ConstantFold.cpp revision 579dca12c2cfd60bc18aaadbd5331897d48fec29
1//===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFolding.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFolding.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/GetElementPtrTypeIterator.h"
28#include "llvm/Support/ManagedStatic.h"
29#include "llvm/Support/MathExtras.h"
30#include <limits>
31using namespace llvm;
32
33//===----------------------------------------------------------------------===//
34//                ConstantFold*Instruction Implementations
35//===----------------------------------------------------------------------===//
36
37/// CastConstantPacked - Convert the specified ConstantPacked node to the
38/// specified packed type.  At this point, we know that the elements of the
39/// input packed constant are all simple integer or FP values.
40static Constant *CastConstantPacked(ConstantPacked *CP,
41                                    const PackedType *DstTy) {
42  unsigned SrcNumElts = CP->getType()->getNumElements();
43  unsigned DstNumElts = DstTy->getNumElements();
44  const Type *SrcEltTy = CP->getType()->getElementType();
45  const Type *DstEltTy = DstTy->getElementType();
46
47  // If both vectors have the same number of elements (thus, the elements
48  // are the same size), perform the conversion now.
49  if (SrcNumElts == DstNumElts) {
50    std::vector<Constant*> Result;
51
52    // If the src and dest elements are both integers, or both floats, we can
53    // just BitCast each element because the elements are the same size.
54    if ((SrcEltTy->isIntegral() && DstEltTy->isIntegral()) ||
55        (SrcEltTy->isFloatingPoint() && DstEltTy->isFloatingPoint())) {
56      for (unsigned i = 0; i != SrcNumElts; ++i)
57        Result.push_back(
58          ConstantExpr::getBitCast(CP->getOperand(i), DstEltTy));
59      return ConstantPacked::get(Result);
60    }
61
62    // If this is an int-to-fp cast ..
63    if (SrcEltTy->isIntegral()) {
64      // Ensure that it is int-to-fp cast
65      assert(DstEltTy->isFloatingPoint());
66      if (DstEltTy->getTypeID() == Type::DoubleTyID) {
67        for (unsigned i = 0; i != SrcNumElts; ++i) {
68          double V =
69            BitsToDouble(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
70          Result.push_back(ConstantFP::get(Type::DoubleTy, V));
71        }
72        return ConstantPacked::get(Result);
73      }
74      assert(DstEltTy == Type::FloatTy && "Unknown fp type!");
75      for (unsigned i = 0; i != SrcNumElts; ++i) {
76        float V =
77        BitsToFloat(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
78        Result.push_back(ConstantFP::get(Type::FloatTy, V));
79      }
80      return ConstantPacked::get(Result);
81    }
82
83    // Otherwise, this is an fp-to-int cast.
84    assert(SrcEltTy->isFloatingPoint() && DstEltTy->isIntegral());
85
86    if (SrcEltTy->getTypeID() == Type::DoubleTyID) {
87      for (unsigned i = 0; i != SrcNumElts; ++i) {
88        uint64_t V =
89          DoubleToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
90        Constant *C = ConstantInt::get(Type::Int64Ty, V);
91        Result.push_back(ConstantExpr::getBitCast(C, DstEltTy ));
92      }
93      return ConstantPacked::get(Result);
94    }
95
96    assert(SrcEltTy->getTypeID() == Type::FloatTyID);
97    for (unsigned i = 0; i != SrcNumElts; ++i) {
98      uint32_t V = FloatToBits(cast<ConstantFP>(CP->getOperand(i))->getValue());
99      Constant *C = ConstantInt::get(Type::Int32Ty, V);
100      Result.push_back(ConstantExpr::getBitCast(C, DstEltTy));
101    }
102    return ConstantPacked::get(Result);
103  }
104
105  // Otherwise, this is a cast that changes element count and size.  Handle
106  // casts which shrink the elements here.
107
108  // FIXME: We need to know endianness to do this!
109
110  return 0;
111}
112
113/// This function determines which opcode to use to fold two constant cast
114/// expressions together. It uses CastInst::isEliminableCastPair to determine
115/// the opcode. Consequently its just a wrapper around that function.
116/// @Determine if it is valid to fold a cast of a cast
117static unsigned
118foldConstantCastPair(
119  unsigned opc,          ///< opcode of the second cast constant expression
120  const ConstantExpr*Op, ///< the first cast constant expression
121  const Type *DstTy      ///< desintation type of the first cast
122) {
123  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
124  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
125  assert(CastInst::isCast(opc) && "Invalid cast opcode");
126
127  // The the types and opcodes for the two Cast constant expressions
128  const Type *SrcTy = Op->getOperand(0)->getType();
129  const Type *MidTy = Op->getType();
130  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
131  Instruction::CastOps secondOp = Instruction::CastOps(opc);
132
133  // Let CastInst::isEliminableCastPair do the heavy lifting.
134  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
135                                        Type::Int64Ty);
136}
137
138Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
139                                            const Type *DestTy) {
140  const Type *SrcTy = V->getType();
141
142  if (isa<UndefValue>(V))
143    return UndefValue::get(DestTy);
144
145  // If the cast operand is a constant expression, there's a few things we can
146  // do to try to simplify it.
147  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
148    if (CE->isCast()) {
149      // Try hard to fold cast of cast because they are often eliminable.
150      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
151        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
152    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
153      // If all of the indexes in the GEP are null values, there is no pointer
154      // adjustment going on.  We might as well cast the source pointer.
155      bool isAllNull = true;
156      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
157        if (!CE->getOperand(i)->isNullValue()) {
158          isAllNull = false;
159          break;
160        }
161      if (isAllNull)
162        // This is casting one pointer type to another, always BitCast
163        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
164    }
165  }
166
167  // We actually have to do a cast now. Perform the cast according to the
168  // opcode specified.
169  switch (opc) {
170  case Instruction::FPTrunc:
171  case Instruction::FPExt:
172    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
173      return ConstantFP::get(DestTy, FPC->getValue());
174    return 0; // Can't fold.
175  case Instruction::FPToUI:
176    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
177      return ConstantInt::get(DestTy,(uint64_t) FPC->getValue());
178    return 0; // Can't fold.
179  case Instruction::FPToSI:
180    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V))
181      return ConstantInt::get(DestTy,(int64_t) FPC->getValue());
182    return 0; // Can't fold.
183  case Instruction::IntToPtr:   //always treated as unsigned
184    if (V->isNullValue())       // Is it an integral null value?
185      return ConstantPointerNull::get(cast<PointerType>(DestTy));
186    return 0;                   // Other pointer types cannot be casted
187  case Instruction::PtrToInt:   // always treated as unsigned
188    if (V->isNullValue())       // is it a null pointer value?
