ConstantFold.cpp revision 2440cf1c6f8efe83772dabc4582e8c1e3637cc56
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MathExtras.h"
33#include <limits>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37//                ConstantFold*Instruction Implementations
38//===----------------------------------------------------------------------===//
39
40/// BitCastConstantVector - Convert the specified ConstantVector node to the
41/// specified vector type.  At this point, we know that the elements of the
42/// input vector constant are all simple integer or FP values.
43static Constant *BitCastConstantVector(ConstantVector *CV,
44                                       const VectorType *DstTy) {
45  // If this cast changes element count then we can't handle it here:
46  // doing so requires endianness information.  This should be handled by
47  // Analysis/ConstantFolding.cpp
48  unsigned NumElts = DstTy->getNumElements();
49  if (NumElts != CV->getNumOperands())
50    return 0;
51
52  // Check to verify that all elements of the input are simple.
53  for (unsigned i = 0; i != NumElts; ++i) {
54    if (!isa<ConstantInt>(CV->getOperand(i)) &&
55        !isa<ConstantFP>(CV->getOperand(i)))
56      return 0;
57  }
58
59  // Bitcast each element now.
60  std::vector<Constant*> Result;
61  const Type *DstEltTy = DstTy->getElementType();
62  for (unsigned i = 0; i != NumElts; ++i)
63    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
64                                                    DstEltTy));
65  return ConstantVector::get(Result);
66}
67
68/// This function determines which opcode to use to fold two constant cast
69/// expressions together. It uses CastInst::isEliminableCastPair to determine
70/// the opcode. Consequently its just a wrapper around that function.
71/// @brief Determine if it is valid to fold a cast of a cast
72static unsigned
73foldConstantCastPair(
74  unsigned opc,          ///< opcode of the second cast constant expression
75  ConstantExpr *Op,      ///< the first cast constant expression
76  const Type *DstTy      ///< desintation type of the first cast
77) {
78  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
79  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
80  assert(CastInst::isCast(opc) && "Invalid cast opcode");
81
82  // The the types and opcodes for the two Cast constant expressions
83  const Type *SrcTy = Op->getOperand(0)->getType();
84  const Type *MidTy = Op->getType();
85  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
86  Instruction::CastOps secondOp = Instruction::CastOps(opc);
87
88  // Let CastInst::isEliminableCastPair do the heavy lifting.
89  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
90                                        Type::getInt64Ty(DstTy->getContext()));
91}
92
93static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
94  const Type *SrcTy = V->getType();
95  if (SrcTy == DestTy)
96    return V; // no-op cast
97
98  // Check to see if we are casting a pointer to an aggregate to a pointer to
99  // the first element.  If so, return the appropriate GEP instruction.
100  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
101    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
102      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
103        SmallVector<Value*, 8> IdxList;
104        Value *Zero =
105          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
106        IdxList.push_back(Zero);
107        const Type *ElTy = PTy->getElementType();
108        while (ElTy != DPTy->getElementType()) {
109          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
110            if (STy->getNumElements() == 0) break;
111            ElTy = STy->getElementType(0);
112            IdxList.push_back(Zero);
113          } else if (const SequentialType *STy =
114                     dyn_cast<SequentialType>(ElTy)) {
115            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
116            ElTy = STy->getElementType();
117            IdxList.push_back(Zero);
118          } else {
119            break;
120          }
121        }
122
123        if (ElTy == DPTy->getElementType())
124          // This GEP is inbounds because all indices are zero.
125          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
126                                                        IdxList.size());
127      }
128
129  // Handle casts from one vector constant to another.  We know that the src
130  // and dest type have the same size (otherwise its an illegal cast).
131  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
132    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
133      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
134             "Not cast between same sized vectors!");
135      SrcTy = NULL;
136      // First, check for null.  Undef is already handled.
137      if (isa<ConstantAggregateZero>(V))
138        return Constant::getNullValue(DestTy);
139
140      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
141        return BitCastConstantVector(CV, DestPTy);
142    }
143
144    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
145    // This allows for other simplifications (although some of them
146    // can only be handled by Analysis/ConstantFolding.cpp).
147    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
148      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
149  }
150
151  // Finally, implement bitcast folding now.   The code below doesn't handle
152  // bitcast right.
153  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
154    return ConstantPointerNull::get(cast<PointerType>(DestTy));
155
156  // Handle integral constant input.
157  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (DestTy->isIntegerTy())
159      // Integral -> Integral. This is a no-op because the bit widths must
160      // be the same. Consequently, we just fold to V.
161      return V;
162
163    if (DestTy->isFloatingPointTy())
164      return ConstantFP::get(DestTy->getContext(),
165                             APFloat(CI->getValue(),
166                                     !DestTy->isPPC_FP128Ty()));
167
168    // Otherwise, can't fold this (vector?)
169    return 0;
170  }
171
172  // Handle ConstantFP input: FP -> Integral.
173  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
174    return ConstantInt::get(FP->getContext(),
175                            FP->getValueAPF().bitcastToAPInt());
176
177  return 0;
178}
179
180
181/// ExtractConstantBytes - V is an integer constant which only has a subset of
182/// its bytes used.  The bytes used are indicated by ByteStart (which is the
183/// first byte used, counting from the least significant byte) and ByteSize,
184/// which is the number of bytes used.
185///
186/// This function analyzes the specified constant to see if the specified byte
187/// range can be returned as a simplified constant.  If so, the constant is
188/// returned, otherwise null is returned.
189///
190static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
191                                      unsigned ByteSize) {
192  assert(C->getType()->isIntegerTy() &&
193         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
194         "Non-byte sized integer input");
195  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
196  assert(ByteSize && "Must be accessing some piece");
197  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
198  assert(ByteSize != CSize && "Should not extract everything");
199
200  // Constant Integers are simple.
201  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
202    APInt V = CI->getValue();
203    if (ByteStart)
204      V = V.lshr(ByteStart*8);
205    V.trunc(ByteSize*8);
206    return ConstantInt::get(CI->getContext(), V);
207  }
208
209  // In the input is a constant expr, we might be able to recursively simplify.
210  // If not, we definitely can't do anything.
211  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
212  if (CE == 0) return 0;
213
214  switch (CE->getOpcode()) {
215  default: return 0;
216  case Instruction::Or: {
217    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
218    if (RHS == 0)
219      return 0;
220
221    // X | -1 -> -1.
222    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
223      if (RHSC->isAllOnesValue())
224        return RHSC;
225
226    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
227    if (LHS == 0)
228      return 0;
229    return ConstantExpr::getOr(LHS, RHS);
230  }
231  case Instruction::And: {
232    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
233    if (RHS == 0)
234      return 0;
235
236    // X & 0 -> 0.
237    if (RHS->isNullValue())
238      return RHS;
239
240    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
241    if (LHS == 0)
242      return 0;
243    return ConstantExpr::getAnd(LHS, RHS);
244  }
245  case Instruction::LShr: {
246    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
247    if (Amt == 0)
248      return 0;
249    unsigned ShAmt = Amt->getZExtValue();
250    // Cannot analyze non-byte shifts.
251    if ((ShAmt & 7) != 0)
252      return 0;
253    ShAmt >>= 3;
254
255    // If the extract is known to be all zeros, return zero.
256    if (ByteStart >= CSize-ShAmt)
257      return Constant::getNullValue(IntegerType::get(CE->getContext(),
258                                                     ByteSize*8));
259    // If the extract is known to be fully in the input, extract it.
260    if (ByteStart+ByteSize+ShAmt <= CSize)
261      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
262
263    // TODO: Handle the 'partially zero' case.
264    return 0;
265  }
266
267  case Instruction::Shl: {
268    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269    if (Amt == 0)
270      return 0;
271    unsigned ShAmt = Amt->getZExtValue();
272    // Cannot analyze non-byte shifts.
273    if ((ShAmt & 7) != 0)
274      return 0;
275    ShAmt >>= 3;
276
277    // If the extract is known to be all zeros, return zero.
278    if (ByteStart+ByteSize <= ShAmt)
279      return Constant::getNullValue(IntegerType::get(CE->getContext(),
280                                                     ByteSize*8));
281    // If the extract is known to be fully in the input, extract it.
282    if (ByteStart >= ShAmt)
283      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
284
285    // TODO: Handle the 'partially zero' case.
286    return 0;
287  }
288
289  case Instruction::ZExt: {
290    unsigned SrcBitSize =
291      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
292
293    // If extracting something that is completely zero, return 0.
294    if (ByteStart*8 >= SrcBitSize)
295      return Constant::getNullValue(IntegerType::get(CE->getContext(),
296                                                     ByteSize*8));
297
298    // If exactly extracting the input, return it.
299    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
300      return CE->getOperand(0);
301
302    // If extracting something completely in the input, if if the input is a
303    // multiple of 8 bits, recurse.
