this isn't a declaration, print the argument names as well.
1605    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1606         I != E; ++I) {
1607      // Insert commas as we go... the first arg doesn't get a comma
1608      if (I != F->arg_begin()) Out << ", ";
1609      printArgument(I, Attrs.getParamAttributes(Idx));
1610      Idx++;
1611    }
1612  } else {
1613    // Otherwise, print the types from the function type.
1614    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1615      // Insert commas as we go... the first arg doesn't get a comma
1616      if (i) Out << ", ";
1617
1618      // Output type...
1619      TypePrinter.print(FT->getParamType(i), Out);
1620
1621      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1622      if (ArgAttrs != Attribute::None)
1623        Out << ' ' << Attribute::getAsString(ArgAttrs);
1624    }
1625  }
1626
1627  // Finish printing arguments...
1628  if (FT->isVarArg()) {
1629    if (FT->getNumParams()) Out << ", ";
1630    Out << "...";  // Output varargs portion of signature!
1631  }
1632  Out << ')';
1633  Attributes FnAttrs = Attrs.getFnAttributes();
1634  if (FnAttrs != Attribute::None)
1635    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1636  if (F->hasSection())
1637    Out << " section \"" << F->getSection() << '"';
1638  if (F->getAlignment())
1639    Out << " align " << F->getAlignment();
1640  if (F->hasGC())
1641    Out << " gc \"" << F->getGC() << '"';
1642  if (F->isDeclaration()) {
1643    Out << "\n";
1644  } else {
1645    Out << " {";
1646
1647    // Output all of its basic blocks... for the function
1648    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1649      printBasicBlock(I);
1650
1651    Out << "}\n";
1652  }
1653
1654  Machine.purgeFunction();
1655}
1656
1657/// printArgument - This member is called for every argument that is passed into
1658/// the function.  Simply print it out
1659///
1660void AssemblyWriter::printArgument(const Argument *Arg,
1661                                   Attributes Attrs) {
1662  // Output type...
1663  TypePrinter.print(Arg->getType(), Out);
1664
1665  // Output parameter attributes list
1666  if (Attrs != Attribute::None)
1667    Out << ' ' << Attribute::getAsString(Attrs);
1668
1669  // Output name, if available...
1670  if (Arg->hasName()) {
1671    Out << ' ';
1672    PrintLLVMName(Out, Arg);
1673  }
1674}
1675
1676/// printBasicBlock - This member is called for each basic block in a method.
1677///
1678void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1679  if (BB->hasName()) {              // Print out the label if it exists...
1680    Out << "\n";
1681    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1682    Out << ':';
1683  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1684    Out << "\n; <label>:";
1685    int Slot = Machine.getLocalSlot(BB);
1686    if (Slot != -1)
1687      Out << Slot;
1688    else
1689      Out << "<badref>";
1690  }
1691
1692  if (BB->getParent() == 0) {
1693    Out.PadToColumn(50);
1694    Out << "; Error: Block without parent!";
1695  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1696    // Output predecessors for the block...
1697    Out.PadToColumn(50);
1698    Out << ";";
1699    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1700
1701    if (PI == PE) {
1702      Out << " No predecessors!";
1703    } else {
1704      Out << " preds = ";
1705      writeOperand(*PI, false);
1706      for (++PI; PI != PE; ++PI) {
1707        Out << ", ";
1708        writeOperand(*PI, false);
1709      }
1710    }
1711  }
1712
1713  Out << "\n";
1714
1715  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1716
1717  // Output all of the instructions in the basic block...
1718  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1719    printInstruction(*I);
1720    Out << '\n';
1721  }
1722
1723  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1724}
1725
1726
1727/// printInfoComment - Print a little comment after the instruction indicating
1728/// which slot it occupies.
1729///
1730void AssemblyWriter::printInfoComment(const Value &V) {
1731  if (V.getType() != Type::getVoidTy(V.getContext())) {
1732    Out.PadToColumn(50);
1733    Out << "; <";
1734    TypePrinter.print(V.getType(), Out);
1735    Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1736  }
1737}
1738
1739// This member is called for each Instruction in a function..
