AsmWriter.cpp revision dac237e18209b697a8ba122d0ddd9cad4dfba1f8
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/MDNode.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/Support/CFG.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/Streams.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cctype>
40#include <map>
41using namespace llvm;
42
43// Make virtual table appear in this compilation unit.
44AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
45
46//===----------------------------------------------------------------------===//
47// Helper Functions
48//===----------------------------------------------------------------------===//
49
50static const Module *getModuleFromVal(const Value *V) {
51  if (const Argument *MA = dyn_cast<Argument>(V))
52    return MA->getParent() ? MA->getParent()->getParent() : 0;
53
54  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
55    return BB->getParent() ? BB->getParent()->getParent() : 0;
56
57  if (const Instruction *I = dyn_cast<Instruction>(V)) {
58    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
59    return M ? M->getParent() : 0;
60  }
61
62  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
63    return GV->getParent();
64  return 0;
65}
66
67// PrintEscapedString - Print each character of the specified string, escaping
68// it if it is not printable or if it is an escape char.
69static void PrintEscapedString(const char *Str, unsigned Length,
70                               raw_ostream &Out) {
71  for (unsigned i = 0; i != Length; ++i) {
72    unsigned char C = Str[i];
73    if (isprint(C) && C != '\\' && C != '"')
74      Out << C;
75    else
76      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
77  }
78}
79
80// PrintEscapedString - Print each character of the specified string, escaping
81// it if it is not printable or if it is an escape char.
82static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
83  PrintEscapedString(Str.c_str(), Str.size(), Out);
84}
85
86enum PrefixType {
87  GlobalPrefix,
88  LabelPrefix,
89  LocalPrefix,
90  NoPrefix
91};
92
93/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
94/// prefixed with % (if the string only contains simple characters) or is
95/// surrounded with ""'s (if it has special chars in it).  Print it out.
96static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
97                          unsigned NameLen, PrefixType Prefix) {
98  assert(NameStr && "Cannot get empty name!");
99  switch (Prefix) {
100  default: assert(0 && "Bad prefix!");
101  case NoPrefix: break;
102  case GlobalPrefix: OS << '@'; break;
103  case LabelPrefix:  break;
104  case LocalPrefix:  OS << '%'; break;
105  }
106
107  // Scan the name to see if it needs quotes first.
108  bool NeedsQuotes = isdigit(NameStr[0]);
109  if (!NeedsQuotes) {
110    for (unsigned i = 0; i != NameLen; ++i) {
111      char C = NameStr[i];
112      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
113        NeedsQuotes = true;
114        break;
115      }
116    }
117  }
118
119  // If we didn't need any quotes, just write out the name in one blast.
120  if (!NeedsQuotes) {
121    OS.write(NameStr, NameLen);
122    return;
123  }
124
125  // Okay, we need quotes.  Output the quotes and escape any scary characters as
126  // needed.
127  OS << '"';
128  PrintEscapedString(NameStr, NameLen, OS);
129  OS << '"';
130}
131
132/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
133/// prefixed with % (if the string only contains simple characters) or is
134/// surrounded with ""'s (if it has special chars in it).  Print it out.
135static void PrintLLVMName(raw_ostream &OS, const Value *V) {
136  PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
137                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
138}
139
140//===----------------------------------------------------------------------===//
141// TypePrinting Class: Type printing machinery
142//===----------------------------------------------------------------------===//
143
144static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
145  return *static_cast<DenseMap<const Type *, std::string>*>(M);
146}
147
148void TypePrinting::clear() {
149  getTypeNamesMap(TypeNames).clear();
150}
151
152bool TypePrinting::hasTypeName(const Type *Ty) const {
153  return getTypeNamesMap(TypeNames).count(Ty);
154}
155
156void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
157  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
158}
159
160
161TypePrinting::TypePrinting() {
162  TypeNames = new DenseMap<const Type *, std::string>();
163}
164
165TypePrinting::~TypePrinting() {
166  delete &getTypeNamesMap(TypeNames);
167}
168
169/// CalcTypeName - Write the specified type to the specified raw_ostream, making
170/// use of type names or up references to shorten the type name where possible.
171void TypePrinting::CalcTypeName(const Type *Ty,
172                                SmallVectorImpl<const Type *> &TypeStack,
173                                raw_ostream &OS, bool IgnoreTopLevelName) {
174  // Check to see if the type is named.
175  if (!IgnoreTopLevelName) {
176    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
177    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
178    if (I != TM.end()) {
179      OS << I->second;
180      return;
181    }
182  }
183
184  // Check to see if the Type is already on the stack...
185  unsigned Slot = 0, CurSize = TypeStack.size();
186  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
187
188  // This is another base case for the recursion.  In this case, we know
189  // that we have looped back to a type that we have previously visited.
190  // Generate the appropriate upreference to handle this.
191  if (Slot < CurSize) {
192    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
193    return;
194  }
195
196  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
197
198  switch (Ty->getTypeID()) {
199  case Type::VoidTyID:      OS << "void"; break;
200  case Type::FloatTyID:     OS << "float"; break;
201  case Type::DoubleTyID:    OS << "double"; break;
202  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
203  case Type::FP128TyID:     OS << "fp128"; break;
204  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
205  case Type::LabelTyID:     OS << "label"; break;
206  case Type::MetadataTyID:  OS << "metadata"; break;
207  case Type::IntegerTyID:
208    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
209    break;
210
211  case Type::FunctionTyID: {
212    const FunctionType *FTy = cast<FunctionType>(Ty);
213    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
214    OS << " (";
215    for (FunctionType::param_iterator I = FTy->param_begin(),
216         E = FTy->param_end(); I != E; ++I) {
217      if (I != FTy->param_begin())
218        OS << ", ";
219      CalcTypeName(*I, TypeStack, OS);
220    }
221    if (FTy->isVarArg()) {
222      if (FTy->getNumParams()) OS << ", ";
223      OS << "...";
224    }
225    OS << ')';
226    break;
227  }
228  case Type::StructTyID: {
229    const StructType *STy = cast<StructType>(Ty);
230    if (STy->isPacked())
231      OS << '<';
232    OS << "{ ";
233    for (StructType::element_iterator I = STy->element_begin(),
234         E = STy->element_end(); I != E; ++I) {
235      CalcTypeName(*I, TypeStack, OS);
236      if (next(I) != STy->element_end())
237        OS << ',';
238      OS << ' ';
239    }
240    OS << '}';
241    if (STy->isPacked())
242      OS << '>';
243    break;
244  }
245  case Type::PointerTyID: {
246    const PointerType *PTy = cast<PointerType>(Ty);
247    CalcTypeName(PTy->getElementType(), TypeStack, OS);
248    if (unsigned AddressSpace = PTy->getAddressSpace())
249      OS << " addrspace(" << AddressSpace << ')';
250    OS << '*';
251    break;
252  }
253  case Type::ArrayTyID: {
254    const ArrayType *ATy = cast<ArrayType>(Ty);
255    OS << '[' << ATy->getNumElements() << " x ";
256    CalcTypeName(ATy->getElementType(), TypeStack, OS);
257    OS << ']';
258    break;
259  }
260  case Type::VectorTyID: {
261    const VectorType *PTy = cast<VectorType>(Ty);
262    OS << "<" << PTy->getNumElements() << " x ";
263    CalcTypeName(PTy->getElementType(), TypeStack, OS);
264    OS << '>';
265    break;
266  }
267  case Type::OpaqueTyID:
268    OS << "opaque";
269    break;
270  default:
271    OS << "<unrecognized-type>";
272    break;
273  }
274
275  TypeStack.pop_back();       // Remove self from stack.
276}
277
278/// printTypeInt - The internal guts of printing out a type that has a
279/// potentially named portion.
