ConstantFold.cpp revision 30cb6dda5ae441f27edef302cbb33936fbafba6d
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Operator.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified ConstantVector node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(ConstantVector *CV,
45                                       const VectorType *DstTy) {
46
47  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48  if (CV->isNullValue()) return Constant::getNullValue(DstTy);
49
50  // If this cast changes element count then we can't handle it here:
51  // doing so requires endianness information.  This should be handled by
52  // Analysis/ConstantFolding.cpp
53  unsigned NumElts = DstTy->getNumElements();
54  if (NumElts != CV->getNumOperands())
55    return 0;
56
57  // Check to verify that all elements of the input are simple.
58  for (unsigned i = 0; i != NumElts; ++i) {
59    if (!isa<ConstantInt>(CV->getOperand(i)) &&
60        !isa<ConstantFP>(CV->getOperand(i)))
61      return 0;
62  }
63
64  // Bitcast each element now.
65  std::vector<Constant*> Result;
66  const Type *DstEltTy = DstTy->getElementType();
67  for (unsigned i = 0; i != NumElts; ++i)
68    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
69                                                    DstEltTy));
70  return ConstantVector::get(Result);
71}
72
73/// This function determines which opcode to use to fold two constant cast
74/// expressions together. It uses CastInst::isEliminableCastPair to determine
75/// the opcode. Consequently its just a wrapper around that function.
76/// @brief Determine if it is valid to fold a cast of a cast
77static unsigned
78foldConstantCastPair(
79  unsigned opc,          ///< opcode of the second cast constant expression
80  ConstantExpr *Op,      ///< the first cast constant expression
81  const Type *DstTy      ///< desintation type of the first cast
82) {
83  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
84  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
85  assert(CastInst::isCast(opc) && "Invalid cast opcode");
86
87  // The the types and opcodes for the two Cast constant expressions
88  const Type *SrcTy = Op->getOperand(0)->getType();
89  const Type *MidTy = Op->getType();
90  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
91  Instruction::CastOps secondOp = Instruction::CastOps(opc);
92
93  // Let CastInst::isEliminableCastPair do the heavy lifting.
94  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
95                                        Type::getInt64Ty(DstTy->getContext()));
96}
97
98static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
99  const Type *SrcTy = V->getType();
100  if (SrcTy == DestTy)
101    return V; // no-op cast
102
103  // Check to see if we are casting a pointer to an aggregate to a pointer to
104  // the first element.  If so, return the appropriate GEP instruction.
105  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
106    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
107      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
108        SmallVector<Value*, 8> IdxList;
109        Value *Zero =
110          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
111        IdxList.push_back(Zero);
112        const Type *ElTy = PTy->getElementType();
113        while (ElTy != DPTy->getElementType()) {
114          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
115            if (STy->getNumElements() == 0) break;
116            ElTy = STy->getElementType(0);
117            IdxList.push_back(Zero);
118          } else if (const SequentialType *STy =
119                     dyn_cast<SequentialType>(ElTy)) {
120            if (ElTy->isPointerTy()) break;  // Can't index into pointers!
121            ElTy = STy->getElementType();
122            IdxList.push_back(Zero);
123          } else {
124            break;
125          }
126        }
127
128        if (ElTy == DPTy->getElementType())
129          // This GEP is inbounds because all indices are zero.
130          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
131                                                        IdxList.size());
132      }
133
134  // Handle casts from one vector constant to another.  We know that the src
135  // and dest type have the same size (otherwise its an illegal cast).
136  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
137    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
138      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
139             "Not cast between same sized vectors!");
140      SrcTy = NULL;
141      // First, check for null.  Undef is already handled.
142      if (isa<ConstantAggregateZero>(V))
143        return Constant::getNullValue(DestTy);
144
145      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
146        return BitCastConstantVector(CV, DestPTy);
147    }
148
149    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
150    // This allows for other simplifications (although some of them
151    // can only be handled by Analysis/ConstantFolding.cpp).
152    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
153      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
154  }
155
156  // Finally, implement bitcast folding now.   The code below doesn't handle
157  // bitcast right.
158  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
159    return ConstantPointerNull::get(cast<PointerType>(DestTy));
160
161  // Handle integral constant input.
162  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
163    if (DestTy->isIntegerTy())
164      // Integral -> Integral. This is a no-op because the bit widths must
165      // be the same. Consequently, we just fold to V.
166      return V;
167
168    if (DestTy->isFloatingPointTy())
169      return ConstantFP::get(DestTy->getContext(),
170                             APFloat(CI->getValue(),
171                                     !DestTy->isPPC_FP128Ty()));
172
173    // Otherwise, can't fold this (vector?)
174    return 0;
175  }
176
177  // Handle ConstantFP input: FP -> Integral.
178  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
179    return ConstantInt::get(FP->getContext(),
180                            FP->getValueAPF().bitcastToAPInt());
181
182  return 0;
183}
184
185
186/// ExtractConstantBytes - V is an integer constant which only has a subset of
187/// its bytes used.  The bytes used are indicated by ByteStart (which is the
188/// first byte used, counting from the least significant byte) and ByteSize,
189/// which is the number of bytes used.
190///
191/// This function analyzes the specified constant to see if the specified byte
192/// range can be returned as a simplified constant.  If so, the constant is
193/// returned, otherwise null is returned.
194///
195static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
196                                      unsigned ByteSize) {
197  assert(C->getType()->isIntegerTy() &&
198         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
199         "Non-byte sized integer input");
200  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
201  assert(ByteSize && "Must be accessing some piece");
202  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
203  assert(ByteSize != CSize && "Should not extract everything");
204
205  // Constant Integers are simple.
206  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
207    APInt V = CI->getValue();
208    if (ByteStart)
209      V = V.lshr(ByteStart*8);
210    V = V.trunc(ByteSize*8);
211    return ConstantInt::get(CI->getContext(), V);
212  }
213
214  // In the input is a constant expr, we might be able to recursively simplify.
215  // If not, we definitely can't do anything.
216  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
217  if (CE == 0) return 0;
218
219  switch (CE->getOpcode()) {
220  default: return 0;
221  case Instruction::Or: {
222    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
223    if (RHS == 0)
224      return 0;
225
226    // X | -1 -> -1.
227    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
228      if (RHSC->isAllOnesValue())
229        return RHSC;
230
231    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
232    if (LHS == 0)
233      return 0;
234    return ConstantExpr::getOr(LHS, RHS);
235  }
236  case Instruction::And: {
237    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
238    if (RHS == 0)
239      return 0;
240
241    // X & 0 -> 0.
242    if (RHS->isNullValue())
243      return RHS;
244
245    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
246    if (LHS == 0)
247      return 0;
248    return ConstantExpr::getAnd(LHS, RHS);
249  }
250  case Instruction::LShr: {
251    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
252    if (Amt == 0)
253      return 0;
254    unsigned ShAmt = Amt->getZExtValue();
255    // Cannot analyze non-byte shifts.
256    if ((ShAmt & 7) != 0)
257      return 0;
258    ShAmt >>= 3;
259
260    // If the extract is known to be all zeros, return zero.
261    if (ByteStart >= CSize-ShAmt)
262      return Constant::getNullValue(IntegerType::get(CE->getContext(),
263                                                     ByteSize*8));
264    // If the extract is known to be fully in the input, extract it.
265    if (ByteStart+ByteSize+ShAmt <= CSize)
266      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
267
268    // TODO: Handle the 'partially zero' case.
269    return 0;
270  }
271
272  case Instruction::Shl: {
273    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
274    if (Amt == 0)
275      return 0;
276    unsigned ShAmt = Amt->getZExtValue();
277    // Cannot analyze non-byte shifts.
278    if ((ShAmt & 7) != 0)
279      return 0;
280    ShAmt >>= 3;
281
282    // If the extract is known to be all zeros, return zero.
283    if (ByteStart+ByteSize <= ShAmt)
284      return Constant::getNullValue(IntegerType::get(CE->getContext(),
285                                                     ByteSize*8));
286    // If the extract is known to be fully in the input, extract it.
287    if (ByteStart >= ShAmt)
288      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
289
290    // TODO: Handle the 'partially zero' case.
291    return 0;
292  }
293
294  case Instruction::ZExt: {
295    unsigned SrcBitSize =
296      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
297
298    // If extracting something that is completely zero, return 0.
299    if (ByteStart*8 >= SrcBitSize)
300      return Constant::getNullValue(IntegerType::get(CE->getContext(),
301                                                     ByteSize*8));
302
303    // If exactly extracting the input, return it.
304    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
305      return CE->getOperand(0);
306
307    // If extracting something completely in the input, if if the input is a
308    // multiple of 8 bits, recurse.
309    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
310      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
311
312    // Otherwise, if extracting a subset of the input, which is not multiple of
313    // 8 bits, do a shift and trunc to get the bits.
314    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
315      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
316      Constant *Res = CE->getOperand(0);
317      if (ByteStart)
318        Res = ConstantExpr::getLShr(Res,
319                                 ConstantInt::get(Res->getType(), ByteStart*8));
320      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
321                                                          ByteSize*8));
322    }
323
324    // TODO: Handle the 'partially zero' case.
