ConstantFold.cpp revision baf3c404409d5e47b13984a7f95bfbd6d1f2e79e
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFold.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalAlias.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/ManagedStatic.h"
33#include "llvm/Support/MathExtras.h"
34#include <limits>
35using namespace llvm;
36
37//===----------------------------------------------------------------------===//
38//                ConstantFold*Instruction Implementations
39//===----------------------------------------------------------------------===//
40
41/// BitCastConstantVector - Convert the specified ConstantVector node to the
42/// specified vector type.  At this point, we know that the elements of the
43/// input vector constant are all simple integer or FP values.
44static Constant *BitCastConstantVector(LLVMContext &Context, ConstantVector *CV,
45                                       const VectorType *DstTy) {
46  // If this cast changes element count then we can't handle it here:
47  // doing so requires endianness information.  This should be handled by
48  // Analysis/ConstantFolding.cpp
49  unsigned NumElts = DstTy->getNumElements();
50  if (NumElts != CV->getNumOperands())
51    return 0;
52
53  // Check to verify that all elements of the input are simple.
54  for (unsigned i = 0; i != NumElts; ++i) {
55    if (!isa<ConstantInt>(CV->getOperand(i)) &&
56        !isa<ConstantFP>(CV->getOperand(i)))
57      return 0;
58  }
59
60  // Bitcast each element now.
61  std::vector<Constant*> Result;
62  const Type *DstEltTy = DstTy->getElementType();
63  for (unsigned i = 0; i != NumElts; ++i)
64    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
65                                                    DstEltTy));
66  return ConstantVector::get(Result);
67}
68
69/// This function determines which opcode to use to fold two constant cast
70/// expressions together. It uses CastInst::isEliminableCastPair to determine
71/// the opcode. Consequently its just a wrapper around that function.
72/// @brief Determine if it is valid to fold a cast of a cast
73static unsigned
74foldConstantCastPair(
75  unsigned opc,          ///< opcode of the second cast constant expression
76  const ConstantExpr*Op, ///< the first cast constant expression
77  const Type *DstTy      ///< desintation type of the first cast
78) {
79  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
80  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
81  assert(CastInst::isCast(opc) && "Invalid cast opcode");
82
83  // The the types and opcodes for the two Cast constant expressions
84  const Type *SrcTy = Op->getOperand(0)->getType();
85  const Type *MidTy = Op->getType();
86  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
87  Instruction::CastOps secondOp = Instruction::CastOps(opc);
88
89  // Let CastInst::isEliminableCastPair do the heavy lifting.
90  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
91                                        Type::Int64Ty);
92}
93
94static Constant *FoldBitCast(LLVMContext &Context,
95                             Constant *V, const Type *DestTy) {
96  const Type *SrcTy = V->getType();
97  if (SrcTy == DestTy)
98    return V; // no-op cast
99
100  // Check to see if we are casting a pointer to an aggregate to a pointer to
101  // the first element.  If so, return the appropriate GEP instruction.
102  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
103    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
104      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
105        SmallVector<Value*, 8> IdxList;
106        IdxList.push_back(Context.getNullValue(Type::Int32Ty));
107        const Type *ElTy = PTy->getElementType();
108        while (ElTy != DPTy->getElementType()) {
109          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
110            if (STy->getNumElements() == 0) break;
111            ElTy = STy->getElementType(0);
112            IdxList.push_back(Context.getNullValue(Type::Int32Ty));
113          } else if (const SequentialType *STy =
114                     dyn_cast<SequentialType>(ElTy)) {
115            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
116            ElTy = STy->getElementType();
117            IdxList.push_back(IdxList[0]);
118          } else {
119            break;
120          }
121        }
122
123        if (ElTy == DPTy->getElementType())
124          return ConstantExpr::getGetElementPtr(V, &IdxList[0],
125                                                      IdxList.size());
126      }
127
128  // Handle casts from one vector constant to another.  We know that the src
129  // and dest type have the same size (otherwise its an illegal cast).
130  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
131    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
132      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
133             "Not cast between same sized vectors!");
134      SrcTy = NULL;
135      // First, check for null.  Undef is already handled.
136      if (isa<ConstantAggregateZero>(V))
137        return Context.getNullValue(DestTy);
138
139      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
140        return BitCastConstantVector(Context, CV, DestPTy);
141    }
142
143    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
144    // This allows for other simplifications (although some of them
145    // can only be handled by Analysis/ConstantFolding.cpp).
146    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
147      return ConstantExpr::getBitCast(
148                                     ConstantVector::get(&V, 1), DestPTy);
149  }
150
151  // Finally, implement bitcast folding now.   The code below doesn't handle
152  // bitcast right.
153  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
154    return Context.getConstantPointerNull(cast<PointerType>(DestTy));
155
156  // Handle integral constant input.
157  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (DestTy->isInteger())
159      // Integral -> Integral. This is a no-op because the bit widths must
160      // be the same. Consequently, we just fold to V.
161      return V;
162
163    if (DestTy->isFloatingPoint())
164      return ConstantFP::get(Context, APFloat(CI->getValue(),
165                                     DestTy != Type::PPC_FP128Ty));
166
167    // Otherwise, can't fold this (vector?)
168    return 0;
169  }
170
171  // Handle ConstantFP input.
172  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V))
173    // FP -> Integral.
174    return ConstantInt::get(Context, FP->getValueAPF().bitcastToAPInt());
175
176  return 0;
177}
178
179
180Constant *llvm::ConstantFoldCastInstruction(LLVMContext &Context,
181                                            unsigned opc, const Constant *V,
182                                            const Type *DestTy) {
183  if (isa<UndefValue>(V)) {
184    // zext(undef) = 0, because the top bits will be zero.
185    // sext(undef) = 0, because the top bits will all be the same.
186    // [us]itofp(undef) = 0, because the result value is bounded.