280///
281void TypePrinting::print(const Type *Ty, raw_ostream &OS,
282                         bool IgnoreTopLevelName) {
283  // Check to see if the type is named.
284  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
285  if (!IgnoreTopLevelName) {
286    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
287    if (I != TM.end()) {
288      OS << I->second;
289      return;
290    }
291  }
292
293  // Otherwise we have a type that has not been named but is a derived type.
294  // Carefully recurse the type hierarchy to print out any contained symbolic
295  // names.
296  SmallVector<const Type *, 16> TypeStack;
297  std::string TypeName;
298
299  raw_string_ostream TypeOS(TypeName);
300  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
301  OS << TypeOS.str();
302
303  // Cache type name for later use.
304  if (!IgnoreTopLevelName)
305    TM.insert(std::make_pair(Ty, TypeOS.str()));
306}
307
308namespace {
309  class TypeFinder {
310    // To avoid walking constant expressions multiple times and other IR
311    // objects, we keep several helper maps.
312    DenseSet<const Value*> VisitedConstants;
313    DenseSet<const Type*> VisitedTypes;
314
315    TypePrinting &TP;
316    std::vector<const Type*> &NumberedTypes;
317  public:
318    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
319      : TP(tp), NumberedTypes(numberedTypes) {}
320
321    void Run(const Module &M) {
322      // Get types from the type symbol table.  This gets opaque types referened
323      // only through derived named types.
324      const TypeSymbolTable &ST = M.getTypeSymbolTable();
325      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
326           TI != E; ++TI)
327        IncorporateType(TI->second);
328
329      // Get types from global variables.
330      for (Module::const_global_iterator I = M.global_begin(),
331           E = M.global_end(); I != E; ++I) {
332        IncorporateType(I->getType());
333        if (I->hasInitializer())
334          IncorporateValue(I->getInitializer());
335      }
336
337      // Get types from aliases.
338      for (Module::const_alias_iterator I = M.alias_begin(),
339           E = M.alias_end(); I != E; ++I) {
340        IncorporateType(I->getType());
341        IncorporateValue(I->getAliasee());
342      }
343
344      // Get types from functions.
345      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
346        IncorporateType(FI->getType());
347
348        for (Function::const_iterator BB = FI->begin(), E = FI->end();
349             BB != E;++BB)
350          for (BasicBlock::const_iterator II = BB->begin(),
351               E = BB->end(); II != E; ++II) {
352            const Instruction &I = *II;
353            // Incorporate the type of the instruction and all its operands.
354            IncorporateType(I.getType());
355            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
356                 OI != OE; ++OI)
357              IncorporateValue(*OI);
358          }
359      }
360    }
361
362  private:
363    void IncorporateType(const Type *Ty) {
364      // Check to see if we're already visited this type.
365      if (!VisitedTypes.insert(Ty).second)
366        return;
367
368      // If this is a structure or opaque type, add a name for the type.
369      if (((isa<StructType>(Ty) && cast<StructType>(Ty)->getNumElements())
370            || isa<OpaqueType>(Ty)) && !TP.hasTypeName(Ty)) {
371        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
372        NumberedTypes.push_back(Ty);
373      }
374
375      // Recursively walk all contained types.
376      for (Type::subtype_iterator I = Ty->subtype_begin(),
377           E = Ty->subtype_end(); I != E; ++I)
378        IncorporateType(*I);
379    }
380
381    /// IncorporateValue - This method is used to walk operand lists finding
382    /// types hiding in constant expressions and other operands that won't be
383    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
384    /// inst operands are all explicitly enumerated.
385    void IncorporateValue(const Value *V) {
386      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
387
388      // Already visited?
389      if (!VisitedConstants.insert(V).second)
390        return;
391
392      // Check this type.
393      IncorporateType(V->getType());
394
395      // Look in operands for types.
396      const Constant *C = cast<Constant>(V);
397      for (Constant::const_op_iterator I = C->op_begin(),
398           E = C->op_end(); I != E;++I)
399        IncorporateValue(*I);
400    }
401  };
402} // end anonymous namespace
403
404
405/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
406/// the specified module to the TypePrinter and all numbered types to it and the
407/// NumberedTypes table.
408static void AddModuleTypesToPrinter(TypePrinting &TP,
409                                    std::vector<const Type*> &NumberedTypes,
410                                    const Module *M) {
411  if (M == 0) return;
412
413  // If the module has a symbol table, take all global types and stuff their
414  // names into the TypeNames map.
415  const TypeSymbolTable &ST = M->getTypeSymbolTable();
416  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
417       TI != E; ++TI) {
418    const Type *Ty = cast<Type>(TI->second);
419
420    // As a heuristic, don't insert pointer to primitive types, because
421    // they are used too often to have a single useful name.
422    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
423      const Type *PETy = PTy->getElementType();
424      if ((PETy->isPrimitiveType() || PETy->isInteger()) &&
425          !isa<OpaqueType>(PETy))
426        continue;
427    }
428
429    // Likewise don't insert primitives either.
430    if (Ty->isInteger() || Ty->isPrimitiveType())
431      continue;
432
433    // Get the name as a string and insert it into TypeNames.
434    std::string NameStr;
435    raw_string_ostream NameOS(NameStr);
436    PrintLLVMName(NameOS, TI->first.c_str(), TI->first.length(), LocalPrefix);
437    TP.addTypeName(Ty, NameOS.str());
438  }
439
440  // Walk the entire module to find references to unnamed structure and opaque
441  // types.  This is required for correctness by opaque types (because multiple
442  // uses of an unnamed opaque type needs to be referred to by the same ID) and
443  // it shrinks complex recursive structure types substantially in some cases.
444  TypeFinder(TP, NumberedTypes).Run(*M);
445}
446
447
448/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
449/// type, iff there is an entry in the modules symbol table for the specified
450/// type or one of it's component types.
451///
452void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
453  TypePrinting Printer;
454  std::vector<const Type*> NumberedTypes;
455  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
456  Printer.print(Ty, OS);
457}
458
459//===----------------------------------------------------------------------===//
460// SlotTracker Class: Enumerate slot numbers for unnamed values
461//===----------------------------------------------------------------------===//
462
463namespace {
464
465/// This class provides computation of slot numbers for LLVM Assembly writing.
466///
467class SlotTracker {
468public:
469  /// ValueMap - A mapping of Values to slot numbers
470  typedef DenseMap<const Value*, unsigned> ValueMap;
471
472private:
473  /// TheModule - The module for which we are holding slot numbers
474  const Module* TheModule;
475
476  /// TheFunction - The function for which we are holding slot numbers
477  const Function* TheFunction;
478  bool FunctionProcessed;
479
480  /// mMap - The TypePlanes map for the module level data
481  ValueMap mMap;
482  unsigned mNext;
483
484  /// fMap - The TypePlanes map for the function level data
485  ValueMap fMap;
486  unsigned fNext;
487
488public:
489  /// Construct from a module
490  explicit SlotTracker(const Module *M);
491  /// Construct from a function, starting out in incorp state.
492  explicit SlotTracker(const Function *F);
493
494  /// Return the slot number of the specified value in it's type
495  /// plane.  If something is not in the SlotTracker, return -1.
496  int getLocalSlot(const Value *V);
497  int getGlobalSlot(const GlobalValue *V);
498
499  /// If you'd like to deal with a function instead of just a module, use
500  /// this method to get its data into the SlotTracker.
