AsmWriter.cpp revision d0fde30ce850b78371fd1386338350591f9ff494
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/CachedWriter.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/Assembly/PrintModulePass.h"
20#include "llvm/Assembly/AsmAnnotationWriter.h"
21#include "llvm/SlotCalculator.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Instruction.h"
24#include "llvm/Module.h"
25#include "llvm/Constants.h"
26#include "llvm/iMemory.h"
27#include "llvm/iTerminators.h"
28#include "llvm/iPHINode.h"
29#include "llvm/iOther.h"
30#include "llvm/SymbolTable.h"
31#include "llvm/Support/CFG.h"
32#include "Support/StringExtras.h"
33#include "Support/STLExtras.h"
34#include <algorithm>
35
36namespace llvm {
37
38static RegisterPass<PrintModulePass>
39X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
40static RegisterPass<PrintFunctionPass>
41Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
42
43static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
44                                   bool PrintName,
45                                 std::map<const Type *, std::string> &TypeTable,
46                                   SlotCalculator *Table);
47
48static const Module *getModuleFromVal(const Value *V) {
49  if (const Argument *MA = dyn_cast<Argument>(V))
50    return MA->getParent() ? MA->getParent()->getParent() : 0;
51  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
52    return BB->getParent() ? BB->getParent()->getParent() : 0;
53  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
54    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
55    return M ? M->getParent() : 0;
56  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
57    return GV->getParent();
58  return 0;
59}
60
61static SlotCalculator *createSlotCalculator(const Value *V) {
62  assert(!isa<Type>(V) && "Can't create an SC for a type!");
63  if (const Argument *FA = dyn_cast<Argument>(V)) {
64    return new SlotCalculator(FA->getParent(), true);
65  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
66    return new SlotCalculator(I->getParent()->getParent(), true);
67  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
68    return new SlotCalculator(BB->getParent(), true);
69  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
70    return new SlotCalculator(GV->getParent(), true);
71  } else if (const Function *Func = dyn_cast<Function>(V)) {
72    return new SlotCalculator(Func, true);
73  }
74  return 0;
75}
76
77// getLLVMName - Turn the specified string into an 'LLVM name', which is either
78// prefixed with % (if the string only contains simple characters) or is
79// surrounded with ""'s (if it has special chars in it).
80static std::string getLLVMName(const std::string &Name) {
81  assert(!Name.empty() && "Cannot get empty name!");
82
83  // First character cannot start with a number...
84  if (Name[0] >= '0' && Name[0] <= '9')
85    return "\"" + Name + "\"";
86
87  // Scan to see if we have any characters that are not on the "white list"
88  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
89    char C = Name[i];
90    assert(C != '"' && "Illegal character in LLVM value name!");
91    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
92        C != '-' && C != '.' && C != '_')
93      return "\"" + Name + "\"";
94  }
95
96  // If we get here, then the identifier is legal to use as a "VarID".
97  return "%"+Name;
98}
99
100
101// If the module has a symbol table, take all global types and stuff their
102// names into the TypeNames map.
103//
104static void fillTypeNameTable(const Module *M,
105                              std::map<const Type *, std::string> &TypeNames) {
106  if (!M) return;
107  const SymbolTable &ST = M->getSymbolTable();
108  SymbolTable::const_iterator PI = ST.find(Type::TypeTy);
109  if (PI != ST.end()) {
110    SymbolTable::type_const_iterator I = PI->second.begin();
111    for (; I != PI->second.end(); ++I) {
112      // As a heuristic, don't insert pointer to primitive types, because
113      // they are used too often to have a single useful name.
114      //
115      const Type *Ty = cast<Type>(I->second);
116      if (!isa<PointerType>(Ty) ||
117          !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
118          isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
119        TypeNames.insert(std::make_pair(Ty, getLLVMName(I->first)));
120    }
121  }
122}
123
124
125
126static std::string calcTypeName(const Type *Ty,
127                                std::vector<const Type *> &TypeStack,
128                                std::map<const Type *, std::string> &TypeNames){
129  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
130    return Ty->getDescription();  // Base case
131
132  // Check to see if the type is named.