187    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
188        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
189      return Context.getNullValue(DestTy);
190    return Context.getUndef(DestTy);
191  }
192  // No compile-time operations on this type yet.
193  if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
194    return 0;
195
196  // If the cast operand is a constant expression, there's a few things we can
197  // do to try to simplify it.
198  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
199    if (CE->isCast()) {
200      // Try hard to fold cast of cast because they are often eliminable.
201      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
202        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
203    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
204      // If all of the indexes in the GEP are null values, there is no pointer
205      // adjustment going on.  We might as well cast the source pointer.
206      bool isAllNull = true;
207      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
208        if (!CE->getOperand(i)->isNullValue()) {
209          isAllNull = false;
210          break;
211        }
212      if (isAllNull)
213        // This is casting one pointer type to another, always BitCast
214        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
215    }
216  }
217
218  // If the cast operand is a constant vector, perform the cast by
219  // operating on each element. In the cast of bitcasts, the element
220  // count may be mismatched; don't attempt to handle that here.
221  if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
222    if (isa<VectorType>(DestTy) &&
223        cast<VectorType>(DestTy)->getNumElements() ==
224        CV->getType()->getNumElements()) {
225      std::vector<Constant*> res;
226      const VectorType *DestVecTy = cast<VectorType>(DestTy);
227      const Type *DstEltTy = DestVecTy->getElementType();
228      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
229        res.push_back(ConstantExpr::getCast(opc,
230                                            CV->getOperand(i), DstEltTy));
231      return ConstantVector::get(DestVecTy, res);
232    }
233
234  // We actually have to do a cast now. Perform the cast according to the
235  // opcode specified.
236  switch (opc) {
237  case Instruction::FPTrunc:
238  case Instruction::FPExt:
239    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
240      bool ignored;
241      APFloat Val = FPC->getValueAPF();
242      Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
243                  DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
244                  DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
245                  DestTy == Type::FP128Ty ? APFloat::IEEEquad :
246                  APFloat::Bogus,
247                  APFloat::rmNearestTiesToEven, &ignored);
248      return ConstantFP::get(Context, Val);
249    }
250    return 0; // Can't fold.
251  case Instruction::FPToUI:
252  case Instruction::FPToSI:
253    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
254      const APFloat &V = FPC->getValueAPF();
255      bool ignored;
256      uint64_t x[2];
257      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
258      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
259                                APFloat::rmTowardZero, &ignored);
260      APInt Val(DestBitWidth, 2, x);
261      return ConstantInt::get(Context, Val);
262    }
263    return 0; // Can't fold.
264  case Instruction::IntToPtr:   //always treated as unsigned
265    if (V->isNullValue())       // Is it an integral null value?
266      return Context.getConstantPointerNull(cast<PointerType>(DestTy));
267    return 0;                   // Other pointer types cannot be casted
268  case Instruction::PtrToInt:   // always treated as unsigned
269    if (V->isNullValue())       // is it a null pointer value?
270      return ConstantInt::get(DestTy, 0);
271    return 0;                   // Other pointer types cannot be casted
272  case Instruction::UIToFP:
273  case Instruction::SIToFP:
274    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
275      APInt api = CI->getValue();
276      const uint64_t zero[] = {0, 0};
277      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
278                                  2, zero));
279      (void)apf.convertFromAPInt(api,
280                                 opc==Instruction::SIToFP,
281                                 APFloat::rmNearestTiesToEven);
282      return ConstantFP::get(Context, apf);
283    }
284    return 0;
285  case Instruction::ZExt:
286    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
287      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
288      APInt Result(CI->getValue());
289      Result.zext(BitWidth);
290      return ConstantInt::get(Context, Result);
291    }
292    return 0;
293  case Instruction::SExt:
294    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
295      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
296      APInt Result(CI->getValue());
297      Result.sext(BitWidth);
298      return ConstantInt::get(Context, Result);
299    }
300    return 0;
301  case Instruction::Trunc:
302    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
303      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
304      APInt Result(CI->getValue());
305      Result.trunc(BitWidth);
306      return ConstantInt::get(Context, Result);
307    }
308    return 0;
309  case Instruction::BitCast:
310    return FoldBitCast(Context, const_cast<Constant*>(V), DestTy);
311  default:
312    assert(!"Invalid CE CastInst opcode");
313    break;
314  }
315
316  llvm_unreachable("Failed to cast constant expression");
317  return 0;
318}
319
320Constant *llvm::ConstantFoldSelectInstruction(LLVMContext&,
321                                              const Constant *Cond,
322                                              const Constant *V1,
323                                              const Constant *V2) {
324  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
325    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
326
327  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
328  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
329  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
330  if (V1 == V2) return const_cast<Constant*>(V1);
331  return 0;
332}
333
334Constant *llvm::ConstantFoldExtractElementInstruction(LLVMContext &Context,
335                                                      const Constant *Val,
336                                                      const Constant *Idx) {
337  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
338    return Context.getUndef(cast<VectorType>(Val->getType())->getElementType());
339  if (Val->isNullValue())  // ee(zero, x) -> zero
340    return Context.getNullValue(
341                          cast<VectorType>(Val->getType())->getElementType());
342
343  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
344    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
345      return CVal->getOperand(CIdx->getZExtValue());