501  void incorporateFunction(const Function *F) {
502    TheFunction = F;
503    FunctionProcessed = false;
504  }
505
506  /// After calling incorporateFunction, use this method to remove the
507  /// most recently incorporated function from the SlotTracker. This
508  /// will reset the state of the machine back to just the module contents.
509  void purgeFunction();
510
511  // Implementation Details
512private:
513  /// This function does the actual initialization.
514  inline void initialize();
515
516  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
517  void CreateModuleSlot(const GlobalValue *V);
518
519  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
520  void CreateFunctionSlot(const Value *V);
521
522  /// Add all of the module level global variables (and their initializers)
523  /// and function declarations, but not the contents of those functions.
524  void processModule();
525
526  /// Add all of the functions arguments, basic blocks, and instructions
527  void processFunction();
528
529  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
530  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
531};
532
533}  // end anonymous namespace
534
535
536static SlotTracker *createSlotTracker(const Value *V) {
537  if (const Argument *FA = dyn_cast<Argument>(V))
538    return new SlotTracker(FA->getParent());
539
540  if (const Instruction *I = dyn_cast<Instruction>(V))
541    return new SlotTracker(I->getParent()->getParent());
542
543  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
544    return new SlotTracker(BB->getParent());
545
546  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
547    return new SlotTracker(GV->getParent());
548
549  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
550    return new SlotTracker(GA->getParent());
551
552  if (const Function *Func = dyn_cast<Function>(V))
553    return new SlotTracker(Func);
554
555  return 0;
556}
557
558#if 0
559#define ST_DEBUG(X) cerr << X
560#else
561#define ST_DEBUG(X)
562#endif
563
564// Module level constructor. Causes the contents of the Module (sans functions)
565// to be added to the slot table.
566SlotTracker::SlotTracker(const Module *M)
567  : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
568}
569
570// Function level constructor. Causes the contents of the Module and the one
571// function provided to be added to the slot table.
572SlotTracker::SlotTracker(const Function *F)
573  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
574    mNext(0), fNext(0) {
575}
576
577inline void SlotTracker::initialize() {
578  if (TheModule) {
579    processModule();
580    TheModule = 0; ///< Prevent re-processing next time we're called.
581  }
582
583  if (TheFunction && !FunctionProcessed)
584    processFunction();
585}
586
587// Iterate through all the global variables, functions, and global
588// variable initializers and create slots for them.
589void SlotTracker::processModule() {
590  ST_DEBUG("begin processModule!\n");
591
592  // Add all of the unnamed global variables to the value table.
593  for (Module::const_global_iterator I = TheModule->global_begin(),
594       E = TheModule->global_end(); I != E; ++I)
595    if (!I->hasName())
596      CreateModuleSlot(I);
597
598  // Add all the unnamed functions to the table.
599  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
600       I != E; ++I)
601    if (!I->hasName())
602      CreateModuleSlot(I);
603
604  ST_DEBUG("end processModule!\n");
605}
606
607
608// Process the arguments, basic blocks, and instructions  of a function.
609void SlotTracker::processFunction() {
610  ST_DEBUG("begin processFunction!\n");
611  fNext = 0;
612
613  // Add all the function arguments with no names.
614  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
615      AE = TheFunction->arg_end(); AI != AE; ++AI)
616    if (!AI->hasName())
617      CreateFunctionSlot(AI);
618
619  ST_DEBUG("Inserting Instructions:\n");
620
621  // Add all of the basic blocks and instructions with no names.
622  for (Function::const_iterator BB = TheFunction->begin(),
623       E = TheFunction->end(); BB != E; ++BB) {
624    if (!BB->hasName())
625      CreateFunctionSlot(BB);
626    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
627      if (I->getType() != Type::VoidTy && !I->hasName())
628        CreateFunctionSlot(I);
629  }
630
631  FunctionProcessed = true;
632
633  ST_DEBUG("end processFunction!\n");
634}
635
636/// Clean up after incorporating a function. This is the only way to get out of
637/// the function incorporation state that affects get*Slot/Create*Slot. Function
638/// incorporation state is indicated by TheFunction != 0.
639void SlotTracker::purgeFunction() {
640  ST_DEBUG("begin purgeFunction!\n");
641  fMap.clear(); // Simply discard the function level map
642  TheFunction = 0;
643  FunctionProcessed = false;
644  ST_DEBUG("end purgeFunction!\n");
645}
646
647/// getGlobalSlot - Get the slot number of a global value.
648int SlotTracker::getGlobalSlot(const GlobalValue *V) {
649  // Check for uninitialized state and do lazy initialization.
650  initialize();
651
652  // Find the type plane in the module map
653  ValueMap::iterator MI = mMap.find(V);
654  return MI == mMap.end() ? -1 : (int)MI->second;
655}
656
657
658/// getLocalSlot - Get the slot number for a value that is local to a function.
659int SlotTracker::getLocalSlot(const Value *V) {
660  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
661
662  // Check for uninitialized state and do lazy initialization.
663  initialize();
664
665  ValueMap::iterator FI = fMap.find(V);
666  return FI == fMap.end() ? -1 : (int)FI->second;
667}
668
669
670/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
671void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
672  assert(V && "Can't insert a null Value into SlotTracker!");
673  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
674  assert(!V->hasName() && "Doesn't need a slot!");
675
676  unsigned DestSlot = mNext++;
677  mMap[V] = DestSlot;
678
679  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
680           DestSlot << " [");
681  // G = Global, F = Function, A = Alias, o = other
682  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
683            (isa<Function>(V) ? 'F' :
684             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
685}
686
687
688/// CreateSlot - Create a new slot for the specified value if it has no name.
689void SlotTracker::CreateFunctionSlot(const Value *V) {
690  assert(V->getType() != Type::VoidTy && !V->hasName() &&
691         "Doesn't need a slot!");
692
693  unsigned DestSlot = fNext++;
694  fMap[V] = DestSlot;
695
696  // G = Global, F = Function, o = other
697  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
698           DestSlot << " [o]\n");
699}
700
701
702
703//===----------------------------------------------------------------------===//
704// AsmWriter Implementation
705//===----------------------------------------------------------------------===//
706
707static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
708                                   TypePrinting &TypePrinter,
709                                   SlotTracker *Machine);
710
711
712
713static const char *getPredicateText(unsigned predicate) {
714  const char * pred = "unknown";
715  switch (predicate) {
716    case FCmpInst::FCMP_FALSE: pred = "false"; break;
717    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
718    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
719    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
720    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
721    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
722    case FCmpInst::FCMP_ONE:   pred = "one"; break;
723    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
724    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
725    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
726    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
727    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
728    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
729    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
730    case FCmpInst::FCMP_UNE:   pred = "une"; break;
731    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
732    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
733    case ICmpInst::ICMP_NE:    pred = "ne"; break;
734    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
735    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
736    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
737    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
738    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
739    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
740    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
741    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
742  }
743  return pred;
744}
745
746static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
747                             TypePrinting &TypePrinter, SlotTracker *Machine) {
748  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
749    if (CI->getType() == Type::Int1Ty) {
750      Out << (CI->getZExtValue() ? "true" : "false");
751      return;
752    }
753    Out << CI->getValue();
754    return;
755  }
756
757  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
758    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
759        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
760      // We would like to output the FP constant value in exponential notation,
761      // but we cannot do this if doing so will lose precision.  Check here to
762      // make sure that we only output it in exponential format if we can parse
763      // the value back and get the same value.
764      //
765      bool ignored;
766      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
767      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
768                              CFP->getValueAPF().convertToFloat();
769      std::string StrVal = ftostr(CFP->getValueAPF());
770
771      // Check to make sure that the stringized number is not some string like
772      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
773      // that the string matches the "[-+]?[0-9]" regex.