325    return 0;
326  }
327  }
328}
329
330/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
331/// on Ty, with any known factors factored out. If Folded is false,
332/// return null if no factoring was possible, to avoid endlessly
333/// bouncing an unfoldable expression back into the top-level folder.
334///
335static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
336                                 bool Folded) {
337  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
338    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
339    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
340    return ConstantExpr::getNUWMul(E, N);
341  }
342
343  if (const StructType *STy = dyn_cast<StructType>(Ty))
344    if (!STy->isPacked()) {
345      unsigned NumElems = STy->getNumElements();
346      // An empty struct has size zero.
347      if (NumElems == 0)
348        return ConstantExpr::getNullValue(DestTy);
349      // Check for a struct with all members having the same size.
350      Constant *MemberSize =
351        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
352      bool AllSame = true;
353      for (unsigned i = 1; i != NumElems; ++i)
354        if (MemberSize !=
355            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
356          AllSame = false;
357          break;
358        }
359      if (AllSame) {
360        Constant *N = ConstantInt::get(DestTy, NumElems);
361        return ConstantExpr::getNUWMul(MemberSize, N);
362      }
363    }
364
365  // Pointer size doesn't depend on the pointee type, so canonicalize them
366  // to an arbitrary pointee.
367  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
368    if (!PTy->getElementType()->isIntegerTy(1))
369      return
370        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
371                                         PTy->getAddressSpace()),
372                        DestTy, true);
373
374  // If there's no interesting folding happening, bail so that we don't create
375  // a constant that looks like it needs folding but really doesn't.
376  if (!Folded)
377    return 0;
378
379  // Base case: Get a regular sizeof expression.
380  Constant *C = ConstantExpr::getSizeOf(Ty);
381  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
382                                                    DestTy, false),
383                            C, DestTy);
384  return C;
385}
386
387/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
388/// on Ty, with any known factors factored out. If Folded is false,
389/// return null if no factoring was possible, to avoid endlessly
390/// bouncing an unfoldable expression back into the top-level folder.
391///
392static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
393                                  bool Folded) {
394  // The alignment of an array is equal to the alignment of the
395  // array element. Note that this is not always true for vectors.
396  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
397    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
398    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
399                                                      DestTy,
400                                                      false),
401                              C, DestTy);
402    return C;
403  }
404
405  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
406    // Packed structs always have an alignment of 1.
407    if (STy->isPacked())
408      return ConstantInt::get(DestTy, 1);
409
410    // Otherwise, struct alignment is the maximum alignment of any member.
411    // Without target data, we can't compare much, but we can check to see
412    // if all the members have the same alignment.
413    unsigned NumElems = STy->getNumElements();
414    // An empty struct has minimal alignment.
415    if (NumElems == 0)
416      return ConstantInt::get(DestTy, 1);
417    // Check for a struct with all members having the same alignment.
418    Constant *MemberAlign =
419      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
420    bool AllSame = true;
421    for (unsigned i = 1; i != NumElems; ++i)
422      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
423        AllSame = false;
424        break;
425      }
426    if (AllSame)
427      return MemberAlign;
428  }
429
430  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
431  // to an arbitrary pointee.
432  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
433    if (!PTy->getElementType()->isIntegerTy(1))
434      return
435        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
436                                                           1),
437                                          PTy->getAddressSpace()),
438                         DestTy, true);
439
440  // If there's no interesting folding happening, bail so that we don't create
441  // a constant that looks like it needs folding but really doesn't.
442  if (!Folded)
443    return 0;
444
445  // Base case: Get a regular alignof expression.
446  Constant *C = ConstantExpr::getAlignOf(Ty);
447  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
448                                                    DestTy, false),
449                            C, DestTy);
450  return C;
451}
452
453/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
454/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
455/// return null if no factoring was possible, to avoid endlessly
456/// bouncing an unfoldable expression back into the top-level folder.
457///
458static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
459                                   const Type *DestTy,
460                                   bool Folded) {
461  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
462    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
463                                                                DestTy, false),
464                                        FieldNo, DestTy);
465    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
466    return ConstantExpr::getNUWMul(E, N);
467  }
468
469  if (const StructType *STy = dyn_cast<StructType>(Ty))
470    if (!STy->isPacked()) {
471      unsigned NumElems = STy->getNumElements();
472      // An empty struct has no members.
473      if (NumElems == 0)
474        return 0;
475      // Check for a struct with all members having the same size.
476      Constant *MemberSize =
477        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
478      bool AllSame = true;
479      for (unsigned i = 1; i != NumElems; ++i)
480        if (MemberSize !=
481            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
482          AllSame = false;
483          break;
484        }
485      if (AllSame) {
486        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
487                                                                    false,
488                                                                    DestTy,
489                                                                    false),
490                                            FieldNo, DestTy);
491        return ConstantExpr::getNUWMul(MemberSize, N);
492      }
493    }
494
495  // If there's no interesting folding happening, bail so that we don't create
496  // a constant that looks like it needs folding but really doesn't.
497  if (!Folded)
498    return 0;
499
500  // Base case: Get a regular offsetof expression.
501  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
502  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
503                                                    DestTy, false),
504                            C, DestTy);
505  return C;
506}
507
508Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
509                                            const Type *DestTy) {
510  if (isa<UndefValue>(V)) {
511    // zext(undef) = 0, because the top bits will be zero.
512    // sext(undef) = 0, because the top bits will all be the same.
513    // [us]itofp(undef) = 0, because the result value is bounded.
514    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
515        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
516      return Constant::getNullValue(DestTy);
517    return UndefValue::get(DestTy);
518  }
519
520  // No compile-time operations on this type yet.
521  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
522    return 0;
523
524  if (V->isNullValue() && !DestTy->isX86_MMXTy())
525    return Constant::getNullValue(DestTy);
526
527  // If the cast operand is a constant expression, there's a few things we can
528  // do to try to simplify it.
529  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
530    if (CE->isCast()) {
531      // Try hard to fold cast of cast because they are often eliminable.
532      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
533        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
534    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
535      // If all of the indexes in the GEP are null values, there is no pointer
536      // adjustment going on.  We might as well cast the source pointer.
537      bool isAllNull = true;
538      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
539        if (!CE->getOperand(i)->isNullValue()) {
540          isAllNull = false;
541          break;
542        }
543      if (isAllNull)
544        // This is casting one pointer type to another, always BitCast
545        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
546    }
547  }
548
549  // If the cast operand is a constant vector, perform the cast by
550  // operating on each element. In the cast of bitcasts, the element
551  // count may be mismatched; don't attempt to handle that here.
552  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
553    if (DestTy->isVectorTy() &&
554        cast<VectorType>(DestTy)->getNumElements() ==
555        CV->getType()->getNumElements()) {
556      std::vector<Constant*> res;
557      const VectorType *DestVecTy = cast<VectorType>(DestTy);
558      const Type *DstEltTy = DestVecTy->getElementType();
559      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
560        res.push_back(ConstantExpr::getCast(opc,
561                                            CV->getOperand(i), DstEltTy));
562      return ConstantVector::get(res);
563    }
564
565  // We actually have to do a cast now. Perform the cast according to the
566  // opcode specified.
567  switch (opc) {
568  default:
569    llvm_unreachable("Failed to cast constant expression");
570  case Instruction::FPTrunc:
571  case Instruction::FPExt:
572    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
573      bool ignored;
574      APFloat Val = FPC->getValueAPF();
575      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
576                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
577                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
578                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
579                  APFloat::Bogus,
580                  APFloat::rmNearestTiesToEven, &ignored);
581      return ConstantFP::get(V->getContext(), Val);
582    }
583    return 0; // Can't fold.
584  case Instruction::FPToUI:
585  case Instruction::FPToSI:
586    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
587      const APFloat &V = FPC->getValueAPF();
588      bool ignored;
589      uint64_t x[2];
590      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
591      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
592                                APFloat::rmTowardZero, &ignored);
593      APInt Val(DestBitWidth, 2, x);
594      return ConstantInt::get(FPC->getContext(), Val);
595    }
596    return 0; // Can't fold.
597  case Instruction::IntToPtr:   //always treated as unsigned
598    if (V->isNullValue())       // Is it an integral null value?
599      return ConstantPointerNull::get(cast<PointerType>(DestTy));
600    return 0;                   // Other pointer types cannot be casted
601  case Instruction::PtrToInt:   // always treated as unsigned
602    // Is it a null pointer value?
603    if (V->isNullValue())
604      return ConstantInt::get(DestTy, 0);
605    // If this is a sizeof-like expression, pull out multiplications by
606    // known factors to expose them to subsequent folding. If it's an
607    // alignof-like expression, factor out known factors.
608    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
609      if (CE->getOpcode() == Instruction::GetElementPtr &&
610          CE->getOperand(0)->isNullValue()) {
611        const Type *Ty =
612          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
613        if (CE->getNumOperands() == 2) {
614          // Handle a sizeof-like expression.