346    } else if (isa<UndefValue>(Idx)) {
347      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
348      return CVal->getOperand(0);
349    }
350  }
351  return 0;
352}
353
354Constant *llvm::ConstantFoldInsertElementInstruction(LLVMContext &Context,
355                                                     const Constant *Val,
356                                                     const Constant *Elt,
357                                                     const Constant *Idx) {
358  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
359  if (!CIdx) return 0;
360  APInt idxVal = CIdx->getValue();
361  if (isa<UndefValue>(Val)) {
362    // Insertion of scalar constant into vector undef
363    // Optimize away insertion of undef
364    if (isa<UndefValue>(Elt))
365      return const_cast<Constant*>(Val);
366    // Otherwise break the aggregate undef into multiple undefs and do
367    // the insertion
368    unsigned numOps =
369      cast<VectorType>(Val->getType())->getNumElements();
370    std::vector<Constant*> Ops;
371    Ops.reserve(numOps);
372    for (unsigned i = 0; i < numOps; ++i) {
373      const Constant *Op =
374        (idxVal == i) ? Elt : Context.getUndef(Elt->getType());
375      Ops.push_back(const_cast<Constant*>(Op));
376    }
377    return ConstantVector::get(Ops);
378  }
379  if (isa<ConstantAggregateZero>(Val)) {
380    // Insertion of scalar constant into vector aggregate zero
381    // Optimize away insertion of zero
382    if (Elt->isNullValue())
383      return const_cast<Constant*>(Val);
384    // Otherwise break the aggregate zero into multiple zeros and do
385    // the insertion
386    unsigned numOps =
387      cast<VectorType>(Val->getType())->getNumElements();
388    std::vector<Constant*> Ops;
389    Ops.reserve(numOps);
390    for (unsigned i = 0; i < numOps; ++i) {
391      const Constant *Op =
392        (idxVal == i) ? Elt : Context.getNullValue(Elt->getType());
393      Ops.push_back(const_cast<Constant*>(Op));
394    }
395    return ConstantVector::get(Ops);
396  }
397  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
398    // Insertion of scalar constant into vector constant
399    std::vector<Constant*> Ops;
400    Ops.reserve(CVal->getNumOperands());
401    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
402      const Constant *Op =
403        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
404      Ops.push_back(const_cast<Constant*>(Op));
405    }
406    return ConstantVector::get(Ops);
407  }
408
409  return 0;
410}
411
412/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
413/// return the specified element value.  Otherwise return null.
414static Constant *GetVectorElement(LLVMContext &Context, const Constant *C,
415                                  unsigned EltNo) {
416  if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
417    return CV->getOperand(EltNo);
418
419  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
420  if (isa<ConstantAggregateZero>(C))
421    return Context.getNullValue(EltTy);
422  if (isa<UndefValue>(C))
423    return Context.getUndef(EltTy);
424  return 0;
425}
426
427Constant *llvm::ConstantFoldShuffleVectorInstruction(LLVMContext &Context,
428                                                     const Constant *V1,
429                                                     const Constant *V2,
430                                                     const Constant *Mask) {
431  // Undefined shuffle mask -> undefined value.
432  if (isa<UndefValue>(Mask)) return Context.getUndef(V1->getType());
433
434  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
435  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
436  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
437
438  // Loop over the shuffle mask, evaluating each element.
439  SmallVector<Constant*, 32> Result;
440  for (unsigned i = 0; i != MaskNumElts; ++i) {
441    Constant *InElt = GetVectorElement(Context, Mask, i);
442    if (InElt == 0) return 0;
443
444    if (isa<UndefValue>(InElt))
445      InElt = Context.getUndef(EltTy);
446    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
447      unsigned Elt = CI->getZExtValue();
448      if (Elt >= SrcNumElts*2)
449        InElt = Context.getUndef(EltTy);
450      else if (Elt >= SrcNumElts)
451        InElt = GetVectorElement(Context, V2, Elt - SrcNumElts);
452      else
453        InElt = GetVectorElement(Context, V1, Elt);
454      if (InElt == 0) return 0;
455    } else {
456      // Unknown value.
457      return 0;
458    }
459    Result.push_back(InElt);
460  }
461
462  return ConstantVector::get(&Result[0], Result.size());
463}
464
465Constant *llvm::ConstantFoldExtractValueInstruction(LLVMContext &Context,
466                                                    const Constant *Agg,
467                                                    const unsigned *Idxs,
468                                                    unsigned NumIdx) {
469  // Base case: no indices, so return the entire value.
470  if (NumIdx == 0)
471    return const_cast<Constant *>(Agg);
472
473  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
474    return Context.getUndef(ExtractValueInst::getIndexedType(Agg->getType(),
475                                                            Idxs,
476                                                            Idxs + NumIdx));
477
478  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
479    return
480      Context.getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
481                                                              Idxs,
482                                                              Idxs + NumIdx));
483
484  // Otherwise recurse.
485  return ConstantFoldExtractValueInstruction(Context, Agg->getOperand(*Idxs),
486                                             Idxs+1, NumIdx-1);
487}
488
489Constant *llvm::ConstantFoldInsertValueInstruction(LLVMContext &Context,
490                                                   const Constant *Agg,
491                                                   const Constant *Val,
492                                                   const unsigned *Idxs,
493                                                   unsigned NumIdx) {
494  // Base case: no indices, so replace the entire value.
495  if (NumIdx == 0)
496    return const_cast<Constant *>(Val);
497
498  if (isa<UndefValue>(Agg)) {
499    // Insertion of constant into aggregate undef
500    // Optimize away insertion of undef
501    if (isa<UndefValue>(Val))
502      return const_cast<Constant*>(Agg);
503    // Otherwise break the aggregate undef into multiple undefs and do
504    // the insertion
505    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
506    unsigned numOps;
507    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
508      numOps = AR->getNumElements();
509    else
510      numOps = cast<StructType>(AggTy)->getNumElements();
511    std::vector<Constant*> Ops(numOps);
512    for (unsigned i = 0; i < numOps; ++i) {
513      const Type *MemberTy = AggTy->getTypeAtIndex(i);
514      const Constant *Op =
515        (*Idxs == i) ?