304    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
305      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
306
307    // Otherwise, if extracting a subset of the input, which is not multiple of
308    // 8 bits, do a shift and trunc to get the bits.
309    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
310      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
311      Constant *Res = CE->getOperand(0);
312      if (ByteStart)
313        Res = ConstantExpr::getLShr(Res,
314                                 ConstantInt::get(Res->getType(), ByteStart*8));
315      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
316                                                          ByteSize*8));
317    }
318
319    // TODO: Handle the 'partially zero' case.
320    return 0;
321  }
322  }
323}
324
325/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
326/// on Ty, with any known factors factored out. If Folded is false,
327/// return null if no factoring was possible, to avoid endlessly
328/// bouncing an unfoldable expression back into the top-level folder.
329///
330static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
331                                 bool Folded) {
332  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
333    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
334    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
335    return ConstantExpr::getNUWMul(E, N);
336  }
337
338  if (const StructType *STy = dyn_cast<StructType>(Ty))
339    if (!STy->isPacked()) {
340      unsigned NumElems = STy->getNumElements();
341      // An empty struct has size zero.
342      if (NumElems == 0)
343        return ConstantExpr::getNullValue(DestTy);
344      // Check for a struct with all members having the same size.
345      Constant *MemberSize =
346        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
347      bool AllSame = true;
348      for (unsigned i = 1; i != NumElems; ++i)
349        if (MemberSize !=
350            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
351          AllSame = false;
352          break;
353        }
354      if (AllSame) {
355        Constant *N = ConstantInt::get(DestTy, NumElems);
356        return ConstantExpr::getNUWMul(MemberSize, N);
357      }
358    }
359
360  // Pointer size doesn't depend on the pointee type, so canonicalize them
361  // to an arbitrary pointee.
362  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
363    if (!PTy->getElementType()->isIntegerTy(1))
364      return
365        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
366                                         PTy->getAddressSpace()),
367                        DestTy, true);
368
369  // If there's no interesting folding happening, bail so that we don't create
370  // a constant that looks like it needs folding but really doesn't.
371  if (!Folded)
372    return 0;
373
374  // Base case: Get a regular sizeof expression.
375  Constant *C = ConstantExpr::getSizeOf(Ty);
376  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
377                                                    DestTy, false),
378                            C, DestTy);
379  return C;
380}
381
382/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
383/// on Ty, with any known factors factored out. If Folded is false,
384/// return null if no factoring was possible, to avoid endlessly
385/// bouncing an unfoldable expression back into the top-level folder.
386///
387static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
388                                  bool Folded) {
389  // The alignment of an array is equal to the alignment of the
390  // array element. Note that this is not always true for vectors.
391  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
392    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
393    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
394                                                      DestTy,
395                                                      false),
396                              C, DestTy);
397    return C;
398  }
399
400  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
401    // Packed structs always have an alignment of 1.
402    if (STy->isPacked())
403      return ConstantInt::get(DestTy, 1);
404
405    // Otherwise, struct alignment is the maximum alignment of any member.
406    // Without target data, we can't compare much, but we can check to see
407    // if all the members have the same alignment.
408    unsigned NumElems = STy->getNumElements();
409    // An empty struct has minimal alignment.
410    if (NumElems == 0)
411      return ConstantInt::get(DestTy, 1);
412    // Check for a struct with all members having the same alignment.
413    Constant *MemberAlign =
414      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
415    bool AllSame = true;
416    for (unsigned i = 1; i != NumElems; ++i)
417      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
418        AllSame = false;
419        break;
420      }
421    if (AllSame)
422      return MemberAlign;
423  }
424
425  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
426  // to an arbitrary pointee.
427  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
428    if (!PTy->getElementType()->isIntegerTy(1))
429      return
430        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
431                                                           1),
432                                          PTy->getAddressSpace()),
433                         DestTy, true);
434
435  // If there's no interesting folding happening, bail so that we don't create
436  // a constant that looks like it needs folding but really doesn't.
437  if (!Folded)
438    return 0;
439
440  // Base case: Get a regular alignof expression.
441  Constant *C = ConstantExpr::getAlignOf(Ty);
442  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
443                                                    DestTy, false),
444                            C, DestTy);
445  return C;
446}
447
448/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
449/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
450/// return null if no factoring was possible, to avoid endlessly
451/// bouncing an unfoldable expression back into the top-level folder.
452///
453static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
454                                   const Type *DestTy,
455                                   bool Folded) {
456  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
457    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
458                                                                DestTy, false),
459                                        FieldNo, DestTy);
460    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
461    return ConstantExpr::getNUWMul(E, N);
462  }
463
464  if (const StructType *STy = dyn_cast<StructType>(Ty))
465    if (!STy->isPacked()) {
466      unsigned NumElems = STy->getNumElements();
467      // An empty struct has no members.
468      if (NumElems == 0)
469        return 0;
470      // Check for a struct with all members having the same size.
471      Constant *MemberSize =
472        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
473      bool AllSame = true;
474      for (unsigned i = 1; i != NumElems; ++i)
475        if (MemberSize !=
476            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
477          AllSame = false;
478          break;
479        }
480      if (AllSame) {
481        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
482                                                                    false,
483                                                                    DestTy,
484                                                                    false),
485                                            FieldNo, DestTy);
486        return ConstantExpr::getNUWMul(MemberSize, N);
487      }
488    }
489
490  // If there's no interesting folding happening, bail so that we don't create
491  // a constant that looks like it needs folding but really doesn't.
492  if (!Folded)
493    return 0;
494
495  // Base case: Get a regular offsetof expression.
496  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
497  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
498                                                    DestTy, false),
499                            C, DestTy);
500  return C;
501}
502
503Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
504                                            const Type *DestTy) {
505  if (isa<UndefValue>(V)) {
506    // zext(undef) = 0, because the top bits will be zero.
507    // sext(undef) = 0, because the top bits will all be the same.
508    // [us]itofp(undef) = 0, because the result value is bounded.
509    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
510        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
511      return Constant::getNullValue(DestTy);
512    return UndefValue::get(DestTy);
513  }
514  // No compile-time operations on this type yet.
515  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
516    return 0;
517
518  // If the cast operand is a constant expression, there's a few things we can
519  // do to try to simplify it.
520  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
521    if (CE->isCast()) {
522      // Try hard to fold cast of cast because they are often eliminable.
523      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
524        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
525    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
526      // If all of the indexes in the GEP are null values, there is no pointer
527      // adjustment going on.  We might as well cast the source pointer.
528      bool isAllNull = true;
529      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
530        if (!CE->getOperand(i)->isNullValue()) {
531          isAllNull = false;
532          break;
533        }
534      if (isAllNull)
535        // This is casting one pointer type to another, always BitCast
536        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
537    }
538  }
539
540  // If the cast operand is a constant vector, perform the cast by
541  // operating on each element. In the cast of bitcasts, the element
542  // count may be mismatched; don't attempt to handle that here.
543  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
544    if (DestTy->isVectorTy() &&
545        cast<VectorType>(DestTy)->getNumElements() ==
546        CV->getType()->getNumElements()) {
547      std::vector<Constant*> res;
548      const VectorType *DestVecTy = cast<VectorType>(DestTy);
549      const Type *DstEltTy = DestVecTy->getElementType();
550      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
551        res.push_back(ConstantExpr::getCast(opc,
552                                            CV->getOperand(i), DstEltTy));
553      return ConstantVector::get(DestVecTy, res);
554    }
555
556  // We actually have to do a cast now. Perform the cast according to the
557  // opcode specified.
558  switch (opc) {
559  default:
560    llvm_unreachable("Failed to cast constant expression");
561  case Instruction::FPTrunc:
562  case Instruction::FPExt:
563    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
564      bool ignored;
565      APFloat Val = FPC->getValueAPF();
566      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
567                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
568                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
569                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
570                  APFloat::Bogus,
571                  APFloat::rmNearestTiesToEven, &ignored);
572      return ConstantFP::get(V->getContext(), Val);
573    }
574    return 0; // Can't fold.
575  case Instruction::FPToUI:
576  case Instruction::FPToSI:
577    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
578      const APFloat &V = FPC->getValueAPF();
579      bool ignored;
580      uint64_t x[2];
581      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
582      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
583                                APFloat::rmTowardZero, &ignored);
584      APInt Val(DestBitWidth, 2, x);
585      return ConstantInt::get(FPC->getContext(), Val);
586    }
587    return 0; // Can't fold.
588  case Instruction::IntToPtr:   //always treated as unsigned
589    if (V->isNullValue())       // Is it an integral null value?
590      return ConstantPointerNull::get(cast<PointerType>(DestTy));
591    return 0;                   // Other pointer types cannot be casted
592  case Instruction::PtrToInt:   // always treated as unsigned
593    // Is it a null pointer value?
