AsmWriter.cpp revision fe0343a1cdb6f77efa5df24b22626b92d3871d39
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/CachedWriter.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/Assembly/PrintModulePass.h"
20#include "llvm/Assembly/AsmAnnotationWriter.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Instruction.h"
24#include "llvm/Instructions.h"
25#include "llvm/Module.h"
26#include "llvm/SymbolTable.h"
27#include "llvm/Assembly/Writer.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32using namespace llvm;
33
34namespace llvm {
35
36/// This class provides computation of slot numbers for LLVM Assembly writing.
37/// @brief LLVM Assembly Writing Slot Computation.
38class SlotMachine {
39
40/// @name Types
41/// @{
42public:
43
44  /// @brief A mapping of Values to slot numbers
45  typedef std::map<const Value*, unsigned> ValueMap;
46  typedef std::map<const Type*, unsigned> TypeMap;
47
48  /// @brief A plane with next slot number and ValueMap
49  struct ValuePlane {
50    unsigned next_slot;        ///< The next slot number to use
51    ValueMap map;              ///< The map of Value* -> unsigned
52    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
53  };
54
55  struct TypePlane {
56    unsigned next_slot;
57    TypeMap map;
58    TypePlane() { next_slot = 0; }
59    void clear() { map.clear(); next_slot = 0; }
60  };
61
62  /// @brief The map of planes by Type
63  typedef std::map<const Type*, ValuePlane> TypedPlanes;
64
65/// @}
66/// @name Constructors
67/// @{
68public:
69  /// @brief Construct from a module
70  SlotMachine(const Module *M );
71
72  /// @brief Construct from a function, starting out in incorp state.
73  SlotMachine(const Function *F );
74
75/// @}
76/// @name Accessors
77/// @{
78public:
79  /// Return the slot number of the specified value in it's type
80  /// plane.  Its an error to ask for something not in the SlotMachine.
81  /// Its an error to ask for a Type*
82  int getSlot(const Value *V);
83  int getSlot(const Type*Ty);
84
85  /// Determine if a Value has a slot or not
86  bool hasSlot(const Value* V);
87  bool hasSlot(const Type* Ty);
88
89/// @}
90/// @name Mutators
91/// @{
92public:
93  /// If you'd like to deal with a function instead of just a module, use
94  /// this method to get its data into the SlotMachine.
95  void incorporateFunction(const Function *F) {
96    TheFunction = F;
97    FunctionProcessed = false;
98  }
99
100  /// After calling incorporateFunction, use this method to remove the
101  /// most recently incorporated function from the SlotMachine. This
102  /// will reset the state of the machine back to just the module contents.
103  void purgeFunction();
104
105/// @}
106/// @name Implementation Details
107/// @{
108private:
109  /// This function does the actual initialization.
110  inline void initialize();
111
112  /// Values can be crammed into here at will. If they haven't
113  /// been inserted already, they get inserted, otherwise they are ignored.
114  /// Either way, the slot number for the Value* is returned.
115  unsigned createSlot(const Value *V);
116  unsigned createSlot(const Type* Ty);
117
118  /// Insert a value into the value table. Return the slot number
119  /// that it now occupies.  BadThings(TM) will happen if you insert a
120  /// Value that's already been inserted.
121  unsigned insertValue( const Value *V );
122  unsigned insertValue( const Type* Ty);
123
124  /// Add all of the module level global variables (and their initializers)
125  /// and function declarations, but not the contents of those functions.
126  void processModule();
127
128  /// Add all of the functions arguments, basic blocks, and instructions
129  void processFunction();
130
131  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
132  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
133
134/// @}
135/// @name Data
136/// @{
137public:
138
139  /// @brief The module for which we are holding slot numbers
140  const Module* TheModule;
141
142  /// @brief The function for which we are holding slot numbers
143  const Function* TheFunction;
144  bool FunctionProcessed;
145
146  /// @brief The TypePlanes map for the module level data
147  TypedPlanes mMap;
148  TypePlane mTypes;
149
150  /// @brief The TypePlanes map for the function level data
151  TypedPlanes fMap;
152  TypePlane fTypes;
153
154/// @}
155
156};
157
158}  // end namespace llvm
159
160static RegisterPass<PrintModulePass>
161X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
162static RegisterPass<PrintFunctionPass>
163Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
164
165static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
166                                   bool PrintName,
167                                 std::map<const Type *, std::string> &TypeTable,
168                                   SlotMachine *Machine);
169
170static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
171                                   bool PrintName,
172                                 std::map<const Type *, std::string> &TypeTable,
173                                   SlotMachine *Machine);
174
175static const Module *getModuleFromVal(const Value *V) {
176  if (const Argument *MA = dyn_cast<Argument>(V))
177    return MA->getParent() ? MA->getParent()->getParent() : 0;
178  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
179    return BB->getParent() ? BB->getParent()->getParent() : 0;
180  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
181    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
182    return M ? M->getParent() : 0;
183  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
184    return GV->getParent();
185  return 0;
186}
187
188static SlotMachine *createSlotMachine(const Value *V) {
189  if (const Argument *FA = dyn_cast<Argument>(V)) {
190    return new SlotMachine(FA->getParent());
191  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
192    return new SlotMachine(I->getParent()->getParent());
193  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
194    return new SlotMachine(BB->getParent());
195  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
196    return new SlotMachine(GV->getParent());
197  } else if (const Function *Func = dyn_cast<Function>(V)) {
198    return new SlotMachine(Func);
199  }
200  return 0;
201}
202
203// getLLVMName - Turn the specified string into an 'LLVM name', which is either
204// prefixed with % (if the string only contains simple characters) or is
205// surrounded with ""'s (if it has special chars in it).
206static std::string getLLVMName(const std::string &Name,
207                               bool prefixName = true) {
208  assert(!Name.empty() && "Cannot get empty name!");
209
210  // First character cannot start with a number...
211  if (Name[0] >= '0' && Name[0] <= '9')
212    return "\"" + Name + "\"";
213
214  // Scan to see if we have any characters that are not on the "white list"
215  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
216    char C = Name[i];
217    assert(C != '"' && "Illegal character in LLVM value name!");
218    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
219        C != '-' && C != '.' && C != '_')
220      return "\"" + Name + "\"";
221  }
222
223  // If we get here, then the identifier is legal to use as a "VarID".
224  if (prefixName)
225    return "%"+Name;
226  else
227    return Name;
228}
229
230
231/// fillTypeNameTable - If the module has a symbol table, take all global types
232/// and stuff their names into the TypeNames map.