133  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
134  if (I != TypeNames.end()) return I->second;
135
136  if (isa<OpaqueType>(Ty))
137    return "opaque";
138
139  // Check to see if the Type is already on the stack...
140  unsigned Slot = 0, CurSize = TypeStack.size();
141  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
142
143  // This is another base case for the recursion.  In this case, we know
144  // that we have looped back to a type that we have previously visited.
145  // Generate the appropriate upreference to handle this.
146  //
147  if (Slot < CurSize)
148    return "\\" + utostr(CurSize-Slot);       // Here's the upreference
149
150  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
151
152  std::string Result;
153  switch (Ty->getPrimitiveID()) {
154  case Type::FunctionTyID: {
155    const FunctionType *FTy = cast<FunctionType>(Ty);
156    Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " (";
157    for (FunctionType::ParamTypes::const_iterator
158           I = FTy->getParamTypes().begin(),
159           E = FTy->getParamTypes().end(); I != E; ++I) {
160      if (I != FTy->getParamTypes().begin())
161        Result += ", ";
162      Result += calcTypeName(*I, TypeStack, TypeNames);
163    }
164    if (FTy->isVarArg()) {
165      if (!FTy->getParamTypes().empty()) Result += ", ";
166      Result += "...";
167    }
168    Result += ")";
169    break;
170  }
171  case Type::StructTyID: {
172    const StructType *STy = cast<StructType>(Ty);
173    Result = "{ ";
174    for (StructType::ElementTypes::const_iterator
175           I = STy->getElementTypes().begin(),
176           E = STy->getElementTypes().end(); I != E; ++I) {
177      if (I != STy->getElementTypes().begin())
178        Result += ", ";
179      Result += calcTypeName(*I, TypeStack, TypeNames);
180    }
181    Result += " }";
182    break;
183  }
184  case Type::PointerTyID:
185    Result = calcTypeName(cast<PointerType>(Ty)->getElementType(),
186                          TypeStack, TypeNames) + "*";
187    break;
188  case Type::ArrayTyID: {
189    const ArrayType *ATy = cast<ArrayType>(Ty);
190    Result = "[" + utostr(ATy->getNumElements()) + " x ";
191    Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
192    break;
193  }
194  case Type::OpaqueTyID:
195    Result = "opaque";
196    break;
197  default:
198    Result = "<unrecognized-type>";
199  }
200
201  TypeStack.pop_back();       // Remove self from stack...
202  return Result;
203}
204
205
206// printTypeInt - The internal guts of printing out a type that has a
207// potentially named portion.
208//
209static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
210                              std::map<const Type *, std::string> &TypeNames) {
211  // Primitive types always print out their description, regardless of whether
212  // they have been named or not.
213  //
214  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
215    return Out << Ty->getDescription();
216
217  // Check to see if the type is named.
218  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
219  if (I != TypeNames.end()) return Out << I->second;
220
221  // Otherwise we have a type that has not been named but is a derived type.
222  // Carefully recurse the type hierarchy to print out any contained symbolic
223  // names.
224  //
225  std::vector<const Type *> TypeStack;
226  std::string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
227  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
228  return Out << TypeName;
229}
230
231
232// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
233// type, iff there is an entry in the modules symbol table for the specified
234// type or one of it's component types.  This is slower than a simple x << Type;
235//
236std::ostream &WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
237                                const Module *M) {
238  Out << " ";
239
240  // If they want us to print out a type, attempt to make it symbolic if there
241  // is a symbol table in the module...
242  if (M) {
243    std::map<const Type *, std::string> TypeNames;
244    fillTypeNameTable(M, TypeNames);
245
246    return printTypeInt(Out, Ty, TypeNames);
247  } else {
248    return Out << Ty->getDescription();
249  }
250}
251
252static void WriteConstantInt(std::ostream &Out, const Constant *CV,
253                             bool PrintName,
254                             std::map<const Type *, std::string> &TypeTable,
255                             SlotCalculator *Table) {
256  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
257    Out << (CB == ConstantBool::True ? "true" : "false");
258  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
259    Out << CI->getValue();
260  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
261    Out << CI->getValue();
262  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
263    // We would like to output the FP constant value in exponential notation,
264    // but we cannot do this if doing so will lose precision.  Check here to
265    // make sure that we only output it in exponential format if we can parse
266    // the value back and get the same value.