189      return ConstantInt::get(DestTy, 0);
190    return 0;                   // Other pointer types cannot be casted
191  case Instruction::UIToFP:
192    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
193      return ConstantFP::get(DestTy, double(CI->getZExtValue()));
194    return 0;
195  case Instruction::SIToFP:
196    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
197      return ConstantFP::get(DestTy, double(CI->getSExtValue()));
198    return 0;
199  case Instruction::ZExt:
200    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
201      return ConstantInt::get(DestTy, CI->getZExtValue());
202    return 0;
203  case Instruction::SExt:
204    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
205      return ConstantInt::get(DestTy, CI->getSExtValue());
206    return 0;
207  case Instruction::Trunc:
208    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) // Can't trunc a bool
209      return ConstantInt::get(DestTy, CI->getZExtValue());
210    return 0;
211  case Instruction::BitCast:
212    if (SrcTy == DestTy)
213      return (Constant*)V; // no-op cast
214
215    // Check to see if we are casting a pointer to an aggregate to a pointer to
216    // the first element.  If so, return the appropriate GEP instruction.
217    if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
218      if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
219        std::vector<Value*> IdxList;
220        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
221        const Type *ElTy = PTy->getElementType();
222        while (ElTy != DPTy->getElementType()) {
223          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
224            if (STy->getNumElements() == 0) break;
225            ElTy = STy->getElementType(0);
226            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
227          } else if (const SequentialType *STy =
228                     dyn_cast<SequentialType>(ElTy)) {
229            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
230            ElTy = STy->getElementType();
231            IdxList.push_back(IdxList[0]);
232          } else {
233            break;
234          }
235        }
236
237        if (ElTy == DPTy->getElementType())
238          return ConstantExpr::getGetElementPtr(
239              const_cast<Constant*>(V),IdxList);
240      }
241
242    // Handle casts from one packed constant to another.  We know that the src
243    // and dest type have the same size (otherwise its an illegal cast).
244    if (const PackedType *DestPTy = dyn_cast<PackedType>(DestTy)) {
245      if (const PackedType *SrcTy = dyn_cast<PackedType>(V->getType())) {
246        assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
247               "Not cast between same sized vectors!");
248        // First, check for null and undef
249        if (isa<ConstantAggregateZero>(V))
250          return Constant::getNullValue(DestTy);
251        if (isa<UndefValue>(V))
252          return UndefValue::get(DestTy);
253
254        if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(V)) {
255          // This is a cast from a ConstantPacked of one type to a
256          // ConstantPacked of another type.  Check to see if all elements of
257          // the input are simple.
258          bool AllSimpleConstants = true;
259          for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) {
260            if (!isa<ConstantInt>(CP->getOperand(i)) &&
261                !isa<ConstantFP>(CP->getOperand(i))) {
262              AllSimpleConstants = false;
263              break;
264            }
265          }
266
267          // If all of the elements are simple constants, we can fold this.
268          if (AllSimpleConstants)
269            return CastConstantPacked(const_cast<ConstantPacked*>(CP), DestPTy);
270        }
271      }
272    }
273
274    // Finally, implement bitcast folding now.   The code below doesn't handle
275    // bitcast right.
276    if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
277      return ConstantPointerNull::get(cast<PointerType>(DestTy));
278
279    // Handle integral constant input.
280    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
281      // Integral -> Integral, must be changing sign.
282      if (DestTy->isIntegral())
283        return ConstantInt::get(DestTy, CI->getZExtValue());
284
285      if (DestTy->isFloatingPoint()) {
286        if (DestTy == Type::FloatTy)
287          return ConstantFP::get(DestTy, BitsToFloat(CI->getZExtValue()));
288        assert(DestTy == Type::DoubleTy && "Unknown FP type!");
289        return ConstantFP::get(DestTy, BitsToDouble(CI->getZExtValue()));
290      }
291      // Otherwise, can't fold this (packed?)
292      return 0;
293    }
294
295    // Handle ConstantFP input.
296    if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
297      // FP -> Integral.
298      if (DestTy->isIntegral()) {
299        if (DestTy == Type::Int32Ty)
300          return ConstantInt::get(DestTy, FloatToBits(FP->getValue()));
301        assert(DestTy == Type::Int64Ty &&
302               "Incorrect integer type for bitcast!");
303        return ConstantInt::get(DestTy, DoubleToBits(FP->getValue()));
304      }
305    }
306    return 0;
307  default:
308    assert(!"Invalid CE CastInst opcode");
309    break;
310  }
311
312  assert(0 && "Failed to cast constant expression");
313  return 0;
314}
315
316Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
317                                              const Constant *V1,
318                                              const Constant *V2) {
319  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
320    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
321
322  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
323  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
324  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
325  if (V1 == V2) return const_cast<Constant*>(V1);
326  return 0;
327}
328
329Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
330                                                      const Constant *Idx) {
331  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
332    return UndefValue::get(cast<PackedType>(Val->getType())->getElementType());
333  if (Val->isNullValue())  // ee(zero, x) -> zero
334    return Constant::getNullValue(
335                          cast<PackedType>(Val->getType())->getElementType());
336
337  if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
338    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
339      return const_cast<Constant*>(CVal->getOperand(CIdx->getZExtValue()));
340    } else if (isa<UndefValue>(Idx)) {
341      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
342      return const_cast<Constant*>(CVal->getOperand(0));
343    }
344  }
345  return 0;
346}
347
348Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
349                                                     const Constant *Elt,
350                                                     const Constant *Idx) {
351  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
352  if (!CIdx) return 0;
353  uint64_t idxVal = CIdx->getZExtValue();
354  if (isa<UndefValue>(Val)) {
355    // Insertion of scalar constant into packed undef
356    // Optimize away insertion of undef
357    if (isa<UndefValue>(Elt))
358      return const_cast<Constant*>(Val);
359    // Otherwise break the aggregate undef into multiple undefs and do
360    // the insertion
361    unsigned numOps =
362      cast<PackedType>(Val->getType())->getNumElements();
363    std::vector<Constant*> Ops;
364    Ops.reserve(numOps);
365    for (unsigned i = 0; i < numOps; ++i) {
366      const Constant *Op =
367        (i == idxVal) ? Elt : UndefValue::get(Elt->getType());
368      Ops.push_back(const_cast<Constant*>(Op));
369    }
370    return ConstantPacked::get(Ops);
371  }
372  if (isa<ConstantAggregateZero>(Val)) {
373    // Insertion of scalar constant into packed aggregate zero
374    // Optimize away insertion of zero
375    if (Elt->isNullValue())
376      return const_cast<Constant*>(Val);
377    // Otherwise break the aggregate zero into multiple zeros and do
378    // the insertion
379    unsigned numOps =
380      cast<PackedType>(Val->getType())->getNumElements();
381    std::vector<Constant*> Ops;
382    Ops.reserve(numOps);
383    for (unsigned i = 0; i < numOps; ++i) {
384      const Constant *Op =
385        (i == idxVal) ? Elt : Constant::getNullValue(Elt->getType());
386      Ops.push_back(const_cast<Constant*>(Op));
387    }
388    return ConstantPacked::get(Ops);
389  }
390  if (const ConstantPacked *CVal = dyn_cast<ConstantPacked>(Val)) {
391    // Insertion of scalar constant into packed constant
392    std::vector<Constant*> Ops;
393    Ops.reserve(CVal->getNumOperands());
394    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
395      const Constant *Op =
396        (i == idxVal) ? Elt : cast<Constant>(CVal->getOperand(i));
397      Ops.push_back(const_cast<Constant*>(Op));
398    }
399    return ConstantPacked::get(Ops);
400  }
401  return 0;
402}
403
404Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
405                                                     const Constant *V2,
406                                                     const Constant *Mask) {
407  // TODO:
408  return 0;
409}
410
411/// EvalVectorOp - Given two packed constants and a function pointer, apply the
412/// function pointer to each element pair, producing a new ConstantPacked
413/// constant.