516        ConstantFoldInsertValueInstruction(Context, Context.getUndef(MemberTy),
517                                           Val, Idxs+1, NumIdx-1) :
518        Context.getUndef(MemberTy);
519      Ops[i] = const_cast<Constant*>(Op);
520    }
521    if (isa<StructType>(AggTy))
522      return ConstantStruct::get(Ops);
523    else
524      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
525  }
526  if (isa<ConstantAggregateZero>(Agg)) {
527    // Insertion of constant into aggregate zero
528    // Optimize away insertion of zero
529    if (Val->isNullValue())
530      return const_cast<Constant*>(Agg);
531    // Otherwise break the aggregate zero into multiple zeros and do
532    // the insertion
533    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
534    unsigned numOps;
535    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
536      numOps = AR->getNumElements();
537    else
538      numOps = cast<StructType>(AggTy)->getNumElements();
539    std::vector<Constant*> Ops(numOps);
540    for (unsigned i = 0; i < numOps; ++i) {
541      const Type *MemberTy = AggTy->getTypeAtIndex(i);
542      const Constant *Op =
543        (*Idxs == i) ?
544        ConstantFoldInsertValueInstruction(Context,
545                                           Context.getNullValue(MemberTy),
546                                           Val, Idxs+1, NumIdx-1) :
547        Context.getNullValue(MemberTy);
548      Ops[i] = const_cast<Constant*>(Op);
549    }
550    if (isa<StructType>(AggTy))
551      return ConstantStruct::get(Ops);
552    else
553      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
554  }
555  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
556    // Insertion of constant into aggregate constant
557    std::vector<Constant*> Ops(Agg->getNumOperands());
558    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
559      const Constant *Op =
560        (*Idxs == i) ?
561        ConstantFoldInsertValueInstruction(Context, Agg->getOperand(i),
562                                           Val, Idxs+1, NumIdx-1) :
563        Agg->getOperand(i);
564      Ops[i] = const_cast<Constant*>(Op);
565    }
566    Constant *C;
567    if (isa<StructType>(Agg->getType()))
568      C = ConstantStruct::get(Ops);
569    else
570      C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
571    return C;
572  }
573
574  return 0;
575}
576
577
578Constant *llvm::ConstantFoldBinaryInstruction(LLVMContext &Context,
579                                              unsigned Opcode,
580                                              const Constant *C1,
581                                              const Constant *C2) {
582  // No compile-time operations on this type yet.
583  if (C1->getType() == Type::PPC_FP128Ty)
584    return 0;
585
586  // Handle UndefValue up front
587  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
588    switch (Opcode) {
589    case Instruction::Xor:
590      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
591        // Handle undef ^ undef -> 0 special case. This is a common
592        // idiom (misuse).
593        return Context.getNullValue(C1->getType());
594      // Fallthrough
595    case Instruction::Add:
596    case Instruction::Sub:
597      return Context.getUndef(C1->getType());
598    case Instruction::Mul:
599    case Instruction::And:
600      return Context.getNullValue(C1->getType());
601    case Instruction::UDiv:
602    case Instruction::SDiv:
603    case Instruction::URem:
604    case Instruction::SRem:
605      if (!isa<UndefValue>(C2))                    // undef / X -> 0
606        return Context.getNullValue(C1->getType());
607      return const_cast<Constant*>(C2);            // X / undef -> undef
608    case Instruction::Or:                          // X | undef -> -1
609      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
610        return Context.getAllOnesValue(PTy);
611      return Context.getAllOnesValue(C1->getType());
612    case Instruction::LShr:
613      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
614        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
615      return Context.getNullValue(C1->getType()); // X lshr undef -> 0
616                                                    // undef lshr X -> 0
617    case Instruction::AShr:
618      if (!isa<UndefValue>(C2))
619        return const_cast<Constant*>(C1);           // undef ashr X --> undef
620      else if (isa<UndefValue>(C1))
621        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
622      else
623        return const_cast<Constant*>(C1);           // X ashr undef --> X
624    case Instruction::Shl:
625      // undef << X -> 0   or   X << undef -> 0
626      return Context.getNullValue(C1->getType());
627    }
628  }
629
630  // Handle simplifications when the RHS is a constant int.
631  if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
632    switch (Opcode) {
633    case Instruction::Add:
634      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X + 0 == X
635      break;
636    case Instruction::Sub:
637      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X - 0 == X
638      break;
639    case Instruction::Mul:
640      if (CI2->equalsInt(0)) return const_cast<Constant*>(C2);  // X * 0 == 0
641      if (CI2->equalsInt(1))
642        return const_cast<Constant*>(C1);                       // X * 1 == X
643      break;
644    case Instruction::UDiv:
645    case Instruction::SDiv:
646      if (CI2->equalsInt(1))
647        return const_cast<Constant*>(C1);                     // X / 1 == X
648      if (CI2->equalsInt(0))
649        return Context.getUndef(CI2->getType());               // X / 0 == undef
650      break;
651    case Instruction::URem:
652    case Instruction::SRem:
653      if (CI2->equalsInt(1))
654        return Context.getNullValue(CI2->getType());        // X % 1 == 0
655      if (CI2->equalsInt(0))
656        return Context.getUndef(CI2->getType());               // X % 0 == undef
657      break;
658    case Instruction::And:
659      if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
660      if (CI2->isAllOnesValue())
661        return const_cast<Constant*>(C1);                     // X & -1 == X
662
663      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
664        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
665        if (CE1->getOpcode() == Instruction::ZExt) {
666          unsigned DstWidth = CI2->getType()->getBitWidth();
667          unsigned SrcWidth =
668            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
669          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
670          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
671            return const_cast<Constant*>(C1);
672        }
673
674        // If and'ing the address of a global with a constant, fold it.
675        if (CE1->getOpcode() == Instruction::PtrToInt &&
676            isa<GlobalValue>(CE1->getOperand(0))) {
677          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
678
679          // Functions are at least 4-byte aligned.
680          unsigned GVAlign = GV->getAlignment();
681          if (isa<Function>(GV))
682            GVAlign = std::max(GVAlign, 4U);
683
684          if (GVAlign > 1) {
685            unsigned DstWidth = CI2->getType()->getBitWidth();
686            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
687            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
688
689            // If checking bits we know are clear, return zero.