233///
234static void fillTypeNameTable(const Module *M,
235                              std::map<const Type *, std::string> &TypeNames) {
236  if (!M) return;
237  const SymbolTable &ST = M->getSymbolTable();
238  SymbolTable::type_const_iterator TI = ST.type_begin();
239  for (; TI != ST.type_end(); ++TI ) {
240    // As a heuristic, don't insert pointer to primitive types, because
241    // they are used too often to have a single useful name.
242    //
243    const Type *Ty = cast<Type>(TI->second);
244    if (!isa<PointerType>(Ty) ||
245        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
246        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
247      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
248  }
249}
250
251
252
253static void calcTypeName(const Type *Ty,
254                         std::vector<const Type *> &TypeStack,
255                         std::map<const Type *, std::string> &TypeNames,
256                         std::string & Result){
257  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
258    Result += Ty->getDescription();  // Base case
259    return;
260  }
261
262  // Check to see if the type is named.
263  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
264  if (I != TypeNames.end()) {
265    Result += I->second;
266    return;
267  }
268
269  if (isa<OpaqueType>(Ty)) {
270    Result += "opaque";
271    return;
272  }
273
274  // Check to see if the Type is already on the stack...
275  unsigned Slot = 0, CurSize = TypeStack.size();
276  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
277
278  // This is another base case for the recursion.  In this case, we know
279  // that we have looped back to a type that we have previously visited.
280  // Generate the appropriate upreference to handle this.
281  if (Slot < CurSize) {
282    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
283    return;
284  }
285
286  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
287
288  switch (Ty->getTypeID()) {
289  case Type::FunctionTyID: {
290    const FunctionType *FTy = cast<FunctionType>(Ty);
291    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
292    Result += " (";
293    for (FunctionType::param_iterator I = FTy->param_begin(),
294           E = FTy->param_end(); I != E; ++I) {
295      if (I != FTy->param_begin())
296        Result += ", ";
297      calcTypeName(*I, TypeStack, TypeNames, Result);
298    }
299    if (FTy->isVarArg()) {
300      if (FTy->getNumParams()) Result += ", ";
301      Result += "...";
302    }
303    Result += ")";
304    break;
305  }
306  case Type::StructTyID: {
307    const StructType *STy = cast<StructType>(Ty);
308    Result += "{ ";
309    for (StructType::element_iterator I = STy->element_begin(),
310           E = STy->element_end(); I != E; ++I) {
311      if (I != STy->element_begin())
312        Result += ", ";
313      calcTypeName(*I, TypeStack, TypeNames, Result);
314    }
315    Result += " }";
316    break;
317  }
318  case Type::PointerTyID:
319    calcTypeName(cast<PointerType>(Ty)->getElementType(),
320                          TypeStack, TypeNames, Result);
321    Result += "*";
322    break;
323  case Type::ArrayTyID: {
324    const ArrayType *ATy = cast<ArrayType>(Ty);
325    Result += "[" + utostr(ATy->getNumElements()) + " x ";
326    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
327    Result += "]";
328    break;
329  }
330  case Type::PackedTyID: {
331    const PackedType *PTy = cast<PackedType>(Ty);
332    Result += "<" + utostr(PTy->getNumElements()) + " x ";
333    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
334    Result += ">";
335    break;
336  }
337  case Type::OpaqueTyID:
338    Result += "opaque";
339    break;
340  default:
341    Result += "<unrecognized-type>";
342  }
343
344  TypeStack.pop_back();       // Remove self from stack...
345  return;
346}
347
348
349/// printTypeInt - The internal guts of printing out a type that has a
350/// potentially named portion.
351///
352static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
353                              std::map<const Type *, std::string> &TypeNames) {
354  // Primitive types always print out their description, regardless of whether
355  // they have been named or not.
356  //
357  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
358    return Out << Ty->getDescription();
359
360  // Check to see if the type is named.
361  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
362  if (I != TypeNames.end()) return Out << I->second;
363
364  // Otherwise we have a type that has not been named but is a derived type.
365  // Carefully recurse the type hierarchy to print out any contained symbolic
366  // names.
367  //
368  std::vector<const Type *> TypeStack;
369  std::string TypeName;
370  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
371  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
372  return (Out << TypeName);
373}
374
375
376/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
377/// type, iff there is an entry in the modules symbol table for the specified
378/// type or one of it's component types. This is slower than a simple x << Type
379///
380std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
381                                      const Module *M) {
382  Out << ' ';
383
384  // If they want us to print out a type, attempt to make it symbolic if there
385  // is a symbol table in the module...
386  if (M) {
387    std::map<const Type *, std::string> TypeNames;
388    fillTypeNameTable(M, TypeNames);
389
390    return printTypeInt(Out, Ty, TypeNames);
391  } else {
392    return Out << Ty->getDescription();
393  }
394}
395
396/// @brief Internal constant writer.
397static void WriteConstantInt(std::ostream &Out, const Constant *CV,
398                             bool PrintName,
399                             std::map<const Type *, std::string> &TypeTable,
400                             SlotMachine *Machine) {
401  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
402    Out << (CB == ConstantBool::True ? "true" : "false");
403  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
404    Out << CI->getValue();
405  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
406    Out << CI->getValue();
407  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
408    // We would like to output the FP constant value in exponential notation,
409    // but we cannot do this if doing so will lose precision.  Check here to
410    // make sure that we only output it in exponential format if we can parse
411    // the value back and get the same value.
412    //
413    std::string StrVal = ftostr(CFP->getValue());
414
415    // Check to make sure that the stringized number is not some string like
416    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
417    // the string matches the "[-+]?[0-9]" regex.
418    //
419    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
420        ((StrVal[0] == '-' || StrVal[0] == '+') &&
421         (StrVal[1] >= '0' && StrVal[1] <= '9')))
422      // Reparse stringized version!
423      if (atof(StrVal.c_str()) == CFP->getValue()) {
424        Out << StrVal;
425        return;
426      }
427
428    // Otherwise we could not reparse it to exactly the same value, so we must
429    // output the string in hexadecimal format!
430    //
431    // Behave nicely in the face of C TBAA rules... see:
432    // http://www.nullstone.com/htmls/category/aliastyp.htm
433    //
434    union {
435      double D;
436      uint64_t U;
437    } V;
438    V.D = CFP->getValue();
439    assert(sizeof(double) == sizeof(uint64_t) &&
440           "assuming that double is 64 bits!");
441    Out << "0x" << utohexstr(V.U);
442
443  } else if (isa<ConstantAggregateZero>(CV)) {
444    Out << "zeroinitializer";
445  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
446    // As a special case, print the array as a string if it is an array of
447    // ubytes or an array of sbytes with positive values.