414static Constant *EvalVectorOp(const ConstantPacked *V1,
415                              const ConstantPacked *V2,
416                              Constant *(*FP)(Constant*, Constant*)) {
417  std::vector<Constant*> Res;
418  for (unsigned i = 0, e = V1->getNumOperands(); i != e; ++i)
419    Res.push_back(FP(const_cast<Constant*>(V1->getOperand(i)),
420                     const_cast<Constant*>(V2->getOperand(i))));
421  return ConstantPacked::get(Res);
422}
423
424Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
425                                              const Constant *C1,
426                                              const Constant *C2) {
427  // Handle UndefValue up front
428  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
429    switch (Opcode) {
430    case Instruction::Add:
431    case Instruction::Sub:
432    case Instruction::Xor:
433      return UndefValue::get(C1->getType());
434    case Instruction::Mul:
435    case Instruction::And:
436      return Constant::getNullValue(C1->getType());
437    case Instruction::UDiv:
438    case Instruction::SDiv:
439    case Instruction::FDiv:
440    case Instruction::URem:
441    case Instruction::SRem:
442    case Instruction::FRem:
443      if (!isa<UndefValue>(C2))                    // undef / X -> 0
444        return Constant::getNullValue(C1->getType());
445      return const_cast<Constant*>(C2);            // X / undef -> undef
446    case Instruction::Or:                          // X | undef -> -1
447      if (const PackedType *PTy = dyn_cast<PackedType>(C1->getType()))
448        return ConstantPacked::getAllOnesValue(PTy);
449      return ConstantInt::getAllOnesValue(C1->getType());
450    case Instruction::LShr:
451      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
452        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
453      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
454                                                    // undef lshr X -> 0
455    case Instruction::AShr:
456      if (!isa<UndefValue>(C2))
457        return const_cast<Constant*>(C1);           // undef ashr X --> undef
458      else if (isa<UndefValue>(C1))
459        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
460      else
461        return const_cast<Constant*>(C1);           // X ashr undef --> X
462    case Instruction::Shl:
463      // undef << X -> 0   or   X << undef -> 0
464      return Constant::getNullValue(C1->getType());
465    }
466  }
467
468  if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
469    if (isa<ConstantExpr>(C2)) {
470      // There are many possible foldings we could do here.  We should probably
471      // at least fold add of a pointer with an integer into the appropriate
472      // getelementptr.  This will improve alias analysis a bit.
473    } else {
474      // Just implement a couple of simple identities.
475      switch (Opcode) {
476      case Instruction::Add:
477        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X + 0 == X
478        break;
479      case Instruction::Sub:
480        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X - 0 == X
481        break;
482      case Instruction::Mul:
483        if (C2->isNullValue()) return const_cast<Constant*>(C2);  // X * 0 == 0
484        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
485          if (CI->getZExtValue() == 1)
486            return const_cast<Constant*>(C1);                     // X * 1 == X
487        break;
488      case Instruction::UDiv:
489      case Instruction::SDiv:
490        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
491          if (CI->getZExtValue() == 1)
492            return const_cast<Constant*>(C1);                     // X / 1 == X
493        break;
494      case Instruction::URem:
495      case Instruction::SRem:
496        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
497          if (CI->getZExtValue() == 1)
498            return Constant::getNullValue(CI->getType());         // X % 1 == 0
499        break;
500      case Instruction::And:
501        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
502          if (CI->isAllOnesValue())
503            return const_cast<Constant*>(C1);                     // X & -1 == X
504        if (C2->isNullValue()) return const_cast<Constant*>(C2);  // X & 0 == 0
505        if (CE1->isCast() && isa<GlobalValue>(CE1->getOperand(0))) {
506          GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
507
508          // Functions are at least 4-byte aligned.  If and'ing the address of a
509          // function with a constant < 4, fold it to zero.
510          if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
511            if (CI->getZExtValue() < 4 && isa<Function>(CPR))
512              return Constant::getNullValue(CI->getType());
513        }
514        break;
515      case Instruction::Or:
516        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X | 0 == X
517        if (const ConstantInt *CI = dyn_cast<ConstantInt>(C2))
518          if (CI->isAllOnesValue())
519            return const_cast<Constant*>(C2);  // X | -1 == -1
520        break;
521      case Instruction::Xor:
522        if (C2->isNullValue()) return const_cast<Constant*>(C1);  // X ^ 0 == X
523        break;
524      }
525    }
526  } else if (isa<ConstantExpr>(C2)) {
527    // If C2 is a constant expr and C1 isn't, flop them around and fold the
528    // other way if possible.
529    switch (Opcode) {
530    case Instruction::Add:
531    case Instruction::Mul:
532    case Instruction::And:
533    case Instruction::Or:
534    case Instruction::Xor:
535      // No change of opcode required.
536      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
537
538    case Instruction::Shl:
539    case Instruction::LShr:
540    case Instruction::AShr:
541    case Instruction::Sub:
542    case Instruction::SDiv:
543    case Instruction::UDiv:
544    case Instruction::FDiv:
545    case Instruction::URem:
546    case Instruction::SRem:
547    case Instruction::FRem:
548    default:  // These instructions cannot be flopped around.
549      return 0;
550    }
551  }
552
553  // At this point we know neither constant is an UndefValue nor a ConstantExpr
554  // so look at directly computing the value.