774      //
775      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
776          ((StrVal[0] == '-' || StrVal[0] == '+') &&
777           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
778        // Reparse stringized version!
779        if (atof(StrVal.c_str()) == Val) {
780          Out << StrVal;
781          return;
782        }
783      }
784      // Otherwise we could not reparse it to exactly the same value, so we must
785      // output the string in hexadecimal format!  Note that loading and storing
786      // floating point types changes the bits of NaNs on some hosts, notably
787      // x86, so we must not use these types.
788      assert(sizeof(double) == sizeof(uint64_t) &&
789             "assuming that double is 64 bits!");
790      char Buffer[40];
791      APFloat apf = CFP->getValueAPF();
792      // Floats are represented in ASCII IR as double, convert.
793      if (!isDouble)
794        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
795                          &ignored);
796      Out << "0x" <<
797              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
798                            Buffer+40);
799      return;
800    }
801
802    // Some form of long double.  These appear as a magic letter identifying
803    // the type, then a fixed number of hex digits.
804    Out << "0x";
805    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
806      Out << 'K';
807      // api needed to prevent premature destruction
808      APInt api = CFP->getValueAPF().bitcastToAPInt();
809      const uint64_t* p = api.getRawData();
810      uint64_t word = p[1];
811      int shiftcount=12;
812      int width = api.getBitWidth();
813      for (int j=0; j<width; j+=4, shiftcount-=4) {
814        unsigned int nibble = (word>>shiftcount) & 15;
815        if (nibble < 10)
816          Out << (unsigned char)(nibble + '0');
817        else
818          Out << (unsigned char)(nibble - 10 + 'A');
819        if (shiftcount == 0 && j+4 < width) {
820          word = *p;
821          shiftcount = 64;
822          if (width-j-4 < 64)
823            shiftcount = width-j-4;
824        }
825      }
826      return;
827    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
828      Out << 'L';
829    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
830      Out << 'M';
831    else
832      assert(0 && "Unsupported floating point type");
833    // api needed to prevent premature destruction
834    APInt api = CFP->getValueAPF().bitcastToAPInt();
835    const uint64_t* p = api.getRawData();
836    uint64_t word = *p;
837    int shiftcount=60;
838    int width = api.getBitWidth();
839    for (int j=0; j<width; j+=4, shiftcount-=4) {
840      unsigned int nibble = (word>>shiftcount) & 15;
841      if (nibble < 10)
842        Out << (unsigned char)(nibble + '0');
843      else
844        Out << (unsigned char)(nibble - 10 + 'A');
845      if (shiftcount == 0 && j+4 < width) {
846        word = *(++p);
847        shiftcount = 64;
848        if (width-j-4 < 64)
849          shiftcount = width-j-4;
850      }
851    }
852    return;
853  }
854
855  if (isa<ConstantAggregateZero>(CV)) {
856    Out << "zeroinitializer";
857    return;
858  }
859
860  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
861    // As a special case, print the array as a string if it is an array of
862    // i8 with ConstantInt values.
863    //
864    const Type *ETy = CA->getType()->getElementType();
865    if (CA->isString()) {
866      Out << "c\"";
867      PrintEscapedString(CA->getAsString(), Out);
868      Out << '"';
869    } else {                // Cannot output in string format...
870      Out << '[';
871      if (CA->getNumOperands()) {
872        TypePrinter.print(ETy, Out);
873        Out << ' ';
874        WriteAsOperandInternal(Out, CA->getOperand(0),
875                               TypePrinter, Machine);
876        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
877          Out << ", ";
878          TypePrinter.print(ETy, Out);
879          Out << ' ';
880          WriteAsOperandInternal(Out, CA->getOperand(i), TypePrinter, Machine);
881        }
882      }
883      Out << ']';
884    }
885    return;
886  }
887
888  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
889    if (CS->getType()->isPacked())
890      Out << '<';
891    Out << '{';
892    unsigned N = CS->getNumOperands();
893    if (N) {
894      Out << ' ';
895      TypePrinter.print(CS->getOperand(0)->getType(), Out);
896      Out << ' ';
897
898      WriteAsOperandInternal(Out, CS->getOperand(0), TypePrinter, Machine);
899
900      for (unsigned i = 1; i < N; i++) {
901        Out << ", ";
902        TypePrinter.print(CS->getOperand(i)->getType(), Out);
903        Out << ' ';
904
905        WriteAsOperandInternal(Out, CS->getOperand(i), TypePrinter, Machine);
906      }
907      Out << ' ';
908    }
909
910    Out << '}';
911    if (CS->getType()->isPacked())
912      Out << '>';
913    return;
914  }
915
916  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
917    const Type *ETy = CP->getType()->getElementType();
918    assert(CP->getNumOperands() > 0 &&
919           "Number of operands for a PackedConst must be > 0");
920    Out << '<';
921    TypePrinter.print(ETy, Out);
922    Out << ' ';
923    WriteAsOperandInternal(Out, CP->getOperand(0), TypePrinter, Machine);
924    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
925      Out << ", ";
926      TypePrinter.print(ETy, Out);
927      Out << ' ';
928      WriteAsOperandInternal(Out, CP->getOperand(i), TypePrinter, Machine);
929    }
930    Out << '>';
931    return;
932  }
933
934  if (isa<ConstantPointerNull>(CV)) {
935    Out << "null";
936    return;
937  }
938
939  if (isa<UndefValue>(CV)) {
940    Out << "undef";
941    return;
942  }
943
944  if (const MDString *S = dyn_cast<MDString>(CV)) {
945    Out << "!\"";
946    PrintEscapedString(S->begin(), S->size(), Out);
947    Out << '"';
948    return;
949  }
950
951  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
952    Out << CE->getOpcodeName();
953    if (CE->isCompare())
954      Out << ' ' << getPredicateText(CE->getPredicate());
955    Out << " (";
956
957    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
958      TypePrinter.print((*OI)->getType(), Out);
959      Out << ' ';
960      WriteAsOperandInternal(Out, *OI, TypePrinter, Machine);
961      if (OI+1 != CE->op_end())
962        Out << ", ";
963    }
964
965    if (CE->hasIndices()) {
966      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
967      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
968        Out << ", " << Indices[i];
969    }
970
971    if (CE->isCast()) {
972      Out << " to ";
973      TypePrinter.print(CE->getType(), Out);
974    }
975
976    Out << ')';
977    return;
978  }
979
980  Out << "<placeholder or erroneous Constant>";
981}
982
983
984/// WriteAsOperand - Write the name of the specified value out to the specified
985/// ostream.  This can be useful when you just want to print int %reg126, not
986/// the whole instruction that generated it.
987///
988static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
989                                   TypePrinting &TypePrinter,
990                                   SlotTracker *Machine) {
991  if (V->hasName()) {
992    PrintLLVMName(Out, V);
993    return;
994  }
995
996  const Constant *CV = dyn_cast<Constant>(V);
997  if (CV && !isa<GlobalValue>(CV)) {
998    WriteConstantInt(Out, CV, TypePrinter, Machine);
999    return;
1000  }
1001
1002  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1003    Out << "asm ";
1004    if (IA->hasSideEffects())
1005      Out << "sideeffect ";
1006    Out << '"';
1007    PrintEscapedString(IA->getAsmString(), Out);
1008    Out << "\", \"";
1009    PrintEscapedString(IA->getConstraintString(), Out);
1010    Out << '"';
1011    return;
1012  }
1013
1014  char Prefix = '%';
1015  int Slot;
1016  if (Machine) {
1017    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1018      Slot = Machine->getGlobalSlot(GV);
1019      Prefix = '@';
1020    } else {
1021      Slot = Machine->getLocalSlot(V);
1022    }
1023  } else {
1024    Machine = createSlotTracker(V);
1025    if (Machine) {
1026      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1027        Slot = Machine->getGlobalSlot(GV);
1028        Prefix = '@';
1029      } else {
1030        Slot = Machine->getLocalSlot(V);
1031      }
1032    } else {
1033      Slot = -1;
1034    }
1035    delete Machine;
1036  }
1037
1038  if (Slot != -1)
1039    Out << Prefix << Slot;
1040  else
1041    Out << "<badref>";
1042}
1043
1044/// WriteAsOperand - Write the name of the specified value out to the specified
1045/// ostream.  This can be useful when you just want to print int %reg126, not
1046/// the whole instruction that generated it.