615          Constant *Idx = CE->getOperand(1);
616          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
617          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
618            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
619                                                                DestTy, false),
620                                        Idx, DestTy);
621            return ConstantExpr::getMul(C, Idx);
622          }
623        } else if (CE->getNumOperands() == 3 &&
624                   CE->getOperand(1)->isNullValue()) {
625          // Handle an alignof-like expression.
626          if (const StructType *STy = dyn_cast<StructType>(Ty))
627            if (!STy->isPacked()) {
628              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
629              if (CI->isOne() &&
630                  STy->getNumElements() == 2 &&
631                  STy->getElementType(0)->isIntegerTy(1)) {
632                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
633              }
634            }
635          // Handle an offsetof-like expression.
636          if (Ty->isStructTy() || Ty->isArrayTy()) {
637            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
638                                                DestTy, false))
639              return C;
640          }
641        }
642      }
643    // Other pointer types cannot be casted
644    return 0;
645  case Instruction::UIToFP:
646  case Instruction::SIToFP:
647    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
648      APInt api = CI->getValue();
649      APFloat apf(APInt::getNullValue(DestTy->getPrimitiveSizeInBits()), true);
650      (void)apf.convertFromAPInt(api,
651                                 opc==Instruction::SIToFP,
652                                 APFloat::rmNearestTiesToEven);
653      return ConstantFP::get(V->getContext(), apf);
654    }
655    return 0;
656  case Instruction::ZExt:
657    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
658      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
659      return ConstantInt::get(V->getContext(),
660                              CI->getValue().zext(BitWidth));
661    }
662    return 0;
663  case Instruction::SExt:
664    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
665      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
666      return ConstantInt::get(V->getContext(),
667                              CI->getValue().sext(BitWidth));
668    }
669    return 0;
670  case Instruction::Trunc: {
671    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
672    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
673      return ConstantInt::get(V->getContext(),
674                              CI->getValue().trunc(DestBitWidth));
675    }
676
677    // The input must be a constantexpr.  See if we can simplify this based on
678    // the bytes we are demanding.  Only do this if the source and dest are an
679    // even multiple of a byte.
680    if ((DestBitWidth & 7) == 0 &&
681        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
682      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
683        return Res;
684
685    return 0;
686  }
687  case Instruction::BitCast:
688    return FoldBitCast(V, DestTy);
689  }
690}
691
692Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
693                                              Constant *V1, Constant *V2) {
694  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
695    return CB->getZExtValue() ? V1 : V2;
696
697  // Check for zero aggregate and ConstantVector of zeros
698  if (Cond->isNullValue()) return V2;
699
700  if (ConstantVector* CondV = dyn_cast<ConstantVector>(Cond)) {
701
702    if (CondV->isAllOnesValue()) return V1;
703
704    const VectorType *VTy = cast<VectorType>(V1->getType());
705    ConstantVector *CP1 = dyn_cast<ConstantVector>(V1);
706    ConstantVector *CP2 = dyn_cast<ConstantVector>(V2);
707
708    if ((CP1 || isa<ConstantAggregateZero>(V1)) &&
709        (CP2 || isa<ConstantAggregateZero>(V2))) {
710
711      // Find the element type of the returned vector
712      const Type *EltTy = VTy->getElementType();
713      unsigned NumElem = VTy->getNumElements();
714      std::vector<Constant*> Res(NumElem);
715
716      bool Valid = true;
717      for (unsigned i = 0; i < NumElem; ++i) {
718        ConstantInt* c = dyn_cast<ConstantInt>(CondV->getOperand(i));
719        if (!c) {
720          Valid = false;
721          break;
722        }
723        Constant *C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
724        Constant *C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
725        Res[i] = c->getZExtValue() ? C1 : C2;
726      }
727      // If we were able to build the vector, return it
728      if (Valid) return ConstantVector::get(Res);
729    }
730  }
731
732
733  if (isa<UndefValue>(V1)) return V2;
734  if (isa<UndefValue>(V2)) return V1;
735  if (isa<UndefValue>(Cond)) return V1;
736  if (V1 == V2) return V1;
737
738  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
739    if (TrueVal->getOpcode() == Instruction::Select)
740      if (TrueVal->getOperand(0) == Cond)
741	return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
742  }
743  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
744    if (FalseVal->getOpcode() == Instruction::Select)
745      if (FalseVal->getOperand(0) == Cond)
746	return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
747  }
748
749  return 0;
750}
751
752Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
753                                                      Constant *Idx) {
754  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
755    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
756  if (Val->isNullValue())  // ee(zero, x) -> zero
757    return Constant::getNullValue(
758                          cast<VectorType>(Val->getType())->getElementType());
759
760  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
761    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
762      return CVal->getOperand(CIdx->getZExtValue());
763    } else if (isa<UndefValue>(Idx)) {
764      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
765      return CVal->getOperand(0);
766    }
767  }
768  return 0;
769}
770
771Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
772                                                     Constant *Elt,
773                                                     Constant *Idx) {
774  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
775  if (!CIdx) return 0;
776  APInt idxVal = CIdx->getValue();
777  if (isa<UndefValue>(Val)) {
778    // Insertion of scalar constant into vector undef
779    // Optimize away insertion of undef
780    if (isa<UndefValue>(Elt))
781      return Val;
782    // Otherwise break the aggregate undef into multiple undefs and do
783    // the insertion
784    unsigned numOps =
785      cast<VectorType>(Val->getType())->getNumElements();
786    std::vector<Constant*> Ops;
787    Ops.reserve(numOps);
788    for (unsigned i = 0; i < numOps; ++i) {
789      Constant *Op =
790        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
791      Ops.push_back(Op);
792    }
793    return ConstantVector::get(Ops);
794  }
795  if (isa<ConstantAggregateZero>(Val)) {
796    // Insertion of scalar constant into vector aggregate zero
797    // Optimize away insertion of zero
798    if (Elt->isNullValue())
799      return Val;
800    // Otherwise break the aggregate zero into multiple zeros and do
801    // the insertion
802    unsigned numOps =
803      cast<VectorType>(Val->getType())->getNumElements();
804    std::vector<Constant*> Ops;
805    Ops.reserve(numOps);
806    for (unsigned i = 0; i < numOps; ++i) {
807      Constant *Op =
808        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
809      Ops.push_back(Op);
810    }
811    return ConstantVector::get(Ops);
812  }
813  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
814    // Insertion of scalar constant into vector constant
815    std::vector<Constant*> Ops;
816    Ops.reserve(CVal->getNumOperands());
817    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
818      Constant *Op =
819        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
820      Ops.push_back(Op);
821    }
822    return ConstantVector::get(Ops);
823  }
824
825  return 0;
826}
827
828/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
829/// return the specified element value.  Otherwise return null.
830static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
831  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
832    return CV->getOperand(EltNo);
833
834  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
835  if (isa<ConstantAggregateZero>(C))
836    return Constant::getNullValue(EltTy);
837  if (isa<UndefValue>(C))
838    return UndefValue::get(EltTy);
839  return 0;
840}
841
842Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
843                                                     Constant *V2,
844                                                     Constant *Mask) {
845  // Undefined shuffle mask -> undefined value.
846  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
847
848  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
849  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
850  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
851
852  // Loop over the shuffle mask, evaluating each element.
853  SmallVector<Constant*, 32> Result;
854  for (unsigned i = 0; i != MaskNumElts; ++i) {
855    Constant *InElt = GetVectorElement(Mask, i);
856    if (InElt == 0) return 0;
857
858    if (isa<UndefValue>(InElt))
859      InElt = UndefValue::get(EltTy);
860    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
861      unsigned Elt = CI->getZExtValue();
862      if (Elt >= SrcNumElts*2)
863        InElt = UndefValue::get(EltTy);
864      else if (Elt >= SrcNumElts)
865        InElt = GetVectorElement(V2, Elt - SrcNumElts);
866      else
867        InElt = GetVectorElement(V1, Elt);
868      if (InElt == 0) return 0;
869    } else {
870      // Unknown value.
871      return 0;
872    }
873    Result.push_back(InElt);
874  }
875
876  return ConstantVector::get(Result);
877}
878
879Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
880                                                    const unsigned *Idxs,
881                                                    unsigned NumIdx) {
882  // Base case: no indices, so return the entire value.
883  if (NumIdx == 0)
884    return Agg;
885
886  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
887    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
888                                                            Idxs,
889                                                            Idxs + NumIdx));
890
891  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
892    return
893      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
894                                                              Idxs,
895                                                              Idxs + NumIdx));
896
897  // Otherwise recurse.
898  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
899    return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
900                                               Idxs+1, NumIdx-1);
901
902  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
903    return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
904                                               Idxs+1, NumIdx-1);
905  ConstantVector *CV = cast<ConstantVector>(Agg);
906  return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
907                                             Idxs+1, NumIdx-1);
908}
909
910Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
911                                                   Constant *Val,
912                                                   const unsigned *Idxs,
913                                                   unsigned NumIdx) {
914  // Base case: no indices, so replace the entire value.
915  if (NumIdx == 0)
916    return Val;
917
918  if (isa<UndefValue>(Agg)) {
919    // Insertion of constant into aggregate undef
920    // Optimize away insertion of undef.