267    //
268    std::string StrVal = ftostr(CFP->getValue());
269
270    // Check to make sure that the stringized number is not some string like
271    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
272    // the string matches the "[-+]?[0-9]" regex.
273    //
274    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
275        ((StrVal[0] == '-' || StrVal[0] == '+') &&
276         (StrVal[1] >= '0' && StrVal[1] <= '9')))
277      // Reparse stringized version!
278      if (atof(StrVal.c_str()) == CFP->getValue()) {
279        Out << StrVal; return;
280      }
281
282    // Otherwise we could not reparse it to exactly the same value, so we must
283    // output the string in hexadecimal format!
284    //
285    // Behave nicely in the face of C TBAA rules... see:
286    // http://www.nullstone.com/htmls/category/aliastyp.htm
287    //
288    double Val = CFP->getValue();
289    char *Ptr = (char*)&Val;
290    assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
291           "assuming that double is 64 bits!");
292    Out << "0x" << utohexstr(*(uint64_t*)Ptr);
293
294  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
295    if (CA->getNumOperands() > 5 && CA->isNullValue()) {
296      Out << "zeroinitializer";
297      return;
298    }
299
300    // As a special case, print the array as a string if it is an array of
301    // ubytes or an array of sbytes with positive values.
302    //
303    const Type *ETy = CA->getType()->getElementType();
304    bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
305
306    if (ETy == Type::SByteTy)
307      for (unsigned i = 0; i < CA->getNumOperands(); ++i)
308        if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
309          isString = false;
310          break;
311        }
312
313    if (isString) {
314      Out << "c\"";
315      for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
316        unsigned char C = cast<ConstantInt>(CA->getOperand(i))->getRawValue();
317
318        if (isprint(C) && C != '"' && C != '\\') {
319          Out << C;
320        } else {
321          Out << '\\'
322              << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
323              << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
324        }
325      }
326      Out << "\"";
327
328    } else {                // Cannot output in string format...
329      Out << "[";
330      if (CA->getNumOperands()) {
331        Out << " ";
332        printTypeInt(Out, ETy, TypeTable);
333        WriteAsOperandInternal(Out, CA->getOperand(0),
334                               PrintName, TypeTable, Table);
335        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
336          Out << ", ";
337          printTypeInt(Out, ETy, TypeTable);
338          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
339                                 TypeTable, Table);
340        }
341      }
342      Out << " ]";
343    }
344  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
345    if (CS->getNumOperands() > 5 && CS->isNullValue()) {
346      Out << "zeroinitializer";
347      return;
348    }
349
350    Out << "{";
351    if (CS->getNumOperands()) {
352      Out << " ";
353      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
354
355      WriteAsOperandInternal(Out, CS->getOperand(0),
356                             PrintName, TypeTable, Table);
357
358      for (unsigned i = 1; i < CS->getNumOperands(); i++) {
359        Out << ", ";
360        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
361
362        WriteAsOperandInternal(Out, CS->getOperand(i),
363                               PrintName, TypeTable, Table);
364      }
365    }
366
367    Out << " }";
368  } else if (isa<ConstantPointerNull>(CV)) {
369    Out << "null";
370
371  } else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
372    const GlobalValue *V = PR->getValue();
373    if (V->hasName()) {
374      Out << getLLVMName(V->getName());
375    } else if (Table) {
376      int Slot = Table->getSlot(V);
377      if (Slot >= 0)
378        Out << "%" << Slot;
379      else
380        Out << "<pointer reference badref>";
381    } else {
382      Out << "<pointer reference without context info>";
383    }
384
385  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
386    Out << CE->getOpcodeName() << " (";
387
388    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
389      printTypeInt(Out, (*OI)->getType(), TypeTable);
390      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
391      if (OI+1 != CE->op_end())
392        Out << ", ";
393    }
394
395    if (CE->getOpcode() == Instruction::Cast) {
396      Out << " to ";
397      printTypeInt(Out, CE->getType(), TypeTable);
398    }
399    Out << ")";
400
401  } else {
402    Out << "<placeholder or erroneous Constant>";
403  }
404}
405
406
407// WriteAsOperand - Write the name of the specified value out to the specified
408// ostream.  This can be useful when you just want to print int %reg126, not the
409// whole instruction that generated it.