448    //
449    const Type *ETy = CA->getType()->getElementType();
450    bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
451
452    if (ETy == Type::SByteTy)
453      for (unsigned i = 0; i < CA->getNumOperands(); ++i)
454        if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
455          isString = false;
456          break;
457        }
458
459    if (isString) {
460      Out << "c\"";
461      for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
462        unsigned char C =
463          (unsigned char)cast<ConstantInt>(CA->getOperand(i))->getRawValue();
464
465        if (isprint(C) && C != '"' && C != '\\') {
466          Out << C;
467        } else {
468          Out << '\\'
469              << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
470              << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
471        }
472      }
473      Out << "\"";
474
475    } else {                // Cannot output in string format...
476      Out << '[';
477      if (CA->getNumOperands()) {
478        Out << ' ';
479        printTypeInt(Out, ETy, TypeTable);
480        WriteAsOperandInternal(Out, CA->getOperand(0),
481                               PrintName, TypeTable, Machine);
482        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
483          Out << ", ";
484          printTypeInt(Out, ETy, TypeTable);
485          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
486                                 TypeTable, Machine);
487        }
488      }
489      Out << " ]";
490    }
491  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
492    Out << '{';
493    if (CS->getNumOperands()) {
494      Out << ' ';
495      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
496
497      WriteAsOperandInternal(Out, CS->getOperand(0),
498                             PrintName, TypeTable, Machine);
499
500      for (unsigned i = 1; i < CS->getNumOperands(); i++) {
501        Out << ", ";
502        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
503
504        WriteAsOperandInternal(Out, CS->getOperand(i),
505                               PrintName, TypeTable, Machine);
506      }
507    }
508
509    Out << " }";
510  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
511      const Type *ETy = CP->getType()->getElementType();
512      assert(CP->getNumOperands() > 0 &&
513             "Number of operands for a PackedConst must be > 0");
514      Out << '<';
515      Out << ' ';
516      printTypeInt(Out, ETy, TypeTable);
517      WriteAsOperandInternal(Out, CP->getOperand(0),
518                             PrintName, TypeTable, Machine);
519      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
520          Out << ", ";
521          printTypeInt(Out, ETy, TypeTable);
522          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
523                                 TypeTable, Machine);
524      }
525      Out << " >";
526  } else if (isa<ConstantPointerNull>(CV)) {
527    Out << "null";
528
529  } else if (isa<UndefValue>(CV)) {
530    Out << "undef";
531
532  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
533    Out << CE->getOpcodeName() << " (";
534
535    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
536      printTypeInt(Out, (*OI)->getType(), TypeTable);
537      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
538      if (OI+1 != CE->op_end())
539        Out << ", ";
540    }
541
542    if (CE->getOpcode() == Instruction::Cast) {
543      Out << " to ";
544      printTypeInt(Out, CE->getType(), TypeTable);
545    }
546    Out << ')';
547
548  } else {
549    Out << "<placeholder or erroneous Constant>";
550  }
551}
552
553
554/// WriteAsOperand - Write the name of the specified value out to the specified
555/// ostream.  This can be useful when you just want to print int %reg126, not
556/// the whole instruction that generated it.
557///
558static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
559                                   bool PrintName,
560                                  std::map<const Type*, std::string> &TypeTable,
561                                   SlotMachine *Machine) {
562  Out << ' ';
563  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
564    Out << getLLVMName(V->getName());
565  else {
566    const Constant *CV = dyn_cast<Constant>(V);
567    if (CV && !isa<GlobalValue>(CV))
568      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
569    else {
570      int Slot;
571      if (Machine) {
572        Slot = Machine->getSlot(V);
573      } else {
574        Machine = createSlotMachine(V);
575        if (Machine == 0)
576          Slot = Machine->getSlot(V);
577        else
578          Slot = -1;
579        delete Machine;
580      }
581      if (Slot != -1)
582        Out << '%' << Slot;
583      else
584        Out << "<badref>";
585    }
586  }
587}
588
589/// WriteAsOperand - Write the name of the specified value out to the specified
590/// ostream.  This can be useful when you just want to print int %reg126, not
591/// the whole instruction that generated it.
592///
593std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
594                                   bool PrintType, bool PrintName,
595                                   const Module *Context) {
596  std::map<const Type *, std::string> TypeNames;
597  if (Context == 0) Context = getModuleFromVal(V);
598
599  if (Context)
600    fillTypeNameTable(Context, TypeNames);
601
602  if (PrintType)
603    printTypeInt(Out, V->getType(), TypeNames);
604
605  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
606  return Out;
607}
608
609/// WriteAsOperandInternal - Write the name of the specified value out to
610/// the specified ostream.  This can be useful when you just want to print
611/// int %reg126, not the whole instruction that generated it.
612///
613static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
614                                   bool PrintName,
615                                  std::map<const Type*, std::string> &TypeTable,
616                                   SlotMachine *Machine) {
617  Out << ' ';
618  int Slot;
619  if (Machine) {
620    Slot = Machine->getSlot(T);
621    if (Slot != -1)
622      Out << '%' << Slot;
623    else
624      Out << "<badref>";
625  } else {
626    Out << T->getDescription();
627  }
628}
629
630/// WriteAsOperand - Write the name of the specified value out to the specified
631/// ostream.  This can be useful when you just want to print int %reg126, not
632/// the whole instruction that generated it.
633///
634std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
635                                   bool PrintType, bool PrintName,
636                                   const Module *Context) {
637  std::map<const Type *, std::string> TypeNames;
638  assert(Context != 0 && "Can't write types as operand without module context");
639
640  fillTypeNameTable(Context, TypeNames);
641
642  // if (PrintType)
643    // printTypeInt(Out, V->getType(), TypeNames);
644
645  printTypeInt(Out, Ty, TypeNames);
646
647  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
648  return Out;
649}
650
651namespace llvm {
652
653class AssemblyWriter {
654  std::ostream &Out;
655  SlotMachine &Machine;
656  const Module *TheModule;
657  std::map<const Type *, std::string> TypeNames;
658  AssemblyAnnotationWriter *AnnotationWriter;
659public:
660  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
661                        AssemblyAnnotationWriter *AAW)
662    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
663
664    // If the module has a symbol table, take all global types and stuff their
665    // names into the TypeNames map.