921    if (isa<UndefValue>(Val))
922      return Agg;
923
924    // Otherwise break the aggregate undef into multiple undefs and do
925    // the insertion.
926    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
927    unsigned numOps;
928    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
929      numOps = AR->getNumElements();
930    else
931      numOps = cast<StructType>(AggTy)->getNumElements();
932
933    std::vector<Constant*> Ops(numOps);
934    for (unsigned i = 0; i < numOps; ++i) {
935      const Type *MemberTy = AggTy->getTypeAtIndex(i);
936      Constant *Op =
937        (*Idxs == i) ?
938        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
939                                           Val, Idxs+1, NumIdx-1) :
940        UndefValue::get(MemberTy);
941      Ops[i] = Op;
942    }
943
944    if (const StructType* ST = dyn_cast<StructType>(AggTy))
945      return ConstantStruct::get(ST, Ops);
946    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
947  }
948
949  if (isa<ConstantAggregateZero>(Agg)) {
950    // Insertion of constant into aggregate zero
951    // Optimize away insertion of zero.
952    if (Val->isNullValue())
953      return Agg;
954
955    // Otherwise break the aggregate zero into multiple zeros and do
956    // the insertion.
957    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
958    unsigned numOps;
959    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
960      numOps = AR->getNumElements();
961    else
962      numOps = cast<StructType>(AggTy)->getNumElements();
963
964    std::vector<Constant*> Ops(numOps);
965    for (unsigned i = 0; i < numOps; ++i) {
966      const Type *MemberTy = AggTy->getTypeAtIndex(i);
967      Constant *Op =
968        (*Idxs == i) ?
969        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
970                                           Val, Idxs+1, NumIdx-1) :
971        Constant::getNullValue(MemberTy);
972      Ops[i] = Op;
973    }
974
975    if (const StructType *ST = dyn_cast<StructType>(AggTy))
976      return ConstantStruct::get(ST, Ops);
977    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
978  }
979
980  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
981    // Insertion of constant into aggregate constant.
982    std::vector<Constant*> Ops(Agg->getNumOperands());
983    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
984      Constant *Op = cast<Constant>(Agg->getOperand(i));
985      if (*Idxs == i)
986        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
987      Ops[i] = Op;
988    }
989
990    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
991      return ConstantStruct::get(ST, Ops);
992    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
993  }
994
995  return 0;
996}
997
998
999Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
1000                                              Constant *C1, Constant *C2) {
1001  // No compile-time operations on this type yet.
1002  if (C1->getType()->isPPC_FP128Ty())
1003    return 0;
1004
1005  // Handle UndefValue up front.
1006  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1007    switch (Opcode) {
1008    case Instruction::Xor:
1009      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
1010        // Handle undef ^ undef -> 0 special case. This is a common
1011        // idiom (misuse).
1012        return Constant::getNullValue(C1->getType());
1013      // Fallthrough
1014    case Instruction::Add:
1015    case Instruction::Sub:
1016      return UndefValue::get(C1->getType());
1017    case Instruction::And:
1018      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
1019        return C1;
1020      return Constant::getNullValue(C1->getType());   // undef & X -> 0
1021    case Instruction::Mul: {
1022      ConstantInt *CI;
1023      // X * undef -> undef   if X is odd or undef
1024      if (((CI = dyn_cast<ConstantInt>(C1)) && CI->getValue()[0]) ||
1025          ((CI = dyn_cast<ConstantInt>(C2)) && CI->getValue()[0]) ||
1026          (isa<UndefValue>(C1) && isa<UndefValue>(C2)))
1027        return UndefValue::get(C1->getType());
1028
1029      // X * undef -> 0       otherwise
1030      return Constant::getNullValue(C1->getType());
1031    }
1032    case Instruction::UDiv:
1033    case Instruction::SDiv:
1034      // undef / 1 -> undef
1035      if (Opcode == Instruction::UDiv || Opcode == Instruction::SDiv)
1036        if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2))
1037          if (CI2->isOne())
1038            return C1;
1039      // FALL THROUGH
1040    case Instruction::URem:
1041    case Instruction::SRem:
1042      if (!isa<UndefValue>(C2))                    // undef / X -> 0
1043        return Constant::getNullValue(C1->getType());
1044      return C2;                                   // X / undef -> undef
1045    case Instruction::Or:                          // X | undef -> -1
1046      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
1047        return C1;
1048      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
1049    case Instruction::LShr:
1050      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1051        return C1;                                  // undef lshr undef -> undef
1052      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
1053                                                    // undef lshr X -> 0
1054    case Instruction::AShr:
1055      if (!isa<UndefValue>(C2))                     // undef ashr X --> all ones
1056        return Constant::getAllOnesValue(C1->getType());
1057      else if (isa<UndefValue>(C1))
1058        return C1;                                  // undef ashr undef -> undef
1059      else
1060        return C1;                                  // X ashr undef --> X
1061    case Instruction::Shl:
1062      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
1063        return C1;                                  // undef shl undef -> undef
1064      // undef << X -> 0   or   X << undef -> 0
1065      return Constant::getNullValue(C1->getType());
1066    }
1067  }
1068
1069  // Handle simplifications when the RHS is a constant int.
1070  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1071    switch (Opcode) {
1072    case Instruction::Add:
1073      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1074      break;
1075    case Instruction::Sub:
1076      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1077      break;
1078    case Instruction::Mul:
1079      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1080      if (CI2->equalsInt(1))
1081        return C1;                                              // X * 1 == X
1082      break;
1083    case Instruction::UDiv:
1084    case Instruction::SDiv:
1085      if (CI2->equalsInt(1))
1086        return C1;                                            // X / 1 == X
1087      if (CI2->equalsInt(0))
1088        return UndefValue::get(CI2->getType());               // X / 0 == undef
1089      break;
1090    case Instruction::URem:
1091    case Instruction::SRem:
1092      if (CI2->equalsInt(1))
1093        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1094      if (CI2->equalsInt(0))
1095        return UndefValue::get(CI2->getType());               // X % 0 == undef
1096      break;
1097    case Instruction::And:
1098      if (CI2->isZero()) return C2;                           // X & 0 == 0
1099      if (CI2->isAllOnesValue())
1100        return C1;                                            // X & -1 == X
1101
1102      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1103        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1104        if (CE1->getOpcode() == Instruction::ZExt) {
1105          unsigned DstWidth = CI2->getType()->getBitWidth();
1106          unsigned SrcWidth =
1107            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1108          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1109          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1110            return C1;
1111        }
1112
1113        // If and'ing the address of a global with a constant, fold it.
1114        if (CE1->getOpcode() == Instruction::PtrToInt &&
1115            isa<GlobalValue>(CE1->getOperand(0))) {
1116          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1117
1118          // Functions are at least 4-byte aligned.
1119          unsigned GVAlign = GV->getAlignment();
1120          if (isa<Function>(GV))
1121            GVAlign = std::max(GVAlign, 4U);
1122
1123          if (GVAlign > 1) {
1124            unsigned DstWidth = CI2->getType()->getBitWidth();
1125            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1126            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1127
1128            // If checking bits we know are clear, return zero.
1129            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1130              return Constant::getNullValue(CI2->getType());
1131          }
1132        }
1133      }
1134      break;
1135    case Instruction::Or:
1136      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1137      if (CI2->isAllOnesValue())
1138        return C2;                         // X | -1 == -1
1139      break;
1140    case Instruction::Xor:
1141      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1142
1143      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1144        switch (CE1->getOpcode()) {
1145        default: break;
1146        case Instruction::ICmp:
1147        case Instruction::FCmp:
1148          // cmp pred ^ true -> cmp !pred
1149          assert(CI2->equalsInt(1));
1150          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1151          pred = CmpInst::getInversePredicate(pred);
1152          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1153                                          CE1->getOperand(1));
1154        }
1155      }
1156      break;
1157    case Instruction::AShr:
1158      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1159      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1160        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1161          return ConstantExpr::getLShr(C1, C2);
1162      break;
1163    }
1164  } else if (isa<ConstantInt>(C1)) {
1165    // If C1 is a ConstantInt and C2 is not, swap the operands.
1166    if (Instruction::isCommutative(Opcode))
1167      return ConstantExpr::get(Opcode, C2, C1);
1168  }
1169
1170  // At this point we know neither constant is an UndefValue.
