AsmWriter.cpp revision eaf42abab6d465c38891345d999255871cf03943
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instruction.h"
25#include "llvm/Instructions.h"
26#include "llvm/Module.h"
27#include "llvm/ValueSymbolTable.h"
28#include "llvm/TypeSymbolTable.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cctype>
37using namespace llvm;
38
39// Make virtual table appear in this compilation unit.
40AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
41
42char PrintModulePass::ID = 0;
43static RegisterPass<PrintModulePass>
44X("print-module", "Print module to stderr");
45char PrintFunctionPass::ID = 0;
46static RegisterPass<PrintFunctionPass>
47Y("print-function","Print function to stderr");
48
49
50//===----------------------------------------------------------------------===//
51// Helper Functions
52//===----------------------------------------------------------------------===//
53
54static const Module *getModuleFromVal(const Value *V) {
55  if (const Argument *MA = dyn_cast<Argument>(V))
56    return MA->getParent() ? MA->getParent()->getParent() : 0;
57
58  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
59    return BB->getParent() ? BB->getParent()->getParent() : 0;
60
61  if (const Instruction *I = dyn_cast<Instruction>(V)) {
62    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
63    return M ? M->getParent() : 0;
64  }
65
66  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
67    return GV->getParent();
68  return 0;
69}
70
71
72/// NameNeedsQuotes - Return true if the specified llvm name should be wrapped
73/// with ""'s.
74static std::string QuoteNameIfNeeded(const std::string &Name) {
75  std::string result;
76  bool needsQuotes = Name[0] >= '0' && Name[0] <= '9';
77  // Scan the name to see if it needs quotes and to replace funky chars with
78  // their octal equivalent.
79  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
80    char C = Name[i];
81    assert(C != '"' && "Illegal character in LLVM value name!");
82    if (isalnum(C) || C == '-' || C == '.' || C == '_')
83      result += C;
84    else if (C == '\\')  {
85      needsQuotes = true;
86      result += "\\\\";
87    } else if (isprint(C)) {
88      needsQuotes = true;
89      result += C;
90    } else {
91      needsQuotes = true;
92      result += "\\";
93      char hex1 = (C >> 4) & 0x0F;
94      if (hex1 < 10)
95        result += hex1 + '0';
96      else
97        result += hex1 - 10 + 'A';
98      char hex2 = C & 0x0F;
99      if (hex2 < 10)
100        result += hex2 + '0';
101      else
102        result += hex2 - 10 + 'A';
103    }
104  }
105  if (needsQuotes) {
106    result.insert(0,"\"");
107    result += '"';
108  }
109  return result;
110}
111
112/// getLLVMName - Turn the specified string into an 'LLVM name', which is
113/// surrounded with ""'s and escaped if it has special chars in it.
114static std::string getLLVMName(const std::string &Name) {
115  assert(!Name.empty() && "Cannot get empty name!");
116  return QuoteNameIfNeeded(Name);
117}
118
119enum PrefixType {
120  GlobalPrefix,
121  LabelPrefix,
122  LocalPrefix
123};
124
125/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
126/// prefixed with % (if the string only contains simple characters) or is
127/// surrounded with ""'s (if it has special chars in it).  Print it out.
128static void PrintLLVMName(raw_ostream &OS, const char *NameStr,
129                          unsigned NameLen, PrefixType Prefix) {
130  assert(NameStr && "Cannot get empty name!");
131  switch (Prefix) {
132  default: assert(0 && "Bad prefix!");
133  case GlobalPrefix: OS << '@'; break;
134  case LabelPrefix:  break;
135  case LocalPrefix:  OS << '%'; break;
136  }
137
138  // Scan the name to see if it needs quotes first.
139  bool NeedsQuotes = NameStr[0] >= '0' && NameStr[0] <= '9';
140  if (!NeedsQuotes) {
141    for (unsigned i = 0; i != NameLen; ++i) {
142      char C = NameStr[i];
143      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
144        NeedsQuotes = true;
145        break;
146      }
147    }
148  }
149
150  // If we didn't need any quotes, just write out the name in one blast.
151  if (!NeedsQuotes) {
152    OS.write(NameStr, NameLen);
153    return;
154  }
155
156  // Okay, we need quotes.  Output the quotes and escape any scary characters as
157  // needed.
158  OS << '"';
159  for (unsigned i = 0; i != NameLen; ++i) {
160    char C = NameStr[i];
161    assert(C != '"' && "Illegal character in LLVM value name!");
162    if (C == '\\') {
163      OS << "\\\\";
164    } else if (isprint(C)) {
165      OS << C;
166    } else {
167      OS << '\\';
168      char hex1 = (C >> 4) & 0x0F;
169      if (hex1 < 10)
170        OS << (char)(hex1 + '0');
171      else
172        OS << (char)(hex1 - 10 + 'A');
173      char hex2 = C & 0x0F;
174      if (hex2 < 10)
175        OS << (char)(hex2 + '0');
176      else
177        OS << (char)(hex2 - 10 + 'A');
178    }
179  }
180  OS << '"';
181}
182
183/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
184/// prefixed with % (if the string only contains simple characters) or is
185/// surrounded with ""'s (if it has special chars in it).  Print it out.
186static void PrintLLVMName(raw_ostream &OS, const Value *V) {
187  PrintLLVMName(OS, V->getNameStart(), V->getNameLen(),
188                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
189}
190
191
192
193//===----------------------------------------------------------------------===//
194// SlotTracker Class: Enumerate slot numbers for unnamed values
195//===----------------------------------------------------------------------===//
196
197namespace {
198
199/// This class provides computation of slot numbers for LLVM Assembly writing.
200///
201class SlotTracker {
202public:
203  /// ValueMap - A mapping of Values to slot numbers
204  typedef DenseMap<const Value*, unsigned> ValueMap;
205
206private:
207  /// TheModule - The module for which we are holding slot numbers
208  const Module* TheModule;
209
210  /// TheFunction - The function for which we are holding slot numbers
211  const Function* TheFunction;
212  bool FunctionProcessed;
213
214  /// mMap - The TypePlanes map for the module level data
215  ValueMap mMap;
216  unsigned mNext;
217
218  /// fMap - The TypePlanes map for the function level data
219  ValueMap fMap;
220  unsigned fNext;
221
222public:
223  /// Construct from a module
224  explicit SlotTracker(const Module *M);
225  /// Construct from a function, starting out in incorp state.
226  explicit SlotTracker(const Function *F);
227
228  /// Return the slot number of the specified value in it's type
229  /// plane.  If something is not in the SlotTracker, return -1.
230  int getLocalSlot(const Value *V);
231  int getGlobalSlot(const GlobalValue *V);
232
233  /// If you'd like to deal with a function instead of just a module, use
234  /// this method to get its data into the SlotTracker.
235  void incorporateFunction(const Function *F) {
236    TheFunction = F;
237    FunctionProcessed = false;
238  }
239
240  /// After calling incorporateFunction, use this method to remove the
241  /// most recently incorporated function from the SlotTracker. This
242  /// will reset the state of the machine back to just the module contents.
243  void purgeFunction();
244
245  // Implementation Details
246private:
247  /// This function does the actual initialization.
248  inline void initialize();
249
250  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
251  void CreateModuleSlot(const GlobalValue *V);
252
253  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
254  void CreateFunctionSlot(const Value *V);
255
256  /// Add all of the module level global variables (and their initializers)
257  /// and function declarations, but not the contents of those functions.