410//
411static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
412                                   bool PrintName,
413                                  std::map<const Type*, std::string> &TypeTable,
414                                   SlotCalculator *Table) {
415  Out << " ";
416  if (PrintName && V->hasName()) {
417    Out << getLLVMName(V->getName());
418  } else {
419    if (const Constant *CV = dyn_cast<Constant>(V)) {
420      WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
421    } else {
422      int Slot;
423      if (Table) {
424	Slot = Table->getSlot(V);
425      } else {
426        if (const Type *Ty = dyn_cast<Type>(V)) {
427          Out << Ty->getDescription();
428          return;
429        }
430
431        Table = createSlotCalculator(V);
432        if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
433
434	Slot = Table->getSlot(V);
435	delete Table;
436      }
437      if (Slot >= 0)  Out << "%" << Slot;
438      else if (PrintName)
439        Out << "<badref>";     // Not embedded into a location?
440    }
441  }
442}
443
444
445
446// WriteAsOperand - Write the name of the specified value out to the specified
447// ostream.  This can be useful when you just want to print int %reg126, not the
448// whole instruction that generated it.
449//
450std::ostream &WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
451                             bool PrintName, const Module *Context) {
452  std::map<const Type *, std::string> TypeNames;
453  if (Context == 0) Context = getModuleFromVal(V);
454
455  if (Context)
456    fillTypeNameTable(Context, TypeNames);
457
458  if (PrintType)
459    printTypeInt(Out, V->getType(), TypeNames);
460
461  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
462  return Out;
463}
464
465
466
467class AssemblyWriter {
468  std::ostream &Out;
469  SlotCalculator &Table;
470  const Module *TheModule;
471  std::map<const Type *, std::string> TypeNames;
472  AssemblyAnnotationWriter *AnnotationWriter;
473public:
474  inline AssemblyWriter(std::ostream &o, SlotCalculator &Tab, const Module *M,
475                        AssemblyAnnotationWriter *AAW)
476    : Out(o), Table(Tab), TheModule(M), AnnotationWriter(AAW) {
477
478    // If the module has a symbol table, take all global types and stuff their
479    // names into the TypeNames map.
480    //
481    fillTypeNameTable(M, TypeNames);
482  }
483
484  inline void write(const Module *M)         { printModule(M);      }
485  inline void write(const GlobalVariable *G) { printGlobal(G);      }
486  inline void write(const Function *F)       { printFunction(F);    }
487  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
488  inline void write(const Instruction *I)    { printInstruction(*I); }
489  inline void write(const Constant *CPV)     { printConstant(CPV);  }
490  inline void write(const Type *Ty)          { printType(Ty);       }
491
492  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
493
494private :
495  void printModule(const Module *M);
496  void printSymbolTable(const SymbolTable &ST);
497  void printConstant(const Constant *CPV);
498  void printGlobal(const GlobalVariable *GV);
499  void printFunction(const Function *F);
500  void printArgument(const Argument *FA);
501  void printBasicBlock(const BasicBlock *BB);
502  void printInstruction(const Instruction &I);
503
504  // printType - Go to extreme measures to attempt to print out a short,
505  // symbolic version of a type name.
506  //
507  std::ostream &printType(const Type *Ty) {
508    return printTypeInt(Out, Ty, TypeNames);
509  }
510
511  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
512  // without considering any symbolic types that we may have equal to it.
513  //
514  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
515
516  // printInfoComment - Print a little comment after the instruction indicating
517  // which slot it occupies.
518  void printInfoComment(const Value &V);
519};
520
521
522// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
523// without considering any symbolic types that we may have equal to it.