1171  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1172    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1173      using namespace APIntOps;
1174      const APInt &C1V = CI1->getValue();
1175      const APInt &C2V = CI2->getValue();
1176      switch (Opcode) {
1177      default:
1178        break;
1179      case Instruction::Add:
1180        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1181      case Instruction::Sub:
1182        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1183      case Instruction::Mul:
1184        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1185      case Instruction::UDiv:
1186        assert(!CI2->isNullValue() && "Div by zero handled above");
1187        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1188      case Instruction::SDiv:
1189        assert(!CI2->isNullValue() && "Div by zero handled above");
1190        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1191          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1192        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1193      case Instruction::URem:
1194        assert(!CI2->isNullValue() && "Div by zero handled above");
1195        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1196      case Instruction::SRem:
1197        assert(!CI2->isNullValue() && "Div by zero handled above");
1198        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1199          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1200        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1201      case Instruction::And:
1202        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1203      case Instruction::Or:
1204        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1205      case Instruction::Xor:
1206        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1207      case Instruction::Shl: {
1208        uint32_t shiftAmt = C2V.getZExtValue();
1209        if (shiftAmt < C1V.getBitWidth())
1210          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1211        else
1212          return UndefValue::get(C1->getType()); // too big shift is undef
1213      }
1214      case Instruction::LShr: {
1215        uint32_t shiftAmt = C2V.getZExtValue();
1216        if (shiftAmt < C1V.getBitWidth())
1217          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1218        else
1219          return UndefValue::get(C1->getType()); // too big shift is undef
1220      }
1221      case Instruction::AShr: {
1222        uint32_t shiftAmt = C2V.getZExtValue();
1223        if (shiftAmt < C1V.getBitWidth())
1224          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1225        else
1226          return UndefValue::get(C1->getType()); // too big shift is undef
1227      }
1228      }
1229    }
1230
1231    switch (Opcode) {
1232    case Instruction::SDiv:
1233    case Instruction::UDiv:
1234    case Instruction::URem:
1235    case Instruction::SRem:
1236    case Instruction::LShr:
1237    case Instruction::AShr:
1238    case Instruction::Shl:
1239      if (CI1->equalsInt(0)) return C1;
1240      break;
1241    default:
1242      break;
1243    }
1244  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1245    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1246      APFloat C1V = CFP1->getValueAPF();
1247      APFloat C2V = CFP2->getValueAPF();
1248      APFloat C3V = C1V;  // copy for modification
1249      switch (Opcode) {
1250      default:
1251        break;
1252      case Instruction::FAdd:
1253        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1254        return ConstantFP::get(C1->getContext(), C3V);
1255      case Instruction::FSub:
1256        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1257        return ConstantFP::get(C1->getContext(), C3V);
1258      case Instruction::FMul:
1259        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1260        return ConstantFP::get(C1->getContext(), C3V);
1261      case Instruction::FDiv:
1262        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1263        return ConstantFP::get(C1->getContext(), C3V);
1264      case Instruction::FRem:
1265        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1266        return ConstantFP::get(C1->getContext(), C3V);
1267      }
1268    }
1269  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1270    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1271    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1272    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1273        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1274      std::vector<Constant*> Res;
1275      const Type* EltTy = VTy->getElementType();
1276      Constant *C1 = 0;
1277      Constant *C2 = 0;
1278      switch (Opcode) {
1279      default:
1280        break;
1281      case Instruction::Add:
1282        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1283          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1284          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1285          Res.push_back(ConstantExpr::getAdd(C1, C2));
1286        }
1287        return ConstantVector::get(Res);
1288      case Instruction::FAdd:
1289        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1290          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1291          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1292          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1293        }
1294        return ConstantVector::get(Res);
1295      case Instruction::Sub:
1296        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1297          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1298          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1299          Res.push_back(ConstantExpr::getSub(C1, C2));
1300        }
1301        return ConstantVector::get(Res);
1302      case Instruction::FSub:
1303        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1304          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1305          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1306          Res.push_back(ConstantExpr::getFSub(C1, C2));
1307        }
1308        return ConstantVector::get(Res);
1309      case Instruction::Mul:
1310        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1311          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1312          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1313          Res.push_back(ConstantExpr::getMul(C1, C2));
1314        }
1315        return ConstantVector::get(Res);
1316      case Instruction::FMul:
1317        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1318          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1319          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1320          Res.push_back(ConstantExpr::getFMul(C1, C2));
1321        }
1322        return ConstantVector::get(Res);
1323      case Instruction::UDiv:
1324        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1325          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1326          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1327          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1328        }
1329        return ConstantVector::get(Res);
1330      case Instruction::SDiv:
1331        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1332          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1333          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1334          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1335        }
1336        return ConstantVector::get(Res);
1337      case Instruction::FDiv:
1338        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1339          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1340          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1341          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1342        }
1343        return ConstantVector::get(Res);
1344      case Instruction::URem:
1345        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1346          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1347          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1348          Res.push_back(ConstantExpr::getURem(C1, C2));
1349        }
1350        return ConstantVector::get(Res);
1351      case Instruction::SRem:
1352        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1353          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1354          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1355          Res.push_back(ConstantExpr::getSRem(C1, C2));
1356        }
1357        return ConstantVector::get(Res);
1358      case Instruction::FRem:
1359        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1360          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1361          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1362          Res.push_back(ConstantExpr::getFRem(C1, C2));
1363        }
1364        return ConstantVector::get(Res);
1365      case Instruction::And:
1366        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1367          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1368          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1369          Res.push_back(ConstantExpr::getAnd(C1, C2));
1370        }
1371        return ConstantVector::get(Res);
1372      case Instruction::Or:
1373        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1374          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1375          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1376          Res.push_back(ConstantExpr::getOr(C1, C2));
1377        }
1378        return ConstantVector::get(Res);
1379      case Instruction::Xor:
1380        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1381          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1382          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1383          Res.push_back(ConstantExpr::getXor(C1, C2));
1384        }
1385        return ConstantVector::get(Res);
1386      case Instruction::LShr:
1387        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1388          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1389          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1390          Res.push_back(ConstantExpr::getLShr(C1, C2));
1391        }
1392        return ConstantVector::get(Res);
1393      case Instruction::AShr:
1394        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1395          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1396          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1397          Res.push_back(ConstantExpr::getAShr(C1, C2));
1398        }
1399        return ConstantVector::get(Res);
1400      case Instruction::Shl:
1401        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1402          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1403          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1404          Res.push_back(ConstantExpr::getShl(C1, C2));
1405        }
1406        return ConstantVector::get(Res);
1407      }
1408    }
1409  }
1410
1411  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1412    // There are many possible foldings we could do here.  We should probably
1413    // at least fold add of a pointer with an integer into the appropriate
1414    // getelementptr.  This will improve alias analysis a bit.
1415
1416    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1417    // (a + (b + c)).
1418    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1419      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1420      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1421        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1422    }
1423  } else if (isa<ConstantExpr>(C2)) {
1424    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1425    // other way if possible.
1426    if (Instruction::isCommutative(Opcode))
1427      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1428  }
1429
1430  // i1 can be simplified in many cases.
1431  if (C1->getType()->isIntegerTy(1)) {
1432    switch (Opcode) {
1433    case Instruction::Add:
1434    case Instruction::Sub:
1435      return ConstantExpr::getXor(C1, C2);
1436    case Instruction::Mul:
1437      return ConstantExpr::getAnd(C1, C2);
1438    case Instruction::Shl:
1439    case Instruction::LShr:
1440    case Instruction::AShr:
1441      // We can assume that C2 == 0.  If it were one the result would be
1442      // undefined because the shift value is as large as the bitwidth.
1443      return C1;
1444    case Instruction::SDiv:
1445    case Instruction::UDiv:
1446      // We can assume that C2 == 1.  If it were zero the result would be
1447      // undefined through division by zero.
1448      return C1;
1449    case Instruction::URem:
1450    case Instruction::SRem:
1451      // We can assume that C2 == 1.  If it were zero the result would be
1452      // undefined through division by zero.
1453      return ConstantInt::getFalse(C1->getContext());
1454    default:
1455      break;
1456    }
1457  }
1458
1459  // We don't know how to fold this.
1460  return 0;
1461}
1462
1463/// isZeroSizedType - This type is zero sized if its an array or structure of
1464/// zero sized types.  The only leaf zero sized type is an empty structure.
1465static bool isMaybeZeroSizedType(const Type *Ty) {
1466  if (Ty->isOpaqueTy()) return true;  // Can't say.
1467  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1468
1469    // If all of elements have zero size, this does too.
1470    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1471      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1472    return true;
1473
1474  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1475    return isMaybeZeroSizedType(ATy->getElementType());
1476  }
1477  return false;
1478}
1479
1480/// IdxCompare - Compare the two constants as though they were getelementptr
1481/// indices.  This allows coersion of the types to be the same thing.
1482///
1483/// If the two constants are the "same" (after coersion), return 0.  If the
1484/// first is less than the second, return -1, if the second is less than the
1485/// first, return 1.  If the constants are not integral, return -2.
1486///
1487static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
1488  if (C1 == C2) return 0;
1489
1490  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1491  // anything with them.
1492  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1493    return -2; // don't know!
1494
1495  // Ok, we have two differing integer indices.  Sign extend them to be the same
1496  // type.  Long is always big enough, so we use it.
1497  if (!C1->getType()->isIntegerTy(64))
1498    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1499
1500  if (!C2->getType()->isIntegerTy(64))
1501    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1502
1503  if (C1 == C2) return 0;  // They are equal
1504
1505  // If the type being indexed over is really just a zero sized type, there is
1506  // no pointer difference being made here.
1507  if (isMaybeZeroSizedType(ElTy))
1508    return -2; // dunno.
1509
1510  // If they are really different, now that they are the same type, then we
1511  // found a difference!