258  void processModule();
259
260  /// Add all of the functions arguments, basic blocks, and instructions
261  void processFunction();
262
263  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
264  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
265};
266
267}  // end anonymous namespace
268
269
270static SlotTracker *createSlotTracker(const Value *V) {
271  if (const Argument *FA = dyn_cast<Argument>(V))
272    return new SlotTracker(FA->getParent());
273
274  if (const Instruction *I = dyn_cast<Instruction>(V))
275    return new SlotTracker(I->getParent()->getParent());
276
277  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
278    return new SlotTracker(BB->getParent());
279
280  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
281    return new SlotTracker(GV->getParent());
282
283  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
284    return new SlotTracker(GA->getParent());
285
286  if (const Function *Func = dyn_cast<Function>(V))
287    return new SlotTracker(Func);
288
289  return 0;
290}
291
292#if 0
293#define ST_DEBUG(X) cerr << X
294#else
295#define ST_DEBUG(X)
296#endif
297
298// Module level constructor. Causes the contents of the Module (sans functions)
299// to be added to the slot table.
300SlotTracker::SlotTracker(const Module *M)
301  : TheModule(M), TheFunction(0), FunctionProcessed(false), mNext(0), fNext(0) {
302}
303
304// Function level constructor. Causes the contents of the Module and the one
305// function provided to be added to the slot table.
306SlotTracker::SlotTracker(const Function *F)
307  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
308    mNext(0), fNext(0) {
309}
310
311inline void SlotTracker::initialize() {
312  if (TheModule) {
313    processModule();
314    TheModule = 0; ///< Prevent re-processing next time we're called.
315  }
316
317  if (TheFunction && !FunctionProcessed)
318    processFunction();
319}
320
321// Iterate through all the global variables, functions, and global
322// variable initializers and create slots for them.
323void SlotTracker::processModule() {
324  ST_DEBUG("begin processModule!\n");
325
326  // Add all of the unnamed global variables to the value table.
327  for (Module::const_global_iterator I = TheModule->global_begin(),
328       E = TheModule->global_end(); I != E; ++I)
329    if (!I->hasName())
330      CreateModuleSlot(I);
331
332  // Add all the unnamed functions to the table.
333  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
334       I != E; ++I)
335    if (!I->hasName())
336      CreateModuleSlot(I);
337
338  ST_DEBUG("end processModule!\n");
339}
340
341
342// Process the arguments, basic blocks, and instructions  of a function.
343void SlotTracker::processFunction() {
344  ST_DEBUG("begin processFunction!\n");
345  fNext = 0;
346
347  // Add all the function arguments with no names.
348  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
349      AE = TheFunction->arg_end(); AI != AE; ++AI)
350    if (!AI->hasName())
351      CreateFunctionSlot(AI);
352
353  ST_DEBUG("Inserting Instructions:\n");
354
355  // Add all of the basic blocks and instructions with no names.
356  for (Function::const_iterator BB = TheFunction->begin(),
357       E = TheFunction->end(); BB != E; ++BB) {
358    if (!BB->hasName())
359      CreateFunctionSlot(BB);
360    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
361      if (I->getType() != Type::VoidTy && !I->hasName())
362        CreateFunctionSlot(I);
363  }
364
365  FunctionProcessed = true;
366
367  ST_DEBUG("end processFunction!\n");
368}
369
370/// Clean up after incorporating a function. This is the only way to get out of
371/// the function incorporation state that affects get*Slot/Create*Slot. Function
372/// incorporation state is indicated by TheFunction != 0.
373void SlotTracker::purgeFunction() {
374  ST_DEBUG("begin purgeFunction!\n");
375  fMap.clear(); // Simply discard the function level map
376  TheFunction = 0;
377  FunctionProcessed = false;
378  ST_DEBUG("end purgeFunction!\n");
379}
380
381/// getGlobalSlot - Get the slot number of a global value.
382int SlotTracker::getGlobalSlot(const GlobalValue *V) {
383  // Check for uninitialized state and do lazy initialization.
384  initialize();
385
386  // Find the type plane in the module map
387  ValueMap::iterator MI = mMap.find(V);
388  return MI == mMap.end() ? -1 : MI->second;
389}
390
391
392/// getLocalSlot - Get the slot number for a value that is local to a function.
393int SlotTracker::getLocalSlot(const Value *V) {
394  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
395
396  // Check for uninitialized state and do lazy initialization.
397  initialize();
398
399  ValueMap::iterator FI = fMap.find(V);
400  return FI == fMap.end() ? -1 : FI->second;
401}
402
403
404/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
405void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
406  assert(V && "Can't insert a null Value into SlotTracker!");
407  assert(V->getType() != Type::VoidTy && "Doesn't need a slot!");
408  assert(!V->hasName() && "Doesn't need a slot!");
409
410  unsigned DestSlot = mNext++;
411  mMap[V] = DestSlot;
412
413  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
414           DestSlot << " [");
415  // G = Global, F = Function, A = Alias, o = other
416  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
417            (isa<Function>(V) ? 'F' :
418             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
419}
420
421
422/// CreateSlot - Create a new slot for the specified value if it has no name.
423void SlotTracker::CreateFunctionSlot(const Value *V) {
424  assert(V->getType() != Type::VoidTy && !V->hasName() &&
425         "Doesn't need a slot!");
426
427  unsigned DestSlot = fNext++;
428  fMap[V] = DestSlot;
429
430  // G = Global, F = Function, o = other
431  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
432           DestSlot << " [o]\n");
433}
434
435
436
437//===----------------------------------------------------------------------===//
438// AsmWriter Implementation
439//===----------------------------------------------------------------------===//
440
441static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
442                               std::map<const Type *, std::string> &TypeTable,
443                                   SlotTracker *Machine);
444
445
446
447/// fillTypeNameTable - If the module has a symbol table, take all global types
448/// and stuff their names into the TypeNames map.
449///
450static void fillTypeNameTable(const Module *M,
451                              std::map<const Type *, std::string> &TypeNames) {
452  if (!M) return;
453  const TypeSymbolTable &ST = M->getTypeSymbolTable();
454  TypeSymbolTable::const_iterator TI = ST.begin();
455  for (; TI != ST.end(); ++TI) {
456    // As a heuristic, don't insert pointer to primitive types, because
457    // they are used too often to have a single useful name.
458    //
459    const Type *Ty = cast<Type>(TI->second);
460    if (!isa<PointerType>(Ty) ||
461        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
462        !cast<PointerType>(Ty)->getElementType()->isInteger() ||
463        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
464      TypeNames.insert(std::make_pair(Ty, '%' + getLLVMName(TI->first)));
465  }
466}
467
468
469
470static void calcTypeName(const Type *Ty,
471                         std::vector<const Type *> &TypeStack,
472                         std::map<const Type *, std::string> &TypeNames,
473                         std::string &Result) {
474  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
475    Result += Ty->getDescription();  // Base case
476    return;
477  }
478
479  // Check to see if the type is named.
480  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
481  if (I != TypeNames.end()) {
482    Result += I->second;
483    return;
484  }
485
486  if (isa<OpaqueType>(Ty)) {
487    Result += "opaque";
488    return;
489  }
490
491  // Check to see if the Type is already on the stack...