594    if (V->isNullValue())
595      return ConstantInt::get(DestTy, 0);
596    // If this is a sizeof-like expression, pull out multiplications by
597    // known factors to expose them to subsequent folding. If it's an
598    // alignof-like expression, factor out known factors.
599    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
600      if (CE->getOpcode() == Instruction::GetElementPtr &&
601          CE->getOperand(0)->isNullValue()) {
602        const Type *Ty =
603          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
604        if (CE->getNumOperands() == 2) {
605          // Handle a sizeof-like expression.
606          Constant *Idx = CE->getOperand(1);
607          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
608          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
609            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
610                                                                DestTy, false),
611                                        Idx, DestTy);
612            return ConstantExpr::getMul(C, Idx);
613          }
614        } else if (CE->getNumOperands() == 3 &&
615                   CE->getOperand(1)->isNullValue()) {
616          // Handle an alignof-like expression.
617          if (const StructType *STy = dyn_cast<StructType>(Ty))
618            if (!STy->isPacked()) {
619              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
620              if (CI->isOne() &&
621                  STy->getNumElements() == 2 &&
622                  STy->getElementType(0)->isIntegerTy(1)) {
623                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
624              }
625            }
626          // Handle an offsetof-like expression.
627          if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()){
628            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
629                                                DestTy, false))
630              return C;
631          }
632        }
633      }
634    // Other pointer types cannot be casted
635    return 0;
636  case Instruction::UIToFP:
637  case Instruction::SIToFP:
638    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
639      APInt api = CI->getValue();
640      const uint64_t zero[] = {0, 0};
641      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
642                                  2, zero));
643      (void)apf.convertFromAPInt(api,
644                                 opc==Instruction::SIToFP,
645                                 APFloat::rmNearestTiesToEven);
646      return ConstantFP::get(V->getContext(), apf);
647    }
648    return 0;
649  case Instruction::ZExt:
650    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
651      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
652      APInt Result(CI->getValue());
653      Result.zext(BitWidth);
654      return ConstantInt::get(V->getContext(), Result);
655    }
656    return 0;
657  case Instruction::SExt:
658    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
659      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
660      APInt Result(CI->getValue());
661      Result.sext(BitWidth);
662      return ConstantInt::get(V->getContext(), Result);
663    }
664    return 0;
665  case Instruction::Trunc: {
666    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
667    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
668      APInt Result(CI->getValue());
669      Result.trunc(DestBitWidth);
670      return ConstantInt::get(V->getContext(), Result);
671    }
672
673    // The input must be a constantexpr.  See if we can simplify this based on
674    // the bytes we are demanding.  Only do this if the source and dest are an
675    // even multiple of a byte.
676    if ((DestBitWidth & 7) == 0 &&
677        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
678      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
679        return Res;
680
681    return 0;
682  }
683  case Instruction::BitCast:
684    return FoldBitCast(V, DestTy);
685  }
686}
687
688Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
689                                              Constant *V1, Constant *V2) {
690  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
691    return CB->getZExtValue() ? V1 : V2;
692
693  if (isa<UndefValue>(V1)) return V2;
694  if (isa<UndefValue>(V2)) return V1;
695  if (isa<UndefValue>(Cond)) return V1;
696  if (V1 == V2) return V1;
697  return 0;
698}
699
700Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
701                                                      Constant *Idx) {
702  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
703    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
704  if (Val->isNullValue())  // ee(zero, x) -> zero
705    return Constant::getNullValue(
706                          cast<VectorType>(Val->getType())->getElementType());
707
708  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
709    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
710      return CVal->getOperand(CIdx->getZExtValue());
711    } else if (isa<UndefValue>(Idx)) {
712      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
713      return CVal->getOperand(0);
714    }
715  }
716  return 0;
717}
718
719Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
720                                                     Constant *Elt,
721                                                     Constant *Idx) {
722  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
723  if (!CIdx) return 0;
724  APInt idxVal = CIdx->getValue();
725  if (isa<UndefValue>(Val)) {
726    // Insertion of scalar constant into vector undef
727    // Optimize away insertion of undef
728    if (isa<UndefValue>(Elt))
729      return Val;
730    // Otherwise break the aggregate undef into multiple undefs and do
731    // the insertion
732    unsigned numOps =
733      cast<VectorType>(Val->getType())->getNumElements();
734    std::vector<Constant*> Ops;
735    Ops.reserve(numOps);
736    for (unsigned i = 0; i < numOps; ++i) {
737      Constant *Op =
738        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
739      Ops.push_back(Op);
740    }
741    return ConstantVector::get(Ops);
742  }
743  if (isa<ConstantAggregateZero>(Val)) {
744    // Insertion of scalar constant into vector aggregate zero
745    // Optimize away insertion of zero
746    if (Elt->isNullValue())
747      return Val;
748    // Otherwise break the aggregate zero into multiple zeros and do
749    // the insertion
750    unsigned numOps =
751      cast<VectorType>(Val->getType())->getNumElements();
752    std::vector<Constant*> Ops;
753    Ops.reserve(numOps);
754    for (unsigned i = 0; i < numOps; ++i) {
755      Constant *Op =
756        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
757      Ops.push_back(Op);
758    }
759    return ConstantVector::get(Ops);
760  }
761  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
762    // Insertion of scalar constant into vector constant
763    std::vector<Constant*> Ops;
764    Ops.reserve(CVal->getNumOperands());
765    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
766      Constant *Op =
767        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
768      Ops.push_back(Op);
769    }
770    return ConstantVector::get(Ops);
771  }
772
773  return 0;
774}
775
776/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
777/// return the specified element value.  Otherwise return null.
778static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
779  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
780    return CV->getOperand(EltNo);
781
782  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
783  if (isa<ConstantAggregateZero>(C))
784    return Constant::getNullValue(EltTy);
785  if (isa<UndefValue>(C))
786    return UndefValue::get(EltTy);
787  return 0;
788}
789
790Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
791                                                     Constant *V2,
792                                                     Constant *Mask) {
793  // Undefined shuffle mask -> undefined value.
794  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
795
796  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
797  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
798  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
799
800  // Loop over the shuffle mask, evaluating each element.
801  SmallVector<Constant*, 32> Result;
802  for (unsigned i = 0; i != MaskNumElts; ++i) {
803    Constant *InElt = GetVectorElement(Mask, i);
804    if (InElt == 0) return 0;
805
806    if (isa<UndefValue>(InElt))
807      InElt = UndefValue::get(EltTy);
808    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
809      unsigned Elt = CI->getZExtValue();
810      if (Elt >= SrcNumElts*2)
811        InElt = UndefValue::get(EltTy);
812      else if (Elt >= SrcNumElts)
813        InElt = GetVectorElement(V2, Elt - SrcNumElts);
814      else
815        InElt = GetVectorElement(V1, Elt);
816      if (InElt == 0) return 0;
817    } else {
818      // Unknown value.
819      return 0;
820    }
821    Result.push_back(InElt);
822  }
823
824  return ConstantVector::get(&Result[0], Result.size());
825}
826
827Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
828                                                    const unsigned *Idxs,
829                                                    unsigned NumIdx) {
830  // Base case: no indices, so return the entire value.
831  if (NumIdx == 0)
832    return Agg;
833
834  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
835    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
836                                                            Idxs,
837                                                            Idxs + NumIdx));
838
839  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
840    return
841      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
842                                                              Idxs,
843                                                              Idxs + NumIdx));
844
845  // Otherwise recurse.
846  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
847    return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
848                                               Idxs+1, NumIdx-1);
849
850  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
851    return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
852                                               Idxs+1, NumIdx-1);
853  ConstantVector *CV = cast<ConstantVector>(Agg);
854  return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
855                                             Idxs+1, NumIdx-1);
856}
857
858Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
859                                                   Constant *Val,
860                                                   const unsigned *Idxs,
861                                                   unsigned NumIdx) {
862  // Base case: no indices, so replace the entire value.
863  if (NumIdx == 0)
864    return Val;
865
866  if (isa<UndefValue>(Agg)) {
867    // Insertion of constant into aggregate undef
868    // Optimize away insertion of undef.
869    if (isa<UndefValue>(Val))
870      return Agg;
871
872    // Otherwise break the aggregate undef into multiple undefs and do
873    // the insertion.
874    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
875    unsigned numOps;
876    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
877      numOps = AR->getNumElements();
878    else if (AggTy->isUnionTy())
879      numOps = 1;
880    else
881      numOps = cast<StructType>(AggTy)->getNumElements();
882
883    std::vector<Constant*> Ops(numOps);
884    for (unsigned i = 0; i < numOps; ++i) {
885      const Type *MemberTy = AggTy->getTypeAtIndex(i);
886      Constant *Op =
887        (*Idxs == i) ?