690            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
691              return Context.getNullValue(CI2->getType());
692          }
693        }
694      }
695      break;
696    case Instruction::Or:
697      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X | 0 == X
698      if (CI2->isAllOnesValue())
699        return const_cast<Constant*>(C2);  // X | -1 == -1
700      break;
701    case Instruction::Xor:
702      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X ^ 0 == X
703      break;
704    case Instruction::AShr:
705      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
706      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
707        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
708          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
709                                             const_cast<Constant*>(C2));
710      break;
711    }
712  }
713
714  // At this point we know neither constant is an UndefValue.
715  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
716    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
717      using namespace APIntOps;
718      const APInt &C1V = CI1->getValue();
719      const APInt &C2V = CI2->getValue();
720      switch (Opcode) {
721      default:
722        break;
723      case Instruction::Add:
724        return ConstantInt::get(Context, C1V + C2V);
725      case Instruction::Sub:
726        return ConstantInt::get(Context, C1V - C2V);
727      case Instruction::Mul:
728        return ConstantInt::get(Context, C1V * C2V);
729      case Instruction::UDiv:
730        assert(!CI2->isNullValue() && "Div by zero handled above");
731        return ConstantInt::get(Context, C1V.udiv(C2V));
732      case Instruction::SDiv:
733        assert(!CI2->isNullValue() && "Div by zero handled above");
734        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
735          return Context.getUndef(CI1->getType());   // MIN_INT / -1 -> undef
736        return ConstantInt::get(Context, C1V.sdiv(C2V));
737      case Instruction::URem:
738        assert(!CI2->isNullValue() && "Div by zero handled above");
739        return ConstantInt::get(Context, C1V.urem(C2V));
740      case Instruction::SRem:
741        assert(!CI2->isNullValue() && "Div by zero handled above");
742        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
743          return Context.getUndef(CI1->getType());   // MIN_INT % -1 -> undef
744        return ConstantInt::get(Context, C1V.srem(C2V));
745      case Instruction::And:
746        return ConstantInt::get(Context, C1V & C2V);
747      case Instruction::Or:
748        return ConstantInt::get(Context, C1V | C2V);
749      case Instruction::Xor:
750        return ConstantInt::get(Context, C1V ^ C2V);
751      case Instruction::Shl: {
752        uint32_t shiftAmt = C2V.getZExtValue();
753        if (shiftAmt < C1V.getBitWidth())
754          return ConstantInt::get(Context, C1V.shl(shiftAmt));
755        else
756          return Context.getUndef(C1->getType()); // too big shift is undef
757      }
758      case Instruction::LShr: {
759        uint32_t shiftAmt = C2V.getZExtValue();
760        if (shiftAmt < C1V.getBitWidth())
761          return ConstantInt::get(Context, C1V.lshr(shiftAmt));
762        else
763          return Context.getUndef(C1->getType()); // too big shift is undef
764      }
765      case Instruction::AShr: {
766        uint32_t shiftAmt = C2V.getZExtValue();
767        if (shiftAmt < C1V.getBitWidth())
768          return ConstantInt::get(Context, C1V.ashr(shiftAmt));
769        else
770          return Context.getUndef(C1->getType()); // too big shift is undef
771      }
772      }
773    }
774
775    switch (Opcode) {
776    case Instruction::SDiv:
777    case Instruction::UDiv:
778    case Instruction::URem:
779    case Instruction::SRem:
780    case Instruction::LShr:
781    case Instruction::AShr:
782    case Instruction::Shl:
783      if (CI1->equalsInt(0)) return const_cast<Constant*>(C1);
784      break;
785    default:
786      break;
787    }
788  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
789    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
790      APFloat C1V = CFP1->getValueAPF();
791      APFloat C2V = CFP2->getValueAPF();
792      APFloat C3V = C1V;  // copy for modification
793      switch (Opcode) {
794      default:
795        break;
796      case Instruction::FAdd:
797        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
798        return ConstantFP::get(Context, C3V);
799      case Instruction::FSub:
800        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
801        return ConstantFP::get(Context, C3V);
802      case Instruction::FMul:
803        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
804        return ConstantFP::get(Context, C3V);
805      case Instruction::FDiv:
806        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
807        return ConstantFP::get(Context, C3V);
808      case Instruction::FRem:
809        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
810        return ConstantFP::get(Context, C3V);
811      }
812    }
813  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
814    const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
815    const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
816    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
817        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
818      std::vector<Constant*> Res;
819      const Type* EltTy = VTy->getElementType();
820      const Constant *C1 = 0;
821      const Constant *C2 = 0;
822      switch (Opcode) {
823      default:
824        break;
825      case Instruction::Add:
826        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
827          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
828          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
829          Res.push_back(ConstantExpr::getAdd(const_cast<Constant*>(C1),
830                                                   const_cast<Constant*>(C2)));
831        }
832        return ConstantVector::get(Res);
833      case Instruction::FAdd:
834        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
835          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
836          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
837          Res.push_back(ConstantExpr::getFAdd(const_cast<Constant*>(C1),
838                                                    const_cast<Constant*>(C2)));
839        }
840        return ConstantVector::get(Res);
841      case Instruction::Sub:
842        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
843          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
844          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
845          Res.push_back(ConstantExpr::getSub(const_cast<Constant*>(C1),
846                                                   const_cast<Constant*>(C2)));
847        }
848        return ConstantVector::get(Res);
849      case Instruction::FSub:
850        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
851          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
852          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
853          Res.push_back(ConstantExpr::getFSub(const_cast<Constant*>(C1),
854                                                    const_cast<Constant*>(C2)));
855        }
856        return ConstantVector::get(Res);
857      case Instruction::Mul:
858        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
859          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
860          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
861          Res.push_back(ConstantExpr::getMul(const_cast<Constant*>(C1),
862                                                   const_cast<Constant*>(C2)));
863        }
864        return ConstantVector::get(Res);
865      case Instruction::FMul:
866        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
867          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
868          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
869          Res.push_back(ConstantExpr::getFMul(const_cast<Constant*>(C1),