524//
525std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
526  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
527    printType(FTy->getReturnType()) << " (";
528    for (FunctionType::ParamTypes::const_iterator
529           I = FTy->getParamTypes().begin(),
530           E = FTy->getParamTypes().end(); I != E; ++I) {
531      if (I != FTy->getParamTypes().begin())
532        Out << ", ";
533      printType(*I);
534    }
535    if (FTy->isVarArg()) {
536      if (!FTy->getParamTypes().empty()) Out << ", ";
537      Out << "...";
538    }
539    Out << ")";
540  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
541    Out << "{ ";
542    for (StructType::ElementTypes::const_iterator
543           I = STy->getElementTypes().begin(),
544           E = STy->getElementTypes().end(); I != E; ++I) {
545      if (I != STy->getElementTypes().begin())
546        Out << ", ";
547      printType(*I);
548    }
549    Out << " }";
550  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
551    printType(PTy->getElementType()) << "*";
552  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
553    Out << "[" << ATy->getNumElements() << " x ";
554    printType(ATy->getElementType()) << "]";
555  } else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
556    Out << "opaque";
557  } else {
558    if (!Ty->isPrimitiveType())
559      Out << "<unknown derived type>";
560    printType(Ty);
561  }
562  return Out;
563}
564
565
566void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
567				  bool PrintName) {
568  if (PrintType) { Out << " "; printType(Operand->getType()); }
569  WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table);
570}
571
572
573void AssemblyWriter::printModule(const Module *M) {
574  switch (M->getEndianness()) {
575  case Module::LittleEndian: Out << "target endian = little\n"; break;
576  case Module::BigEndian:    Out << "target endian = big\n";    break;
577  case Module::AnyEndianness: break;
578  }
579  switch (M->getPointerSize()) {
580  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
581  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
582  case Module::AnyPointerSize: break;
583  }
584
585  // Loop over the symbol table, emitting all named constants...
586  printSymbolTable(M->getSymbolTable());
587
588  for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
589    printGlobal(I);
590
591  Out << "\nimplementation   ; Functions:\n";
592
593  // Output all of the functions...
594  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
595    printFunction(I);
596}
597
598void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
599  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
600
601  if (!GV->hasInitializer())
602    Out << "external ";
603  else
604    switch (GV->getLinkage()) {
605    case GlobalValue::InternalLinkage:  Out << "internal "; break;
606    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
607    case GlobalValue::WeakLinkage:      Out << "weak "; break;
608    case GlobalValue::AppendingLinkage: Out << "appending "; break;
609    case GlobalValue::ExternalLinkage: break;
610    }
611
612  Out << (GV->isConstant() ? "constant " : "global ");
613  printType(GV->getType()->getElementType());
614
615  if (GV->hasInitializer())
616    writeOperand(GV->getInitializer(), false, false);
617
618  printInfoComment(*GV);
619  Out << "\n";
620}
621
622
623// printSymbolTable - Run through symbol table looking for named constants
624// if a named constant is found, emit it's declaration...
625//
626void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
627  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
628    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
629    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
630
631    for (; I != End; ++I) {
632      const Value *V = I->second;
633      if (const Constant *CPV = dyn_cast<Constant>(V)) {
634	printConstant(CPV);
635      } else if (const Type *Ty = dyn_cast<Type>(V)) {
636        assert(Ty->getType() == Type::TypeTy && TI->first == Type::TypeTy);
637	Out << "\t" << getLLVMName(I->first) << " = type ";
638
639        // Make sure we print out at least one level of the type structure, so
640        // that we do not get %FILE = type %FILE
641        //
642        printTypeAtLeastOneLevel(Ty) << "\n";
643      }
644    }
645  }
646}
647
648
649// printConstant - Print out a constant pool entry...
650//
651void AssemblyWriter::printConstant(const Constant *CPV) {
652  // Don't print out unnamed constants, they will be inlined
653  if (!CPV->hasName()) return;
654
655  // Print out name...
656  Out << "\t" << getLLVMName(CPV->getName()) << " =";
657
658  // Write the value out now...