888        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
889                                           Val, Idxs+1, NumIdx-1) :
890        UndefValue::get(MemberTy);
891      Ops[i] = Op;
892    }
893
894    if (const StructType* ST = dyn_cast<StructType>(AggTy))
895      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
896    if (const UnionType* UT = dyn_cast<UnionType>(AggTy)) {
897      assert(Ops.size() == 1 && "Union can only contain a single value!");
898      return ConstantUnion::get(UT, Ops[0]);
899    }
900    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
901  }
902
903  if (isa<ConstantAggregateZero>(Agg)) {
904    // Insertion of constant into aggregate zero
905    // Optimize away insertion of zero.
906    if (Val->isNullValue())
907      return Agg;
908
909    // Otherwise break the aggregate zero into multiple zeros and do
910    // the insertion.
911    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
912    unsigned numOps;
913    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
914      numOps = AR->getNumElements();
915    else
916      numOps = cast<StructType>(AggTy)->getNumElements();
917
918    std::vector<Constant*> Ops(numOps);
919    for (unsigned i = 0; i < numOps; ++i) {
920      const Type *MemberTy = AggTy->getTypeAtIndex(i);
921      Constant *Op =
922        (*Idxs == i) ?
923        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
924                                           Val, Idxs+1, NumIdx-1) :
925        Constant::getNullValue(MemberTy);
926      Ops[i] = Op;
927    }
928
929    if (const StructType *ST = dyn_cast<StructType>(AggTy))
930      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
931    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
932  }
933
934  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
935    // Insertion of constant into aggregate constant.
936    std::vector<Constant*> Ops(Agg->getNumOperands());
937    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
938      Constant *Op = cast<Constant>(Agg->getOperand(i));
939      if (*Idxs == i)
940        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
941      Ops[i] = Op;
942    }
943
944    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
945      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
946    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
947  }
948
949  return 0;
950}
951
952
953Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
954                                              Constant *C1, Constant *C2) {
955  // No compile-time operations on this type yet.
956  if (C1->getType()->isPPC_FP128Ty())
957    return 0;
958
959  // Handle UndefValue up front.
960  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
961    switch (Opcode) {
962    case Instruction::Xor:
963      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
964        // Handle undef ^ undef -> 0 special case. This is a common
965        // idiom (misuse).
966        return Constant::getNullValue(C1->getType());
967      // Fallthrough
968    case Instruction::Add:
969    case Instruction::Sub:
970      return UndefValue::get(C1->getType());
971    case Instruction::Mul:
972    case Instruction::And:
973      return Constant::getNullValue(C1->getType());
974    case Instruction::UDiv:
975    case Instruction::SDiv:
976    case Instruction::URem:
977    case Instruction::SRem:
978      if (!isa<UndefValue>(C2))                    // undef / X -> 0
979        return Constant::getNullValue(C1->getType());
980      return C2;                                   // X / undef -> undef
981    case Instruction::Or:                          // X | undef -> -1
982      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
983        return Constant::getAllOnesValue(PTy);
984      return Constant::getAllOnesValue(C1->getType());
985    case Instruction::LShr:
986      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
987        return C1;                                  // undef lshr undef -> undef
988      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
989                                                    // undef lshr X -> 0
990    case Instruction::AShr:
991      if (!isa<UndefValue>(C2))
992        return C1;                                  // undef ashr X --> undef
993      else if (isa<UndefValue>(C1))
994        return C1;                                  // undef ashr undef -> undef
995      else
996        return C1;                                  // X ashr undef --> X
997    case Instruction::Shl:
998      // undef << X -> 0   or   X << undef -> 0
999      return Constant::getNullValue(C1->getType());
1000    }
1001  }
1002
1003  // Handle simplifications when the RHS is a constant int.
1004  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1005    switch (Opcode) {
1006    case Instruction::Add:
1007      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1008      break;
1009    case Instruction::Sub:
1010      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1011      break;
1012    case Instruction::Mul:
1013      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1014      if (CI2->equalsInt(1))
1015        return C1;                                              // X * 1 == X
1016      break;
1017    case Instruction::UDiv:
1018    case Instruction::SDiv:
1019      if (CI2->equalsInt(1))
1020        return C1;                                            // X / 1 == X
1021      if (CI2->equalsInt(0))
1022        return UndefValue::get(CI2->getType());               // X / 0 == undef
1023      break;
1024    case Instruction::URem:
1025    case Instruction::SRem:
1026      if (CI2->equalsInt(1))
1027        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1028      if (CI2->equalsInt(0))
1029        return UndefValue::get(CI2->getType());               // X % 0 == undef
1030      break;
1031    case Instruction::And:
1032      if (CI2->isZero()) return C2;                           // X & 0 == 0
1033      if (CI2->isAllOnesValue())
1034        return C1;                                            // X & -1 == X
1035
1036      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1037        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1038        if (CE1->getOpcode() == Instruction::ZExt) {
1039          unsigned DstWidth = CI2->getType()->getBitWidth();
1040          unsigned SrcWidth =
1041            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1042          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1043          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1044            return C1;
1045        }
1046
1047        // If and'ing the address of a global with a constant, fold it.
1048        if (CE1->getOpcode() == Instruction::PtrToInt &&
1049            isa<GlobalValue>(CE1->getOperand(0))) {
1050          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1051
1052          // Functions are at least 4-byte aligned.
1053          unsigned GVAlign = GV->getAlignment();
1054          if (isa<Function>(GV))
1055            GVAlign = std::max(GVAlign, 4U);
1056
1057          if (GVAlign > 1) {
1058            unsigned DstWidth = CI2->getType()->getBitWidth();
1059            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1060            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1061
1062            // If checking bits we know are clear, return zero.
1063            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1064              return Constant::getNullValue(CI2->getType());
1065          }
1066        }
1067      }
1068      break;
1069    case Instruction::Or:
1070      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1071      if (CI2->isAllOnesValue())
1072        return C2;                         // X | -1 == -1
1073      break;
1074    case Instruction::Xor:
1075      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1076
1077      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1078        switch (CE1->getOpcode()) {
1079        default: break;
1080        case Instruction::ICmp:
1081        case Instruction::FCmp:
1082          // cmp pred ^ true -> cmp !pred
1083          assert(CI2->equalsInt(1));
1084          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1085          pred = CmpInst::getInversePredicate(pred);
1086          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1087                                          CE1->getOperand(1));
1088        }
1089      }
1090      break;
1091    case Instruction::AShr:
1092      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1093      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1094        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1095          return ConstantExpr::getLShr(C1, C2);
1096      break;
1097    }
1098  } else if (isa<ConstantInt>(C1)) {
1099    // If C1 is a ConstantInt and C2 is not, swap the operands.
1100    if (Instruction::isCommutative(Opcode))
1101      return ConstantExpr::get(Opcode, C2, C1);
1102  }
1103
1104  // At this point we know neither constant is an UndefValue.