555  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
556    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
557      if (CI1->getType() == Type::Int1Ty && CI2->getType() == Type::Int1Ty) {
558        switch (Opcode) {
559          default:
560            break;
561          case Instruction::And:
562            return ConstantInt::get(Type::Int1Ty,
563                                    CI1->getZExtValue() & CI2->getZExtValue());
564          case Instruction::Or:
565            return ConstantInt::get(Type::Int1Ty,
566                                    CI1->getZExtValue() | CI2->getZExtValue());
567          case Instruction::Xor:
568            return ConstantInt::get(Type::Int1Ty,
569                                    CI1->getZExtValue() ^ CI2->getZExtValue());
570        }
571      } else {
572        uint64_t C1Val = CI1->getZExtValue();
573        uint64_t C2Val = CI2->getZExtValue();
574        switch (Opcode) {
575        default:
576          break;
577        case Instruction::Add:
578          return ConstantInt::get(C1->getType(), C1Val + C2Val);
579        case Instruction::Sub:
580          return ConstantInt::get(C1->getType(), C1Val - C2Val);
581        case Instruction::Mul:
582          return ConstantInt::get(C1->getType(), C1Val * C2Val);
583        case Instruction::UDiv:
584          if (CI2->isNullValue())                  // X / 0 -> can't fold
585            return 0;
586          return ConstantInt::get(C1->getType(), C1Val / C2Val);
587        case Instruction::SDiv:
588          if (CI2->isNullValue()) return 0;        // X / 0 -> can't fold
589          if (CI2->isAllOnesValue() &&
590              (((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
591                (CI1->getSExtValue() == INT64_MIN)) ||
592               (CI1->getSExtValue() == -CI1->getSExtValue())))
593            return 0;                              // MIN_INT / -1 -> overflow
594          return ConstantInt::get(C1->getType(),
595                                  CI1->getSExtValue() / CI2->getSExtValue());
596        case Instruction::URem:
597          if (C2->isNullValue()) return 0;         // X / 0 -> can't fold
598          return ConstantInt::get(C1->getType(), C1Val % C2Val);
599        case Instruction::SRem:
600          if (CI2->isNullValue()) return 0;        // X % 0 -> can't fold
601          if (CI2->isAllOnesValue() &&
602              (((CI1->getType()->getPrimitiveSizeInBits() == 64) &&
603                (CI1->getSExtValue() == INT64_MIN)) ||
604               (CI1->getSExtValue() == -CI1->getSExtValue())))
605            return 0;                              // MIN_INT % -1 -> overflow
606          return ConstantInt::get(C1->getType(),
607                                  CI1->getSExtValue() % CI2->getSExtValue());
608        case Instruction::And:
609          return ConstantInt::get(C1->getType(), C1Val & C2Val);
610        case Instruction::Or:
611          return ConstantInt::get(C1->getType(), C1Val | C2Val);
612        case Instruction::Xor:
613          return ConstantInt::get(C1->getType(), C1Val ^ C2Val);
614        case Instruction::Shl:
615          return ConstantInt::get(C1->getType(), C1Val << C2Val);
616        case Instruction::LShr:
617          return ConstantInt::get(C1->getType(), C1Val >> C2Val);
618        case Instruction::AShr:
619          return ConstantInt::get(C1->getType(),
620                                  CI1->getSExtValue() >> C2Val);
621        }
622      }
623    }
624  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
625    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
626      double C1Val = CFP1->getValue();
627      double C2Val = CFP2->getValue();
628      switch (Opcode) {
629      default:
630        break;
631      case Instruction::Add:
632        return ConstantFP::get(CFP1->getType(), C1Val + C2Val);
633      case Instruction::Sub:
634        return ConstantFP::get(CFP1->getType(), C1Val - C2Val);
635      case Instruction::Mul:
636        return ConstantFP::get(CFP1->getType(), C1Val * C2Val);
637      case Instruction::FDiv:
638        if (CFP2->isExactlyValue(0.0))
639          return ConstantFP::get(CFP1->getType(),
640                                 std::numeric_limits<double>::infinity());
641        if (CFP2->isExactlyValue(-0.0))
642          return ConstantFP::get(CFP1->getType(),
643                                 -std::numeric_limits<double>::infinity());
644        return ConstantFP::get(CFP1->getType(), C1Val / C2Val);
645      case Instruction::FRem:
646        if (CFP2->isNullValue())
647          return 0;
648        return ConstantFP::get(CFP1->getType(), std::fmod(C1Val, C2Val));
649      }
650    }
651  } else if (const ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
652    if (const ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
653      switch (Opcode) {
654        default:
655          break;
656        case Instruction::Add:
657          return EvalVectorOp(CP1, CP2, ConstantExpr::getAdd);
658        case Instruction::Sub:
659          return EvalVectorOp(CP1, CP2, ConstantExpr::getSub);
660        case Instruction::Mul:
661          return EvalVectorOp(CP1, CP2, ConstantExpr::getMul);
662        case Instruction::UDiv:
663          return EvalVectorOp(CP1, CP2, ConstantExpr::getUDiv);
664        case Instruction::SDiv:
665          return EvalVectorOp(CP1, CP2, ConstantExpr::getSDiv);
666        case Instruction::FDiv:
667          return EvalVectorOp(CP1, CP2, ConstantExpr::getFDiv);
668        case Instruction::URem:
669          return EvalVectorOp(CP1, CP2, ConstantExpr::getURem);
670        case Instruction::SRem:
671          return EvalVectorOp(CP1, CP2, ConstantExpr::getSRem);
672        case Instruction::FRem:
673          return EvalVectorOp(CP1, CP2, ConstantExpr::getFRem);
674        case Instruction::And:
675          return EvalVectorOp(CP1, CP2, ConstantExpr::getAnd);
676        case Instruction::Or:
677          return EvalVectorOp(CP1, CP2, ConstantExpr::getOr);
678        case Instruction::Xor:
679          return EvalVectorOp(CP1, CP2, ConstantExpr::getXor);
680      }
681    }
682  }
683
684  // We don't know how to fold this
685  return 0;
686}
687
688/// isZeroSizedType - This type is zero sized if its an array or structure of
689/// zero sized types.  The only leaf zero sized type is an empty structure.
690static bool isMaybeZeroSizedType(const Type *Ty) {
691  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
692  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
693
694    // If all of elements have zero size, this does too.
695    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
696      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
697    return true;
698
699  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
700    return isMaybeZeroSizedType(ATy->getElementType());
701  }
702  return false;
703}
704
705/// IdxCompare - Compare the two constants as though they were getelementptr
706/// indices.  This allows coersion of the types to be the same thing.
707///
708/// If the two constants are the "same" (after coersion), return 0.  If the
709/// first is less than the second, return -1, if the second is less than the
710/// first, return 1.  If the constants are not integral, return -2.
711///
712static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
713  if (C1 == C2) return 0;
714
715  // Ok, we found a different index.  If they are not ConstantInt, we can't do
716  // anything with them.
717  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
718    return -2; // don't know!
719
720  // Ok, we have two differing integer indices.  Sign extend them to be the same
721  // type.  Long is always big enough, so we use it.