659  writeOperand(CPV, true, false);
660
661  printInfoComment(*CPV);
662  Out << "\n";
663}
664
665// printFunction - Print all aspects of a function.
666//
667void AssemblyWriter::printFunction(const Function *F) {
668  // Print out the return type and name...
669  Out << "\n";
670
671  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
672
673  if (F->isExternal())
674    Out << "declare ";
675  else
676    switch (F->getLinkage()) {
677    case GlobalValue::InternalLinkage:  Out << "internal "; break;
678    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
679    case GlobalValue::WeakLinkage:      Out << "weak "; break;
680    case GlobalValue::AppendingLinkage: Out << "appending "; break;
681    case GlobalValue::ExternalLinkage: break;
682    }
683
684  printType(F->getReturnType()) << " ";
685  if (!F->getName().empty())
686    Out << getLLVMName(F->getName());
687  else
688    Out << "\"\"";
689  Out << "(";
690  Table.incorporateFunction(F);
691
692  // Loop over the arguments, printing them...
693  const FunctionType *FT = F->getFunctionType();
694
695  for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
696    printArgument(I);
697
698  // Finish printing arguments...
699  if (FT->isVarArg()) {
700    if (FT->getParamTypes().size()) Out << ", ";
701    Out << "...";  // Output varargs portion of signature!
702  }
703  Out << ")";
704
705  if (F->isExternal()) {
706    Out << "\n";
707  } else {
708    Out << " {";
709
710    // Output all of its basic blocks... for the function
711    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
712      printBasicBlock(I);
713
714    Out << "}\n";
715  }
716
717  Table.purgeFunction();
718}
719
720// printArgument - This member is called for every argument that
721// is passed into the function.  Simply print it out
722//
723void AssemblyWriter::printArgument(const Argument *Arg) {
724  // Insert commas as we go... the first arg doesn't get a comma
725  if (Arg != &Arg->getParent()->afront()) Out << ", ";
726
727  // Output type...
728  printType(Arg->getType());
729
730  // Output name, if available...
731  if (Arg->hasName())
732    Out << " " << getLLVMName(Arg->getName());
733  else if (Table.getSlot(Arg) < 0)
734    Out << "<badref>";
735}
736
737// printBasicBlock - This member is called for each basic block in a method.
738//
739void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
740  if (BB->hasName()) {              // Print out the label if it exists...
741    Out << "\n" << BB->getName() << ":";
742  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
743    int Slot = Table.getSlot(BB);
744    Out << "\n; <label>:";
745    if (Slot >= 0)
746      Out << Slot;         // Extra newline separates out label's
747    else
748      Out << "<badref>";
749  }
750
751  // Output predecessors for the block...
752  Out << "\t\t;";
753  pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
754
755  if (PI == PE) {
756    Out << " No predecessors!";
757  } else {
758    Out << " preds =";
759    writeOperand(*PI, false, true);
760    for (++PI; PI != PE; ++PI) {
761      Out << ",";
762      writeOperand(*PI, false, true);
763    }
764  }
765
766  Out << "\n";
767
768  if (AnnotationWriter) AnnotationWriter->emitBasicBlockAnnot(BB, Out);
769
770  // Output all of the instructions in the basic block...
771  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
772    printInstruction(*I);
773}
774
775
776// printInfoComment - Print a little comment after the instruction indicating
777// which slot it occupies.
778//
779void AssemblyWriter::printInfoComment(const Value &V) {
780  if (V.getType() != Type::VoidTy) {
781    Out << "\t\t; <";
782    printType(V.getType()) << ">";
783
784    if (!V.hasName()) {
785      int Slot = Table.getSlot(&V); // Print out the def slot taken...
786      if (Slot >= 0) Out << ":" << Slot;
787      else Out << ":<badref>";
788    }
789    Out << " [#uses=" << V.use_size() << "]";  // Output # uses
790  }
791}
792
793// printInstruction - This member is called for each Instruction in a method.
794//
795void AssemblyWriter::printInstruction(const Instruction &I) {
796  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
797
798  Out << "\t";
799
800  // Print out name if it exists...