1740void AssemblyWriter::printInstruction(const Instruction &I) {
1741  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1742
1743  // Print out indentation for an instruction.
1744  Out << "  ";
1745
1746  // Print out name if it exists...
1747  if (I.hasName()) {
1748    PrintLLVMName(Out, &I);
1749    Out << " = ";
1750  } else if (I.getType() != Type::getVoidTy(I.getContext())) {
1751    // Print out the def slot taken.
1752    int SlotNum = Machine.getLocalSlot(&I);
1753    if (SlotNum == -1)
1754      Out << "<badref> = ";
1755    else
1756      Out << '%' << SlotNum << " = ";
1757  }
1758
1759  // If this is a volatile load or store, print out the volatile marker.
1760  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1761      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1762      Out << "volatile ";
1763  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1764    // If this is a call, check if it's a tail call.
1765    Out << "tail ";
1766  }
1767
1768  // Print out the opcode...
1769  Out << I.getOpcodeName();
1770
1771  // Print out optimization information.
1772  WriteOptimizationInfo(Out, &I);
1773
1774  // Print out the compare instruction predicates
1775  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1776    Out << ' ' << getPredicateText(CI->getPredicate());
1777
1778  // Print out the type of the operands...
1779  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1780
1781  // Special case conditional branches to swizzle the condition out to the front
1782  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1783    BranchInst &BI(cast<BranchInst>(I));
1784    Out << ' ';
1785    writeOperand(BI.getCondition(), true);
1786    Out << ", ";
1787    writeOperand(BI.getSuccessor(0), true);
1788    Out << ", ";
1789    writeOperand(BI.getSuccessor(1), true);
1790
1791  } else if (isa<SwitchInst>(I)) {
1792    // Special case switch statement to get formatting nice and correct...
1793    Out << ' ';
1794    writeOperand(Operand        , true);
1795    Out << ", ";
1796    writeOperand(I.getOperand(1), true);
1797    Out << " [";
1798
1799    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1800      Out << "\n    ";
1801      writeOperand(I.getOperand(op  ), true);
1802      Out << ", ";
1803      writeOperand(I.getOperand(op+1), true);
1804    }
1805    Out << "\n  ]";
1806  } else if (isa<PHINode>(I)) {
1807    Out << ' ';
1808    TypePrinter.print(I.getType(), Out);
1809    Out << ' ';
1810
1811    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1812      if (op) Out << ", ";
1813      Out << "[ ";
1814      writeOperand(I.getOperand(op  ), false); Out << ", ";
1815      writeOperand(I.getOperand(op+1), false); Out << " ]";
1816    }
1817  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1818    Out << ' ';
1819    writeOperand(I.getOperand(0), true);
1820    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1821      Out << ", " << *i;
1822  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1823    Out << ' ';
1824    writeOperand(I.getOperand(0), true); Out << ", ";
1825    writeOperand(I.getOperand(1), true);
1826    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1827      Out << ", " << *i;
1828  } else if (isa<ReturnInst>(I) && !Operand) {
1829    Out << " void";
1830  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1831    // Print the calling convention being used.
1832    switch (CI->getCallingConv()) {
1833    case CallingConv::C: break;   // default
1834    case CallingConv::Fast:  Out << " fastcc"; break;
1835    case CallingConv::Cold:  Out << " coldcc"; break;
1836    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1837    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1838    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1839    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1840    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1841    default: Out << " cc" << CI->getCallingConv(); break;
1842    }
1843
1844    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1845    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1846    const Type         *RetTy = FTy->getReturnType();
1847    const AttrListPtr &PAL = CI->getAttributes();
1848
1849    if (PAL.getRetAttributes() != Attribute::None)
1850      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1851
1852    // If possible, print out the short form of the call instruction.  We can
1853    // only do this if the first argument is a pointer to a nonvararg function,
1854    // and if the return type is not a pointer to a function.