1047///
1048void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
1049                          const Module *Context) {
1050  raw_os_ostream OS(Out);
1051  WriteAsOperand(OS, V, PrintType, Context);
1052}
1053
1054void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
1055                          const Module *Context) {
1056  if (Context == 0) Context = getModuleFromVal(V);
1057
1058  TypePrinting TypePrinter;
1059  std::vector<const Type*> NumberedTypes;
1060  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1061  if (PrintType) {
1062    TypePrinter.print(V->getType(), Out);
1063    Out << ' ';
1064  }
1065
1066  WriteAsOperandInternal(Out, V, TypePrinter, 0);
1067}
1068
1069
1070namespace {
1071
1072class AssemblyWriter {
1073  raw_ostream &Out;
1074  SlotTracker &Machine;
1075  const Module *TheModule;
1076  TypePrinting TypePrinter;
1077  AssemblyAnnotationWriter *AnnotationWriter;
1078  std::vector<const Type*> NumberedTypes;
1079
1080  // Each MDNode is assigned unique MetadataIDNo.
1081  std::map<const MDNode *, unsigned> MDNodes;
1082  unsigned MetadataIDNo;
1083public:
1084  inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
1085                        AssemblyAnnotationWriter *AAW)
1086    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW), MetadataIDNo(0) {
1087    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1088  }
1089
1090  void write(const Module *M) { printModule(M); }
1091
1092  void write(const GlobalValue *G) {
1093    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
1094      printGlobal(GV);
1095    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
1096      printAlias(GA);
1097    else if (const Function *F = dyn_cast<Function>(G))
1098      printFunction(F);
1099    else
1100      assert(0 && "Unknown global");
1101  }
1102
1103  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
1104  void write(const Instruction *I)    { printInstruction(*I); }
1105
1106  void writeOperand(const Value *Op, bool PrintType);
1107  void writeParamOperand(const Value *Operand, Attributes Attrs);
1108  void printMDNode(const MDNode *Node, bool StandAlone);
1109
1110  const Module* getModule() { return TheModule; }
1111
1112private:
1113  void printModule(const Module *M);
1114  void printTypeSymbolTable(const TypeSymbolTable &ST);
1115  void printGlobal(const GlobalVariable *GV);
1116  void printAlias(const GlobalAlias *GV);
1117  void printFunction(const Function *F);
1118  void printArgument(const Argument *FA, Attributes Attrs);
1119  void printBasicBlock(const BasicBlock *BB);
1120  void printInstruction(const Instruction &I);
1121
1122  // printInfoComment - Print a little comment after the instruction indicating
1123  // which slot it occupies.
1124  void printInfoComment(const Value &V);
1125};
1126}  // end of anonymous namespace
1127
1128
1129void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1130  if (Operand == 0) {
1131    Out << "<null operand!>";
1132  } else {
1133    if (PrintType) {
1134      TypePrinter.print(Operand->getType(), Out);
1135      Out << ' ';
1136    }
1137    WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1138  }
1139}
1140
1141void AssemblyWriter::writeParamOperand(const Value *Operand,
1142                                       Attributes Attrs) {
1143  if (Operand == 0) {
1144    Out << "<null operand!>";
1145  } else {
1146    // Print the type
1147    TypePrinter.print(Operand->getType(), Out);
1148    // Print parameter attributes list
1149    if (Attrs != Attribute::None)
1150      Out << ' ' << Attribute::getAsString(Attrs);
1151    Out << ' ';
1152    // Print the operand
1153    WriteAsOperandInternal(Out, Operand, TypePrinter, &Machine);
1154  }
1155}
1156
1157void AssemblyWriter::printModule(const Module *M) {
1158  if (!M->getModuleIdentifier().empty() &&
1159      // Don't print the ID if it will start a new line (which would
1160      // require a comment char before it).
1161      M->getModuleIdentifier().find('\n') == std::string::npos)
1162    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1163
1164  if (!M->getDataLayout().empty())
1165    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1166  if (!M->getTargetTriple().empty())
1167    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1168
1169  if (!M->getModuleInlineAsm().empty()) {
1170    // Split the string into lines, to make it easier to read the .ll file.
1171    std::string Asm = M->getModuleInlineAsm();
1172    size_t CurPos = 0;
1173    size_t NewLine = Asm.find_first_of('\n', CurPos);
1174    while (NewLine != std::string::npos) {
1175      // We found a newline, print the portion of the asm string from the
1176      // last newline up to this newline.
1177      Out << "module asm \"";
1178      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1179                         Out);
1180      Out << "\"\n";
1181      CurPos = NewLine+1;
1182      NewLine = Asm.find_first_of('\n', CurPos);
1183    }
1184    Out << "module asm \"";
1185    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1186    Out << "\"\n";
1187  }
1188
1189  // Loop over the dependent libraries and emit them.
1190  Module::lib_iterator LI = M->lib_begin();
1191  Module::lib_iterator LE = M->lib_end();
1192  if (LI != LE) {
1193    Out << "deplibs = [ ";
1194    while (LI != LE) {
1195      Out << '"' << *LI << '"';
1196      ++LI;
1197      if (LI != LE)
1198        Out << ", ";
1199    }
1200    Out << " ]\n";
1201  }
1202
1203  // Loop over the symbol table, emitting all id'd types.
1204  printTypeSymbolTable(M->getTypeSymbolTable());
1205
1206  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1207       I != E; ++I)
1208    printGlobal(I);
1209
1210  // Output all aliases.
1211  if (!M->alias_empty()) Out << "\n";
1212  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1213       I != E; ++I)
1214    printAlias(I);
1215
1216  // Output all of the functions.
1217  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1218    printFunction(I);
1219}
1220
1221static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1222  switch (LT) {
1223  case GlobalValue::PrivateLinkage:     Out << "private "; break;
1224  case GlobalValue::InternalLinkage:    Out << "internal "; break;
1225  case GlobalValue::AvailableExternallyLinkage:
1226    Out << "available_externally ";
1227    break;
1228  case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
1229  case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
1230  case GlobalValue::WeakAnyLinkage:     Out << "weak "; break;
1231  case GlobalValue::WeakODRLinkage:     Out << "weak_odr "; break;
1232  case GlobalValue::CommonLinkage:      Out << "common "; break;
1233  case GlobalValue::AppendingLinkage:   Out << "appending "; break;
1234  case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
1235  case GlobalValue::DLLExportLinkage:   Out << "dllexport "; break;
1236  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1237  case GlobalValue::ExternalLinkage: break;
1238  case GlobalValue::GhostLinkage:
1239    LLVM_UNREACHABLE("GhostLinkage not allowed in AsmWriter!");
1240  }
1241}
1242
1243
1244static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1245                            raw_ostream &Out) {
1246  switch (Vis) {
1247  default: assert(0 && "Invalid visibility style!");
1248  case GlobalValue::DefaultVisibility: break;
1249  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1250  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1251  }
1252}
1253
1254void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1255  if (GV->hasInitializer())
1256    // If GV is initialized using Metadata then separate out metadata
1257    // operands used by the initializer. Note, MDNodes are not cyclic.