801  if (I.hasName())
802    Out << getLLVMName(I.getName()) << " = ";
803
804  // If this is a volatile load or store, print out the volatile marker
805  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
806      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()))
807      Out << "volatile ";
808
809  // Print out the opcode...
810  Out << I.getOpcodeName();
811
812  // Print out the type of the operands...
813  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
814
815  // Special case conditional branches to swizzle the condition out to the front
816  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
817    writeOperand(I.getOperand(2), true);
818    Out << ",";
819    writeOperand(Operand, true);
820    Out << ",";
821    writeOperand(I.getOperand(1), true);
822
823  } else if (isa<SwitchInst>(I)) {
824    // Special case switch statement to get formatting nice and correct...
825    writeOperand(Operand        , true); Out << ",";
826    writeOperand(I.getOperand(1), true); Out << " [";
827
828    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
829      Out << "\n\t\t";
830      writeOperand(I.getOperand(op  ), true); Out << ",";
831      writeOperand(I.getOperand(op+1), true);
832    }
833    Out << "\n\t]";
834  } else if (isa<PHINode>(I)) {
835    Out << " ";
836    printType(I.getType());
837    Out << " ";
838
839    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
840      if (op) Out << ", ";
841      Out << "[";
842      writeOperand(I.getOperand(op  ), false); Out << ",";
843      writeOperand(I.getOperand(op+1), false); Out << " ]";
844    }
845  } else if (isa<ReturnInst>(I) && !Operand) {
846    Out << " void";
847  } else if (isa<CallInst>(I)) {
848    const PointerType  *PTy = cast<PointerType>(Operand->getType());
849    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
850    const Type       *RetTy = FTy->getReturnType();
851
852    // If possible, print out the short form of the call instruction.  We can
853    // only do this if the first argument is a pointer to a nonvararg function,
854    // and if the return type is not a pointer to a function.
855    //
856    if (!FTy->isVarArg() &&
857        (!isa<PointerType>(RetTy) ||
858         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
859      Out << " "; printType(RetTy);
860      writeOperand(Operand, false);
861    } else {
862      writeOperand(Operand, true);
863    }
864    Out << "(";
865    if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
866    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
867      Out << ",";
868      writeOperand(I.getOperand(op), true);
869    }
870
871    Out << " )";
872  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
873    const PointerType  *PTy = cast<PointerType>(Operand->getType());
874    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
875    const Type       *RetTy = FTy->getReturnType();
876
877    // If possible, print out the short form of the invoke instruction. We can
878    // only do this if the first argument is a pointer to a nonvararg function,
879    // and if the return type is not a pointer to a function.
880    //
881    if (!FTy->isVarArg() &&
882        (!isa<PointerType>(RetTy) ||
883         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
884      Out << " "; printType(RetTy);
885      writeOperand(Operand, false);
886    } else {
887      writeOperand(Operand, true);
888    }
889
890    Out << "(";
891    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
892    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
893      Out << ",";
894      writeOperand(I.getOperand(op), true);
895    }
896
897    Out << " )\n\t\t\tto";
898    writeOperand(II->getNormalDest(), true);
899    Out << " except";
900    writeOperand(II->getExceptionalDest(), true);
901
902  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
903    Out << " ";
904    printType(AI->getType()->getElementType());
905    if (AI->isArrayAllocation()) {
906      Out << ",";
907      writeOperand(AI->getArraySize(), true);
908    }
909  } else if (isa<CastInst>(I)) {
910    writeOperand(Operand, true);
911    Out << " to ";
912    printType(I.getType());
913  } else if (isa<VAArgInst>(I)) {
914    writeOperand(Operand, true);
915    Out << ", ";
916    printType(I.getType());
917  } else if (const VANextInst *VAN = dyn_cast<VANextInst>(&I)) {
918    writeOperand(Operand, true);
919    Out << ", ";
920    printType(VAN->getArgType());
921  } else if (Operand) {   // Print the normal way...
922
923    // PrintAllTypes - Instructions who have operands of all the same type
924    // omit the type from all but the first operand.  If the instruction has
925    // different type operands (for example br), then they are all printed.