1512  if (cast<ConstantInt>(C1)->getSExtValue() <
1513      cast<ConstantInt>(C2)->getSExtValue())
1514    return -1;
1515  else
1516    return 1;
1517}
1518
1519/// evaluateFCmpRelation - This function determines if there is anything we can
1520/// decide about the two constants provided.  This doesn't need to handle simple
1521/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1522/// If we can determine that the two constants have a particular relation to
1523/// each other, we should return the corresponding FCmpInst predicate,
1524/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1525/// ConstantFoldCompareInstruction.
1526///
1527/// To simplify this code we canonicalize the relation so that the first
1528/// operand is always the most "complex" of the two.  We consider ConstantFP
1529/// to be the simplest, and ConstantExprs to be the most complex.
1530static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1531  assert(V1->getType() == V2->getType() &&
1532         "Cannot compare values of different types!");
1533
1534  // No compile-time operations on this type yet.
1535  if (V1->getType()->isPPC_FP128Ty())
1536    return FCmpInst::BAD_FCMP_PREDICATE;
1537
1538  // Handle degenerate case quickly
1539  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1540
1541  if (!isa<ConstantExpr>(V1)) {
1542    if (!isa<ConstantExpr>(V2)) {
1543      // We distilled thisUse the standard constant folder for a few cases
1544      ConstantInt *R = 0;
1545      R = dyn_cast<ConstantInt>(
1546                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1547      if (R && !R->isZero())
1548        return FCmpInst::FCMP_OEQ;
1549      R = dyn_cast<ConstantInt>(
1550                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1551      if (R && !R->isZero())
1552        return FCmpInst::FCMP_OLT;
1553      R = dyn_cast<ConstantInt>(
1554                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1555      if (R && !R->isZero())
1556        return FCmpInst::FCMP_OGT;
1557
1558      // Nothing more we can do
1559      return FCmpInst::BAD_FCMP_PREDICATE;
1560    }
1561
1562    // If the first operand is simple and second is ConstantExpr, swap operands.
1563    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1564    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1565      return FCmpInst::getSwappedPredicate(SwappedRelation);
1566  } else {
1567    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1568    // constantexpr or a simple constant.
1569    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1570    switch (CE1->getOpcode()) {
1571    case Instruction::FPTrunc:
1572    case Instruction::FPExt:
1573    case Instruction::UIToFP:
1574    case Instruction::SIToFP:
1575      // We might be able to do something with these but we don't right now.
1576      break;
1577    default:
1578      break;
1579    }
1580  }
1581  // There are MANY other foldings that we could perform here.  They will
1582  // probably be added on demand, as they seem needed.
1583  return FCmpInst::BAD_FCMP_PREDICATE;
1584}
1585
1586/// evaluateICmpRelation - This function determines if there is anything we can
1587/// decide about the two constants provided.  This doesn't need to handle simple
1588/// things like integer comparisons, but should instead handle ConstantExprs
1589/// and GlobalValues.  If we can determine that the two constants have a
1590/// particular relation to each other, we should return the corresponding ICmp
1591/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1592///
1593/// To simplify this code we canonicalize the relation so that the first
1594/// operand is always the most "complex" of the two.  We consider simple
1595/// constants (like ConstantInt) to be the simplest, followed by
1596/// GlobalValues, followed by ConstantExpr's (the most complex).
1597///
1598static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1599                                                bool isSigned) {
1600  assert(V1->getType() == V2->getType() &&
1601         "Cannot compare different types of values!");
1602  if (V1 == V2) return ICmpInst::ICMP_EQ;
1603
1604  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1605      !isa<BlockAddress>(V1)) {
1606    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1607        !isa<BlockAddress>(V2)) {
1608      // We distilled this down to a simple case, use the standard constant
1609      // folder.
1610      ConstantInt *R = 0;
1611      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1612      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1613      if (R && !R->isZero())
1614        return pred;
1615      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1616      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1617      if (R && !R->isZero())
1618        return pred;
1619      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1620      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1621      if (R && !R->isZero())
1622        return pred;
1623
1624      // If we couldn't figure it out, bail.
1625      return ICmpInst::BAD_ICMP_PREDICATE;
1626    }
1627
1628    // If the first operand is simple, swap operands.
1629    ICmpInst::Predicate SwappedRelation =
1630      evaluateICmpRelation(V2, V1, isSigned);
1631    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1632      return ICmpInst::getSwappedPredicate(SwappedRelation);
1633
1634  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1635    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1636      ICmpInst::Predicate SwappedRelation =
1637        evaluateICmpRelation(V2, V1, isSigned);
1638      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1639        return ICmpInst::getSwappedPredicate(SwappedRelation);
1640      return ICmpInst::BAD_ICMP_PREDICATE;
1641    }
1642
1643    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1644    // constant (which, since the types must match, means that it's a
1645    // ConstantPointerNull).
1646    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1647      // Don't try to decide equality of aliases.
1648      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1649        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1650          return ICmpInst::ICMP_NE;
1651    } else if (isa<BlockAddress>(V2)) {
1652      return ICmpInst::ICMP_NE; // Globals never equal labels.
1653    } else {
1654      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1655      // GlobalVals can never be null unless they have external weak linkage.
1656      // We don't try to evaluate aliases here.
1657      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1658        return ICmpInst::ICMP_NE;
1659    }
1660  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1661    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1662      ICmpInst::Predicate SwappedRelation =
1663        evaluateICmpRelation(V2, V1, isSigned);
1664      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1665        return ICmpInst::getSwappedPredicate(SwappedRelation);
1666      return ICmpInst::BAD_ICMP_PREDICATE;
1667    }
1668
1669    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1670    // constant (which, since the types must match, means that it is a
1671    // ConstantPointerNull).
1672    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1673      // Block address in another function can't equal this one, but block
1674      // addresses in the current function might be the same if blocks are
1675      // empty.
1676      if (BA2->getFunction() != BA->getFunction())
1677        return ICmpInst::ICMP_NE;
1678    } else {
1679      // Block addresses aren't null, don't equal the address of globals.
1680      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1681             "Canonicalization guarantee!");
1682      return ICmpInst::ICMP_NE;
1683    }
1684  } else {
1685    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1686    // constantexpr, a global, block address, or a simple constant.
1687    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1688    Constant *CE1Op0 = CE1->getOperand(0);
1689
1690    switch (CE1->getOpcode()) {
1691    case Instruction::Trunc:
1692    case Instruction::FPTrunc:
1693    case Instruction::FPExt:
1694    case Instruction::FPToUI:
1695    case Instruction::FPToSI:
1696      break; // We can't evaluate floating point casts or truncations.
1697
1698    case Instruction::UIToFP:
1699    case Instruction::SIToFP:
1700    case Instruction::BitCast:
1701    case Instruction::ZExt:
1702    case Instruction::SExt:
1703      // If the cast is not actually changing bits, and the second operand is a
1704      // null pointer, do the comparison with the pre-casted value.
1705      if (V2->isNullValue() &&
1706          (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1707        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1708        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1709        return evaluateICmpRelation(CE1Op0,
1710                                    Constant::getNullValue(CE1Op0->getType()),
1711                                    isSigned);
1712      }
1713      break;
1714
1715    case Instruction::GetElementPtr:
1716      // Ok, since this is a getelementptr, we know that the constant has a
1717      // pointer type.  Check the various cases.
1718      if (isa<ConstantPointerNull>(V2)) {
1719        // If we are comparing a GEP to a null pointer, check to see if the base
1720        // of the GEP equals the null pointer.
1721        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1722          if (GV->hasExternalWeakLinkage())
1723            // Weak linkage GVals could be zero or not. We're comparing that
1724            // to null pointer so its greater-or-equal
1725            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1726          else
1727            // If its not weak linkage, the GVal must have a non-zero address
1728            // so the result is greater-than
1729            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1730        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1731          // If we are indexing from a null pointer, check to see if we have any
1732          // non-zero indices.
1733          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1734            if (!CE1->getOperand(i)->isNullValue())
1735              // Offsetting from null, must not be equal.
1736              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1737          // Only zero indexes from null, must still be zero.
1738          return ICmpInst::ICMP_EQ;
1739        }
1740        // Otherwise, we can't really say if the first operand is null or not.
1741      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1742        if (isa<ConstantPointerNull>(CE1Op0)) {
1743          if (GV2->hasExternalWeakLinkage())
1744            // Weak linkage GVals could be zero or not. We're comparing it to
1745            // a null pointer, so its less-or-equal
1746            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1747          else
1748            // If its not weak linkage, the GVal must have a non-zero address
1749            // so the result is less-than
1750            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1751        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1752          if (GV == GV2) {
1753            // If this is a getelementptr of the same global, then it must be
1754            // different.  Because the types must match, the getelementptr could
1755            // only have at most one index, and because we fold getelementptr's
1756            // with a single zero index, it must be nonzero.
1757            assert(CE1->getNumOperands() == 2 &&
1758                   !CE1->getOperand(1)->isNullValue() &&
1759                   "Surprising getelementptr!");
1760            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1761          } else {
1762            // If they are different globals, we don't know what the value is,
1763            // but they can't be equal.