666    //
667    fillTypeNameTable(M, TypeNames);
668  }
669
670  inline void write(const Module *M)         { printModule(M);      }
671  inline void write(const GlobalVariable *G) { printGlobal(G);      }
672  inline void write(const Function *F)       { printFunction(F);    }
673  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
674  inline void write(const Instruction *I)    { printInstruction(*I); }
675  inline void write(const Constant *CPV)     { printConstant(CPV);  }
676  inline void write(const Type *Ty)          { printType(Ty);       }
677
678  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
679
680  const Module* getModule() { return TheModule; }
681
682private:
683  void printModule(const Module *M);
684  void printSymbolTable(const SymbolTable &ST);
685  void printConstant(const Constant *CPV);
686  void printGlobal(const GlobalVariable *GV);
687  void printFunction(const Function *F);
688  void printArgument(const Argument *FA);
689  void printBasicBlock(const BasicBlock *BB);
690  void printInstruction(const Instruction &I);
691
692  // printType - Go to extreme measures to attempt to print out a short,
693  // symbolic version of a type name.
694  //
695  std::ostream &printType(const Type *Ty) {
696    return printTypeInt(Out, Ty, TypeNames);
697  }
698
699  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
700  // without considering any symbolic types that we may have equal to it.
701  //
702  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
703
704  // printInfoComment - Print a little comment after the instruction indicating
705  // which slot it occupies.
706  void printInfoComment(const Value &V);
707};
708}  // end of llvm namespace
709
710/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
711/// without considering any symbolic types that we may have equal to it.
712///
713std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
714  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
715    printType(FTy->getReturnType()) << " (";
716    for (FunctionType::param_iterator I = FTy->param_begin(),
717           E = FTy->param_end(); I != E; ++I) {
718      if (I != FTy->param_begin())
719        Out << ", ";
720      printType(*I);
721    }
722    if (FTy->isVarArg()) {
723      if (FTy->getNumParams()) Out << ", ";
724      Out << "...";
725    }
726    Out << ')';
727  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
728    Out << "{ ";
729    for (StructType::element_iterator I = STy->element_begin(),
730           E = STy->element_end(); I != E; ++I) {
731      if (I != STy->element_begin())
732        Out << ", ";
733      printType(*I);
734    }
735    Out << " }";
736  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
737    printType(PTy->getElementType()) << '*';
738  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
739    Out << '[' << ATy->getNumElements() << " x ";
740    printType(ATy->getElementType()) << ']';
741  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
742    Out << '<' << PTy->getNumElements() << " x ";
743    printType(PTy->getElementType()) << '>';
744  }
745  else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
746    Out << "opaque";
747  } else {
748    if (!Ty->isPrimitiveType())
749      Out << "<unknown derived type>";
750    printType(Ty);
751  }
752  return Out;
753}
754
755
756void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
757                                  bool PrintName) {
758  assert(Operand != 0 && "Illegal Operand");
759  if (PrintType) { Out << ' '; printType(Operand->getType()); }
760  WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
761}
762
763
764void AssemblyWriter::printModule(const Module *M) {
765  switch (M->getEndianness()) {
766  case Module::LittleEndian: Out << "target endian = little\n"; break;
767  case Module::BigEndian:    Out << "target endian = big\n";    break;
768  case Module::AnyEndianness: break;
769  }
770  switch (M->getPointerSize()) {
771  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
772  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
773  case Module::AnyPointerSize: break;
774  }
775  if (!M->getTargetTriple().empty())
776    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
777
778  // Loop over the dependent libraries and emit them.
779  Module::lib_iterator LI = M->lib_begin();
780  Module::lib_iterator LE = M->lib_end();
781  if (LI != LE) {
782    Out << "deplibs = [ ";
783    while (LI != LE) {
784      Out << '"' << *LI << '"';
785      ++LI;
786      if (LI != LE)
787        Out << ", ";
788    }
789    Out << " ]\n";
790  }
791
792  // Loop over the symbol table, emitting all named constants.
793  printSymbolTable(M->getSymbolTable());
794
795  for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
796    printGlobal(I);
797
798  Out << "\nimplementation   ; Functions:\n";
799
800  // Output all of the functions.
801  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
802    printFunction(I);
803}
804
805void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
806  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
807
808  if (!GV->hasInitializer())
809    Out << "external ";
810  else
811    switch (GV->getLinkage()) {
812    case GlobalValue::InternalLinkage:  Out << "internal "; break;
813    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
814    case GlobalValue::WeakLinkage:      Out << "weak "; break;
815    case GlobalValue::AppendingLinkage: Out << "appending "; break;
816    case GlobalValue::ExternalLinkage: break;
817    case GlobalValue::GhostLinkage:
818      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
819      abort();
820    }
821
822  Out << (GV->isConstant() ? "constant " : "global ");
823  printType(GV->getType()->getElementType());
824
825  if (GV->hasInitializer()) {
826    Constant* C = cast<Constant>(GV->getInitializer());
827    assert(C &&  "GlobalVar initializer isn't constant?");
828    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
829  }
830
831  printInfoComment(*GV);
832  Out << "\n";
833}
834
835
836// printSymbolTable - Run through symbol table looking for constants
837// and types. Emit their declarations.
838void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
839
840  // Print the types.
841  for (SymbolTable::type_const_iterator TI = ST.type_begin();
842       TI != ST.type_end(); ++TI ) {
843    Out << "\t" << getLLVMName(TI->first) << " = type ";
844
845    // Make sure we print out at least one level of the type structure, so
846    // that we do not get %FILE = type %FILE
847    //
848    printTypeAtLeastOneLevel(TI->second) << "\n";
849  }
850
851  // Print the constants, in type plane order.
852  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
853       PI != ST.plane_end(); ++PI ) {
854    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
855    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
856
857    for (; VI != VE; ++VI) {
858      const Value* V = VI->second;
859      const Constant *CPV = dyn_cast<Constant>(V) ;
860      if (CPV && !isa<GlobalValue>(V)) {
861        printConstant(CPV);
862      }
863    }
864  }
865}
866
867
868/// printConstant - Print out a constant pool entry...
869///
870void AssemblyWriter::printConstant(const Constant *CPV) {
871  // Don't print out unnamed constants, they will be inlined
872  if (!CPV->hasName()) return;
873
874  // Print out name...
875  Out << "\t" << getLLVMName(CPV->getName()) << " =";
876
877  // Write the value out now...
878  writeOperand(CPV, true, false);
879
880  printInfoComment(*CPV);
881  Out << "\n";
882}
883
884/// printFunction - Print all aspects of a function.
885///
886void AssemblyWriter::printFunction(const Function *F) {
887  // Print out the return type and name...