1105  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1106    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1107      using namespace APIntOps;
1108      const APInt &C1V = CI1->getValue();
1109      const APInt &C2V = CI2->getValue();
1110      switch (Opcode) {
1111      default:
1112        break;
1113      case Instruction::Add:
1114        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1115      case Instruction::Sub:
1116        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1117      case Instruction::Mul:
1118        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1119      case Instruction::UDiv:
1120        assert(!CI2->isNullValue() && "Div by zero handled above");
1121        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1122      case Instruction::SDiv:
1123        assert(!CI2->isNullValue() && "Div by zero handled above");
1124        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1125          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1126        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1127      case Instruction::URem:
1128        assert(!CI2->isNullValue() && "Div by zero handled above");
1129        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1130      case Instruction::SRem:
1131        assert(!CI2->isNullValue() && "Div by zero handled above");
1132        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1133          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1134        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1135      case Instruction::And:
1136        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1137      case Instruction::Or:
1138        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1139      case Instruction::Xor:
1140        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1141      case Instruction::Shl: {
1142        uint32_t shiftAmt = C2V.getZExtValue();
1143        if (shiftAmt < C1V.getBitWidth())
1144          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1145        else
1146          return UndefValue::get(C1->getType()); // too big shift is undef
1147      }
1148      case Instruction::LShr: {
1149        uint32_t shiftAmt = C2V.getZExtValue();
1150        if (shiftAmt < C1V.getBitWidth())
1151          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1152        else
1153          return UndefValue::get(C1->getType()); // too big shift is undef
1154      }
1155      case Instruction::AShr: {
1156        uint32_t shiftAmt = C2V.getZExtValue();
1157        if (shiftAmt < C1V.getBitWidth())
1158          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1159        else
1160          return UndefValue::get(C1->getType()); // too big shift is undef
1161      }
1162      }
1163    }
1164
1165    switch (Opcode) {
1166    case Instruction::SDiv:
1167    case Instruction::UDiv:
1168    case Instruction::URem:
1169    case Instruction::SRem:
1170    case Instruction::LShr:
1171    case Instruction::AShr:
1172    case Instruction::Shl:
1173      if (CI1->equalsInt(0)) return C1;
1174      break;
1175    default:
1176      break;
1177    }
1178  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1179    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1180      APFloat C1V = CFP1->getValueAPF();
1181      APFloat C2V = CFP2->getValueAPF();
1182      APFloat C3V = C1V;  // copy for modification
1183      switch (Opcode) {
1184      default:
1185        break;
1186      case Instruction::FAdd:
1187        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1188        return ConstantFP::get(C1->getContext(), C3V);
1189      case Instruction::FSub:
1190        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1191        return ConstantFP::get(C1->getContext(), C3V);
1192      case Instruction::FMul:
1193        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1194        return ConstantFP::get(C1->getContext(), C3V);
1195      case Instruction::FDiv:
1196        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1197        return ConstantFP::get(C1->getContext(), C3V);
1198      case Instruction::FRem:
1199        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1200        return ConstantFP::get(C1->getContext(), C3V);
1201      }
1202    }
1203  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1204    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1205    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1206    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1207        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1208      std::vector<Constant*> Res;
1209      const Type* EltTy = VTy->getElementType();
1210      Constant *C1 = 0;
1211      Constant *C2 = 0;
1212      switch (Opcode) {
1213      default:
1214        break;
1215      case Instruction::Add:
1216        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1217          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1218          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1219          Res.push_back(ConstantExpr::getAdd(C1, C2));
1220        }
1221        return ConstantVector::get(Res);
1222      case Instruction::FAdd:
1223        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1224          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1225          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1226          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1227        }
1228        return ConstantVector::get(Res);
1229      case Instruction::Sub:
1230        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1231          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1232          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1233          Res.push_back(ConstantExpr::getSub(C1, C2));
1234        }
1235        return ConstantVector::get(Res);
1236      case Instruction::FSub:
1237        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1238          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1239          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1240          Res.push_back(ConstantExpr::getFSub(C1, C2));
1241        }
1242        return ConstantVector::get(Res);
1243      case Instruction::Mul:
1244        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1245          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1246          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1247          Res.push_back(ConstantExpr::getMul(C1, C2));
1248        }
1249        return ConstantVector::get(Res);
1250      case Instruction::FMul:
1251        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1252          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1253          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1254          Res.push_back(ConstantExpr::getFMul(C1, C2));
1255        }
1256        return ConstantVector::get(Res);
1257      case Instruction::UDiv:
1258        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1259          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1260          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1261          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1262        }
1263        return ConstantVector::get(Res);
1264      case Instruction::SDiv:
1265        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1266          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1267          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1268          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1269        }
1270        return ConstantVector::get(Res);
1271      case Instruction::FDiv:
1272        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1273          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1274          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1275          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1276        }
1277        return ConstantVector::get(Res);
1278      case Instruction::URem:
1279        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1280          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1281          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1282          Res.push_back(ConstantExpr::getURem(C1, C2));
1283        }
1284        return ConstantVector::get(Res);
1285      case Instruction::SRem:
1286        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1287          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1288          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1289          Res.push_back(ConstantExpr::getSRem(C1, C2));
1290        }
1291        return ConstantVector::get(Res);
1292      case Instruction::FRem:
1293        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1294          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1295          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1296          Res.push_back(ConstantExpr::getFRem(C1, C2));
1297        }
1298        return ConstantVector::get(Res);
1299      case Instruction::And:
1300        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1301          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1302          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1303          Res.push_back(ConstantExpr::getAnd(C1, C2));
1304        }
1305        return ConstantVector::get(Res);
1306      case Instruction::Or:
1307        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1308          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1309          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1310          Res.push_back(ConstantExpr::getOr(C1, C2));
1311        }
1312        return ConstantVector::get(Res);
1313      case Instruction::Xor:
1314        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1315          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1316          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1317          Res.push_back(ConstantExpr::getXor(C1, C2));
1318        }
1319        return ConstantVector::get(Res);
1320      case Instruction::LShr:
1321        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1322          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1323          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1324          Res.push_back(ConstantExpr::getLShr(C1, C2));
1325        }
1326        return ConstantVector::get(Res);
1327      case Instruction::AShr:
1328        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1329          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1330          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1331          Res.push_back(ConstantExpr::getAShr(C1, C2));
1332        }
1333        return ConstantVector::get(Res);
1334      case Instruction::Shl:
1335        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1336          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1337          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1338          Res.push_back(ConstantExpr::getShl(C1, C2));
1339        }
1340        return ConstantVector::get(Res);
1341      }
1342    }
1343  }
1344
1345  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1346    // There are many possible foldings we could do here.  We should probably
1347    // at least fold add of a pointer with an integer into the appropriate
1348    // getelementptr.  This will improve alias analysis a bit.
1349
1350    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1351    // (a + (b + c)).
1352    if (Instruction::isAssociative(Opcode, C1->getType()) &&
1353        CE1->getOpcode() == Opcode) {
1354      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1355      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1356        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1357    }
1358  } else if (isa<ConstantExpr>(C2)) {
1359    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1360    // other way if possible.
1361    if (Instruction::isCommutative(Opcode))
1362      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1363  }
1364
1365  // i1 can be simplified in many cases.
1366  if (C1->getType()->isIntegerTy(1)) {
1367    switch (Opcode) {
1368    case Instruction::Add:
1369    case Instruction::Sub:
1370      return ConstantExpr::getXor(C1, C2);
1371    case Instruction::Mul:
1372      return ConstantExpr::getAnd(C1, C2);
1373    case Instruction::Shl:
1374    case Instruction::LShr:
1375    case Instruction::AShr:
1376      // We can assume that C2 == 0.  If it were one the result would be
1377      // undefined because the shift value is as large as the bitwidth.
1378      return C1;
1379    case Instruction::SDiv:
1380    case Instruction::UDiv:
1381      // We can assume that C2 == 1.  If it were zero the result would be
1382      // undefined through division by zero.
1383      return C1;
1384    case Instruction::URem:
1385    case Instruction::SRem:
1386      // We can assume that C2 == 1.  If it were zero the result would be
1387      // undefined through division by zero.
1388      return ConstantInt::getFalse(C1->getContext());
1389    default:
1390      break;
1391    }
1392  }
1393
1394  // We don't know how to fold this.
1395  return 0;
1396}
1397
1398/// isZeroSizedType - This type is zero sized if its an array or structure of
1399/// zero sized types.  The only leaf zero sized type is an empty structure.
1400static bool isMaybeZeroSizedType(const Type *Ty) {
1401  if (Ty->isOpaqueTy()) return true;  // Can't say.
1402  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1403
1404    // If all of elements have zero size, this does too.
1405    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1406      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1407    return true;
1408
1409  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1410    return isMaybeZeroSizedType(ATy->getElementType());
1411  }
1412  return false;
1413}
1414
1415/// IdxCompare - Compare the two constants as though they were getelementptr
1416/// indices.  This allows coersion of the types to be the same thing.
1417///
1418/// If the two constants are the "same" (after coersion), return 0.  If the
1419/// first is less than the second, return -1, if the second is less than the
1420/// first, return 1.  If the constants are not integral, return -2.
1421///
1422static int IdxCompare(Constant *C1, Constant *C2,  const Type *ElTy) {
1423  if (C1 == C2) return 0;
1424
1425  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1426  // anything with them.
1427  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1428    return -2; // don't know!
1429
1430  // Ok, we have two differing integer indices.  Sign extend them to be the same
1431  // type.  Long is always big enough, so we use it.
1432  if (!C1->getType()->isIntegerTy(64))
1433    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1434
1435  if (!C2->getType()->isIntegerTy(64))
1436    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1437
1438  if (C1 == C2) return 0;  // They are equal
1439
1440  // If the type being indexed over is really just a zero sized type, there is
1441  // no pointer difference being made here.
1442  if (isMaybeZeroSizedType(ElTy))
1443    return -2; // dunno.
1444
1445  // If they are really different, now that they are the same type, then we
1446  // found a difference!
1447  if (cast<ConstantInt>(C1)->getSExtValue() <
1448      cast<ConstantInt>(C2)->getSExtValue())
1449    return -1;
1450  else
1451    return 1;
1452}
1453
1454/// evaluateFCmpRelation - This function determines if there is anything we can
1455/// decide about the two constants provided.  This doesn't need to handle simple
1456/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1457/// If we can determine that the two constants have a particular relation to
1458/// each other, we should return the corresponding FCmpInst predicate,
1459/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1460/// ConstantFoldCompareInstruction.
1461///
1462/// To simplify this code we canonicalize the relation so that the first
1463/// operand is always the most "complex" of the two.  We consider ConstantFP
1464/// to be the simplest, and ConstantExprs to be the most complex.