1764            return ICmpInst::ICMP_NE;
1765          }
1766        }
1767      } else {
1768        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1769        Constant *CE2Op0 = CE2->getOperand(0);
1770
1771        // There are MANY other foldings that we could perform here.  They will
1772        // probably be added on demand, as they seem needed.
1773        switch (CE2->getOpcode()) {
1774        default: break;
1775        case Instruction::GetElementPtr:
1776          // By far the most common case to handle is when the base pointers are
1777          // obviously to the same or different globals.
1778          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1779            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1780              return ICmpInst::ICMP_NE;
1781            // Ok, we know that both getelementptr instructions are based on the
1782            // same global.  From this, we can precisely determine the relative
1783            // ordering of the resultant pointers.
1784            unsigned i = 1;
1785
1786            // The logic below assumes that the result of the comparison
1787            // can be determined by finding the first index that differs.
1788            // This doesn't work if there is over-indexing in any
1789            // subsequent indices, so check for that case first.
1790            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1791                !CE2->isGEPWithNoNotionalOverIndexing())
1792               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1793
1794            // Compare all of the operands the GEP's have in common.
1795            gep_type_iterator GTI = gep_type_begin(CE1);
1796            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1797                 ++i, ++GTI)
1798              switch (IdxCompare(CE1->getOperand(i),
1799                                 CE2->getOperand(i), GTI.getIndexedType())) {
1800              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1801              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1802              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1803              }
1804
1805            // Ok, we ran out of things they have in common.  If any leftovers
1806            // are non-zero then we have a difference, otherwise we are equal.
1807            for (; i < CE1->getNumOperands(); ++i)
1808              if (!CE1->getOperand(i)->isNullValue()) {
1809                if (isa<ConstantInt>(CE1->getOperand(i)))
1810                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1811                else
1812                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1813              }
1814
1815            for (; i < CE2->getNumOperands(); ++i)
1816              if (!CE2->getOperand(i)->isNullValue()) {
1817                if (isa<ConstantInt>(CE2->getOperand(i)))
1818                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1819                else
1820                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1821              }
1822            return ICmpInst::ICMP_EQ;
1823          }
1824        }
1825      }
1826    default:
1827      break;
1828    }
1829  }
1830
1831  return ICmpInst::BAD_ICMP_PREDICATE;
1832}
1833
1834Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1835                                               Constant *C1, Constant *C2) {
1836  const Type *ResultTy;
1837  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1838    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1839                               VT->getNumElements());
1840  else
1841    ResultTy = Type::getInt1Ty(C1->getContext());
1842
1843  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1844  if (pred == FCmpInst::FCMP_FALSE)
1845    return Constant::getNullValue(ResultTy);
1846
1847  if (pred == FCmpInst::FCMP_TRUE)
1848    return Constant::getAllOnesValue(ResultTy);
1849
1850  // Handle some degenerate cases first
1851  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1852    // For EQ and NE, we can always pick a value for the undef to make the
1853    // predicate pass or fail, so we can return undef.
1854    if (ICmpInst::isEquality(ICmpInst::Predicate(pred)))
1855      return UndefValue::get(ResultTy);
1856    // Otherwise, pick the same value as the non-undef operand, and fold
1857    // it to true or false.
1858    return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(pred));
1859  }
1860
1861  // No compile-time operations on this type yet.
1862  if (C1->getType()->isPPC_FP128Ty())
1863    return 0;
1864
1865  // icmp eq/ne(null,GV) -> false/true
1866  if (C1->isNullValue()) {
1867    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1868      // Don't try to evaluate aliases.  External weak GV can be null.
1869      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1870        if (pred == ICmpInst::ICMP_EQ)
1871          return ConstantInt::getFalse(C1->getContext());
1872        else if (pred == ICmpInst::ICMP_NE)
1873          return ConstantInt::getTrue(C1->getContext());
1874      }
1875  // icmp eq/ne(GV,null) -> false/true
1876  } else if (C2->isNullValue()) {
1877    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1878      // Don't try to evaluate aliases.  External weak GV can be null.
1879      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1880        if (pred == ICmpInst::ICMP_EQ)
1881          return ConstantInt::getFalse(C1->getContext());
1882        else if (pred == ICmpInst::ICMP_NE)
1883          return ConstantInt::getTrue(C1->getContext());
1884      }
1885  }
1886
1887  // If the comparison is a comparison between two i1's, simplify it.
1888  if (C1->getType()->isIntegerTy(1)) {
1889    switch(pred) {
1890    case ICmpInst::ICMP_EQ:
1891      if (isa<ConstantInt>(C2))
1892        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1893      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1894    case ICmpInst::ICMP_NE:
1895      return ConstantExpr::getXor(C1, C2);
1896    default:
1897      break;
1898    }
1899  }
1900
1901  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1902    APInt V1 = cast<ConstantInt>(C1)->getValue();
1903    APInt V2 = cast<ConstantInt>(C2)->getValue();
1904    switch (pred) {
1905    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1906    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1907    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1908    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1909    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1910    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1911    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1912    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1913    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1914    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1915    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1916    }
1917  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1918    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1919    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1920    APFloat::cmpResult R = C1V.compare(C2V);
1921    switch (pred) {
1922    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1923    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1924    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1925    case FCmpInst::FCMP_UNO:
1926      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1927    case FCmpInst::FCMP_ORD:
1928      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1929    case FCmpInst::FCMP_UEQ:
1930      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1931                                        R==APFloat::cmpEqual);
1932    case FCmpInst::FCMP_OEQ:
1933      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1934    case FCmpInst::FCMP_UNE:
1935      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1936    case FCmpInst::FCMP_ONE:
1937      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1938                                        R==APFloat::cmpGreaterThan);
1939    case FCmpInst::FCMP_ULT:
1940      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1941                                        R==APFloat::cmpLessThan);
1942    case FCmpInst::FCMP_OLT:
1943      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1944    case FCmpInst::FCMP_UGT:
1945      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1946                                        R==APFloat::cmpGreaterThan);
1947    case FCmpInst::FCMP_OGT:
1948      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1949    case FCmpInst::FCMP_ULE:
1950      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1951    case FCmpInst::FCMP_OLE:
1952      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1953                                        R==APFloat::cmpEqual);
1954    case FCmpInst::FCMP_UGE:
1955      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1956    case FCmpInst::FCMP_OGE:
1957      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1958                                        R==APFloat::cmpEqual);
1959    }
1960  } else if (C1->getType()->isVectorTy()) {
1961    SmallVector<Constant*, 16> C1Elts, C2Elts;
1962    C1->getVectorElements(C1Elts);
1963    C2->getVectorElements(C2Elts);
1964    if (C1Elts.empty() || C2Elts.empty())
1965      return 0;
1966
1967    // If we can constant fold the comparison of each element, constant fold
1968    // the whole vector comparison.
1969    SmallVector<Constant*, 4> ResElts;
1970    // Compare the elements, producing an i1 result or constant expr.
1971    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i)
1972      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1973
1974    return ConstantVector::get(ResElts);
1975  }
1976
1977  if (C1->getType()->isFloatingPointTy()) {
1978    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1979    switch (evaluateFCmpRelation(C1, C2)) {
1980    default: llvm_unreachable("Unknown relation!");
1981    case FCmpInst::FCMP_UNO:
1982    case FCmpInst::FCMP_ORD:
1983    case FCmpInst::FCMP_UEQ:
1984    case FCmpInst::FCMP_UNE:
1985    case FCmpInst::FCMP_ULT:
1986    case FCmpInst::FCMP_UGT:
1987    case FCmpInst::FCMP_ULE:
1988    case FCmpInst::FCMP_UGE:
1989    case FCmpInst::FCMP_TRUE:
1990    case FCmpInst::FCMP_FALSE:
1991    case FCmpInst::BAD_FCMP_PREDICATE:
1992      break; // Couldn't determine anything about these constants.
1993    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1994      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1995                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1996                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1997      break;
1998    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1999      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2000                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
2001                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
2002      break;
2003    case FCmpInst::FCMP_OGT: // We know that C1 > C2
2004      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
2005                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
2006                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
2007      break;
2008    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
2009      // We can only partially decide this relation.
2010      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2011        Result = 0;
2012      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2013        Result = 1;
2014      break;
2015    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
2016      // We can only partially decide this relation.
2017      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
2018        Result = 0;
2019      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
2020        Result = 1;
2021      break;
2022    case FCmpInst::FCMP_ONE: // We know that C1 != C2
2023      // We can only partially decide this relation.
2024      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
2025        Result = 0;
2026      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
2027        Result = 1;
2028      break;
2029    }
2030
2031    // If we evaluated the result, return it now.
2032    if (Result != -1)
2033      return ConstantInt::get(ResultTy, Result);
2034
2035  } else {
2036    // Evaluate the relation between the two constants, per the predicate.
2037    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
2038    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
2039    default: llvm_unreachable("Unknown relational!");
2040    case ICmpInst::BAD_ICMP_PREDICATE:
2041      break;  // Couldn't determine anything about these constants.
2042    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2043      // If we know the constants are equal, we can decide the result of this
2044      // computation precisely.