870                                                    const_cast<Constant*>(C2)));
871        }
872        return ConstantVector::get(Res);
873      case Instruction::UDiv:
874        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
875          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
876          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
877          Res.push_back(ConstantExpr::getUDiv(const_cast<Constant*>(C1),
878                                                    const_cast<Constant*>(C2)));
879        }
880        return ConstantVector::get(Res);
881      case Instruction::SDiv:
882        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
883          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
884          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
885          Res.push_back(ConstantExpr::getSDiv(const_cast<Constant*>(C1),
886                                                    const_cast<Constant*>(C2)));
887        }
888        return ConstantVector::get(Res);
889      case Instruction::FDiv:
890        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
891          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
892          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
893          Res.push_back(ConstantExpr::getFDiv(const_cast<Constant*>(C1),
894                                                    const_cast<Constant*>(C2)));
895        }
896        return ConstantVector::get(Res);
897      case Instruction::URem:
898        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
899          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
900          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
901          Res.push_back(ConstantExpr::getURem(const_cast<Constant*>(C1),
902                                                    const_cast<Constant*>(C2)));
903        }
904        return ConstantVector::get(Res);
905      case Instruction::SRem:
906        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
907          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
908          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
909          Res.push_back(ConstantExpr::getSRem(const_cast<Constant*>(C1),
910                                                    const_cast<Constant*>(C2)));
911        }
912        return ConstantVector::get(Res);
913      case Instruction::FRem:
914        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
915          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
916          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
917          Res.push_back(ConstantExpr::getFRem(const_cast<Constant*>(C1),
918                                                    const_cast<Constant*>(C2)));
919        }
920        return ConstantVector::get(Res);
921      case Instruction::And:
922        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
923          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
924          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
925          Res.push_back(ConstantExpr::getAnd(const_cast<Constant*>(C1),
926                                                   const_cast<Constant*>(C2)));
927        }
928        return ConstantVector::get(Res);
929      case Instruction::Or:
930        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
931          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
932          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
933          Res.push_back(ConstantExpr::getOr(const_cast<Constant*>(C1),
934                                                  const_cast<Constant*>(C2)));
935        }
936        return ConstantVector::get(Res);
937      case Instruction::Xor:
938        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
939          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
940          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
941          Res.push_back(ConstantExpr::getXor(const_cast<Constant*>(C1),
942                                                   const_cast<Constant*>(C2)));
943        }
944        return ConstantVector::get(Res);
945      case Instruction::LShr:
946        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
947          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
948          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
949          Res.push_back(ConstantExpr::getLShr(const_cast<Constant*>(C1),
950                                                    const_cast<Constant*>(C2)));
951        }
952        return ConstantVector::get(Res);
953      case Instruction::AShr:
954        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
955          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
956          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
957          Res.push_back(ConstantExpr::getAShr(const_cast<Constant*>(C1),
958                                                    const_cast<Constant*>(C2)));
959        }
960        return ConstantVector::get(Res);
961      case Instruction::Shl:
962        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
963          C1 = CP1 ? CP1->getOperand(i) : Context.getNullValue(EltTy);
964          C2 = CP2 ? CP2->getOperand(i) : Context.getNullValue(EltTy);
965          Res.push_back(ConstantExpr::getShl(const_cast<Constant*>(C1),
966                                                   const_cast<Constant*>(C2)));
967        }
968        return ConstantVector::get(Res);
969      }
970    }
971  }
972
973  if (isa<ConstantExpr>(C1)) {
974    // There are many possible foldings we could do here.  We should probably
975    // at least fold add of a pointer with an integer into the appropriate
976    // getelementptr.  This will improve alias analysis a bit.
977  } else if (isa<ConstantExpr>(C2)) {
978    // If C2 is a constant expr and C1 isn't, flop them around and fold the
979    // other way if possible.
980    switch (Opcode) {
981    case Instruction::Add:
982    case Instruction::FAdd:
983    case Instruction::Mul:
984    case Instruction::FMul:
985    case Instruction::And:
986    case Instruction::Or:
987    case Instruction::Xor:
988      // No change of opcode required.
989      return ConstantFoldBinaryInstruction(Context, Opcode, C2, C1);
990
991    case Instruction::Shl:
992    case Instruction::LShr:
993    case Instruction::AShr:
994    case Instruction::Sub:
995    case Instruction::FSub:
996    case Instruction::SDiv:
997    case Instruction::UDiv:
998    case Instruction::FDiv:
999    case Instruction::URem:
1000    case Instruction::SRem:
1001    case Instruction::FRem:
1002    default:  // These instructions cannot be flopped around.
1003      break;
1004    }
1005  }
1006
1007  // We don't know how to fold this.
1008  return 0;
1009}
1010
1011/// isZeroSizedType - This type is zero sized if its an array or structure of
1012/// zero sized types.  The only leaf zero sized type is an empty structure.
1013static bool isMaybeZeroSizedType(const Type *Ty) {
1014  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
1015  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1016
1017    // If all of elements have zero size, this does too.
1018    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1019      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1020    return true;
1021
1022  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1023    return isMaybeZeroSizedType(ATy->getElementType());
1024  }
1025  return false;
1026}
1027
1028/// IdxCompare - Compare the two constants as though they were getelementptr
1029/// indices.  This allows coersion of the types to be the same thing.
1030///
1031/// If the two constants are the "same" (after coersion), return 0.  If the
1032/// first is less than the second, return -1, if the second is less than the
1033/// first, return 1.  If the constants are not integral, return -2.
1034///
1035static int IdxCompare(LLVMContext &Context, Constant *C1, Constant *C2,
1036                      const Type *ElTy) {
1037  if (C1 == C2) return 0;
1038
1039  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1040  // anything with them.