1465static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1466  assert(V1->getType() == V2->getType() &&
1467         "Cannot compare values of different types!");
1468
1469  // No compile-time operations on this type yet.
1470  if (V1->getType()->isPPC_FP128Ty())
1471    return FCmpInst::BAD_FCMP_PREDICATE;
1472
1473  // Handle degenerate case quickly
1474  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1475
1476  if (!isa<ConstantExpr>(V1)) {
1477    if (!isa<ConstantExpr>(V2)) {
1478      // We distilled thisUse the standard constant folder for a few cases
1479      ConstantInt *R = 0;
1480      R = dyn_cast<ConstantInt>(
1481                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1482      if (R && !R->isZero())
1483        return FCmpInst::FCMP_OEQ;
1484      R = dyn_cast<ConstantInt>(
1485                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1486      if (R && !R->isZero())
1487        return FCmpInst::FCMP_OLT;
1488      R = dyn_cast<ConstantInt>(
1489                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1490      if (R && !R->isZero())
1491        return FCmpInst::FCMP_OGT;
1492
1493      // Nothing more we can do
1494      return FCmpInst::BAD_FCMP_PREDICATE;
1495    }
1496
1497    // If the first operand is simple and second is ConstantExpr, swap operands.
1498    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1499    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1500      return FCmpInst::getSwappedPredicate(SwappedRelation);
1501  } else {
1502    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1503    // constantexpr or a simple constant.
1504    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1505    switch (CE1->getOpcode()) {
1506    case Instruction::FPTrunc:
1507    case Instruction::FPExt:
1508    case Instruction::UIToFP:
1509    case Instruction::SIToFP:
1510      // We might be able to do something with these but we don't right now.
1511      break;
1512    default:
1513      break;
1514    }
1515  }
1516  // There are MANY other foldings that we could perform here.  They will
1517  // probably be added on demand, as they seem needed.
1518  return FCmpInst::BAD_FCMP_PREDICATE;
1519}
1520
1521/// evaluateICmpRelation - This function determines if there is anything we can
1522/// decide about the two constants provided.  This doesn't need to handle simple
1523/// things like integer comparisons, but should instead handle ConstantExprs
1524/// and GlobalValues.  If we can determine that the two constants have a
1525/// particular relation to each other, we should return the corresponding ICmp
1526/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1527///
1528/// To simplify this code we canonicalize the relation so that the first
1529/// operand is always the most "complex" of the two.  We consider simple
1530/// constants (like ConstantInt) to be the simplest, followed by
1531/// GlobalValues, followed by ConstantExpr's (the most complex).
1532///
1533static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1534                                                bool isSigned) {
1535  assert(V1->getType() == V2->getType() &&
1536         "Cannot compare different types of values!");
1537  if (V1 == V2) return ICmpInst::ICMP_EQ;
1538
1539  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1540      !isa<BlockAddress>(V1)) {
1541    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1542        !isa<BlockAddress>(V2)) {
1543      // We distilled this down to a simple case, use the standard constant
1544      // folder.
1545      ConstantInt *R = 0;
1546      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1547      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1548      if (R && !R->isZero())
1549        return pred;
1550      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1551      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1552      if (R && !R->isZero())
1553        return pred;
1554      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1555      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1556      if (R && !R->isZero())
1557        return pred;
1558
1559      // If we couldn't figure it out, bail.
1560      return ICmpInst::BAD_ICMP_PREDICATE;
1561    }
1562
1563    // If the first operand is simple, swap operands.
1564    ICmpInst::Predicate SwappedRelation =
1565      evaluateICmpRelation(V2, V1, isSigned);
1566    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1567      return ICmpInst::getSwappedPredicate(SwappedRelation);
1568
1569  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1570    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1571      ICmpInst::Predicate SwappedRelation =
1572        evaluateICmpRelation(V2, V1, isSigned);
1573      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1574        return ICmpInst::getSwappedPredicate(SwappedRelation);
1575      return ICmpInst::BAD_ICMP_PREDICATE;
1576    }
1577
1578    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1579    // constant (which, since the types must match, means that it's a
1580    // ConstantPointerNull).
1581    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1582      // Don't try to decide equality of aliases.
1583      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1584        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1585          return ICmpInst::ICMP_NE;
1586    } else if (isa<BlockAddress>(V2)) {
1587      return ICmpInst::ICMP_NE; // Globals never equal labels.
1588    } else {
1589      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1590      // GlobalVals can never be null unless they have external weak linkage.
1591      // We don't try to evaluate aliases here.
1592      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1593        return ICmpInst::ICMP_NE;
1594    }
1595  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1596    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1597      ICmpInst::Predicate SwappedRelation =
1598        evaluateICmpRelation(V2, V1, isSigned);
1599      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1600        return ICmpInst::getSwappedPredicate(SwappedRelation);
1601      return ICmpInst::BAD_ICMP_PREDICATE;
1602    }
1603
1604    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1605    // constant (which, since the types must match, means that it is a
1606    // ConstantPointerNull).
1607    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1608      // Block address in another function can't equal this one, but block
1609      // addresses in the current function might be the same if blocks are
1610      // empty.
1611      if (BA2->getFunction() != BA->getFunction())
1612        return ICmpInst::ICMP_NE;
1613    } else {
1614      // Block addresses aren't null, don't equal the address of globals.
1615      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1616             "Canonicalization guarantee!");
1617      return ICmpInst::ICMP_NE;
1618    }
1619  } else {
1620    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1621    // constantexpr, a global, block address, or a simple constant.
1622    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1623    Constant *CE1Op0 = CE1->getOperand(0);
1624
1625    switch (CE1->getOpcode()) {
1626    case Instruction::Trunc:
1627    case Instruction::FPTrunc:
1628    case Instruction::FPExt:
1629    case Instruction::FPToUI:
1630    case Instruction::FPToSI:
1631      break; // We can't evaluate floating point casts or truncations.
1632
1633    case Instruction::UIToFP:
1634    case Instruction::SIToFP:
1635    case Instruction::BitCast:
1636    case Instruction::ZExt:
1637    case Instruction::SExt:
1638      // If the cast is not actually changing bits, and the second operand is a
1639      // null pointer, do the comparison with the pre-casted value.
1640      if (V2->isNullValue() &&
1641          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1642        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1643        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1644        return evaluateICmpRelation(CE1Op0,
1645                                    Constant::getNullValue(CE1Op0->getType()),
1646                                    isSigned);
1647      }
1648      break;
1649
1650    case Instruction::GetElementPtr:
1651      // Ok, since this is a getelementptr, we know that the constant has a
1652      // pointer type.  Check the various cases.
1653      if (isa<ConstantPointerNull>(V2)) {
1654        // If we are comparing a GEP to a null pointer, check to see if the base
1655        // of the GEP equals the null pointer.
1656        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1657          if (GV->hasExternalWeakLinkage())
1658            // Weak linkage GVals could be zero or not. We're comparing that
1659            // to null pointer so its greater-or-equal
1660            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1661          else
1662            // If its not weak linkage, the GVal must have a non-zero address
1663            // so the result is greater-than
1664            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1665        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1666          // If we are indexing from a null pointer, check to see if we have any
1667          // non-zero indices.
1668          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1669            if (!CE1->getOperand(i)->isNullValue())
1670              // Offsetting from null, must not be equal.
1671              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1672          // Only zero indexes from null, must still be zero.
1673          return ICmpInst::ICMP_EQ;
1674        }
1675        // Otherwise, we can't really say if the first operand is null or not.
1676      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1677        if (isa<ConstantPointerNull>(CE1Op0)) {
1678          if (GV2->hasExternalWeakLinkage())
1679            // Weak linkage GVals could be zero or not. We're comparing it to
1680            // a null pointer, so its less-or-equal
1681            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1682          else
1683            // If its not weak linkage, the GVal must have a non-zero address
1684            // so the result is less-than
1685            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1686        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1687          if (GV == GV2) {
1688            // If this is a getelementptr of the same global, then it must be
1689            // different.  Because the types must match, the getelementptr could
1690            // only have at most one index, and because we fold getelementptr's
1691            // with a single zero index, it must be nonzero.
1692            assert(CE1->getNumOperands() == 2 &&
1693                   !CE1->getOperand(1)->isNullValue() &&
1694                   "Suprising getelementptr!");
1695            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1696          } else {
1697            // If they are different globals, we don't know what the value is,
1698            // but they can't be equal.
1699            return ICmpInst::ICMP_NE;
1700          }
1701        }
1702      } else {
1703        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1704        Constant *CE2Op0 = CE2->getOperand(0);
1705
1706        // There are MANY other foldings that we could perform here.  They will
1707        // probably be added on demand, as they seem needed.
1708        switch (CE2->getOpcode()) {
1709        default: break;
1710        case Instruction::GetElementPtr:
1711          // By far the most common case to handle is when the base pointers are
1712          // obviously to the same or different globals.