492  unsigned Slot = 0, CurSize = TypeStack.size();
493  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
494
495  // This is another base case for the recursion.  In this case, we know
496  // that we have looped back to a type that we have previously visited.
497  // Generate the appropriate upreference to handle this.
498  if (Slot < CurSize) {
499    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
500    return;
501  }
502
503  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
504
505  switch (Ty->getTypeID()) {
506  case Type::IntegerTyID: {
507    unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
508    Result += "i" + utostr(BitWidth);
509    break;
510  }
511  case Type::FunctionTyID: {
512    const FunctionType *FTy = cast<FunctionType>(Ty);
513    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
514    Result += " (";
515    for (FunctionType::param_iterator I = FTy->param_begin(),
516         E = FTy->param_end(); I != E; ++I) {
517      if (I != FTy->param_begin())
518        Result += ", ";
519      calcTypeName(*I, TypeStack, TypeNames, Result);
520    }
521    if (FTy->isVarArg()) {
522      if (FTy->getNumParams()) Result += ", ";
523      Result += "...";
524    }
525    Result += ")";
526    break;
527  }
528  case Type::StructTyID: {
529    const StructType *STy = cast<StructType>(Ty);
530    if (STy->isPacked())
531      Result += '<';
532    Result += "{ ";
533    for (StructType::element_iterator I = STy->element_begin(),
534           E = STy->element_end(); I != E; ++I) {
535      if (I != STy->element_begin())
536        Result += ", ";
537      calcTypeName(*I, TypeStack, TypeNames, Result);
538    }
539    Result += " }";
540    if (STy->isPacked())
541      Result += '>';
542    break;
543  }
544  case Type::PointerTyID: {
545    const PointerType *PTy = cast<PointerType>(Ty);
546    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
547    if (unsigned AddressSpace = PTy->getAddressSpace())
548      Result += " addrspace(" + utostr(AddressSpace) + ")";
549    Result += "*";
550    break;
551  }
552  case Type::ArrayTyID: {
553    const ArrayType *ATy = cast<ArrayType>(Ty);
554    Result += "[" + utostr(ATy->getNumElements()) + " x ";
555    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
556    Result += "]";
557    break;
558  }
559  case Type::VectorTyID: {
560    const VectorType *PTy = cast<VectorType>(Ty);
561    Result += "<" + utostr(PTy->getNumElements()) + " x ";
562    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
563    Result += ">";
564    break;
565  }
566  case Type::OpaqueTyID:
567    Result += "opaque";
568    break;
569  default:
570    Result += "<unrecognized-type>";
571    break;
572  }
573
574  TypeStack.pop_back();       // Remove self from stack...
575}
576
577
578/// printTypeInt - The internal guts of printing out a type that has a
579/// potentially named portion.
580///
581static void printTypeInt(raw_ostream &Out, const Type *Ty,
582                         std::map<const Type *, std::string> &TypeNames) {
583  // Primitive types always print out their description, regardless of whether
584  // they have been named or not.
585  //
586  if (Ty->isInteger() || (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))) {
587    Out << Ty->getDescription();
588    return;
589  }
590
591  // Check to see if the type is named.
592  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
593  if (I != TypeNames.end()) {
594    Out << I->second;
595    return;
596  }
597
598  // Otherwise we have a type that has not been named but is a derived type.
599  // Carefully recurse the type hierarchy to print out any contained symbolic
600  // names.
601  //
602  std::vector<const Type *> TypeStack;
603  std::string TypeName;
604  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
605  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
606  Out << TypeName;
607}
608
609
610/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
611/// type, iff there is an entry in the modules symbol table for the specified
612/// type or one of it's component types. This is slower than a simple x << Type
613///
614void llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
615                             const Module *M) {
616  raw_os_ostream RO(Out);
617  WriteTypeSymbolic(RO, Ty, M);
618}
619
620void llvm::WriteTypeSymbolic(raw_ostream &Out, const Type *Ty, const Module *M){
621  Out << ' ';
622
623  // If they want us to print out a type, but there is no context, we can't
624  // print it symbolically.
625  if (!M) {
626    Out << Ty->getDescription();
627  } else {
628    std::map<const Type *, std::string> TypeNames;
629    fillTypeNameTable(M, TypeNames);
630    printTypeInt(Out, Ty, TypeNames);
631  }
632}
633
634// PrintEscapedString - Print each character of the specified string, escaping
635// it if it is not printable or if it is an escape char.
636static void PrintEscapedString(const std::string &Str, raw_ostream &Out) {
637  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
638    unsigned char C = Str[i];
639    if (isprint(C) && C != '"' && C != '\\') {
640      Out << C;
641    } else {
642      Out << '\\'
643          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
644          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
645    }
646  }
647}
648
649static const char *getPredicateText(unsigned predicate) {
650  const char * pred = "unknown";
651  switch (predicate) {
652    case FCmpInst::FCMP_FALSE: pred = "false"; break;
653    case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
654    case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
655    case FCmpInst::FCMP_OGE:   pred = "oge"; break;
656    case FCmpInst::FCMP_OLT:   pred = "olt"; break;
657    case FCmpInst::FCMP_OLE:   pred = "ole"; break;
658    case FCmpInst::FCMP_ONE:   pred = "one"; break;
659    case FCmpInst::FCMP_ORD:   pred = "ord"; break;
660    case FCmpInst::FCMP_UNO:   pred = "uno"; break;
661    case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
662    case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
663    case FCmpInst::FCMP_UGE:   pred = "uge"; break;
664    case FCmpInst::FCMP_ULT:   pred = "ult"; break;
665    case FCmpInst::FCMP_ULE:   pred = "ule"; break;
666    case FCmpInst::FCMP_UNE:   pred = "une"; break;
667    case FCmpInst::FCMP_TRUE:  pred = "true"; break;
668    case ICmpInst::ICMP_EQ:    pred = "eq"; break;
669    case ICmpInst::ICMP_NE:    pred = "ne"; break;
670    case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
671    case ICmpInst::ICMP_SGE:   pred = "sge"; break;
672    case ICmpInst::ICMP_SLT:   pred = "slt"; break;
673    case ICmpInst::ICMP_SLE:   pred = "sle"; break;
674    case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
675    case ICmpInst::ICMP_UGE:   pred = "uge"; break;
676    case ICmpInst::ICMP_ULT:   pred = "ult"; break;
677    case ICmpInst::ICMP_ULE:   pred = "ule"; break;
678  }
679  return pred;
680}
681
682static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
683                             std::map<const Type *, std::string> &TypeTable,
684                             SlotTracker *Machine) {
685  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
686    if (CI->getType() == Type::Int1Ty) {
687      Out << (CI->getZExtValue() ? "true" : "false");
688      return;
689    }
690    Out << CI->getValue();
691    return;
692  }
693
694  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
695    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
696        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
697      // We would like to output the FP constant value in exponential notation,
698      // but we cannot do this if doing so will lose precision.  Check here to
699      // make sure that we only output it in exponential format if we can parse
700      // the value back and get the same value.
701      //
702      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
703      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
704                              CFP->getValueAPF().convertToFloat();
705      std::string StrVal = ftostr(CFP->getValueAPF());
706
707      // Check to make sure that the stringized number is not some string like
708      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
709      // that the string matches the "[-+]?[0-9]" regex.
710      //
711      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
712          ((StrVal[0] == '-' || StrVal[0] == '+') &&
713           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
714        // Reparse stringized version!