722  if (C1->getType() != Type::Int64Ty)
723    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
724
725  if (C2->getType() != Type::Int64Ty)
726    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
727
728  if (C1 == C2) return 0;  // They are equal
729
730  // If the type being indexed over is really just a zero sized type, there is
731  // no pointer difference being made here.
732  if (isMaybeZeroSizedType(ElTy))
733    return -2; // dunno.
734
735  // If they are really different, now that they are the same type, then we
736  // found a difference!
737  if (cast<ConstantInt>(C1)->getSExtValue() <
738      cast<ConstantInt>(C2)->getSExtValue())
739    return -1;
740  else
741    return 1;
742}
743
744/// evaluateFCmpRelation - This function determines if there is anything we can
745/// decide about the two constants provided.  This doesn't need to handle simple
746/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
747/// If we can determine that the two constants have a particular relation to
748/// each other, we should return the corresponding FCmpInst predicate,
749/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
750/// ConstantFoldCompareInstruction.
751///
752/// To simplify this code we canonicalize the relation so that the first
753/// operand is always the most "complex" of the two.  We consider ConstantFP
754/// to be the simplest, and ConstantExprs to be the most complex.
755static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
756                                                const Constant *V2) {
757  assert(V1->getType() == V2->getType() &&
758         "Cannot compare values of different types!");
759  // Handle degenerate case quickly
760  if (V1 == V2) return FCmpInst::FCMP_OEQ;
761
762  if (!isa<ConstantExpr>(V1)) {
763    if (!isa<ConstantExpr>(V2)) {
764      // We distilled thisUse the standard constant folder for a few cases
765      ConstantInt *R = 0;
766      Constant *C1 = const_cast<Constant*>(V1);
767      Constant *C2 = const_cast<Constant*>(V2);
768      R = dyn_cast<ConstantInt>(
769                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
770      if (R && R->getZExtValue())
771        return FCmpInst::FCMP_OEQ;
772      R = dyn_cast<ConstantInt>(
773                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
774      if (R && R->getZExtValue())
775        return FCmpInst::FCMP_OLT;
776      R = dyn_cast<ConstantInt>(
777                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
778      if (R && R->getZExtValue())
779        return FCmpInst::FCMP_OGT;
780
781      // Nothing more we can do
782      return FCmpInst::BAD_FCMP_PREDICATE;
783    }
784
785    // If the first operand is simple and second is ConstantExpr, swap operands.
786    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
787    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
788      return FCmpInst::getSwappedPredicate(SwappedRelation);
789  } else {
790    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
791    // constantexpr or a simple constant.
792    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
793    switch (CE1->getOpcode()) {
794    case Instruction::FPTrunc:
795    case Instruction::FPExt:
796    case Instruction::UIToFP:
797    case Instruction::SIToFP:
798      // We might be able to do something with these but we don't right now.
799      break;
800    default:
801      break;
802    }
803  }
804  // There are MANY other foldings that we could perform here.  They will
805  // probably be added on demand, as they seem needed.
806  return FCmpInst::BAD_FCMP_PREDICATE;
807}
808
809/// evaluateICmpRelation - This function determines if there is anything we can
810/// decide about the two constants provided.  This doesn't need to handle simple
811/// things like integer comparisons, but should instead handle ConstantExprs
812/// and GlobalValues.  If we can determine that the two constants have a
813/// particular relation to each other, we should return the corresponding ICmp
814/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
815///
816/// To simplify this code we canonicalize the relation so that the first
817/// operand is always the most "complex" of the two.  We consider simple
818/// constants (like ConstantInt) to be the simplest, followed by
819/// GlobalValues, followed by ConstantExpr's (the most complex).
820///
821static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
822                                                const Constant *V2,
823                                                bool isSigned) {
824  assert(V1->getType() == V2->getType() &&
825         "Cannot compare different types of values!");
826  if (V1 == V2) return ICmpInst::ICMP_EQ;
827
828  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
829    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
830      // We distilled this down to a simple case, use the standard constant
831      // folder.
832      ConstantInt *R = 0;
833      Constant *C1 = const_cast<Constant*>(V1);
834      Constant *C2 = const_cast<Constant*>(V2);
835      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
836      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
837      if (R && R->getZExtValue())
838        return pred;
839      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
840      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
841      if (R && R->getZExtValue())
842        return pred;
843      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
844      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
845      if (R && R->getZExtValue())
846        return pred;
847
848      // If we couldn't figure it out, bail.
849      return ICmpInst::BAD_ICMP_PREDICATE;
850    }
851
852    // If the first operand is simple, swap operands.
853    ICmpInst::Predicate SwappedRelation =
854      evaluateICmpRelation(V2, V1, isSigned);
855    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
856      return ICmpInst::getSwappedPredicate(SwappedRelation);
857
858  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
859    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
860      ICmpInst::Predicate SwappedRelation =
861        evaluateICmpRelation(V2, V1, isSigned);
862      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
863        return ICmpInst::getSwappedPredicate(SwappedRelation);
864      else
865        return ICmpInst::BAD_ICMP_PREDICATE;
866    }
867
868    // Now we know that the RHS is a GlobalValue or simple constant,
869    // which (since the types must match) means that it's a ConstantPointerNull.
870    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
871      if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
872        return ICmpInst::ICMP_NE;
873    } else {
874      // GlobalVals can never be null.
875      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
876      if (!CPR1->hasExternalWeakLinkage())
877        return ICmpInst::ICMP_NE;
878    }
879  } else {
880    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
881    // constantexpr, a CPR, or a simple constant.
882    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
883    const Constant *CE1Op0 = CE1->getOperand(0);
884
885    switch (CE1->getOpcode()) {
886    case Instruction::Trunc:
887    case Instruction::FPTrunc:
888    case Instruction::FPExt:
889    case Instruction::FPToUI:
890    case Instruction::FPToSI:
891      break; // We can't evaluate floating point casts or truncations.
892
893    case Instruction::UIToFP:
894    case Instruction::SIToFP:
895    case Instruction::IntToPtr:
896    case Instruction::BitCast:
897    case Instruction::ZExt:
898    case Instruction::SExt:
899    case Instruction::PtrToInt:
900      // If the cast is not actually changing bits, and the second operand is a
901      // null pointer, do the comparison with the pre-casted value.
902      if (V2->isNullValue() &&
903          (isa<PointerType>(CE1->getType()) || CE1->getType()->isIntegral())) {
904        bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
905          (CE1->getOpcode() == Instruction::SExt ? true :
906           (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
907        return evaluateICmpRelation(
908            CE1Op0, Constant::getNullValue(CE1Op0->getType()), sgnd);
909      }
910
911      // If the dest type is a pointer type, and the RHS is a constantexpr cast
912      // from the same type as the src of the LHS, evaluate the inputs.  This is
913      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
914      // which happens a lot in compilers with tagged integers.