2045      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2046      break;
2047    case ICmpInst::ICMP_ULT:
2048      switch (pred) {
2049      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2050        Result = 1; break;
2051      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2052        Result = 0; break;
2053      }
2054      break;
2055    case ICmpInst::ICMP_SLT:
2056      switch (pred) {
2057      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2058        Result = 1; break;
2059      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2060        Result = 0; break;
2061      }
2062      break;
2063    case ICmpInst::ICMP_UGT:
2064      switch (pred) {
2065      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2066        Result = 1; break;
2067      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2068        Result = 0; break;
2069      }
2070      break;
2071    case ICmpInst::ICMP_SGT:
2072      switch (pred) {
2073      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2074        Result = 1; break;
2075      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2076        Result = 0; break;
2077      }
2078      break;
2079    case ICmpInst::ICMP_ULE:
2080      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2081      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2082      break;
2083    case ICmpInst::ICMP_SLE:
2084      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2085      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2086      break;
2087    case ICmpInst::ICMP_UGE:
2088      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2089      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2090      break;
2091    case ICmpInst::ICMP_SGE:
2092      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2093      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2094      break;
2095    case ICmpInst::ICMP_NE:
2096      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2097      if (pred == ICmpInst::ICMP_NE) Result = 1;
2098      break;
2099    }
2100
2101    // If we evaluated the result, return it now.
2102    if (Result != -1)
2103      return ConstantInt::get(ResultTy, Result);
2104
2105    // If the right hand side is a bitcast, try using its inverse to simplify
2106    // it by moving it to the left hand side.  We can't do this if it would turn
2107    // a vector compare into a scalar compare or visa versa.
2108    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2109      Constant *CE2Op0 = CE2->getOperand(0);
2110      if (CE2->getOpcode() == Instruction::BitCast &&
2111          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
2112        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2113        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2114      }
2115    }
2116
2117    // If the left hand side is an extension, try eliminating it.
2118    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2119      if ((CE1->getOpcode() == Instruction::SExt && ICmpInst::isSigned(pred)) ||
2120          (CE1->getOpcode() == Instruction::ZExt && !ICmpInst::isSigned(pred))){
2121        Constant *CE1Op0 = CE1->getOperand(0);
2122        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2123        if (CE1Inverse == CE1Op0) {
2124          // Check whether we can safely truncate the right hand side.
2125          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2126          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2127            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2128          }
2129        }
2130      }
2131    }
2132
2133    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2134        (C1->isNullValue() && !C2->isNullValue())) {
2135      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2136      // other way if possible.
2137      // Also, if C1 is null and C2 isn't, flip them around.
2138      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2139      return ConstantExpr::getICmp(pred, C2, C1);
2140    }
2141  }
2142  return 0;
2143}
2144
2145/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2146/// is "inbounds".
2147template<typename IndexTy>
2148static bool isInBoundsIndices(IndexTy const *Idxs, size_t NumIdx) {
2149  // No indices means nothing that could be out of bounds.
2150  if (NumIdx == 0) return true;
2151
2152  // If the first index is zero, it's in bounds.
2153  if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2154
2155  // If the first index is one and all the rest are zero, it's in bounds,
2156  // by the one-past-the-end rule.
2157  if (!cast<ConstantInt>(Idxs[0])->isOne())
2158    return false;
2159  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2160    if (!cast<Constant>(Idxs[i])->isNullValue())
2161      return false;
2162  return true;
2163}
2164
2165template<typename IndexTy>
2166static Constant *ConstantFoldGetElementPtrImpl(Constant *C,
2167                                               bool inBounds,
2168                                               IndexTy const *Idxs,
2169                                               unsigned NumIdx) {
2170  Constant *Idx0 = cast<Constant>(Idxs[0]);
2171  if (NumIdx == 0 ||
2172      (NumIdx == 1 && Idx0->isNullValue()))
2173    return C;
2174
2175  if (isa<UndefValue>(C)) {
2176    const PointerType *Ptr = cast<PointerType>(C->getType());
2177    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs, Idxs+NumIdx);
2178    assert(Ty != 0 && "Invalid indices for GEP!");
2179    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2180  }
2181
2182  if (C->isNullValue()) {
2183    bool isNull = true;
2184    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2185      if (!cast<Constant>(Idxs[i])->isNullValue()) {
2186        isNull = false;
2187        break;
2188      }
2189    if (isNull) {
2190      const PointerType *Ptr = cast<PointerType>(C->getType());
2191      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr, Idxs,
2192                                                         Idxs+NumIdx);
2193      assert(Ty != 0 && "Invalid indices for GEP!");
2194      return ConstantPointerNull::get(PointerType::get(Ty,
2195                                                       Ptr->getAddressSpace()));
2196    }
2197  }
2198
2199  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2200    // Combine Indices - If the source pointer to this getelementptr instruction
2201    // is a getelementptr instruction, combine the indices of the two
2202    // getelementptr instructions into a single instruction.
2203    //
2204    if (CE->getOpcode() == Instruction::GetElementPtr) {
2205      const Type *LastTy = 0;
2206      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2207           I != E; ++I)
2208        LastTy = *I;
2209
2210      if ((LastTy && LastTy->isArrayTy()) || Idx0->isNullValue()) {
2211        SmallVector<Value*, 16> NewIndices;
2212        NewIndices.reserve(NumIdx + CE->getNumOperands());
2213        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2214          NewIndices.push_back(CE->getOperand(i));
2215
2216        // Add the last index of the source with the first index of the new GEP.
2217        // Make sure to handle the case when they are actually different types.
2218        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2219        // Otherwise it must be an array.
2220        if (!Idx0->isNullValue()) {
2221          const Type *IdxTy = Combined->getType();
2222          if (IdxTy != Idx0->getType()) {
2223            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2224            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2225            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2226            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2227          } else {
2228            Combined =
2229              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2230          }
2231        }
2232
2233        NewIndices.push_back(Combined);
2234        NewIndices.append(Idxs+1, Idxs+NumIdx);
2235        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2236          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2237                                                 &NewIndices[0],
2238                                                 NewIndices.size()) :
2239          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2240                                         &NewIndices[0],
2241                                         NewIndices.size());
2242      }
2243    }
2244
2245    // Implement folding of:
2246    //    i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2247    //                        i64 0, i64 0)
2248    // To: i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2249    //
2250    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2251      if (const PointerType *SPT =
2252          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2253        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2254          if (const ArrayType *CAT =
2255        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2256            if (CAT->getElementType() == SAT->getElementType())
2257              return inBounds ?
2258                ConstantExpr::getInBoundsGetElementPtr(
2259                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2260                ConstantExpr::getGetElementPtr(
2261                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2262    }
2263  }
2264
2265  // Check to see if any array indices are not within the corresponding
2266  // notional array bounds. If so, try to determine if they can be factored
2267  // out into preceding dimensions.
2268  bool Unknown = false;
2269  SmallVector<Constant *, 8> NewIdxs;
2270  const Type *Ty = C->getType();
2271  const Type *Prev = 0;
2272  for (unsigned i = 0; i != NumIdx;
2273       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2274    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2275      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2276        if (ATy->getNumElements() <= INT64_MAX &&
2277            ATy->getNumElements() != 0 &&
2278            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2279          if (isa<SequentialType>(Prev)) {
2280            // It's out of range, but we can factor it into the prior
2281            // dimension.
2282            NewIdxs.resize(NumIdx);
2283            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2284                                                   ATy->getNumElements());
2285            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2286
2287            Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2288            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2289
2290            // Before adding, extend both operands to i64 to avoid
2291            // overflow trouble.
2292            if (!PrevIdx->getType()->isIntegerTy(64))
2293              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2294                                           Type::getInt64Ty(Div->getContext()));
2295            if (!Div->getType()->isIntegerTy(64))
2296              Div = ConstantExpr::getSExt(Div,
2297                                          Type::getInt64Ty(Div->getContext()));
2298
2299            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2300          } else {
2301            // It's out of range, but the prior dimension is a struct
2302            // so we can't do anything about it.
2303            Unknown = true;
2304          }
2305        }
2306    } else {
2307      // We don't know if it's in range or not.
2308      Unknown = true;
2309    }
2310  }
2311
2312  // If we did any factoring, start over with the adjusted indices.
2313  if (!NewIdxs.empty()) {
2314    for (unsigned i = 0; i != NumIdx; ++i)
2315      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2316    return inBounds ?
2317      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2318                                             NewIdxs.size()) :
2319      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2320  }
2321
2322  // If all indices are known integers and normalized, we can do a simple
2323  // check for the "inbounds" property.
2324  if (!Unknown && !inBounds &&
2325      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2326    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2327
2328  return 0;
2329}
2330
2331Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2332                                          bool inBounds,
2333                                          Constant* const *Idxs,
2334                                          unsigned NumIdx) {
2335  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs, NumIdx);
2336}
2337
2338Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2339                                          bool inBounds,
2340                                          Value* const *Idxs,
2341                                          unsigned NumIdx) {
2342  return ConstantFoldGetElementPtrImpl(C, inBounds, Idxs, NumIdx);
2343}
2344