715        if (atof(StrVal.c_str()) == Val) {
716          Out << StrVal;
717          return;
718        }
719      }
720      // Otherwise we could not reparse it to exactly the same value, so we must
721      // output the string in hexadecimal format!
722      assert(sizeof(double) == sizeof(uint64_t) &&
723             "assuming that double is 64 bits!");
724      Out << "0x" << utohexstr(DoubleToBits(Val));
725      return;
726    }
727
728    // Some form of long double.  These appear as a magic letter identifying
729    // the type, then a fixed number of hex digits.
730    Out << "0x";
731    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended)
732      Out << 'K';
733    else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
734      Out << 'L';
735    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
736      Out << 'M';
737    else
738      assert(0 && "Unsupported floating point type");
739    // api needed to prevent premature destruction
740    APInt api = CFP->getValueAPF().convertToAPInt();
741    const uint64_t* p = api.getRawData();
742    uint64_t word = *p;
743    int shiftcount=60;
744    int width = api.getBitWidth();
745    for (int j=0; j<width; j+=4, shiftcount-=4) {
746      unsigned int nibble = (word>>shiftcount) & 15;
747      if (nibble < 10)
748        Out << (unsigned char)(nibble + '0');
749      else
750        Out << (unsigned char)(nibble - 10 + 'A');
751      if (shiftcount == 0 && j+4 < width) {
752        word = *(++p);
753        shiftcount = 64;
754        if (width-j-4 < 64)
755          shiftcount = width-j-4;
756      }
757    }
758    return;
759  }
760
761  if (isa<ConstantAggregateZero>(CV)) {
762    Out << "zeroinitializer";
763    return;
764  }
765
766  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
767    // As a special case, print the array as a string if it is an array of
768    // i8 with ConstantInt values.
769    //
770    const Type *ETy = CA->getType()->getElementType();
771    if (CA->isString()) {
772      Out << "c\"";
773      PrintEscapedString(CA->getAsString(), Out);
774      Out << '"';
775    } else {                // Cannot output in string format...
776      Out << '[';
777      if (CA->getNumOperands()) {
778        Out << ' ';
779        printTypeInt(Out, ETy, TypeTable);
780        Out << ' ';
781        WriteAsOperandInternal(Out, CA->getOperand(0),
782                               TypeTable, Machine);
783        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
784          Out << ", ";
785          printTypeInt(Out, ETy, TypeTable);
786          Out << ' ';
787          WriteAsOperandInternal(Out, CA->getOperand(i), TypeTable, Machine);
788        }
789        Out << ' ';
790      }
791      Out << ']';
792    }
793    return;
794  }
795
796  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
797    if (CS->getType()->isPacked())
798      Out << '<';
799    Out << '{';
800    unsigned N = CS->getNumOperands();
801    if (N) {
802      Out << ' ';
803      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
804      Out << ' ';
805
806      WriteAsOperandInternal(Out, CS->getOperand(0), TypeTable, Machine);
807
808      for (unsigned i = 1; i < N; i++) {
809        Out << ", ";
810        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
811        Out << ' ';
812
813        WriteAsOperandInternal(Out, CS->getOperand(i), TypeTable, Machine);
814      }
815      Out << ' ';
816    }
817
818    Out << '}';
819    if (CS->getType()->isPacked())
820      Out << '>';
821    return;
822  }
823
824  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
825    const Type *ETy = CP->getType()->getElementType();
826    assert(CP->getNumOperands() > 0 &&
827           "Number of operands for a PackedConst must be > 0");
828    Out << "< ";
829    printTypeInt(Out, ETy, TypeTable);
830    Out << ' ';
831    WriteAsOperandInternal(Out, CP->getOperand(0), TypeTable, Machine);
832    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
833      Out << ", ";
834      printTypeInt(Out, ETy, TypeTable);
835      Out << ' ';
836      WriteAsOperandInternal(Out, CP->getOperand(i), TypeTable, Machine);
837    }
838    Out << " >";
839    return;
840  }
841
842  if (isa<ConstantPointerNull>(CV)) {
843    Out << "null";
844    return;
845  }
846
847  if (isa<UndefValue>(CV)) {
848    Out << "undef";
849    return;
850  }
851
852  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
853    Out << CE->getOpcodeName();
854    if (CE->isCompare())
855      Out << ' ' << getPredicateText(CE->getPredicate());
856    Out << " (";
857
858    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
859      printTypeInt(Out, (*OI)->getType(), TypeTable);
860      Out << ' ';
861      WriteAsOperandInternal(Out, *OI, TypeTable, Machine);
862      if (OI+1 != CE->op_end())
863        Out << ", ";
864    }
865
866    if (CE->hasIndices()) {
867      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
868      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
869        Out << ", " << Indices[i];
870    }
871
872    if (CE->isCast()) {
873      Out << " to ";
874      printTypeInt(Out, CE->getType(), TypeTable);
875    }
876
877    Out << ')';
878    return;
879  }
880
881  Out << "<placeholder or erroneous Constant>";
882}
883
884
885/// WriteAsOperand - Write the name of the specified value out to the specified
886/// ostream.  This can be useful when you just want to print int %reg126, not
887/// the whole instruction that generated it.
888///
889static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
890                                  std::map<const Type*, std::string> &TypeTable,
891                                   SlotTracker *Machine) {
892  if (V->hasName()) {
893    PrintLLVMName(Out, V);
894    return;
895  }
896
897  const Constant *CV = dyn_cast<Constant>(V);
898  if (CV && !isa<GlobalValue>(CV)) {
899    WriteConstantInt(Out, CV, TypeTable, Machine);
900    return;
901  }
902
903  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
904    Out << "asm ";
905    if (IA->hasSideEffects())
906      Out << "sideeffect ";
907    Out << '"';
908    PrintEscapedString(IA->getAsmString(), Out);
909    Out << "\", \"";
910    PrintEscapedString(IA->getConstraintString(), Out);
911    Out << '"';
912    return;
913  }
914
915  char Prefix = '%';
916  int Slot;
917  if (Machine) {
918    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
919      Slot = Machine->getGlobalSlot(GV);
920      Prefix = '@';
921    } else {
922      Slot = Machine->getLocalSlot(V);
923    }
924  } else {
925    Machine = createSlotTracker(V);
926    if (Machine) {
927      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
928        Slot = Machine->getGlobalSlot(GV);
929        Prefix = '@';
930      } else {
931        Slot = Machine->getLocalSlot(V);
932      }
933    } else {
934      Slot = -1;
935    }
936    delete Machine;
937  }
938
939  if (Slot != -1)
940    Out << Prefix << Slot;
941  else
942    Out << "<badref>";
943}
944
945/// WriteAsOperand - Write the name of the specified value out to the specified
946/// ostream.  This can be useful when you just want to print int %reg126, not
947/// the whole instruction that generated it.