1041  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1042    return -2; // don't know!
1043
1044  // Ok, we have two differing integer indices.  Sign extend them to be the same
1045  // type.  Long is always big enough, so we use it.
1046  if (C1->getType() != Type::Int64Ty)
1047    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
1048
1049  if (C2->getType() != Type::Int64Ty)
1050    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
1051
1052  if (C1 == C2) return 0;  // They are equal
1053
1054  // If the type being indexed over is really just a zero sized type, there is
1055  // no pointer difference being made here.
1056  if (isMaybeZeroSizedType(ElTy))
1057    return -2; // dunno.
1058
1059  // If they are really different, now that they are the same type, then we
1060  // found a difference!
1061  if (cast<ConstantInt>(C1)->getSExtValue() <
1062      cast<ConstantInt>(C2)->getSExtValue())
1063    return -1;
1064  else
1065    return 1;
1066}
1067
1068/// evaluateFCmpRelation - This function determines if there is anything we can
1069/// decide about the two constants provided.  This doesn't need to handle simple
1070/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1071/// If we can determine that the two constants have a particular relation to
1072/// each other, we should return the corresponding FCmpInst predicate,
1073/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1074/// ConstantFoldCompareInstruction.
1075///
1076/// To simplify this code we canonicalize the relation so that the first
1077/// operand is always the most "complex" of the two.  We consider ConstantFP
1078/// to be the simplest, and ConstantExprs to be the most complex.
1079static FCmpInst::Predicate evaluateFCmpRelation(LLVMContext &Context,
1080                                                const Constant *V1,
1081                                                const Constant *V2) {
1082  assert(V1->getType() == V2->getType() &&
1083         "Cannot compare values of different types!");
1084
1085  // No compile-time operations on this type yet.
1086  if (V1->getType() == Type::PPC_FP128Ty)
1087    return FCmpInst::BAD_FCMP_PREDICATE;
1088
1089  // Handle degenerate case quickly
1090  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1091
1092  if (!isa<ConstantExpr>(V1)) {
1093    if (!isa<ConstantExpr>(V2)) {
1094      // We distilled thisUse the standard constant folder for a few cases
1095      ConstantInt *R = 0;
1096      Constant *C1 = const_cast<Constant*>(V1);
1097      Constant *C2 = const_cast<Constant*>(V2);
1098      R = dyn_cast<ConstantInt>(
1099                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
1100      if (R && !R->isZero())
1101        return FCmpInst::FCMP_OEQ;
1102      R = dyn_cast<ConstantInt>(
1103                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
1104      if (R && !R->isZero())
1105        return FCmpInst::FCMP_OLT;
1106      R = dyn_cast<ConstantInt>(
1107                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
1108      if (R && !R->isZero())
1109        return FCmpInst::FCMP_OGT;
1110
1111      // Nothing more we can do
1112      return FCmpInst::BAD_FCMP_PREDICATE;
1113    }
1114
1115    // If the first operand is simple and second is ConstantExpr, swap operands.
1116    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(Context, V2, V1);
1117    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1118      return FCmpInst::getSwappedPredicate(SwappedRelation);
1119  } else {
1120    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1121    // constantexpr or a simple constant.
1122    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1123    switch (CE1->getOpcode()) {
1124    case Instruction::FPTrunc:
1125    case Instruction::FPExt:
1126    case Instruction::UIToFP:
1127    case Instruction::SIToFP:
1128      // We might be able to do something with these but we don't right now.
1129      break;
1130    default:
1131      break;
1132    }
1133  }
1134  // There are MANY other foldings that we could perform here.  They will
1135  // probably be added on demand, as they seem needed.
1136  return FCmpInst::BAD_FCMP_PREDICATE;
1137}
1138
1139/// evaluateICmpRelation - This function determines if there is anything we can
1140/// decide about the two constants provided.  This doesn't need to handle simple
1141/// things like integer comparisons, but should instead handle ConstantExprs
1142/// and GlobalValues.  If we can determine that the two constants have a
1143/// particular relation to each other, we should return the corresponding ICmp
1144/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1145///
1146/// To simplify this code we canonicalize the relation so that the first
1147/// operand is always the most "complex" of the two.  We consider simple
1148/// constants (like ConstantInt) to be the simplest, followed by
1149/// GlobalValues, followed by ConstantExpr's (the most complex).
1150///
1151static ICmpInst::Predicate evaluateICmpRelation(LLVMContext &Context,
1152                                                const Constant *V1,
1153                                                const Constant *V2,
1154                                                bool isSigned) {
1155  assert(V1->getType() == V2->getType() &&
1156         "Cannot compare different types of values!");
1157  if (V1 == V2) return ICmpInst::ICMP_EQ;
1158
1159  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1160    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1161      // We distilled this down to a simple case, use the standard constant
1162      // folder.
1163      ConstantInt *R = 0;
1164      Constant *C1 = const_cast<Constant*>(V1);
1165      Constant *C2 = const_cast<Constant*>(V2);
1166      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1167      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1168      if (R && !R->isZero())
1169        return pred;
1170      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1171      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1172      if (R && !R->isZero())
1173        return pred;
1174      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1175      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1176      if (R && !R->isZero())
1177        return pred;
1178
1179      // If we couldn't figure it out, bail.
1180      return ICmpInst::BAD_ICMP_PREDICATE;
1181    }
1182
1183    // If the first operand is simple, swap operands.
1184    ICmpInst::Predicate SwappedRelation =
1185      evaluateICmpRelation(Context, V2, V1, isSigned);
1186    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1187      return ICmpInst::getSwappedPredicate(SwappedRelation);
1188
1189  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1190    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1191      ICmpInst::Predicate SwappedRelation =
1192        evaluateICmpRelation(Context, V2, V1, isSigned);
1193      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1194        return ICmpInst::getSwappedPredicate(SwappedRelation);
1195      else
1196        return ICmpInst::BAD_ICMP_PREDICATE;
1197    }
1198
1199    // Now we know that the RHS is a GlobalValue or simple constant,
1200    // which (since the types must match) means that it's a ConstantPointerNull.