1258    if (MDNode *N = dyn_cast<MDNode>(GV->getInitializer())) {
1259      SmallVector<const MDNode *, 4> WorkList;
1260      // Collect MDNodes used by the initializer.
1261      for (MDNode::const_elem_iterator I = N->elem_begin(), E = N->elem_end();
1262	   I != E; ++I) {
1263	const Value *TV = *I;
1264	if (TV)
1265	  if (const MDNode *NN = dyn_cast<MDNode>(TV))
1266	    WorkList.push_back(NN);
1267      }
1268
1269      // Print MDNodes used by the initializer.
1270      while (!WorkList.empty()) {
1271	const MDNode *N = WorkList.back(); WorkList.pop_back();
1272	printMDNode(N, true);
1273	Out << '\n';
1274      }
1275    }
1276
1277  if (GV->hasName()) {
1278    PrintLLVMName(Out, GV);
1279    Out << " = ";
1280  }
1281
1282  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1283    Out << "external ";
1284
1285  PrintLinkage(GV->getLinkage(), Out);
1286  PrintVisibility(GV->getVisibility(), Out);
1287
1288  if (GV->isThreadLocal()) Out << "thread_local ";
1289  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1290    Out << "addrspace(" << AddressSpace << ") ";
1291  Out << (GV->isConstant() ? "constant " : "global ");
1292  TypePrinter.print(GV->getType()->getElementType(), Out);
1293
1294  if (GV->hasInitializer()) {
1295    Out << ' ';
1296    if (MDNode *N = dyn_cast<MDNode>(GV->getInitializer()))
1297      printMDNode(N, false);
1298    else
1299      writeOperand(GV->getInitializer(), false);
1300  }
1301
1302  if (GV->hasSection())
1303    Out << ", section \"" << GV->getSection() << '"';
1304  if (GV->getAlignment())
1305    Out << ", align " << GV->getAlignment();
1306
1307  printInfoComment(*GV);
1308  Out << '\n';
1309}
1310
1311void AssemblyWriter::printMDNode(const MDNode *Node,
1312				 bool StandAlone) {
1313  std::map<const MDNode *, unsigned>::iterator MI = MDNodes.find(Node);
1314  // If this node is already printed then just refer it using its Metadata
1315  // id number.
1316  if (MI != MDNodes.end()) {
1317    if (!StandAlone)
1318      Out << "!" << MI->second;
1319    return;
1320  }
1321
1322  if (StandAlone) {
1323    // Print standalone MDNode.
1324    // !42 = !{ ... }
1325    Out << "!" << MetadataIDNo << " = ";
1326    Out << "constant metadata ";
1327  }
1328
1329  Out << "!{";
1330  for (MDNode::const_elem_iterator I = Node->elem_begin(), E = Node->elem_end();
1331       I != E;) {
1332    const Value *TV = *I;
1333    if (!TV)
1334      Out << "null";
1335    else if (const MDNode *N = dyn_cast<MDNode>(TV)) {
1336      TypePrinter.print(N->getType(), Out);
1337      Out << ' ';
1338      printMDNode(N, StandAlone);
1339    }
1340    else if (!*I)
1341      Out << "null";
1342    else
1343      writeOperand(*I, true);
1344    if (++I != E)
1345      Out << ", ";
1346  }
1347  Out << "}";
1348
1349  MDNodes[Node] = MetadataIDNo++;
1350}
1351
1352void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1353  // Don't crash when dumping partially built GA
1354  if (!GA->hasName())
1355    Out << "<<nameless>> = ";
1356  else {
1357    PrintLLVMName(Out, GA);
1358    Out << " = ";
1359  }
1360  PrintVisibility(GA->getVisibility(), Out);
1361
1362  Out << "alias ";
1363
1364  PrintLinkage(GA->getLinkage(), Out);
1365
1366  const Constant *Aliasee = GA->getAliasee();
1367
1368  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1369    TypePrinter.print(GV->getType(), Out);
1370    Out << ' ';
1371    PrintLLVMName(Out, GV);
1372  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1373    TypePrinter.print(F->getFunctionType(), Out);
1374    Out << "* ";
1375
1376    WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1377  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1378    TypePrinter.print(GA->getType(), Out);
1379    Out << ' ';
1380    PrintLLVMName(Out, GA);
1381  } else {
1382    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1383    // The only valid GEP is an all zero GEP.
1384    assert((CE->getOpcode() == Instruction::BitCast ||
1385            CE->getOpcode() == Instruction::GetElementPtr) &&
1386           "Unsupported aliasee");
1387    writeOperand(CE, false);
1388  }
1389
1390  printInfoComment(*GA);
1391  Out << '\n';
1392}
1393
1394void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1395  // Emit all numbered types.
1396  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1397    Out << "\ttype ";
1398
1399    // Make sure we print out at least one level of the type structure, so
1400    // that we do not get %2 = type %2
1401    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1402    Out << "\t\t; type %" << i << '\n';
1403  }
1404
1405  // Print the named types.
1406  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1407       TI != TE; ++TI) {
1408    Out << '\t';
1409    PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
1410    Out << " = type ";
1411
1412    // Make sure we print out at least one level of the type structure, so
1413    // that we do not get %FILE = type %FILE
1414    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1415    Out << '\n';
1416  }
1417}
1418
1419/// printFunction - Print all aspects of a function.
1420///
1421void AssemblyWriter::printFunction(const Function *F) {
1422  // Print out the return type and name.
1423  Out << '\n';
1424
1425  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1426
1427  if (F->isDeclaration())
1428    Out << "declare ";
1429  else
1430    Out << "define ";
1431
1432  PrintLinkage(F->getLinkage(), Out);
1433  PrintVisibility(F->getVisibility(), Out);
1434
1435  // Print the calling convention.
1436  switch (F->getCallingConv()) {
1437  case CallingConv::C: break;   // default
1438  case CallingConv::Fast:         Out << "fastcc "; break;
1439  case CallingConv::Cold:         Out << "coldcc "; break;
1440  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1441  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1442  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1443  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1444  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1445  default: Out << "cc" << F->getCallingConv() << " "; break;
1446  }
1447
1448  const FunctionType *FT = F->getFunctionType();
1449  const AttrListPtr &Attrs = F->getAttributes();
1450  Attributes RetAttrs = Attrs.getRetAttributes();
1451  if (RetAttrs != Attribute::None)
1452    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1453  TypePrinter.print(F->getReturnType(), Out);
1454  Out << ' ';
1455  WriteAsOperandInternal(Out, F, TypePrinter, &Machine);
1456  Out << '(';
1457  Machine.incorporateFunction(F);
1458
1459  // Loop over the arguments, printing them...
1460
1461  unsigned Idx = 1;
1462  if (!F->isDeclaration()) {
1463    // If this isn't a declaration, print the argument names as well.
1464    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1465         I != E; ++I) {
1466      // Insert commas as we go... the first arg doesn't get a comma
1467      if (I != F->arg_begin()) Out << ", ";
1468      printArgument(I, Attrs.getParamAttributes(Idx));
1469      Idx++;
1470    }
1471  } else {
1472    // Otherwise, print the types from the function type.
1473    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1474      // Insert commas as we go... the first arg doesn't get a comma
1475      if (i) Out << ", ";
1476
1477      // Output type...