948///
949void llvm::WriteAsOperand(std::ostream &Out, const Value *V, bool PrintType,
950                          const Module *Context) {
951  raw_os_ostream OS(Out);
952  WriteAsOperand(OS, V, PrintType, Context);
953}
954
955void llvm::WriteAsOperand(raw_ostream &Out, const Value *V, bool PrintType,
956                          const Module *Context) {
957  std::map<const Type *, std::string> TypeNames;
958  if (Context == 0) Context = getModuleFromVal(V);
959
960  if (Context)
961    fillTypeNameTable(Context, TypeNames);
962
963  if (PrintType) {
964    printTypeInt(Out, V->getType(), TypeNames);
965    Out << ' ';
966  }
967
968  WriteAsOperandInternal(Out, V, TypeNames, 0);
969}
970
971
972namespace {
973
974class AssemblyWriter {
975  raw_ostream &Out;
976  SlotTracker &Machine;
977  const Module *TheModule;
978  std::map<const Type *, std::string> TypeNames;
979  AssemblyAnnotationWriter *AnnotationWriter;
980public:
981  inline AssemblyWriter(raw_ostream &o, SlotTracker &Mac, const Module *M,
982                        AssemblyAnnotationWriter *AAW)
983    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
984
985    // If the module has a symbol table, take all global types and stuff their
986    // names into the TypeNames map.
987    //
988    fillTypeNameTable(M, TypeNames);
989  }
990
991  void write(const Module *M) { printModule(M);       }
992
993  void write(const GlobalValue *G) {
994    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(G))
995      printGlobal(GV);
996    else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(G))
997      printAlias(GA);
998    else if (const Function *F = dyn_cast<Function>(G))
999      printFunction(F);
1000    else
1001      assert(0 && "Unknown global");
1002  }
1003
1004  void write(const BasicBlock *BB)    { printBasicBlock(BB);  }
1005  void write(const Instruction *I)    { printInstruction(*I); }
1006  void write(const Type *Ty)          { printType(Ty);        }
1007
1008  void writeOperand(const Value *Op, bool PrintType);
1009  void writeParamOperand(const Value *Operand, Attributes Attrs);
1010
1011  const Module* getModule() { return TheModule; }
1012
1013private:
1014  void printModule(const Module *M);
1015  void printTypeSymbolTable(const TypeSymbolTable &ST);
1016  void printGlobal(const GlobalVariable *GV);
1017  void printAlias(const GlobalAlias *GV);
1018  void printFunction(const Function *F);
1019  void printArgument(const Argument *FA, Attributes Attrs);
1020  void printBasicBlock(const BasicBlock *BB);
1021  void printInstruction(const Instruction &I);
1022
1023  // printType - Go to extreme measures to attempt to print out a short,
1024  // symbolic version of a type name.
1025  //
1026  void printType(const Type *Ty) {
1027    printTypeInt(Out, Ty, TypeNames);
1028  }
1029
1030  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
1031  // without considering any symbolic types that we may have equal to it.
1032  //
1033  void printTypeAtLeastOneLevel(const Type *Ty);
1034
1035  // printInfoComment - Print a little comment after the instruction indicating
1036  // which slot it occupies.
1037  void printInfoComment(const Value &V);
1038};
1039}  // end of llvm namespace
1040
1041/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
1042/// without considering any symbolic types that we may have equal to it.
1043///
1044void AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
1045  if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
1046    Out << "i" << utostr(ITy->getBitWidth());
1047    return;
1048  }
1049
1050  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
1051    printType(FTy->getReturnType());
1052    Out << " (";
1053    for (FunctionType::param_iterator I = FTy->param_begin(),
1054           E = FTy->param_end(); I != E; ++I) {
1055      if (I != FTy->param_begin())
1056        Out << ", ";
1057      printType(*I);
1058    }
1059    if (FTy->isVarArg()) {
1060      if (FTy->getNumParams()) Out << ", ";
1061      Out << "...";
1062    }
1063    Out << ')';
1064    return;
1065  }
1066
1067  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1068    if (STy->isPacked())
1069      Out << '<';
1070    Out << "{ ";
1071    for (StructType::element_iterator I = STy->element_begin(),
1072           E = STy->element_end(); I != E; ++I) {
1073      if (I != STy->element_begin())
1074        Out << ", ";
1075      printType(*I);
1076    }
1077    Out << " }";
1078    if (STy->isPacked())
1079      Out << '>';
1080    return;
1081  }
1082
1083  if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1084    printType(PTy->getElementType());
1085    if (unsigned AddressSpace = PTy->getAddressSpace())
1086      Out << " addrspace(" << AddressSpace << ")";
1087    Out << '*';
1088    return;
1089  }
1090
1091  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1092    Out << '[' << ATy->getNumElements() << " x ";
1093    printType(ATy->getElementType());
1094    Out << ']';
1095    return;
1096  }
1097
1098  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
1099    Out << '<' << PTy->getNumElements() << " x ";
1100    printType(PTy->getElementType());
1101    Out << '>';
1102    return;
1103  }
1104
1105  if (isa<OpaqueType>(Ty)) {
1106    Out << "opaque";
1107    return;
1108  }
1109
1110  if (!Ty->isPrimitiveType())
1111    Out << "<unknown derived type>";
1112  printType(Ty);
1113}
1114
1115
1116void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1117  if (Operand == 0) {
1118    Out << "<null operand!>";
1119  } else {
1120    if (PrintType) {
1121      printType(Operand->getType());
1122      Out << ' ';
1123    }
1124    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
1125  }
1126}
1127
1128void AssemblyWriter::writeParamOperand(const Value *Operand,
1129                                       Attributes Attrs) {
1130  if (Operand == 0) {
1131    Out << "<null operand!>";
1132  } else {
1133    // Print the type
1134    printType(Operand->getType());
1135    // Print parameter attributes list
1136    if (Attrs != ParamAttr::None)
1137      Out << ' ' << ParamAttr::getAsString(Attrs);
1138    Out << ' ';
1139    // Print the operand
1140    WriteAsOperandInternal(Out, Operand, TypeNames, &Machine);
1141  }
1142}
1143
1144void AssemblyWriter::printModule(const Module *M) {
1145  if (!M->getModuleIdentifier().empty() &&
1146      // Don't print the ID if it will start a new line (which would
1147      // require a comment char before it).
1148      M->getModuleIdentifier().find('\n') == std::string::npos)
1149    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1150
1151  if (!M->getDataLayout().empty())
1152    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1153  if (!M->getTargetTriple().empty())
1154    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1155
1156  if (!M->getModuleInlineAsm().empty()) {
1157    // Split the string into lines, to make it easier to read the .ll file.
1158    std::string Asm = M->getModuleInlineAsm();
1159    size_t CurPos = 0;
1160    size_t NewLine = Asm.find_first_of('\n', CurPos);
1161    while (NewLine != std::string::npos) {
1162      // We found a newline, print the portion of the asm string from the
1163      // last newline up to this newline.
1164      Out << "module asm \"";
1165      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1166                         Out);
1167      Out << "\"\n";
1168      CurPos = NewLine+1;
1169      NewLine = Asm.find_first_of('\n', CurPos);
1170    }
1171    Out << "module asm \"";
1172    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1173    Out << "\"\n";
1174  }
1175
1176  // Loop over the dependent libraries and emit them.
1177  Module::lib_iterator LI = M->lib_begin();
1178  Module::lib_iterator LE = M->lib_end();
1179  if (LI != LE) {
1180    Out << "deplibs = [ ";
1181    while (LI != LE) {
1182      Out << '"' << *LI << '"';
1183      ++LI;
1184      if (LI != LE)
1185        Out << ", ";
1186    }
1187    Out << " ]\n";
1188  }
1189
1190  // Loop over the symbol table, emitting all named constants.