888  Out << "\n";
889
890  // Ensure that no local symbols conflict with global symbols.
891  const_cast<Function*>(F)->renameLocalSymbols();
892
893  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
894
895  if (F->isExternal())
896    Out << "declare ";
897  else
898    switch (F->getLinkage()) {
899    case GlobalValue::InternalLinkage:  Out << "internal "; break;
900    case GlobalValue::LinkOnceLinkage:  Out << "linkonce "; break;
901    case GlobalValue::WeakLinkage:      Out << "weak "; break;
902    case GlobalValue::AppendingLinkage: Out << "appending "; break;
903    case GlobalValue::ExternalLinkage: break;
904    case GlobalValue::GhostLinkage:
905      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
906      abort();
907    }
908
909  printType(F->getReturnType()) << ' ';
910  if (!F->getName().empty())
911    Out << getLLVMName(F->getName());
912  else
913    Out << "\"\"";
914  Out << '(';
915  Machine.incorporateFunction(F);
916
917  // Loop over the arguments, printing them...
918  const FunctionType *FT = F->getFunctionType();
919
920  for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
921    printArgument(I);
922
923  // Finish printing arguments...
924  if (FT->isVarArg()) {
925    if (FT->getNumParams()) Out << ", ";
926    Out << "...";  // Output varargs portion of signature!
927  }
928  Out << ')';
929
930  if (F->isExternal()) {
931    Out << "\n";
932  } else {
933    Out << " {";
934
935    // Output all of its basic blocks... for the function
936    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
937      printBasicBlock(I);
938
939    Out << "}\n";
940  }
941
942  Machine.purgeFunction();
943}
944
945/// printArgument - This member is called for every argument that is passed into
946/// the function.  Simply print it out
947///
948void AssemblyWriter::printArgument(const Argument *Arg) {
949  // Insert commas as we go... the first arg doesn't get a comma
950  if (Arg != &Arg->getParent()->afront()) Out << ", ";
951
952  // Output type...
953  printType(Arg->getType());
954
955  // Output name, if available...
956  if (Arg->hasName())
957    Out << ' ' << getLLVMName(Arg->getName());
958}
959
960/// printBasicBlock - This member is called for each basic block in a method.
961///
962void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
963  if (BB->hasName()) {              // Print out the label if it exists...
964    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
965  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
966    Out << "\n; <label>:";
967    int Slot = Machine.getSlot(BB);
968    if (Slot != -1)
969      Out << Slot;
970    else
971      Out << "<badref>";
972  }
973
974  if (BB->getParent() == 0)
975    Out << "\t\t; Error: Block without parent!";
976  else {
977    if (BB != &BB->getParent()->front()) {  // Not the entry block?
978      // Output predecessors for the block...
979      Out << "\t\t;";
980      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
981
982      if (PI == PE) {
983        Out << " No predecessors!";
984      } else {
985        Out << " preds =";
986        writeOperand(*PI, false, true);
987        for (++PI; PI != PE; ++PI) {
988          Out << ',';
989          writeOperand(*PI, false, true);
990        }
991      }
992    }
993  }
994
995  Out << "\n";
996
997  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
998
999  // Output all of the instructions in the basic block...
1000  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1001    printInstruction(*I);
1002
1003  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1004}
1005
1006
1007/// printInfoComment - Print a little comment after the instruction indicating
1008/// which slot it occupies.
1009///
1010void AssemblyWriter::printInfoComment(const Value &V) {
1011  if (V.getType() != Type::VoidTy) {
1012    Out << "\t\t; <";
1013    printType(V.getType()) << '>';
1014
1015    if (!V.hasName()) {
1016      int SlotNum = Machine.getSlot(&V);
1017      if (SlotNum == -1)
1018        Out << ":<badref>";
1019      else
1020        Out << ':' << SlotNum; // Print out the def slot taken.
1021    }
1022    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1023  }
1024}
1025
1026/// printInstruction - This member is called for each Instruction in a function..
1027///
1028void AssemblyWriter::printInstruction(const Instruction &I) {
1029  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1030
1031  Out << "\t";
1032
1033  // Print out name if it exists...
1034  if (I.hasName())
1035    Out << getLLVMName(I.getName()) << " = ";
1036
1037  // If this is a volatile load or store, print out the volatile marker
1038  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1039      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()))
1040      Out << "volatile ";
1041
1042  // Print out the opcode...
1043  Out << I.getOpcodeName();
1044
1045  // Print out the type of the operands...
1046  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1047
1048  // Special case conditional branches to swizzle the condition out to the front
1049  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1050    writeOperand(I.getOperand(2), true);
1051    Out << ',';
1052    writeOperand(Operand, true);
1053    Out << ',';
1054    writeOperand(I.getOperand(1), true);
1055
1056  } else if (isa<SwitchInst>(I)) {
1057    // Special case switch statement to get formatting nice and correct...
1058    writeOperand(Operand        , true); Out << ',';
1059    writeOperand(I.getOperand(1), true); Out << " [";
1060
1061    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1062      Out << "\n\t\t";
1063      writeOperand(I.getOperand(op  ), true); Out << ',';
1064      writeOperand(I.getOperand(op+1), true);
1065    }
1066    Out << "\n\t]";
1067  } else if (isa<PHINode>(I)) {
1068    Out << ' ';
1069    printType(I.getType());
1070    Out << ' ';
1071
1072    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1073      if (op) Out << ", ";
1074      Out << '[';
1075      writeOperand(I.getOperand(op  ), false); Out << ',';
1076      writeOperand(I.getOperand(op+1), false); Out << " ]";
1077    }
1078  } else if (isa<ReturnInst>(I) && !Operand) {
1079    Out << " void";
1080  } else if (isa<CallInst>(I)) {
1081    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1082    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1083    const Type       *RetTy = FTy->getReturnType();
1084
1085    // If possible, print out the short form of the call instruction.  We can
1086    // only do this if the first argument is a pointer to a nonvararg function,
1087    // and if the return type is not a pointer to a function.
1088    //
1089    if (!FTy->isVarArg() &&
1090        (!isa<PointerType>(RetTy) ||
1091         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1092      Out << ' '; printType(RetTy);
1093      writeOperand(Operand, false);
1094    } else {
1095      writeOperand(Operand, true);
1096    }
1097    Out << '(';
1098    if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
1099    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
1100      Out << ',';
1101      writeOperand(I.getOperand(op), true);
1102    }
1103
1104    Out << " )";
1105  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1106    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1107    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1108    const Type       *RetTy = FTy->getReturnType();
1109
1110    // If possible, print out the short form of the invoke instruction. We can
1111    // only do this if the first argument is a pointer to a nonvararg function,
1112    // and if the return type is not a pointer to a function.