1713          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1714            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1715              return ICmpInst::ICMP_NE;
1716            // Ok, we know that both getelementptr instructions are based on the
1717            // same global.  From this, we can precisely determine the relative
1718            // ordering of the resultant pointers.
1719            unsigned i = 1;
1720
1721            // The logic below assumes that the result of the comparison
1722            // can be determined by finding the first index that differs.
1723            // This doesn't work if there is over-indexing in any
1724            // subsequent indices, so check for that case first.
1725            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1726                !CE2->isGEPWithNoNotionalOverIndexing())
1727               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1728
1729            // Compare all of the operands the GEP's have in common.
1730            gep_type_iterator GTI = gep_type_begin(CE1);
1731            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1732                 ++i, ++GTI)
1733              switch (IdxCompare(CE1->getOperand(i),
1734                                 CE2->getOperand(i), GTI.getIndexedType())) {
1735              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1736              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1737              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1738              }
1739
1740            // Ok, we ran out of things they have in common.  If any leftovers
1741            // are non-zero then we have a difference, otherwise we are equal.
1742            for (; i < CE1->getNumOperands(); ++i)
1743              if (!CE1->getOperand(i)->isNullValue()) {
1744                if (isa<ConstantInt>(CE1->getOperand(i)))
1745                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1746                else
1747                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1748              }
1749
1750            for (; i < CE2->getNumOperands(); ++i)
1751              if (!CE2->getOperand(i)->isNullValue()) {
1752                if (isa<ConstantInt>(CE2->getOperand(i)))
1753                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1754                else
1755                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1756              }
1757            return ICmpInst::ICMP_EQ;
1758          }
1759        }
1760      }
1761    default:
1762      break;
1763    }
1764  }
1765
1766  return ICmpInst::BAD_ICMP_PREDICATE;
1767}
1768
1769Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1770                                               Constant *C1, Constant *C2) {
1771  const Type *ResultTy;
1772  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1773    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1774                               VT->getNumElements());
1775  else
1776    ResultTy = Type::getInt1Ty(C1->getContext());
1777
1778  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1779  if (pred == FCmpInst::FCMP_FALSE)
1780    return Constant::getNullValue(ResultTy);
1781
1782  if (pred == FCmpInst::FCMP_TRUE)
1783    return Constant::getAllOnesValue(ResultTy);
1784
1785  // Handle some degenerate cases first
1786  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1787    return UndefValue::get(ResultTy);
1788
1789  // No compile-time operations on this type yet.
1790  if (C1->getType()->isPPC_FP128Ty())
1791    return 0;
1792
1793  // icmp eq/ne(null,GV) -> false/true
1794  if (C1->isNullValue()) {
1795    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1796      // Don't try to evaluate aliases.  External weak GV can be null.
1797      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1798        if (pred == ICmpInst::ICMP_EQ)
1799          return ConstantInt::getFalse(C1->getContext());
1800        else if (pred == ICmpInst::ICMP_NE)
1801          return ConstantInt::getTrue(C1->getContext());
1802      }
1803  // icmp eq/ne(GV,null) -> false/true
1804  } else if (C2->isNullValue()) {
1805    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1806      // Don't try to evaluate aliases.  External weak GV can be null.
1807      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1808        if (pred == ICmpInst::ICMP_EQ)
1809          return ConstantInt::getFalse(C1->getContext());
1810        else if (pred == ICmpInst::ICMP_NE)
1811          return ConstantInt::getTrue(C1->getContext());
1812      }
1813  }
1814
1815  // If the comparison is a comparison between two i1's, simplify it.
1816  if (C1->getType()->isIntegerTy(1)) {
1817    switch(pred) {
1818    case ICmpInst::ICMP_EQ:
1819      if (isa<ConstantInt>(C2))
1820        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1821      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1822    case ICmpInst::ICMP_NE:
1823      return ConstantExpr::getXor(C1, C2);
1824    default:
1825      break;
1826    }
1827  }
1828
1829  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1830    APInt V1 = cast<ConstantInt>(C1)->getValue();
1831    APInt V2 = cast<ConstantInt>(C2)->getValue();
1832    switch (pred) {
1833    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1834    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1835    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1836    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1837    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1838    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1839    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1840    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1841    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1842    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1843    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1844    }
1845  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1846    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1847    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1848    APFloat::cmpResult R = C1V.compare(C2V);
1849    switch (pred) {
1850    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1851    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1852    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1853    case FCmpInst::FCMP_UNO:
1854      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1855    case FCmpInst::FCMP_ORD:
1856      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1857    case FCmpInst::FCMP_UEQ:
1858      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1859                                        R==APFloat::cmpEqual);
1860    case FCmpInst::FCMP_OEQ:
1861      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1862    case FCmpInst::FCMP_UNE:
1863      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1864    case FCmpInst::FCMP_ONE:
1865      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1866                                        R==APFloat::cmpGreaterThan);
1867    case FCmpInst::FCMP_ULT:
1868      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1869                                        R==APFloat::cmpLessThan);
1870    case FCmpInst::FCMP_OLT:
1871      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1872    case FCmpInst::FCMP_UGT:
1873      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1874                                        R==APFloat::cmpGreaterThan);
1875    case FCmpInst::FCMP_OGT:
1876      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1877    case FCmpInst::FCMP_ULE:
1878      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1879    case FCmpInst::FCMP_OLE:
1880      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1881                                        R==APFloat::cmpEqual);
1882    case FCmpInst::FCMP_UGE:
1883      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1884    case FCmpInst::FCMP_OGE:
1885      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1886                                        R==APFloat::cmpEqual);
1887    }
1888  } else if (C1->getType()->isVectorTy()) {
1889    SmallVector<Constant*, 16> C1Elts, C2Elts;
1890    C1->getVectorElements(C1Elts);
1891    C2->getVectorElements(C2Elts);
1892    if (C1Elts.empty() || C2Elts.empty())
1893      return 0;
1894
1895    // If we can constant fold the comparison of each element, constant fold
1896    // the whole vector comparison.
1897    SmallVector<Constant*, 4> ResElts;
1898    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1899      // Compare the elements, producing an i1 result or constant expr.
1900      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1901    }
1902    return ConstantVector::get(&ResElts[0], ResElts.size());
1903  }
1904
1905  if (C1->getType()->isFloatingPointTy()) {
1906    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1907    switch (evaluateFCmpRelation(C1, C2)) {
1908    default: llvm_unreachable("Unknown relation!");
1909    case FCmpInst::FCMP_UNO:
1910    case FCmpInst::FCMP_ORD:
1911    case FCmpInst::FCMP_UEQ:
1912    case FCmpInst::FCMP_UNE:
1913    case FCmpInst::FCMP_ULT:
1914    case FCmpInst::FCMP_UGT:
1915    case FCmpInst::FCMP_ULE:
1916    case FCmpInst::FCMP_UGE:
1917    case FCmpInst::FCMP_TRUE:
1918    case FCmpInst::FCMP_FALSE:
1919    case FCmpInst::BAD_FCMP_PREDICATE:
1920      break; // Couldn't determine anything about these constants.
1921    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1922      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1923                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1924                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1925      break;
1926    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1927      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1928                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1929                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1930      break;
1931    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1932      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1933                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1934                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1935      break;
1936    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1937      // We can only partially decide this relation.
1938      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1939        Result = 0;
1940      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1941        Result = 1;
1942      break;
1943    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1944      // We can only partially decide this relation.
1945      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1946        Result = 0;
1947      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1948        Result = 1;
1949      break;
1950    case ICmpInst::ICMP_NE: // We know that C1 != C2
1951      // We can only partially decide this relation.
1952      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1953        Result = 0;
1954      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1955        Result = 1;
1956      break;
1957    }
1958
1959    // If we evaluated the result, return it now.
1960    if (Result != -1)
1961      return ConstantInt::get(ResultTy, Result);
1962
1963  } else {
1964    // Evaluate the relation between the two constants, per the predicate.
1965    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1966    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1967    default: llvm_unreachable("Unknown relational!");
1968    case ICmpInst::BAD_ICMP_PREDICATE:
1969      break;  // Couldn't determine anything about these constants.
1970    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1971      // If we know the constants are equal, we can decide the result of this
1972      // computation precisely.