1191  printTypeSymbolTable(M->getTypeSymbolTable());
1192
1193  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1194       I != E; ++I)
1195    printGlobal(I);
1196
1197  // Output all aliases.
1198  if (!M->alias_empty()) Out << "\n";
1199  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1200       I != E; ++I)
1201    printAlias(I);
1202
1203  // Output all of the functions.
1204  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1205    printFunction(I);
1206}
1207
1208static void PrintLinkage(GlobalValue::LinkageTypes LT, raw_ostream &Out) {
1209  switch (LT) {
1210  case GlobalValue::InternalLinkage:     Out << "internal "; break;
1211  case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
1212  case GlobalValue::WeakLinkage:         Out << "weak "; break;
1213  case GlobalValue::CommonLinkage:       Out << "common "; break;
1214  case GlobalValue::AppendingLinkage:    Out << "appending "; break;
1215  case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
1216  case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
1217  case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
1218  case GlobalValue::ExternalLinkage: break;
1219  case GlobalValue::GhostLinkage:
1220    Out << "GhostLinkage not allowed in AsmWriter!\n";
1221    abort();
1222  }
1223}
1224
1225
1226static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1227                            raw_ostream &Out) {
1228  switch (Vis) {
1229  default: assert(0 && "Invalid visibility style!");
1230  case GlobalValue::DefaultVisibility: break;
1231  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1232  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1233  }
1234}
1235
1236void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1237  if (GV->hasName()) {
1238    PrintLLVMName(Out, GV);
1239    Out << " = ";
1240  }
1241
1242  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1243    Out << "external ";
1244
1245  PrintLinkage(GV->getLinkage(), Out);
1246  PrintVisibility(GV->getVisibility(), Out);
1247
1248  if (GV->isThreadLocal()) Out << "thread_local ";
1249  Out << (GV->isConstant() ? "constant " : "global ");
1250  printType(GV->getType()->getElementType());
1251
1252  if (GV->hasInitializer()) {
1253    Out << ' ';
1254    writeOperand(GV->getInitializer(), false);
1255  }
1256
1257  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1258    Out << " addrspace(" << AddressSpace << ") ";
1259
1260  if (GV->hasSection())
1261    Out << ", section \"" << GV->getSection() << '"';
1262  if (GV->getAlignment())
1263    Out << ", align " << GV->getAlignment();
1264
1265  printInfoComment(*GV);
1266  Out << '\n';
1267}
1268
1269void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1270  // Don't crash when dumping partially built GA
1271  if (!GA->hasName())
1272    Out << "<<nameless>> = ";
1273  else {
1274    PrintLLVMName(Out, GA);
1275    Out << " = ";
1276  }
1277  PrintVisibility(GA->getVisibility(), Out);
1278
1279  Out << "alias ";
1280
1281  PrintLinkage(GA->getLinkage(), Out);
1282
1283  const Constant *Aliasee = GA->getAliasee();
1284
1285  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1286    printType(GV->getType());
1287    Out << ' ';
1288    PrintLLVMName(Out, GV);
1289  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1290    printType(F->getFunctionType());
1291    Out << "* ";
1292
1293    if (F->hasName())
1294      PrintLLVMName(Out, F);
1295    else
1296      Out << "@\"\"";
1297  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1298    printType(GA->getType());
1299    Out << " ";
1300    PrintLLVMName(Out, GA);
1301  } else {
1302    const ConstantExpr *CE = 0;
1303    if ((CE = dyn_cast<ConstantExpr>(Aliasee)) &&
1304        (CE->getOpcode() == Instruction::BitCast)) {
1305      writeOperand(CE, false);
1306    } else
1307      assert(0 && "Unsupported aliasee");
1308  }
1309
1310  printInfoComment(*GA);
1311  Out << '\n';
1312}
1313
1314void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1315  // Print the types.
1316  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1317       TI != TE; ++TI) {
1318    Out << '\t';
1319    PrintLLVMName(Out, &TI->first[0], TI->first.size(), LocalPrefix);
1320    Out << " = type ";
1321
1322    // Make sure we print out at least one level of the type structure, so
1323    // that we do not get %FILE = type %FILE
1324    //
1325    printTypeAtLeastOneLevel(TI->second);
1326    Out << '\n';
1327  }
1328}
1329
1330/// printFunction - Print all aspects of a function.
1331///
1332void AssemblyWriter::printFunction(const Function *F) {
1333  // Print out the return type and name.
1334  Out << '\n';
1335
1336  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1337
1338  if (F->isDeclaration())
1339    Out << "declare ";
1340  else
1341    Out << "define ";
1342
1343  PrintLinkage(F->getLinkage(), Out);
1344  PrintVisibility(F->getVisibility(), Out);
1345
1346  // Print the calling convention.
1347  switch (F->getCallingConv()) {
1348  case CallingConv::C: break;   // default
1349  case CallingConv::Fast:         Out << "fastcc "; break;
1350  case CallingConv::Cold:         Out << "coldcc "; break;
1351  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1352  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1353  case CallingConv::X86_SSECall:  Out << "x86_ssecallcc "; break;
1354  default: Out << "cc" << F->getCallingConv() << " "; break;
1355  }
1356
1357  const FunctionType *FT = F->getFunctionType();
1358  const PAListPtr &Attrs = F->getParamAttrs();
1359  printType(F->getReturnType());
1360  Out << ' ';
1361  if (F->hasName())
1362    PrintLLVMName(Out, F);
1363  else
1364    Out << "@\"\"";
1365  Out << '(';
1366  Machine.incorporateFunction(F);
1367
1368  // Loop over the arguments, printing them...
1369
1370  unsigned Idx = 1;
1371  if (!F->isDeclaration()) {
1372    // If this isn't a declaration, print the argument names as well.
1373    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1374         I != E; ++I) {
1375      // Insert commas as we go... the first arg doesn't get a comma
1376      if (I != F->arg_begin()) Out << ", ";
1377      printArgument(I, Attrs.getParamAttrs(Idx));
1378      Idx++;
1379    }
1380  } else {
1381    // Otherwise, print the types from the function type.
1382    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1383      // Insert commas as we go... the first arg doesn't get a comma
1384      if (i) Out << ", ";
1385
1386      // Output type...
1387      printType(FT->getParamType(i));
1388
1389      Attributes ArgAttrs = Attrs.getParamAttrs(i+1);
1390      if (ArgAttrs != ParamAttr::None)
1391        Out << ' ' << ParamAttr::getAsString(ArgAttrs);
1392    }
1393  }
1394
1395  // Finish printing arguments...