1855    //
1856    Out << ' ';
1857    if (!FTy->isVarArg() &&
1858        (!isa<PointerType>(RetTy) ||
1859         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1860      TypePrinter.print(RetTy, Out);
1861      Out << ' ';
1862      writeOperand(Operand, false);
1863    } else {
1864      writeOperand(Operand, true);
1865    }
1866    Out << '(';
1867    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1868      if (op > 1)
1869        Out << ", ";
1870      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1871    }
1872    Out << ')';
1873    if (PAL.getFnAttributes() != Attribute::None)
1874      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1875  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1876    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1877    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1878    const Type         *RetTy = FTy->getReturnType();
1879    const AttrListPtr &PAL = II->getAttributes();
1880
1881    // Print the calling convention being used.
1882    switch (II->getCallingConv()) {
1883    case CallingConv::C: break;   // default
1884    case CallingConv::Fast:  Out << " fastcc"; break;
1885    case CallingConv::Cold:  Out << " coldcc"; break;
1886    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1887    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1888    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1889    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1890    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1891    default: Out << " cc" << II->getCallingConv(); break;
1892    }
1893
1894    if (PAL.getRetAttributes() != Attribute::None)
1895      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1896
1897    // If possible, print out the short form of the invoke instruction. We can
1898    // only do this if the first argument is a pointer to a nonvararg function,
1899    // and if the return type is not a pointer to a function.
1900    //
1901    Out << ' ';
1902    if (!FTy->isVarArg() &&
1903        (!isa<PointerType>(RetTy) ||
1904         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1905      TypePrinter.print(RetTy, Out);
1906      Out << ' ';
1907      writeOperand(Operand, false);
1908    } else {
1909      writeOperand(Operand, true);
1910    }
1911    Out << '(';
1912    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1913      if (op > 3)
1914        Out << ", ";
1915      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1916    }
1917
1918    Out << ')';
1919    if (PAL.getFnAttributes() != Attribute::None)
1920      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1921
1922    Out << "\n          to ";
1923    writeOperand(II->getNormalDest(), true);
1924    Out << " unwind ";
1925    writeOperand(II->getUnwindDest(), true);
1926
1927  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1928    Out << ' ';
1929    TypePrinter.print(AI->getType()->getElementType(), Out);
1930    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1931      Out << ", ";
1932      writeOperand(AI->getArraySize(), true);
1933    }
1934    if (AI->getAlignment()) {
1935      Out << ", align " << AI->getAlignment();
1936    }
1937  } else if (isa<CastInst>(I)) {
1938    if (Operand) {
1939      Out << ' ';
1940      writeOperand(Operand, true);   // Work with broken code
1941    }
1942    Out << " to ";
1943    TypePrinter.print(I.getType(), Out);
1944  } else if (isa<VAArgInst>(I)) {
1945    if (Operand) {
1946      Out << ' ';
1947      writeOperand(Operand, true);   // Work with broken code
1948    }
1949    Out << ", ";
1950    TypePrinter.print(I.getType(), Out);
1951  } else if (Operand) {   // Print the normal way.
1952
1953    // PrintAllTypes - Instructions who have operands of all the same type
1954    // omit the type from all but the first operand.  If the instruction has
1955    // different type operands (for example br), then they are all printed.
1956    bool PrintAllTypes = false;
1957    const Type *TheType = Operand->getType();
1958
1959    // Select, Store and ShuffleVector always print all types.
1960    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1961        || isa<ReturnInst>(I)) {
1962      PrintAllTypes = true;
1963    } else {
1964      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1965        Operand = I.getOperand(i);
1966        // note that Operand shouldn't be null, but the test helps make dump()