1113    //
1114    if (!FTy->isVarArg() &&
1115        (!isa<PointerType>(RetTy) ||
1116         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1117      Out << ' '; printType(RetTy);
1118      writeOperand(Operand, false);
1119    } else {
1120      writeOperand(Operand, true);
1121    }
1122
1123    Out << '(';
1124    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
1125    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
1126      Out << ',';
1127      writeOperand(I.getOperand(op), true);
1128    }
1129
1130    Out << " )\n\t\t\tto";
1131    writeOperand(II->getNormalDest(), true);
1132    Out << " unwind";
1133    writeOperand(II->getUnwindDest(), true);
1134
1135  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1136    Out << ' ';
1137    printType(AI->getType()->getElementType());
1138    if (AI->isArrayAllocation()) {
1139      Out << ',';
1140      writeOperand(AI->getArraySize(), true);
1141    }
1142  } else if (isa<CastInst>(I)) {
1143    if (Operand) writeOperand(Operand, true);   // Work with broken code
1144    Out << " to ";
1145    printType(I.getType());
1146  } else if (isa<VAArgInst>(I)) {
1147    if (Operand) writeOperand(Operand, true);   // Work with broken code
1148    Out << ", ";
1149    printType(I.getType());
1150  } else if (const VANextInst *VAN = dyn_cast<VANextInst>(&I)) {
1151    if (Operand) writeOperand(Operand, true);   // Work with broken code
1152    Out << ", ";
1153    printType(VAN->getArgType());
1154  } else if (Operand) {   // Print the normal way...
1155
1156    // PrintAllTypes - Instructions who have operands of all the same type
1157    // omit the type from all but the first operand.  If the instruction has
1158    // different type operands (for example br), then they are all printed.
1159    bool PrintAllTypes = false;
1160    const Type *TheType = Operand->getType();
1161
1162    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1163    // types even if all operands are bools.
1164    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I)) {
1165      PrintAllTypes = true;
1166    } else {
1167      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1168        Operand = I.getOperand(i);
1169        if (Operand->getType() != TheType) {
1170          PrintAllTypes = true;    // We have differing types!  Print them all!
1171          break;
1172        }
1173      }
1174    }
1175
1176    if (!PrintAllTypes) {
1177      Out << ' ';
1178      printType(TheType);
1179    }
1180
1181    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1182      if (i) Out << ',';
1183      writeOperand(I.getOperand(i), PrintAllTypes);
1184    }
1185  }
1186
1187  printInfoComment(I);
1188  Out << "\n";
1189}
1190
1191
1192//===----------------------------------------------------------------------===//
1193//                       External Interface declarations
1194//===----------------------------------------------------------------------===//
1195
1196void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1197  SlotMachine SlotTable(this);
1198  AssemblyWriter W(o, SlotTable, this, AAW);
1199  W.write(this);
1200}
1201
1202void GlobalVariable::print(std::ostream &o) const {
1203  SlotMachine SlotTable(getParent());
1204  AssemblyWriter W(o, SlotTable, getParent(), 0);
1205  W.write(this);
1206}
1207
1208void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1209  SlotMachine SlotTable(getParent());
1210  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1211
1212  W.write(this);
1213}
1214
1215void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1216  SlotMachine SlotTable(getParent());
1217  AssemblyWriter W(o, SlotTable,
1218                   getParent() ? getParent()->getParent() : 0, AAW);
1219  W.write(this);
1220}
1221
1222void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1223  const Function *F = getParent() ? getParent()->getParent() : 0;
1224  SlotMachine SlotTable(F);
1225  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1226
1227  W.write(this);
1228}
1229
1230void Constant::print(std::ostream &o) const {
1231  if (this == 0) { o << "<null> constant value\n"; return; }
1232
1233  o << ' ' << getType()->getDescription() << ' ';
1234
1235  std::map<const Type *, std::string> TypeTable;
1236  WriteConstantInt(o, this, false, TypeTable, 0);
1237}
1238
1239void Type::print(std::ostream &o) const {
1240  if (this == 0)
1241    o << "<null Type>";
1242  else
1243    o << getDescription();
1244}
1245
1246void Argument::print(std::ostream &o) const {
1247  WriteAsOperand(o, this, true, true,
1248                 getParent() ? getParent()->getParent() : 0);
1249}
1250
1251// Value::dump - allow easy printing of  Values from the debugger.
1252// Located here because so much of the needed functionality is here.
1253void Value::dump() const { print(std::cerr); }
1254
1255// Type::dump - allow easy printing of  Values from the debugger.
1256// Located here because so much of the needed functionality is here.
1257void Type::dump() const { print(std::cerr); }
1258
1259//===----------------------------------------------------------------------===//
1260//  CachedWriter Class Implementation
1261//===----------------------------------------------------------------------===//
1262
1263void CachedWriter::setModule(const Module *M) {
1264  delete SC; delete AW;
1265  if (M) {
1266    SC = new SlotMachine(M );
1267    AW = new AssemblyWriter(Out, *SC, M, 0);
1268  } else {
1269    SC = 0; AW = 0;
1270  }
1271}
1272
1273CachedWriter::~CachedWriter() {
1274  delete AW;
1275  delete SC;
1276}
1277
1278CachedWriter &CachedWriter::operator<<(const Value &V) {
1279  assert(AW && SC && "CachedWriter does not have a current module!");
1280  if (const Instruction *I = dyn_cast<Instruction>(&V))
1281    AW->write(I);
1282  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
1283    AW->write(BB);
1284  else if (const Function *F = dyn_cast<Function>(&V))
1285    AW->write(F);
1286  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
1287    AW->write(GV);
1288  else
1289    AW->writeOperand(&V, true, true);
1290  return *this;
1291}
1292
1293CachedWriter& CachedWriter::operator<<(const Type &Ty) {
1294  if (SymbolicTypes) {
1295    const Module *M = AW->getModule();
1296    if (M) WriteTypeSymbolic(Out, &Ty, M);
1297  } else {
1298    AW->write(&Ty);
1299  }
1300  return *this;
1301}
1302
1303//===----------------------------------------------------------------------===//
1304//===--                    SlotMachine Implementation
1305//===----------------------------------------------------------------------===//
1306
1307#if 0
1308#define SC_DEBUG(X) std::cerr << X
1309#else
1310#define SC_DEBUG(X)
1311#endif
1312
1313// Module level constructor. Causes the contents of the Module (sans functions)
1314// to be added to the slot table.