1396  if (FT->isVarArg()) {
1397    if (FT->getNumParams()) Out << ", ";
1398    Out << "...";  // Output varargs portion of signature!
1399  }
1400  Out << ')';
1401  Attributes RetAttrs = Attrs.getParamAttrs(0);
1402  if (RetAttrs != ParamAttr::None)
1403    Out << ' ' << ParamAttr::getAsString(Attrs.getParamAttrs(0));
1404  if (F->hasSection())
1405    Out << " section \"" << F->getSection() << '"';
1406  if (F->getAlignment())
1407    Out << " align " << F->getAlignment();
1408  if (F->hasGC())
1409    Out << " gc \"" << F->getGC() << '"';
1410  if (F->isDeclaration()) {
1411    Out << "\n";
1412  } else {
1413
1414    bool insideNotes = false;
1415    if (F->hasNote(ParamAttr::FN_NOTE_AlwaysInline)) {
1416      Out << "notes(";
1417      insideNotes = true;
1418      Out << "inline=always";
1419    }
1420    if (F->hasNote(ParamAttr::FN_NOTE_NoInline)) {
1421      if (insideNotes)
1422        Out << ",";
1423      else {
1424        Out << "notes(";
1425        insideNotes = true;
1426      }
1427      Out << "inline=never";
1428    }
1429    if (F->hasNote(ParamAttr::FN_NOTE_OptimizeForSize)) {
1430      if (insideNotes)
1431        Out << ",";
1432      else {
1433        Out << "notes(";
1434        insideNotes = true;
1435      }
1436      Out << "opt_size";
1437    }
1438    if (insideNotes)
1439      Out << ")";
1440
1441    Out << " {";
1442
1443    // Output all of its basic blocks... for the function
1444    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1445      printBasicBlock(I);
1446
1447    Out << "}\n";
1448  }
1449
1450  Machine.purgeFunction();
1451}
1452
1453/// printArgument - This member is called for every argument that is passed into
1454/// the function.  Simply print it out
1455///
1456void AssemblyWriter::printArgument(const Argument *Arg,
1457                                   Attributes Attrs) {
1458  // Output type...
1459  printType(Arg->getType());
1460
1461  // Output parameter attributes list
1462  if (Attrs != ParamAttr::None)
1463    Out << ' ' << ParamAttr::getAsString(Attrs);
1464
1465  // Output name, if available...
1466  if (Arg->hasName()) {
1467    Out << ' ';
1468    PrintLLVMName(Out, Arg);
1469  }
1470}
1471
1472/// printBasicBlock - This member is called for each basic block in a method.
1473///
1474void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1475  if (BB->hasName()) {              // Print out the label if it exists...
1476    Out << "\n";
1477    PrintLLVMName(Out, BB->getNameStart(), BB->getNameLen(), LabelPrefix);
1478    Out << ':';
1479  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1480    Out << "\n; <label>:";
1481    int Slot = Machine.getLocalSlot(BB);
1482    if (Slot != -1)
1483      Out << Slot;
1484    else
1485      Out << "<badref>";
1486  }
1487
1488  if (BB->getParent() == 0)
1489    Out << "\t\t; Error: Block without parent!";
1490  else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1491    // Output predecessors for the block...
1492    Out << "\t\t;";
1493    pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1494
1495    if (PI == PE) {
1496      Out << " No predecessors!";
1497    } else {
1498      Out << " preds = ";
1499      writeOperand(*PI, false);
1500      for (++PI; PI != PE; ++PI) {
1501        Out << ", ";
1502        writeOperand(*PI, false);
1503      }
1504    }
1505  }
1506
1507  Out << "\n";
1508
1509  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1510
1511  // Output all of the instructions in the basic block...
1512  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1513    printInstruction(*I);
1514
1515  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1516}
1517
1518
1519/// printInfoComment - Print a little comment after the instruction indicating
1520/// which slot it occupies.
1521///
1522void AssemblyWriter::printInfoComment(const Value &V) {
1523  if (V.getType() != Type::VoidTy) {
1524    Out << "\t\t; <";
1525    printType(V.getType());
1526    Out << '>';
1527
1528    if (!V.hasName() && !isa<Instruction>(V)) {
1529      int SlotNum;
1530      if (const GlobalValue *GV = dyn_cast<GlobalValue>(&V))
1531        SlotNum = Machine.getGlobalSlot(GV);
1532      else
1533        SlotNum = Machine.getLocalSlot(&V);
1534      if (SlotNum == -1)
1535        Out << ":<badref>";
1536      else
1537        Out << ':' << SlotNum; // Print out the def slot taken.
1538    }
1539    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1540  }
1541}
1542
1543// This member is called for each Instruction in a function..
1544void AssemblyWriter::printInstruction(const Instruction &I) {
1545  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1546
1547  Out << '\t';
1548
1549  // Print out name if it exists...
1550  if (I.hasName()) {
1551    PrintLLVMName(Out, &I);
1552    Out << " = ";
1553  } else if (I.getType() != Type::VoidTy) {
1554    // Print out the def slot taken.
1555    int SlotNum = Machine.getLocalSlot(&I);
1556    if (SlotNum == -1)
1557      Out << "<badref> = ";
1558    else
1559      Out << '%' << SlotNum << " = ";
1560  }
1561
1562  // If this is a volatile load or store, print out the volatile marker.
1563  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1564      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1565      Out << "volatile ";
1566  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1567    // If this is a call, check if it's a tail call.
1568    Out << "tail ";
1569  }
1570
1571  // Print out the opcode...
1572  Out << I.getOpcodeName();
1573
1574  // Print out the compare instruction predicates
1575  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1576    Out << ' ' << getPredicateText(CI->getPredicate());
1577
1578  // Print out the type of the operands...
1579  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1580
1581  // Special case conditional branches to swizzle the condition out to the front
1582  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1583    Out << ' ';
1584    writeOperand(I.getOperand(2), true);
1585    Out << ", ";
1586    writeOperand(Operand, true);
1587    Out << ", ";
1588    writeOperand(I.getOperand(1), true);
1589
1590  } else if (isa<SwitchInst>(I)) {
1591    // Special case switch statement to get formatting nice and correct...
1592    Out << ' ';
1593    writeOperand(Operand        , true);
1594    Out << ", ";
1595    writeOperand(I.getOperand(1), true);
1596    Out << " [";
1597
1598    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1599      Out << "\n\t\t";
1600      writeOperand(I.getOperand(op  ), true);
1601      Out << ", ";
1602      writeOperand(I.getOperand(op+1), true);
1603    }
1604    Out << "\n\t]";
1605  } else if (isa<PHINode>(I)) {
1606    Out << ' ';
1607    printType(I.getType());
1608    Out << ' ';
1609
1610    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1611      if (op) Out << ", ";
1612      Out << "[ ";
1613      writeOperand(I.getOperand(op  ), false); Out << ", ";
1614      writeOperand(I.getOperand(op+1), false); Out << " ]";
1615    }
1616  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1617    Out << ' ';
1618    writeOperand(I.getOperand(0), true);
1619    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1620      Out << ", " << *i;
1621  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1622    Out << ' ';
1623    writeOperand(I.getOperand(0), true); Out << ", ";
1624    writeOperand(I.getOperand(1), true);
1625    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1626      Out << ", " << *i;
1627  } else if (isa<ReturnInst>(I) && !Operand) {
1628    Out << " void";
1629  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1630    // Print the calling convention being used.
1631    switch (CI->getCallingConv()) {
1632    case CallingConv::C: break;   // default
1633    case CallingConv::Fast:  Out << " fastcc"; break;
1634    case CallingConv::Cold:  Out << " coldcc"; break;
1635    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1636    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1637    case CallingConv::X86_SSECall: Out << " x86_ssecallcc"; break;
1638    default: Out << " cc" << CI->getCallingConv(); break;
1639    }
1640
1641    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1642    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1643    const Type         *RetTy = FTy->getReturnType();
1644    const PAListPtr &PAL = CI->getParamAttrs();
1645
1646    // If possible, print out the short form of the call instruction.  We can
1647    // only do this if the first argument is a pointer to a nonvararg function,
1648    // and if the return type is not a pointer to a function.