926    bool PrintAllTypes = false;
927    const Type *TheType = Operand->getType();
928
929    // Shift Left & Right print both types even for Ubyte LHS
930    if (isa<ShiftInst>(I)) {
931      PrintAllTypes = true;
932    } else {
933      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
934        Operand = I.getOperand(i);
935        if (Operand->getType() != TheType) {
936          PrintAllTypes = true;    // We have differing types!  Print them all!
937          break;
938        }
939      }
940    }
941
942    if (!PrintAllTypes) {
943      Out << " ";
944      printType(TheType);
945    }
946
947    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
948      if (i) Out << ",";
949      writeOperand(I.getOperand(i), PrintAllTypes);
950    }
951  }
952
953  printInfoComment(I);
954  Out << "\n";
955}
956
957
958//===----------------------------------------------------------------------===//
959//                       External Interface declarations
960//===----------------------------------------------------------------------===//
961
962void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
963  SlotCalculator SlotTable(this, true);
964  AssemblyWriter W(o, SlotTable, this, AAW);
965  W.write(this);
966}
967
968void GlobalVariable::print(std::ostream &o) const {
969  SlotCalculator SlotTable(getParent(), true);
970  AssemblyWriter W(o, SlotTable, getParent(), 0);
971  W.write(this);
972}
973
974void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
975  SlotCalculator SlotTable(getParent(), true);
976  AssemblyWriter W(o, SlotTable, getParent(), AAW);
977
978  W.write(this);
979}
980
981void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
982  SlotCalculator SlotTable(getParent(), true);
983  AssemblyWriter W(o, SlotTable,
984                   getParent() ? getParent()->getParent() : 0, AAW);
985  W.write(this);
986}
987
988void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
989  const Function *F = getParent() ? getParent()->getParent() : 0;
990  SlotCalculator SlotTable(F, true);
991  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
992
993  W.write(this);
994}
995
996void Constant::print(std::ostream &o) const {
997  if (this == 0) { o << "<null> constant value\n"; return; }
998
999  // Handle CPR's special, because they have context information...
1000  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
1001    CPR->getValue()->print(o);  // Print as a global value, with context info.
1002    return;
1003  }
1004
1005  o << " " << getType()->getDescription() << " ";
1006
1007  std::map<const Type *, std::string> TypeTable;
1008  WriteConstantInt(o, this, false, TypeTable, 0);
1009}
1010
1011void Type::print(std::ostream &o) const {
1012  if (this == 0)
1013    o << "<null Type>";
1014  else
1015    o << getDescription();
1016}
1017
1018void Argument::print(std::ostream &o) const {
1019  o << getType() << " " << getName();
1020}
1021
1022void Value::dump() const { print(std::cerr); }
1023
1024//===----------------------------------------------------------------------===//
1025//  CachedWriter Class Implementation
1026//===----------------------------------------------------------------------===//
1027
1028void CachedWriter::setModule(const Module *M) {
1029  delete SC; delete AW;
1030  if (M) {
1031    SC = new SlotCalculator(M, true);
1032    AW = new AssemblyWriter(Out, *SC, M, 0);
1033  } else {
1034    SC = 0; AW = 0;
1035  }
1036}
1037
1038CachedWriter::~CachedWriter() {
1039  delete AW;
1040  delete SC;
1041}
1042
1043CachedWriter &CachedWriter::operator<<(const Value *V) {
1044  assert(AW && SC && "CachedWriter does not have a current module!");
1045  switch (V->getValueType()) {
1046  case Value::ConstantVal:
1047  case Value::ArgumentVal:       AW->writeOperand(V, true, true); break;
1048  case Value::TypeVal:           AW->write(cast<Type>(V)); break;
1049  case Value::InstructionVal:    AW->write(cast<Instruction>(V)); break;
1050  case Value::BasicBlockVal:     AW->write(cast<BasicBlock>(V)); break;
1051  case Value::FunctionVal:       AW->write(cast<Function>(V)); break;
1052  case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
1053  default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
1054  }
1055  return *this;
1056}
1057
1058} // End llvm namespace
1059