915      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
916        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
917            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
918            CE1->getOperand(0)->getType()->isIntegral()) {
919          bool sgnd = CE1->getOpcode() == Instruction::ZExt ? false :
920            (CE1->getOpcode() == Instruction::SExt ? true :
921             (CE1->getOpcode() == Instruction::PtrToInt ? false : isSigned));
922          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
923              sgnd);
924        }
925      break;
926
927    case Instruction::GetElementPtr:
928      // Ok, since this is a getelementptr, we know that the constant has a
929      // pointer type.  Check the various cases.
930      if (isa<ConstantPointerNull>(V2)) {
931        // If we are comparing a GEP to a null pointer, check to see if the base
932        // of the GEP equals the null pointer.
933        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
934          if (GV->hasExternalWeakLinkage())
935            // Weak linkage GVals could be zero or not. We're comparing that
936            // to null pointer so its greater-or-equal
937            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
938          else
939            // If its not weak linkage, the GVal must have a non-zero address
940            // so the result is greater-than
941            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
942        } else if (isa<ConstantPointerNull>(CE1Op0)) {
943          // If we are indexing from a null pointer, check to see if we have any
944          // non-zero indices.
945          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
946            if (!CE1->getOperand(i)->isNullValue())
947              // Offsetting from null, must not be equal.
948              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
949          // Only zero indexes from null, must still be zero.
950          return ICmpInst::ICMP_EQ;
951        }
952        // Otherwise, we can't really say if the first operand is null or not.
953      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
954        if (isa<ConstantPointerNull>(CE1Op0)) {
955          if (CPR2->hasExternalWeakLinkage())
956            // Weak linkage GVals could be zero or not. We're comparing it to
957            // a null pointer, so its less-or-equal
958            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
959          else
960            // If its not weak linkage, the GVal must have a non-zero address
961            // so the result is less-than
962            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
963        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
964          if (CPR1 == CPR2) {
965            // If this is a getelementptr of the same global, then it must be
966            // different.  Because the types must match, the getelementptr could
967            // only have at most one index, and because we fold getelementptr's
968            // with a single zero index, it must be nonzero.
969            assert(CE1->getNumOperands() == 2 &&
970                   !CE1->getOperand(1)->isNullValue() &&
971                   "Suprising getelementptr!");
972            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
973          } else {
974            // If they are different globals, we don't know what the value is,
975            // but they can't be equal.
976            return ICmpInst::ICMP_NE;
977          }
978        }
979      } else {
980        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
981        const Constant *CE2Op0 = CE2->getOperand(0);
982
983        // There are MANY other foldings that we could perform here.  They will
984        // probably be added on demand, as they seem needed.
985        switch (CE2->getOpcode()) {
986        default: break;
987        case Instruction::GetElementPtr:
988          // By far the most common case to handle is when the base pointers are
989          // obviously to the same or different globals.
990          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
991            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
992              return ICmpInst::ICMP_NE;
993            // Ok, we know that both getelementptr instructions are based on the
994            // same global.  From this, we can precisely determine the relative
995            // ordering of the resultant pointers.
996            unsigned i = 1;
997
998            // Compare all of the operands the GEP's have in common.
999            gep_type_iterator GTI = gep_type_begin(CE1);
1000            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1001                 ++i, ++GTI)
1002              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1003                                 GTI.getIndexedType())) {
1004              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1005              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1006              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1007              }
1008
1009            // Ok, we ran out of things they have in common.  If any leftovers
1010            // are non-zero then we have a difference, otherwise we are equal.
1011            for (; i < CE1->getNumOperands(); ++i)
1012              if (!CE1->getOperand(i)->isNullValue())
1013                if (isa<ConstantInt>(CE1->getOperand(i)))
1014                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1015                else
1016                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1017
1018            for (; i < CE2->getNumOperands(); ++i)
1019              if (!CE2->getOperand(i)->isNullValue())
1020                if (isa<ConstantInt>(CE2->getOperand(i)))
1021                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1022                else
1023                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1024            return ICmpInst::ICMP_EQ;
1025          }
1026        }
1027      }
1028    default:
1029      break;
1030    }
1031  }
1032
1033  return ICmpInst::BAD_ICMP_PREDICATE;
1034}
1035
1036Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1037                                               const Constant *C1,
1038                                               const Constant *C2) {
1039
1040  // Handle some degenerate cases first
1041  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1042    return UndefValue::get(Type::Int1Ty);
1043
1044  // icmp eq/ne(null,GV) -> false/true
1045  if (C1->isNullValue()) {
1046    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1047      if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
1048        if (pred == ICmpInst::ICMP_EQ)
1049          return ConstantInt::getFalse();
1050        else if (pred == ICmpInst::ICMP_NE)
1051          return ConstantInt::getTrue();
1052  // icmp eq/ne(GV,null) -> false/true
1053  } else if (C2->isNullValue()) {
1054    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1055      if (!GV->hasExternalWeakLinkage()) // External weak GV can be null
1056        if (pred == ICmpInst::ICMP_EQ)
1057          return ConstantInt::getFalse();
1058        else if (pred == ICmpInst::ICMP_NE)
1059          return ConstantInt::getTrue();
1060  }
1061
1062  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2) &&
1063      C1->getType() == Type::Int1Ty && C2->getType() == Type::Int1Ty) {
1064    bool C1Val = cast<ConstantInt>(C1)->getZExtValue();
1065    bool C2Val = cast<ConstantInt>(C2)->getZExtValue();
1066    switch (pred) {
1067    default: assert(0 && "Invalid ICmp Predicate"); return 0;
1068    case ICmpInst::ICMP_EQ:
1069      return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
1070    case ICmpInst::ICMP_NE:
1071      return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
1072    case ICmpInst::ICMP_ULT:
1073      return ConstantInt::get(Type::Int1Ty, C1Val <  C2Val);
1074    case ICmpInst::ICMP_UGT:
1075      return ConstantInt::get(Type::Int1Ty, C1Val >  C2Val);
1076    case ICmpInst::ICMP_ULE:
1077      return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
1078    case ICmpInst::ICMP_UGE:
1079      return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
1080    case ICmpInst::ICMP_SLT:
1081      return ConstantInt::get(Type::Int1Ty, C1Val <  C2Val);
1082    case ICmpInst::ICMP_SGT:
1083      return ConstantInt::get(Type::Int1Ty, C1Val >  C2Val);
1084    case ICmpInst::ICMP_SLE:
1085      return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
1086    case ICmpInst::ICMP_SGE:
1087      return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