1649    //
1650    Out << ' ';
1651    if (!FTy->isVarArg() &&
1652        (!isa<PointerType>(RetTy) ||
1653         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1654      printType(RetTy);
1655      Out << ' ';
1656      writeOperand(Operand, false);
1657    } else {
1658      writeOperand(Operand, true);
1659    }
1660    Out << '(';
1661    for (unsigned op = 1, Eop = I.getNumOperands(); op < Eop; ++op) {
1662      if (op > 1)
1663        Out << ", ";
1664      writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op));
1665    }
1666    Out << ')';
1667    if (PAL.getParamAttrs(0) != ParamAttr::None)
1668      Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1669  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1670    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1671    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1672    const Type         *RetTy = FTy->getReturnType();
1673    const PAListPtr &PAL = II->getParamAttrs();
1674
1675    // Print the calling convention being used.
1676    switch (II->getCallingConv()) {
1677    case CallingConv::C: break;   // default
1678    case CallingConv::Fast:  Out << " fastcc"; break;
1679    case CallingConv::Cold:  Out << " coldcc"; break;
1680    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1681    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1682    case CallingConv::X86_SSECall: Out << " x86_ssecallcc"; break;
1683    default: Out << " cc" << II->getCallingConv(); break;
1684    }
1685
1686    // If possible, print out the short form of the invoke instruction. We can
1687    // only do this if the first argument is a pointer to a nonvararg function,
1688    // and if the return type is not a pointer to a function.
1689    //
1690    if (!FTy->isVarArg() &&
1691        (!isa<PointerType>(RetTy) ||
1692         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1693      Out << ' '; printType(RetTy);
1694      writeOperand(Operand, false);
1695    } else {
1696      Out << ' ';
1697      writeOperand(Operand, true);
1698    }
1699
1700    Out << '(';
1701    for (unsigned op = 3, Eop = I.getNumOperands(); op < Eop; ++op) {
1702      if (op > 3)
1703        Out << ", ";
1704      writeParamOperand(I.getOperand(op), PAL.getParamAttrs(op-2));
1705    }
1706
1707    Out << ')';
1708    if (PAL.getParamAttrs(0) != ParamAttr::None)
1709      Out << ' ' << ParamAttr::getAsString(PAL.getParamAttrs(0));
1710    Out << "\n\t\t\tto ";
1711    writeOperand(II->getNormalDest(), true);
1712    Out << " unwind ";
1713    writeOperand(II->getUnwindDest(), true);
1714
1715  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1716    Out << ' ';
1717    printType(AI->getType()->getElementType());
1718    if (AI->isArrayAllocation()) {
1719      Out << ", ";
1720      writeOperand(AI->getArraySize(), true);
1721    }
1722    if (AI->getAlignment()) {
1723      Out << ", align " << AI->getAlignment();
1724    }
1725  } else if (isa<CastInst>(I)) {
1726    if (Operand) {
1727      Out << ' ';
1728      writeOperand(Operand, true);   // Work with broken code
1729    }
1730    Out << " to ";
1731    printType(I.getType());
1732  } else if (isa<VAArgInst>(I)) {
1733    if (Operand) {
1734      Out << ' ';
1735      writeOperand(Operand, true);   // Work with broken code
1736    }
1737    Out << ", ";
1738    printType(I.getType());
1739  } else if (Operand) {   // Print the normal way...
1740
1741    // PrintAllTypes - Instructions who have operands of all the same type
1742    // omit the type from all but the first operand.  If the instruction has
1743    // different type operands (for example br), then they are all printed.
1744    bool PrintAllTypes = false;
1745    const Type *TheType = Operand->getType();
1746
1747    // Select, Store and ShuffleVector always print all types.
1748    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1749        || isa<ReturnInst>(I)) {
1750      PrintAllTypes = true;
1751    } else {
1752      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1753        Operand = I.getOperand(i);
1754        if (Operand->getType() != TheType) {
1755          PrintAllTypes = true;    // We have differing types!  Print them all!
1756          break;
1757        }
1758      }
1759    }
1760
1761    if (!PrintAllTypes) {
1762      Out << ' ';
1763      printType(TheType);
1764    }
1765
1766    Out << ' ';
1767    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1768      if (i) Out << ", ";
1769      writeOperand(I.getOperand(i), PrintAllTypes);
1770    }
1771  }
1772
1773  // Print post operand alignment for load/store
1774  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
1775    Out << ", align " << cast<LoadInst>(I).getAlignment();
1776  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
1777    Out << ", align " << cast<StoreInst>(I).getAlignment();
1778  }
1779
1780  printInfoComment(I);
1781  Out << '\n';
1782}
1783
1784
1785//===----------------------------------------------------------------------===//
1786//                       External Interface declarations
1787//===----------------------------------------------------------------------===//
1788
1789void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1790  raw_os_ostream OS(o);
1791  print(OS, AAW);
1792}
1793void Module::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1794  SlotTracker SlotTable(this);
1795  AssemblyWriter W(OS, SlotTable, this, AAW);
1796  W.write(this);
1797}
1798
1799void Type::print(std::ostream &o) const {
1800  raw_os_ostream OS(o);
1801  print(OS);
1802}
1803
1804void Type::print(raw_ostream &o) const {
1805  if (this == 0)
1806    o << "<null Type>";
1807  else
1808    o << getDescription();
1809}
1810
1811void Value::print(raw_ostream &OS, AssemblyAnnotationWriter *AAW) const {
1812  if (this == 0) {
1813    OS << "printing a <null> value\n";
1814    return;
1815  }
1816
1817  if (const Instruction *I = dyn_cast<Instruction>(this)) {
1818    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
1819    SlotTracker SlotTable(F);
1820    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
1821    W.write(I);
1822  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
1823    SlotTracker SlotTable(BB->getParent());
1824    AssemblyWriter W(OS, SlotTable,
1825                     BB->getParent() ? BB->getParent()->getParent() : 0, AAW);
1826    W.write(BB);
1827  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
1828    SlotTracker SlotTable(GV->getParent());
1829    AssemblyWriter W(OS, SlotTable, GV->getParent(), 0);
1830    W.write(GV);
1831  } else if (const Constant *C = dyn_cast<Constant>(this)) {
1832    OS << ' ' << C->getType()->getDescription() << ' ';
1833    std::map<const Type *, std::string> TypeTable;
1834    WriteConstantInt(OS, C, TypeTable, 0);
1835  } else if (const Argument *A = dyn_cast<Argument>(this)) {
1836    WriteAsOperand(OS, this, true,
1837                   A->getParent() ? A->getParent()->getParent() : 0);
1838  } else if (isa<InlineAsm>(this)) {
1839    WriteAsOperand(OS, this, true, 0);
1840  } else {
1841    // FIXME: PseudoSourceValue breaks this!
1842    //assert(0 && "Unknown value to print out!");
1843  }
1844}
1845
1846void Value::print(std::ostream &O, AssemblyAnnotationWriter *AAW) const {
1847  raw_os_ostream OS(O);
1848  print(OS, AAW);
1849}
1850
1851// Value::dump - allow easy printing of Values from the debugger.
1852void Value::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
1853
1854// Type::dump - allow easy printing of Types from the debugger.
1855void Type::dump() const { print(errs()); errs() << '\n'; errs().flush(); }
1856
1857// Module::dump() - Allow printing of Modules from the debugger.
1858void Module::dump() const { print(errs(), 0); errs().flush(); }
1859
1860
1861