1315SlotMachine::SlotMachine(const Module *M)
1316  : TheModule(M)    ///< Saved for lazy initialization.
1317  , TheFunction(0)
1318  , FunctionProcessed(false)
1319  , mMap()
1320  , mTypes()
1321  , fMap()
1322  , fTypes()
1323{
1324}
1325
1326// Function level constructor. Causes the contents of the Module and the one
1327// function provided to be added to the slot table.
1328SlotMachine::SlotMachine(const Function *F )
1329  : TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
1330  , TheFunction(F) ///< Saved for lazy initialization
1331  , FunctionProcessed(false)
1332  , mMap()
1333  , mTypes()
1334  , fMap()
1335  , fTypes()
1336{
1337}
1338
1339inline void SlotMachine::initialize(void) {
1340  if ( TheModule) {
1341    processModule();
1342    TheModule = 0; ///< Prevent re-processing next time we're called.
1343  }
1344  if ( TheFunction && ! FunctionProcessed) {
1345    processFunction();
1346  }
1347}
1348
1349// Iterate through all the global variables, functions, and global
1350// variable initializers and create slots for them.
1351void SlotMachine::processModule() {
1352  SC_DEBUG("begin processModule!\n");
1353
1354  // Add all of the global variables to the value table...
1355  for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
1356       I != E; ++I)
1357    createSlot(I);
1358
1359  // Add all the functions to the table
1360  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1361       I != E; ++I)
1362    createSlot(I);
1363
1364  SC_DEBUG("end processModule!\n");
1365}
1366
1367
1368// Process the arguments, basic blocks, and instructions  of a function.
1369void SlotMachine::processFunction() {
1370  SC_DEBUG("begin processFunction!\n");
1371
1372  // Add all the function arguments
1373  for(Function::const_aiterator AI = TheFunction->abegin(),
1374      AE = TheFunction->aend(); AI != AE; ++AI)
1375    createSlot(AI);
1376
1377  SC_DEBUG("Inserting Instructions:\n");
1378
1379  // Add all of the basic blocks and instructions
1380  for (Function::const_iterator BB = TheFunction->begin(),
1381       E = TheFunction->end(); BB != E; ++BB) {
1382    createSlot(BB);
1383    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
1384      createSlot(I);
1385    }
1386  }
1387
1388  FunctionProcessed = true;
1389
1390  SC_DEBUG("end processFunction!\n");
1391}
1392
1393// Clean up after incorporating a function. This is the only way
1394// to get out of the function incorporation state that affects the
1395// getSlot/createSlot lock. Function incorporation state is indicated
1396// by TheFunction != 0.
1397void SlotMachine::purgeFunction() {
1398  SC_DEBUG("begin purgeFunction!\n");
1399  fMap.clear(); // Simply discard the function level map
1400  fTypes.clear();
1401  TheFunction = 0;
1402  FunctionProcessed = false;
1403  SC_DEBUG("end purgeFunction!\n");
1404}
1405
1406/// Get the slot number for a value. This function will assert if you
1407/// ask for a Value that hasn't previously been inserted with createSlot.
1408/// Types are forbidden because Type does not inherit from Value (any more).
1409int SlotMachine::getSlot(const Value *V) {
1410  assert( V && "Can't get slot for null Value" );
1411  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1412    "Can't insert a non-GlobalValue Constant into SlotMachine");
1413
1414  // Check for uninitialized state and do lazy initialization
1415  this->initialize();
1416
1417  // Get the type of the value
1418  const Type* VTy = V->getType();
1419
1420  // Find the type plane in the module map
1421  TypedPlanes::const_iterator MI = mMap.find(VTy);
1422
1423  if ( TheFunction ) {
1424    // Lookup the type in the function map too
1425    TypedPlanes::const_iterator FI = fMap.find(VTy);
1426    // If there is a corresponding type plane in the function map
1427    if ( FI != fMap.end() ) {
1428      // Lookup the Value in the function map
1429      ValueMap::const_iterator FVI = FI->second.map.find(V);
1430      // If the value doesn't exist in the function map
1431      if ( FVI == FI->second.map.end() ) {
1432        // Look up the value in the module map.
1433        if (MI == mMap.end()) return -1;
1434        ValueMap::const_iterator MVI = MI->second.map.find(V);
1435        // If we didn't find it, it wasn't inserted
1436        if (MVI == MI->second.map.end()) return -1;
1437        assert( MVI != MI->second.map.end() && "Value not found");
1438        // We found it only at the module level
1439        return MVI->second;
1440
1441      // else the value exists in the function map
1442      } else {
1443        // Return the slot number as the module's contribution to
1444        // the type plane plus the index in the function's contribution
1445        // to the type plane.
1446        if (MI != mMap.end())
1447          return MI->second.next_slot + FVI->second;
1448        else
1449          return FVI->second;
1450      }
1451    }
1452  }
1453
1454  // N.B. Can get here only if either !TheFunction or the function doesn't
1455  // have a corresponding type plane for the Value
1456
1457  // Make sure the type plane exists
1458  if (MI == mMap.end()) return -1;
1459  // Lookup the value in the module's map
1460  ValueMap::const_iterator MVI = MI->second.map.find(V);
1461  // Make sure we found it.
1462  if (MVI == MI->second.map.end()) return -1;
1463  // Return it.
1464  return MVI->second;
1465}
1466
1467/// Get the slot number for a value. This function will assert if you
1468/// ask for a Value that hasn't previously been inserted with createSlot.
1469/// Types are forbidden because Type does not inherit from Value (any more).
1470int SlotMachine::getSlot(const Type *Ty) {
1471  assert( Ty && "Can't get slot for null Type" );
1472
1473  // Check for uninitialized state and do lazy initialization
1474  this->initialize();
1475
1476  if ( TheFunction ) {
1477    // Lookup the Type in the function map
1478    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1479    // If the Type doesn't exist in the function map
1480    if ( FTI == fTypes.map.end() ) {
1481      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1482      // If we didn't find it, it wasn't inserted
1483      if (MTI == mTypes.map.end())
1484        return -1;
1485      // We found it only at the module level
1486      return MTI->second;
1487
1488    // else the value exists in the function map
1489    } else {
1490      // Return the slot number as the module's contribution to
1491      // the type plane plus the index in the function's contribution
1492      // to the type plane.