1088    }
1089  } else if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1090    if (ICmpInst::isSignedPredicate(ICmpInst::Predicate(pred))) {
1091      int64_t V1 = cast<ConstantInt>(C1)->getSExtValue();
1092      int64_t V2 = cast<ConstantInt>(C2)->getSExtValue();
1093      switch (pred) {
1094      default: assert(0 && "Invalid ICmp Predicate"); return 0;
1095      case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1 <  V2);
1096      case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1 >  V2);
1097      case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1 <= V2);
1098      case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1 >= V2);
1099      }
1100    } else {
1101      uint64_t V1 = cast<ConstantInt>(C1)->getZExtValue();
1102      uint64_t V2 = cast<ConstantInt>(C2)->getZExtValue();
1103      switch (pred) {
1104      default: assert(0 && "Invalid ICmp Predicate"); return 0;
1105      case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1106      case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1107      case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1 <  V2);
1108      case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1 >  V2);
1109      case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1 <= V2);
1110      case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1 >= V2);
1111      }
1112    }
1113  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1114    double C1Val = cast<ConstantFP>(C1)->getValue();
1115    double C2Val = cast<ConstantFP>(C2)->getValue();
1116    switch (pred) {
1117    default: assert(0 && "Invalid FCmp Predicate"); return 0;
1118    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1119    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
1120    case FCmpInst::FCMP_UNO:
1121      return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
1122    case FCmpInst::FCMP_ORD:
1123      return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
1124    case FCmpInst::FCMP_UEQ:
1125      if (C1Val != C1Val || C2Val != C2Val)
1126        return ConstantInt::getTrue();
1127      /* FALL THROUGH */
1128    case FCmpInst::FCMP_OEQ:
1129      return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
1130    case FCmpInst::FCMP_UNE:
1131      if (C1Val != C1Val || C2Val != C2Val)
1132        return ConstantInt::getTrue();
1133      /* FALL THROUGH */
1134    case FCmpInst::FCMP_ONE:
1135      return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
1136    case FCmpInst::FCMP_ULT:
1137      if (C1Val != C1Val || C2Val != C2Val)
1138        return ConstantInt::getTrue();
1139      /* FALL THROUGH */
1140    case FCmpInst::FCMP_OLT:
1141      return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
1142    case FCmpInst::FCMP_UGT:
1143      if (C1Val != C1Val || C2Val != C2Val)
1144        return ConstantInt::getTrue();
1145      /* FALL THROUGH */
1146    case FCmpInst::FCMP_OGT:
1147      return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
1148    case FCmpInst::FCMP_ULE:
1149      if (C1Val != C1Val || C2Val != C2Val)
1150        return ConstantInt::getTrue();
1151      /* FALL THROUGH */
1152    case FCmpInst::FCMP_OLE:
1153      return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
1154    case FCmpInst::FCMP_UGE:
1155      if (C1Val != C1Val || C2Val != C2Val)
1156        return ConstantInt::getTrue();
1157      /* FALL THROUGH */
1158    case FCmpInst::FCMP_OGE:
1159      return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
1160    }
1161  } else if (const ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
1162    if (const ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
1163      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) {
1164        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1165          Constant *C= ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ,
1166              const_cast<Constant*>(CP1->getOperand(i)),
1167              const_cast<Constant*>(CP2->getOperand(i)));
1168          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1169            return CB;
1170        }
1171        // Otherwise, could not decide from any element pairs.
1172        return 0;
1173      } else if (pred == ICmpInst::ICMP_EQ) {
1174        for (unsigned i = 0, e = CP1->getNumOperands(); i != e; ++i) {
1175          Constant *C = ConstantExpr::getICmp(ICmpInst::ICMP_EQ,
1176              const_cast<Constant*>(CP1->getOperand(i)),
1177              const_cast<Constant*>(CP2->getOperand(i)));
1178          if (ConstantInt *CB = dyn_cast<ConstantInt>(C))
1179            return CB;
1180        }
1181        // Otherwise, could not decide from any element pairs.
1182        return 0;
1183      }
1184    }
1185  }
1186
1187  if (C1->getType()->isFloatingPoint()) {
1188    switch (evaluateFCmpRelation(C1, C2)) {
1189    default: assert(0 && "Unknown relation!");
1190    case FCmpInst::FCMP_UNO:
1191    case FCmpInst::FCMP_ORD:
1192    case FCmpInst::FCMP_UEQ:
1193    case FCmpInst::FCMP_UNE:
1194    case FCmpInst::FCMP_ULT:
1195    case FCmpInst::FCMP_UGT:
1196    case FCmpInst::FCMP_ULE:
1197    case FCmpInst::FCMP_UGE:
1198    case FCmpInst::FCMP_TRUE:
1199    case FCmpInst::FCMP_FALSE:
1200    case FCmpInst::BAD_FCMP_PREDICATE:
1201      break; // Couldn't determine anything about these constants.
1202    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1203      return ConstantInt::get(Type::Int1Ty,
1204          pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1205          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1206          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1207    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1208      return ConstantInt::get(Type::Int1Ty,
1209          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1210          pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1211          pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1212    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1213      return ConstantInt::get(Type::Int1Ty,
1214          pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1215          pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1216          pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1217    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1218      // We can only partially decide this relation.
1219      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1220        return ConstantInt::getFalse();
1221      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1222        return ConstantInt::getTrue();
1223      break;
1224    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1225      // We can only partially decide this relation.
1226      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1227        return ConstantInt::getFalse();
1228      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1229        return ConstantInt::getTrue();
1230      break;
1231    case ICmpInst::ICMP_NE: // We know that C1 != C2
1232      // We can only partially decide this relation.
1233      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1234        return ConstantInt::getFalse();
1235      if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1236        return ConstantInt::getTrue();
1237      break;
1238    }
1239  } else {
1240    // Evaluate the relation between the two constants, per the predicate.
1241    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1242    default: assert(0 && "Unknown relational!");
1243    case ICmpInst::BAD_ICMP_PREDICATE:
1244      break;  // Couldn't determine anything about these constants.
1245    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1246      // If we know the constants are equal, we can decide the result of this
1247      // computation precisely.
1248      return ConstantInt::get(Type::Int1Ty,
1249                              pred == ICmpInst::ICMP_EQ  ||
1250                              pred == ICmpInst::ICMP_ULE ||
1251                              pred == ICmpInst::ICMP_SLE ||
1252                              pred == ICmpInst::ICMP_UGE ||
1253                              pred == ICmpInst::ICMP_SGE);
1254    case ICmpInst::ICMP_ULT:
1255      // If we know that C1 < C2, we can decide the result of this computation
1256      // precisely.
1257      return ConstantInt::get(Type::Int1Ty,
1258                              pred == ICmpInst::ICMP_ULT ||
1259                              pred == ICmpInst::ICMP_NE  ||
1260                              pred == ICmpInst::ICMP_ULE);
1261    case ICmpInst::ICMP_SLT:
1262      // If we know that C1 < C2, we can decide the result of this computation
1263      // precisely.