1478      TypePrinter.print(FT->getParamType(i), Out);
1479
1480      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1481      if (ArgAttrs != Attribute::None)
1482        Out << ' ' << Attribute::getAsString(ArgAttrs);
1483    }
1484  }
1485
1486  // Finish printing arguments...
1487  if (FT->isVarArg()) {
1488    if (FT->getNumParams()) Out << ", ";
1489    Out << "...";  // Output varargs portion of signature!
1490  }
1491  Out << ')';
1492  Attributes FnAttrs = Attrs.getFnAttributes();
1493  if (FnAttrs != Attribute::None)
1494    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1495  if (F->hasSection())
1496    Out << " section \"" << F->getSection() << '"';
1497  if (F->getAlignment())
1498    Out << " align " << F->getAlignment();
1499  if (F->hasGC())
1500    Out << " gc \"" << F->getGC() << '"';
1501  if (F->isDeclaration()) {
1502    Out << "\n";
1503  } else {
1504    Out << " {";
1505
1506    // Output all of its basic blocks... for the function
1507    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1508      printBasicBlock(I);
1509
1510    Out << "}\n";
1511  }
1512
1513  Machine.purgeFunction();
1514}
1515
1516/// printArgument - This member is called for every argument that is passed into
1517/// the function.  Simply print it out
1518///
1519void AssemblyWriter::printArgument(const Argument *Arg,
1520                                   Attributes Attrs) {
1521  // Output type...
1522  TypePrinter.print(Arg->getType(), Out);
1523
1524  // Output parameter attributes list
1525  if (Attrs != Attribute::None)
1526    Out << ' ' << Attribute::getAsString(Attrs);
1527
1528  // Output name, if available...
1529  if (Arg->hasName()) {
1530    Out << ' ';
1531    PrintLLVMName(Out, Arg);
1532  }
1533}
1534
1535/// printBasicBlock - This member is called for each basic block in a method.
1536///
1537void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1538  if (BB->hasName()) {              // Print out the label if it exists...
1539    Out << "\n";
1540    PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
1541    Out << ':';
1542  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1543    Out << "\n; <label>:";
1544    int Slot = Machine.getLocalSlot(BB);
1545    if (Slot != -1)
1546      Out << Slot;
1547    else
1548      Out << "<badref>";
1549  }
1550
1551  if (BB->getParent() == 0)
1552    Out << "\t\t; Error: Block without parent!";
1553  else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1554    // Output predecessors for the block...
1555    Out << "\t\t;";
1556    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1557
1558    if (PI == PE) {
1559      Out << " No predecessors!";
1560    } else {
1561      Out << " preds = ";
1562      writeOperand(*PI, false);
1563      for (++PI; PI != PE; ++PI) {
1564        Out << ", ";
1565        writeOperand(*PI, false);
1566      }
1567    }
1568  }
1569
1570  Out << "\n";
1571
1572  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1573
1574  // Output all of the instructions in the basic block...
1575  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1576    printInstruction(*I);
1577
1578  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1579}
1580
1581
1582/// printInfoComment - Print a little comment after the instruction indicating
1583/// which slot it occupies.
1584///
1585void AssemblyWriter::printInfoComment(const Value &V) {
1586  if (V.getType() != Type::VoidTy) {
1587    Out << "\t\t; <";
1588    TypePrinter.print(V.getType(), Out);
1589    Out << '>';
1590
1591    if (!V.hasName() && !isa<Instruction>(V)) {
1592      int SlotNum;
1593      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1594        SlotNum = Machine.getGlobalSlot(GV);
1595      else
1596        SlotNum = Machine.getLocalSlot(&V);
1597      if (SlotNum == -1)
1598        Out << ":<badref>";
1599      else
1600        Out << ':' << SlotNum; // Print out the def slot taken.
1601    }
1602    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1603  }
1604}
1605
1606// This member is called for each Instruction in a function..
1607void AssemblyWriter::printInstruction(const Instruction &I) {
1608  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1609
1610  Out << '\t';
1611
1612  // Print out name if it exists...
1613  if (I.hasName()) {
1614    PrintLLVMName(Out, &I);
1615    Out << " = ";
1616  } else if (I.getType() != Type::VoidTy) {
1617    // Print out the def slot taken.
1618    int SlotNum = Machine.getLocalSlot(&I);
1619    if (SlotNum == -1)
1620      Out << "<badref> = ";
1621    else
1622      Out << '%' << SlotNum << " = ";
1623  }
1624
1625  // If this is a volatile load or store, print out the volatile marker.
1626  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1627      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1628      Out << "volatile ";
1629  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1630    // If this is a call, check if it's a tail call.
1631    Out << "tail ";
1632  }
1633
1634  // Print out the opcode...
1635  Out << I.getOpcodeName();
1636
1637  // Print out the compare instruction predicates
1638  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1639    Out << ' ' << getPredicateText(CI->getPredicate());
1640
1641  // Print out the type of the operands...
1642  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1643
1644  // Special case conditional branches to swizzle the condition out to the front
1645  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1646    BranchInst &BI(cast<BranchInst>(I));
1647    Out << ' ';
1648    writeOperand(BI.getCondition(), true);
1649    Out << ", ";
1650    writeOperand(BI.getSuccessor(0), true);
1651    Out << ", ";
1652    writeOperand(BI.getSuccessor(1), true);
1653
1654  } else if (isa<SwitchInst>(I)) {
1655    // Special case switch statement to get formatting nice and correct...
1656    Out << ' ';
1657    writeOperand(Operand        , true);
1658    Out << ", ";
1659    writeOperand(I.getOperand(1), true);
1660    Out << " [";
1661
1662    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1663      Out << "\n\t\t";
1664      writeOperand(I.getOperand(op  ), true);
1665      Out << ", ";
1666      writeOperand(I.getOperand(op+1), true);
1667    }
1668    Out << "\n\t]";
1669  } else if (isa<PHINode>(I)) {
1670    Out << ' ';
1671    TypePrinter.print(I.getType(), Out);
1672    Out << ' ';
1673
1674    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1675      if (op) Out << ", ";
1676      Out << "[ ";
1677      writeOperand(I.getOperand(op  ), false); Out << ", ";
1678      writeOperand(I.getOperand(op+1), false); Out << " ]";
1679    }
1680  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1681    Out << ' ';
1682    writeOperand(I.getOperand(0), true);
1683    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1684      Out << ", " << *i;
1685  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1686    Out << ' ';
1687    writeOperand(I.getOperand(0), true); Out << ", ";
1688    writeOperand(I.getOperand(1), true);
1689    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1690      Out << ", " << *i;
1691  } else if (isa<ReturnInst>(I) && !Operand) {
1692    Out << " void";
1693  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1694    // Print the calling convention being used.
1695    switch (CI->getCallingConv()) {
1696    case CallingConv::C: break;   // default
1697    case CallingConv::Fast:  Out << " fastcc"; break;
1698    case CallingConv::Cold:  Out << " coldcc"; break;
1699    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1700    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1701    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1702    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1703    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1704    default: Out << " cc" << CI->getCallingConv(); break;
1705    }
1706
1707    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1708    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1709    const Type         *RetTy = FTy->getReturnType();
1710    const AttrListPtr &PAL = CI->getAttributes();
1711
1712    if (PAL.getRetAttributes() != Attribute::None)
1713      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1714
1715    // If possible, print out the short form of the call instruction.  We can
1716    // only do this if the first argument is a pointer to a nonvararg function,
1717    // and if the return type is not a pointer to a function.