1493      return mTypes.next_slot + FTI->second;
1494    }
1495  }
1496
1497  // N.B. Can get here only if either !TheFunction
1498
1499  // Lookup the value in the module's map
1500  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1501  // Make sure we found it.
1502  if (MTI == mTypes.map.end()) return -1;
1503  // Return it.
1504  return MTI->second;
1505}
1506
1507// Create a new slot, or return the existing slot if it is already
1508// inserted. Note that the logic here parallels getSlot but instead
1509// of asserting when the Value* isn't found, it inserts the value.
1510unsigned SlotMachine::createSlot(const Value *V) {
1511  assert( V && "Can't insert a null Value to SlotMachine");
1512  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1513    "Can't insert a non-GlobalValue Constant into SlotMachine");
1514
1515  const Type* VTy = V->getType();
1516
1517  // Just ignore void typed things
1518  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
1519
1520  // Look up the type plane for the Value's type from the module map
1521  TypedPlanes::const_iterator MI = mMap.find(VTy);
1522
1523  if ( TheFunction ) {
1524    // Get the type plane for the Value's type from the function map
1525    TypedPlanes::const_iterator FI = fMap.find(VTy);
1526    // If there is a corresponding type plane in the function map
1527    if ( FI != fMap.end() ) {
1528      // Lookup the Value in the function map
1529      ValueMap::const_iterator FVI = FI->second.map.find(V);
1530      // If the value doesn't exist in the function map
1531      if ( FVI == FI->second.map.end() ) {
1532        // If there is no corresponding type plane in the module map
1533        if ( MI == mMap.end() )
1534          return insertValue(V);
1535        // Look up the value in the module map
1536        ValueMap::const_iterator MVI = MI->second.map.find(V);
1537        // If we didn't find it, it wasn't inserted
1538        if ( MVI == MI->second.map.end() )
1539          return insertValue(V);
1540        else
1541          // We found it only at the module level
1542          return MVI->second;
1543
1544      // else the value exists in the function map
1545      } else {
1546        if ( MI == mMap.end() )
1547          return FVI->second;
1548        else
1549          // Return the slot number as the module's contribution to
1550          // the type plane plus the index in the function's contribution
1551          // to the type plane.
1552          return MI->second.next_slot + FVI->second;
1553      }
1554
1555    // else there is not a corresponding type plane in the function map
1556    } else {
1557      // If the type plane doesn't exists at the module level
1558      if ( MI == mMap.end() ) {
1559        return insertValue(V);
1560      // else type plane exists at the module level, examine it
1561      } else {
1562        // Look up the value in the module's map
1563        ValueMap::const_iterator MVI = MI->second.map.find(V);
1564        // If we didn't find it there either
1565        if ( MVI == MI->second.map.end() )
1566          // Return the slot number as the module's contribution to
1567          // the type plane plus the index of the function map insertion.
1568          return MI->second.next_slot + insertValue(V);
1569        else
1570          return MVI->second;
1571      }
1572    }
1573  }
1574
1575  // N.B. Can only get here if !TheFunction
1576
1577  // If the module map's type plane is not for the Value's type
1578  if ( MI != mMap.end() ) {
1579    // Lookup the value in the module's map
1580    ValueMap::const_iterator MVI = MI->second.map.find(V);
1581    if ( MVI != MI->second.map.end() )
1582      return MVI->second;
1583  }
1584
1585  return insertValue(V);
1586}
1587
1588// Create a new slot, or return the existing slot if it is already
1589// inserted. Note that the logic here parallels getSlot but instead
1590// of asserting when the Value* isn't found, it inserts the value.
1591unsigned SlotMachine::createSlot(const Type *Ty) {
1592  assert( Ty && "Can't insert a null Type to SlotMachine");
1593
1594  if ( TheFunction ) {
1595    // Lookup the Type in the function map
1596    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1597    // If the type doesn't exist in the function map
1598    if ( FTI == fTypes.map.end() ) {
1599      // Look up the type in the module map
1600      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1601      // If we didn't find it, it wasn't inserted
1602      if ( MTI == mTypes.map.end() )
1603        return insertValue(Ty);
1604      else
1605        // We found it only at the module level
1606        return MTI->second;
1607
1608    // else the value exists in the function map
1609    } else {
1610      // Return the slot number as the module's contribution to
1611      // the type plane plus the index in the function's contribution
1612      // to the type plane.
1613      return mTypes.next_slot + FTI->second;
1614    }
1615  }
1616
1617  // N.B. Can only get here if !TheFunction
1618
1619  // Lookup the type in the module's map
1620  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1621  if ( MTI != mTypes.map.end() )
1622    return MTI->second;
1623
1624  return insertValue(Ty);
1625}
1626
1627// Low level insert function. Minimal checking is done. This
1628// function is just for the convenience of createSlot (above).
1629unsigned SlotMachine::insertValue(const Value *V ) {
1630  assert(V && "Can't insert a null Value into SlotMachine!");
1631  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1632    "Can't insert a non-GlobalValue Constant into SlotMachine");
1633
1634  // If this value does not contribute to a plane (is void)
1635  // or if the value already has a name then ignore it.
1636  if (V->getType() == Type::VoidTy || V->hasName() ) {
1637      SC_DEBUG("ignored value " << *V << "\n");
1638      return 0;   // FIXME: Wrong return value
1639  }
1640
1641  const Type *VTy = V->getType();
1642  unsigned DestSlot = 0;
1643
1644  if ( TheFunction ) {
1645    TypedPlanes::iterator I = fMap.find( VTy );
1646    if ( I == fMap.end() )
1647      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
1648    DestSlot = I->second.map[V] = I->second.next_slot++;
1649  } else {
1650    TypedPlanes::iterator I = mMap.find( VTy );
1651    if ( I == mMap.end() )
1652      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
1653    DestSlot = I->second.map[V] = I->second.next_slot++;
1654  }
1655
1656  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1657           DestSlot << " [");
1658  // G = Global, C = Constant, T = Type, F = Function, o = other
1659  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
1660           (isa<Constant>(V) ? 'C' : 'o'))));
1661  SC_DEBUG("]\n");
1662  return DestSlot;
1663}
1664
1665// Low level insert function. Minimal checking is done. This
1666// function is just for the convenience of createSlot (above).
1667unsigned SlotMachine::insertValue(const Type *Ty ) {
1668  assert(Ty && "Can't insert a null Type into SlotMachine!");
1669
1670  unsigned DestSlot = 0;
1671
1672  if ( TheFunction ) {
1673    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1674  } else {
1675    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1676  }
1677  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
1678  return DestSlot;
1679}
1680
1681// vim: sw=2
1682