1264      return ConstantInt::get(Type::Int1Ty,
1265                              pred == ICmpInst::ICMP_SLT ||
1266                              pred == ICmpInst::ICMP_NE  ||
1267                              pred == ICmpInst::ICMP_SLE);
1268    case ICmpInst::ICMP_UGT:
1269      // If we know that C1 > C2, we can decide the result of this computation
1270      // precisely.
1271      return ConstantInt::get(Type::Int1Ty,
1272                              pred == ICmpInst::ICMP_UGT ||
1273                              pred == ICmpInst::ICMP_NE  ||
1274                              pred == ICmpInst::ICMP_UGE);
1275    case ICmpInst::ICMP_SGT:
1276      // If we know that C1 > C2, we can decide the result of this computation
1277      // precisely.
1278      return ConstantInt::get(Type::Int1Ty,
1279                              pred == ICmpInst::ICMP_SGT ||
1280                              pred == ICmpInst::ICMP_NE  ||
1281                              pred == ICmpInst::ICMP_SGE);
1282    case ICmpInst::ICMP_ULE:
1283      // If we know that C1 <= C2, we can only partially decide this relation.
1284      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getFalse();
1285      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getTrue();
1286      break;
1287    case ICmpInst::ICMP_SLE:
1288      // If we know that C1 <= C2, we can only partially decide this relation.
1289      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getFalse();
1290      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getTrue();
1291      break;
1292
1293    case ICmpInst::ICMP_UGE:
1294      // If we know that C1 >= C2, we can only partially decide this relation.
1295      if (pred == ICmpInst::ICMP_ULT) return ConstantInt::getFalse();
1296      if (pred == ICmpInst::ICMP_UGT) return ConstantInt::getTrue();
1297      break;
1298    case ICmpInst::ICMP_SGE:
1299      // If we know that C1 >= C2, we can only partially decide this relation.
1300      if (pred == ICmpInst::ICMP_SLT) return ConstantInt::getFalse();
1301      if (pred == ICmpInst::ICMP_SGT) return ConstantInt::getTrue();
1302      break;
1303
1304    case ICmpInst::ICMP_NE:
1305      // If we know that C1 != C2, we can only partially decide this relation.
1306      if (pred == ICmpInst::ICMP_EQ) return ConstantInt::getFalse();
1307      if (pred == ICmpInst::ICMP_NE) return ConstantInt::getTrue();
1308      break;
1309    }
1310
1311    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1312      // If C2 is a constant expr and C1 isn't, flop them around and fold the
1313      // other way if possible.
1314      switch (pred) {
1315      case ICmpInst::ICMP_EQ:
1316      case ICmpInst::ICMP_NE:
1317        // No change of predicate required.
1318        return ConstantFoldCompareInstruction(pred, C2, C1);
1319
1320      case ICmpInst::ICMP_ULT:
1321      case ICmpInst::ICMP_SLT:
1322      case ICmpInst::ICMP_UGT:
1323      case ICmpInst::ICMP_SGT:
1324      case ICmpInst::ICMP_ULE:
1325      case ICmpInst::ICMP_SLE:
1326      case ICmpInst::ICMP_UGE:
1327      case ICmpInst::ICMP_SGE:
1328        // Change the predicate as necessary to swap the operands.
1329        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1330        return ConstantFoldCompareInstruction(pred, C2, C1);
1331
1332      default:  // These predicates cannot be flopped around.
1333        break;
1334      }
1335    }
1336  }
1337  return 0;
1338}
1339
1340Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1341                                          const std::vector<Value*> &IdxList) {
1342  if (IdxList.size() == 0 ||
1343      (IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
1344    return const_cast<Constant*>(C);
1345
1346  if (isa<UndefValue>(C)) {
1347    const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
1348                                                       true);
1349    assert(Ty != 0 && "Invalid indices for GEP!");
1350    return UndefValue::get(PointerType::get(Ty));
1351  }
1352
1353  Constant *Idx0 = cast<Constant>(IdxList[0]);
1354  if (C->isNullValue()) {
1355    bool isNull = true;
1356    for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
1357      if (!cast<Constant>(IdxList[i])->isNullValue()) {
1358        isNull = false;
1359        break;
1360      }
1361    if (isNull) {
1362      const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
1363                                                         true);
1364      assert(Ty != 0 && "Invalid indices for GEP!");
1365      return ConstantPointerNull::get(PointerType::get(Ty));
1366    }
1367
1368    if (IdxList.size() == 1) {
1369      const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
1370      if (uint32_t ElSize = ElTy->getPrimitiveSize()) {
1371        // gep null, C is equal to C*sizeof(nullty).  If nullty is a known llvm
1372        // type, we can statically fold this.
1373        Constant *R = ConstantInt::get(Type::Int32Ty, ElSize);
1374        // We know R is unsigned, Idx0 is signed because it must be an index
1375        // through a sequential type (gep pointer operand) which is always
1376        // signed.
1377        R = ConstantExpr::getSExtOrBitCast(R, Idx0->getType());
1378        R = ConstantExpr::getMul(R, Idx0); // signed multiply
1379        // R is a signed integer, C is the GEP pointer so -> IntToPtr
1380        return ConstantExpr::getIntToPtr(R, C->getType());
1381      }
1382    }
1383  }
1384
1385  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1386    // Combine Indices - If the source pointer to this getelementptr instruction
1387    // is a getelementptr instruction, combine the indices of the two
1388    // getelementptr instructions into a single instruction.
1389    //
1390    if (CE->getOpcode() == Instruction::GetElementPtr) {
1391      const Type *LastTy = 0;
1392      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1393           I != E; ++I)
1394        LastTy = *I;
1395
1396      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1397        std::vector<Value*> NewIndices;
1398        NewIndices.reserve(IdxList.size() + CE->getNumOperands());
1399        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1400          NewIndices.push_back(CE->getOperand(i));
1401
1402        // Add the last index of the source with the first index of the new GEP.
1403        // Make sure to handle the case when they are actually different types.
1404        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1405        // Otherwise it must be an array.
1406        if (!Idx0->isNullValue()) {
1407          const Type *IdxTy = Combined->getType();
1408          if (IdxTy != Idx0->getType()) {
1409            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1410            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1411                                                          Type::Int64Ty);
1412            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1413          } else {
1414            Combined =
1415              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1416          }
1417        }
1418
1419        NewIndices.push_back(Combined);
1420        NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
1421        return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
1422      }
1423    }
1424
1425    // Implement folding of:
1426    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1427    //                        long 0, long 0)
1428    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1429    //
1430    if (CE->isCast() && IdxList.size() > 1 && Idx0->isNullValue())
1431      if (const PointerType *SPT =
1432          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1433        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1434          if (const ArrayType *CAT =
1435        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1436            if (CAT->getElementType() == SAT->getElementType())
1437              return ConstantExpr::getGetElementPtr(
1438                      (Constant*)CE->getOperand(0), IdxList);
1439  }
1440  return 0;
1441}
1442
1443