1718    //
1719    Out << ' ';
1720    if (!FTy->isVarArg() &&
1721        (!isa<PointerType>(RetTy) ||
1722         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1723      TypePrinter.print(RetTy, Out);
1724      Out << ' ';
1725      writeOperand(Operand, false);
1726    } else {
1727      writeOperand(Operand, true);
1728    }
1729    Out << '(';
1730    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1731      if (op > 1)
1732        Out << ", ";
1733      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op));
1734    }
1735    Out << ')';
1736    if (PAL.getFnAttributes() != Attribute::None)
1737      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1738  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1739    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1740    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1741    const Type         *RetTy = FTy->getReturnType();
1742    const AttrListPtr &PAL = II->getAttributes();
1743
1744    // Print the calling convention being used.
1745    switch (II->getCallingConv()) {
1746    case CallingConv::C: break;   // default
1747    case CallingConv::Fast:  Out << " fastcc"; break;
1748    case CallingConv::Cold:  Out << " coldcc"; break;
1749    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1750    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1751    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1752    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1753    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1754    default: Out << " cc" << II->getCallingConv(); break;
1755    }
1756
1757    if (PAL.getRetAttributes() != Attribute::None)
1758      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1759
1760    // If possible, print out the short form of the invoke instruction. We can
1761    // only do this if the first argument is a pointer to a nonvararg function,
1762    // and if the return type is not a pointer to a function.
1763    //
1764    Out << ' ';
1765    if (!FTy->isVarArg() &&
1766        (!isa<PointerType>(RetTy) ||
1767         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1768      TypePrinter.print(RetTy, Out);
1769      Out << ' ';
1770      writeOperand(Operand, false);
1771    } else {
1772      writeOperand(Operand, true);
1773    }
1774    Out << '(';
1775    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1776      if (op > 3)
1777        Out << ", ";
1778      writeParamOperand(I.getOperand(op), PAL.getParamAttributes(op-2));
1779    }
1780
1781    Out << ')';
1782    if (PAL.getFnAttributes() != Attribute::None)
1783      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1784
1785    Out << "\n\t\t\tto ";
1786    writeOperand(II->getNormalDest(), true);
1787    Out << " unwind ";
1788    writeOperand(II->getUnwindDest(), true);
1789
1790  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1791    Out << ' ';
1792    TypePrinter.print(AI->getType()->getElementType(), Out);
1793    if (AI->isArrayAllocation()) {
1794      Out << ", ";
1795      writeOperand(AI->getArraySize(), true);
1796    }
1797    if (AI->getAlignment()) {
1798      Out << ", align " << AI->getAlignment();
1799    }
1800  } else if (isa<CastInst>(I)) {
1801    if (Operand) {
1802      Out << ' ';
1803      writeOperand(Operand, true);   // Work with broken code
1804    }
1805    Out << " to ";
1806    TypePrinter.print(I.getType(), Out);
1807  } else if (isa<VAArgInst>(I)) {
1808    if (Operand) {
1809      Out << ' ';
1810      writeOperand(Operand, true);   // Work with broken code
1811    }
1812    Out << ", ";
1813    TypePrinter.print(I.getType(), Out);
1814  } else if (Operand) {   // Print the normal way.
1815
1816    // PrintAllTypes - Instructions who have operands of all the same type
1817    // omit the type from all but the first operand.  If the instruction has
1818    // different type operands (for example br), then they are all printed.
1819    bool PrintAllTypes = false;
1820    const Type *TheType = Operand->getType();
1821
1822    // Select, Store and ShuffleVector always print all types.
1823    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1824        || isa<ReturnInst>(I)) {
1825      PrintAllTypes = true;
1826    } else {
1827      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1828        Operand = I.getOperand(i);
1829        // note that Operand shouldn't be null, but the test helps make dump()
1830        // more tolerant of malformed IR
1831        if (Operand && Operand->getType() != TheType) {
1832          PrintAllTypes = true;    // We have differing types!  Print them all!
1833          break;
1834        }
1835      }
1836    }
1837
1838    if (!PrintAllTypes) {
1839      Out << ' ';
1840      TypePrinter.print(TheType, Out);
1841    }
1842
1843    Out << ' ';
1844    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1845      if (i) Out << ", ";
1846      writeOperand(I.getOperand(i), PrintAllTypes);
1847    }
1848  }
1849
1850  // Print post operand alignment for load/store
1851  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1852    Out << ", align " << cast<LoadInst>(I).getAlignment();
1853  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1854    Out << ", align " << cast<StoreInst>(I).getAlignment();
1855  }
1856
1857  printInfoComment(I);
1858  Out << '\n';
1859}
1860
1861
1862//===----------------------------------------------------------------------===//
1863//                       External Interface declarations
1864//===----------------------------------------------------------------------===//
1865
1866void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1867  raw_os_ostream OS(o);
1868  print(OS, AAW);
1869}
1870void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1871  SlotTracker SlotTable(this);
1872  AssemblyWriter W(OS, SlotTable, this, AAW);
1873  W.write(this);
1874}
1875
1876void Type::print(std::ostream &o) const {
1877  raw_os_ostream OS(o);
1878  print(OS);
1879}
1880
1881void Type::print(raw_ostream &OS) const {
1882  if (this == 0) {
1883    OS << "<null Type>";
1884    return;
1885  }
1886  TypePrinting().print(this, OS);
1887}
1888
1889void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1890  if (this == 0) {
1891    OS << "printing a <null> value\n";
1892    return;
1893  }
1894
1895  if (const Instruction *I = dyn_cast<Instruction>(this)) {
1896    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1897    SlotTracker SlotTable(F);
1898    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
1899    W.write(I);
1900  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1901    SlotTracker SlotTable(BB->getParent());
1902    AssemblyWriter W(OS, SlotTable,
1903                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
1904    W.write(BB);
1905  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1906    SlotTracker SlotTable(GV->getParent());
1907    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
1908    W.write(GV);
1909  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
1910    TypePrinting TypePrinter;
1911    TypePrinter.print(N->getType(), OS);
1912    OS << ' ';
1913    // FIXME: Do we need a slot tracker for metadata ?
1914    SlotTracker SlotTable((const Function *)NULL);
1915    AssemblyWriter W(OS, SlotTable, NULL, AAW);
1916    W.printMDNode(N, false);
1917  } else if (const Constant *C = dyn_cast<Constant>(this)) {
1918    TypePrinting TypePrinter;
1919    TypePrinter.print(C->getType(), OS);
1920    OS << ' ';
1921    WriteConstantInt(OS, C, TypePrinter, 0);
1922  } else if (const Argument *A = dyn_cast<Argument>(this)) {
1923    WriteAsOperand(OS, this, true,
1924                   A->getParent() ? A->getParent()->getParent() : 0);
1925  } else if (isa<InlineAsm>(this)) {
1926    WriteAsOperand(OS, this, true, 0);
1927  } else {
1928    assert(0 && "Unknown value to print out!");
1929  }
1930}
1931
1932void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
1933  raw_os_ostream OS(O);
1934  print(OS, AAW);
1935}
1936
1937// Value::dump - allow easy printing of Values from the debugger.
1938void Value::dump() const { print(errs()); errs() << '\n'; }
1939
1940// Type::dump - allow easy printing of Types from the debugger.
1941// This one uses type names from the given context module
1942void Type::dump(const Module *Context) const {
1943  WriteTypeSymbolic(errs(), this, Context);
1944  errs() << '\n';
1945}
1946
1947// Type::dump - allow easy printing of Types from the debugger.
1948void Type::dump() const { dump(0); }
1949
1950// Module::dump() - Allow printing of Modules from the debugger.
1951void Module::dump() const { print(errs(), 0); }
1952