1973      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1974      break;
1975    case ICmpInst::ICMP_ULT:
1976      switch (pred) {
1977      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1978        Result = 1; break;
1979      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1980        Result = 0; break;
1981      }
1982      break;
1983    case ICmpInst::ICMP_SLT:
1984      switch (pred) {
1985      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1986        Result = 1; break;
1987      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1988        Result = 0; break;
1989      }
1990      break;
1991    case ICmpInst::ICMP_UGT:
1992      switch (pred) {
1993      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1994        Result = 1; break;
1995      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1996        Result = 0; break;
1997      }
1998      break;
1999    case ICmpInst::ICMP_SGT:
2000      switch (pred) {
2001      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2002        Result = 1; break;
2003      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2004        Result = 0; break;
2005      }
2006      break;
2007    case ICmpInst::ICMP_ULE:
2008      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2009      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2010      break;
2011    case ICmpInst::ICMP_SLE:
2012      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2013      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2014      break;
2015    case ICmpInst::ICMP_UGE:
2016      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2017      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2018      break;
2019    case ICmpInst::ICMP_SGE:
2020      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2021      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2022      break;
2023    case ICmpInst::ICMP_NE:
2024      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2025      if (pred == ICmpInst::ICMP_NE) Result = 1;
2026      break;
2027    }
2028
2029    // If we evaluated the result, return it now.
2030    if (Result != -1)
2031      return ConstantInt::get(ResultTy, Result);
2032
2033    // If the right hand side is a bitcast, try using its inverse to simplify
2034    // it by moving it to the left hand side.  We can't do this if it would turn
2035    // a vector compare into a scalar compare or visa versa.
2036    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2037      Constant *CE2Op0 = CE2->getOperand(0);
2038      if (CE2->getOpcode() == Instruction::BitCast &&
2039          CE2->getType()->isVectorTy()==CE2Op0->getType()->isVectorTy()) {
2040        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2041        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2042      }
2043    }
2044
2045    // If the left hand side is an extension, try eliminating it.
2046    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2047      if (CE1->getOpcode() == Instruction::SExt ||
2048          CE1->getOpcode() == Instruction::ZExt) {
2049        Constant *CE1Op0 = CE1->getOperand(0);
2050        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2051        if (CE1Inverse == CE1Op0) {
2052          // Check whether we can safely truncate the right hand side.
2053          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2054          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2055            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2056          }
2057        }
2058      }
2059    }
2060
2061    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2062        (C1->isNullValue() && !C2->isNullValue())) {
2063      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2064      // other way if possible.
2065      // Also, if C1 is null and C2 isn't, flip them around.
2066      switch (pred) {
2067      case ICmpInst::ICMP_EQ:
2068      case ICmpInst::ICMP_NE:
2069        // No change of predicate required.
2070        return ConstantExpr::getICmp(pred, C2, C1);
2071
2072      case ICmpInst::ICMP_ULT:
2073      case ICmpInst::ICMP_SLT:
2074      case ICmpInst::ICMP_UGT:
2075      case ICmpInst::ICMP_SGT:
2076      case ICmpInst::ICMP_ULE:
2077      case ICmpInst::ICMP_SLE:
2078      case ICmpInst::ICMP_UGE:
2079      case ICmpInst::ICMP_SGE:
2080        // Change the predicate as necessary to swap the operands.
2081        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2082        return ConstantExpr::getICmp(pred, C2, C1);
2083
2084      default:  // These predicates cannot be flopped around.
2085        break;
2086      }
2087    }
2088  }
2089  return 0;
2090}
2091
2092/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2093/// is "inbounds".
2094static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
2095  // No indices means nothing that could be out of bounds.
2096  if (NumIdx == 0) return true;
2097
2098  // If the first index is zero, it's in bounds.
2099  if (Idxs[0]->isNullValue()) return true;
2100
2101  // If the first index is one and all the rest are zero, it's in bounds,
2102  // by the one-past-the-end rule.
2103  if (!cast<ConstantInt>(Idxs[0])->isOne())
2104    return false;
2105  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2106    if (!Idxs[i]->isNullValue())
2107      return false;
2108  return true;
2109}
2110
2111Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2112                                          bool inBounds,
2113                                          Constant* const *Idxs,
2114                                          unsigned NumIdx) {
2115  if (NumIdx == 0 ||
2116      (NumIdx == 1 && Idxs[0]->isNullValue()))
2117    return C;
2118
2119  if (isa<UndefValue>(C)) {
2120    const PointerType *Ptr = cast<PointerType>(C->getType());
2121    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2122                                                       (Value **)Idxs,
2123                                                       (Value **)Idxs+NumIdx);
2124    assert(Ty != 0 && "Invalid indices for GEP!");
2125    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2126  }
2127
2128  Constant *Idx0 = Idxs[0];
2129  if (C->isNullValue()) {
2130    bool isNull = true;
2131    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2132      if (!Idxs[i]->isNullValue()) {
2133        isNull = false;
2134        break;
2135      }
2136    if (isNull) {
2137      const PointerType *Ptr = cast<PointerType>(C->getType());
2138      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2139                                                         (Value**)Idxs,
2140                                                         (Value**)Idxs+NumIdx);
2141      assert(Ty != 0 && "Invalid indices for GEP!");
2142      return  ConstantPointerNull::get(
2143                            PointerType::get(Ty,Ptr->getAddressSpace()));
2144    }
2145  }
2146
2147  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2148    // Combine Indices - If the source pointer to this getelementptr instruction
2149    // is a getelementptr instruction, combine the indices of the two
2150    // getelementptr instructions into a single instruction.
2151    //
2152    if (CE->getOpcode() == Instruction::GetElementPtr) {
2153      const Type *LastTy = 0;
2154      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2155           I != E; ++I)
2156        LastTy = *I;
2157
2158      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2159        SmallVector<Value*, 16> NewIndices;
2160        NewIndices.reserve(NumIdx + CE->getNumOperands());
2161        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2162          NewIndices.push_back(CE->getOperand(i));
2163
2164        // Add the last index of the source with the first index of the new GEP.
2165        // Make sure to handle the case when they are actually different types.
2166        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2167        // Otherwise it must be an array.
2168        if (!Idx0->isNullValue()) {
2169          const Type *IdxTy = Combined->getType();
2170          if (IdxTy != Idx0->getType()) {
2171            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2172            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2173            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2174            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2175          } else {
2176            Combined =
2177              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2178          }
2179        }
2180
2181        NewIndices.push_back(Combined);
2182        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
2183        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2184          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2185                                                 &NewIndices[0],
2186                                                 NewIndices.size()) :
2187          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2188                                         &NewIndices[0],
2189                                         NewIndices.size());
2190      }
2191    }
2192
2193    // Implement folding of:
2194    //    int* getelementptr ([2 x int]* bitcast ([3 x int]* %X to [2 x int]*),
2195    //                        long 0, long 0)
2196    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
2197    //
2198    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2199      if (const PointerType *SPT =
2200          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2201        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2202          if (const ArrayType *CAT =
2203        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2204            if (CAT->getElementType() == SAT->getElementType())
2205              return inBounds ?
2206                ConstantExpr::getInBoundsGetElementPtr(
2207                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2208                ConstantExpr::getGetElementPtr(
2209                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2210    }
2211  }
2212
2213  // Check to see if any array indices are not within the corresponding
2214  // notional array bounds. If so, try to determine if they can be factored
2215  // out into preceding dimensions.
2216  bool Unknown = false;
2217  SmallVector<Constant *, 8> NewIdxs;
2218  const Type *Ty = C->getType();
2219  const Type *Prev = 0;
2220  for (unsigned i = 0; i != NumIdx;
2221       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2222    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2223      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2224        if (ATy->getNumElements() <= INT64_MAX &&
2225            ATy->getNumElements() != 0 &&
2226            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2227          if (isa<SequentialType>(Prev)) {
2228            // It's out of range, but we can factor it into the prior
2229            // dimension.
2230            NewIdxs.resize(NumIdx);
2231            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2232                                                   ATy->getNumElements());
2233            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2234
2235            Constant *PrevIdx = Idxs[i-1];
2236            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2237
2238            // Before adding, extend both operands to i64 to avoid
2239            // overflow trouble.
2240            if (!PrevIdx->getType()->isIntegerTy(64))
2241              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2242                                           Type::getInt64Ty(Div->getContext()));
2243            if (!Div->getType()->isIntegerTy(64))
2244              Div = ConstantExpr::getSExt(Div,
2245                                          Type::getInt64Ty(Div->getContext()));
2246
2247            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2248          } else {
2249            // It's out of range, but the prior dimension is a struct
2250            // so we can't do anything about it.
2251            Unknown = true;
2252          }
2253        }
2254    } else {
2255      // We don't know if it's in range or not.
2256      Unknown = true;
2257    }
2258  }
2259
2260  // If we did any factoring, start over with the adjusted indices.
2261  if (!NewIdxs.empty()) {
2262    for (unsigned i = 0; i != NumIdx; ++i)
2263      if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
2264    return inBounds ?
2265      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2266                                             NewIdxs.size()) :
2267      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2268  }
2269
2270  // If all indices are known integers and normalized, we can do a simple
2271  // check for the "inbounds" property.
2272  if (!Unknown && !inBounds &&
2273      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2274    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2275
2276  return 0;
2277}
2278