1967        // more tolerant of malformed IR
1968        if (Operand && Operand->getType() != TheType) {
1969          PrintAllTypes = true;    // We have differing types!  Print them all!
1970          break;
1971        }
1972      }
1973    }
1974
1975    if (!PrintAllTypes) {
1976      Out << ' ';
1977      TypePrinter.print(TheType, Out);
1978    }
1979
1980    Out << ' ';
1981    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1982      if (i) Out << ", ";
1983      writeOperand(I.getOperand(i), PrintAllTypes);
1984    }
1985  }
1986
1987  // Print post operand alignment for load/store
1988  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1989    Out << ", align " << cast<LoadInst>(I).getAlignment();
1990  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1991    Out << ", align " << cast<StoreInst>(I).getAlignment();
1992  }
1993
1994  printInfoComment(I);
1995}
1996
1997
1998//===----------------------------------------------------------------------===//
1999//                       External Interface declarations
2000//===----------------------------------------------------------------------===//
2001
2002void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
2003  raw_os_ostream OS(o);
2004  print(OS, AAW);
2005}
2006void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2007  SlotTracker SlotTable(this);
2008  formatted_raw_ostream OS(ROS);
2009  AssemblyWriter W(OS, SlotTable, this, AAW);
2010  W.write(this);
2011}
2012
2013void Type::print(std::ostream &o) const {
2014  raw_os_ostream OS(o);
2015  print(OS);
2016}
2017
2018void Type::print(raw_ostream &OS) const {
2019  if (this == 0) {
2020    OS << "<null Type>";
2021    return;
2022  }
2023  TypePrinting().print(this, OS);
2024}
2025
2026void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2027  if (this == 0) {
2028    ROS << "printing a <null> value\n";
2029    return;
2030  }
2031  formatted_raw_ostream OS(ROS);
2032  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2033    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2034    SlotTracker SlotTable(F);
2035    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2036    W.write(I);
2037  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2038    SlotTracker SlotTable(BB->getParent());
2039    AssemblyWriter W(OS, SlotTable,
2040                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
2041    W.write(BB);
2042  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2043    SlotTracker SlotTable(GV->getParent());
2044    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2045    W.write(GV);
2046  } else if (const MDString *MDS = dyn_cast<MDString>(this)) {
2047    TypePrinting TypePrinter;
2048    TypePrinter.print(MDS->getType(), OS);
2049    OS << ' ';
2050    OS << "!\"";
2051    PrintEscapedString(MDS->getString(), OS);
2052    OS << '"';
2053  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2054    SlotTracker SlotTable(N);
2055    TypePrinting TypePrinter;
2056    SlotTable.initialize();
2057    WriteMDNodes(OS, TypePrinter, SlotTable);
2058  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2059    SlotTracker SlotTable(N);
2060    TypePrinting TypePrinter;
2061    SlotTable.initialize();
2062    OS << "!" << N->getName() << " = !{";
2063    for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
2064      if (i) OS << ", ";
2065      MDNode *MD = dyn_cast_or_null<MDNode>(N->getElement(i));
2066      if (MD)
2067        OS << '!' << SlotTable.getMetadataSlot(MD);
2068      else
2069        OS << "null";
2070    }
2071    OS << "}\n";
2072    WriteMDNodes(OS, TypePrinter, SlotTable);
2073  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2074    TypePrinting TypePrinter;
2075    TypePrinter.print(C->getType(), OS);
2076    OS << ' ';
2077    WriteConstantInt(OS, C, TypePrinter, 0);
2078  } else if (const Argument *A = dyn_cast<Argument>(this)) {
2079    WriteAsOperand(OS, this, true,
2080                   A->getParent() ? A->getParent()->getParent() : 0);
2081  } else if (isa<InlineAsm>(this)) {
2082    WriteAsOperand(OS, this, true, 0);
2083  } else {
2084    llvm_unreachable("Unknown value to print out!");
2085  }
2086}
2087
2088/*
2089void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
2090  raw_os_ostream OS(O);
2091  print(OS, AAW);
2092}*/
2093
2094// Value::dump - allow easy printing of Values from the debugger.
2095void Value::dump() const { print(errs()); errs() << '\n'; }
2096
2097// Type::dump - allow easy printing of Types from the debugger.
2098// This one uses type names from the given context module
2099void Type::dump(const Module *Context) const {
2100  WriteTypeSymbolic(errs(), this, Context);
2101  errs() << '\n';
2102}
2103
2104// Type::dump - allow easy printing of Types from the debugger.
2105void Type::dump() const { dump(0); }
2106
2107// Module::dump() - Allow printing of Modules from the debugger.
2108void Module::dump() const { print(errs(), 0); }
2109