1201    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1202      // Don't try to decide equality of aliases.
1203      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1204        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1205          return ICmpInst::ICMP_NE;
1206    } else {
1207      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1208      // GlobalVals can never be null.  Don't try to evaluate aliases.
1209      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1210        return ICmpInst::ICMP_NE;
1211    }
1212  } else {
1213    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1214    // constantexpr, a CPR, or a simple constant.
1215    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1216    const Constant *CE1Op0 = CE1->getOperand(0);
1217
1218    switch (CE1->getOpcode()) {
1219    case Instruction::Trunc:
1220    case Instruction::FPTrunc:
1221    case Instruction::FPExt:
1222    case Instruction::FPToUI:
1223    case Instruction::FPToSI:
1224      break; // We can't evaluate floating point casts or truncations.
1225
1226    case Instruction::UIToFP:
1227    case Instruction::SIToFP:
1228    case Instruction::BitCast:
1229    case Instruction::ZExt:
1230    case Instruction::SExt:
1231      // If the cast is not actually changing bits, and the second operand is a
1232      // null pointer, do the comparison with the pre-casted value.
1233      if (V2->isNullValue() &&
1234          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1235        bool sgnd = isSigned;
1236        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1237        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1238        return evaluateICmpRelation(Context, CE1Op0,
1239                                    Context.getNullValue(CE1Op0->getType()),
1240                                    sgnd);
1241      }
1242
1243      // If the dest type is a pointer type, and the RHS is a constantexpr cast
1244      // from the same type as the src of the LHS, evaluate the inputs.  This is
1245      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1246      // which happens a lot in compilers with tagged integers.
1247      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1248        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1249            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1250            CE1->getOperand(0)->getType()->isInteger()) {
1251          bool sgnd = isSigned;
1252          if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1253          if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1254          return evaluateICmpRelation(Context, CE1->getOperand(0),
1255                                      CE2->getOperand(0), sgnd);
1256        }
1257      break;
1258
1259    case Instruction::GetElementPtr:
1260      // Ok, since this is a getelementptr, we know that the constant has a
1261      // pointer type.  Check the various cases.
1262      if (isa<ConstantPointerNull>(V2)) {
1263        // If we are comparing a GEP to a null pointer, check to see if the base
1264        // of the GEP equals the null pointer.
1265        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1266          if (GV->hasExternalWeakLinkage())
1267            // Weak linkage GVals could be zero or not. We're comparing that
1268            // to null pointer so its greater-or-equal
1269            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1270          else
1271            // If its not weak linkage, the GVal must have a non-zero address
1272            // so the result is greater-than
1273            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
1274        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1275          // If we are indexing from a null pointer, check to see if we have any
1276          // non-zero indices.
1277          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1278            if (!CE1->getOperand(i)->isNullValue())
1279              // Offsetting from null, must not be equal.
1280              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1281          // Only zero indexes from null, must still be zero.
1282          return ICmpInst::ICMP_EQ;
1283        }
1284        // Otherwise, we can't really say if the first operand is null or not.
1285      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1286        if (isa<ConstantPointerNull>(CE1Op0)) {
1287          if (CPR2->hasExternalWeakLinkage())
1288            // Weak linkage GVals could be zero or not. We're comparing it to
1289            // a null pointer, so its less-or-equal
1290            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1291          else
1292            // If its not weak linkage, the GVal must have a non-zero address
1293            // so the result is less-than
1294            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1295        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1296          if (CPR1 == CPR2) {
1297            // If this is a getelementptr of the same global, then it must be
1298            // different.  Because the types must match, the getelementptr could
1299            // only have at most one index, and because we fold getelementptr's
1300            // with a single zero index, it must be nonzero.
1301            assert(CE1->getNumOperands() == 2 &&
1302                   !CE1->getOperand(1)->isNullValue() &&
1303                   "Suprising getelementptr!");
1304            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1305          } else {
1306            // If they are different globals, we don't know what the value is,
1307            // but they can't be equal.
1308            return ICmpInst::ICMP_NE;
1309          }
1310        }
1311      } else {
1312        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1313        const Constant *CE2Op0 = CE2->getOperand(0);
1314
1315        // There are MANY other foldings that we could perform here.  They will
1316        // probably be added on demand, as they seem needed.
1317        switch (CE2->getOpcode()) {
1318        default: break;
1319        case Instruction::GetElementPtr:
1320          // By far the most common case to handle is when the base pointers are
1321          // obviously to the same or different globals.
1322          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1323            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1324              return ICmpInst::ICMP_NE;
1325            // Ok, we know that both getelementptr instructions are based on the
1326            // same global.  From this, we can precisely determine the relative
1327            // ordering of the resultant pointers.
1328            unsigned i = 1;
1329
1330            // Compare all of the operands the GEP's have in common.
1331            gep_type_iterator GTI = gep_type_begin(CE1);
1332            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1333                 ++i, ++GTI)
1334              switch (IdxCompare(Context, CE1->getOperand(i),
1335                                 CE2->getOperand(i), GTI.getIndexedType())) {
1336              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1337              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1338              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1339              }
1340
1341            // Ok, we ran out of things they have in common.  If any leftovers
1342            // are non-zero then we have a difference, otherwise we are equal.
1343            for (; i < CE1->getNumOperands(); ++i)
1344              if (!CE1->getOperand(i)->isNullValue()) {
1345                if (isa<ConstantInt>(CE1->getOperand(i)))
1346                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1347                else
1348                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1349              }
1350
1351            for (; i < CE2->getNumOperands(); ++i)
1352              if (!CE2->getOperand(i)->isNullValue()) {
1353                if (isa<ConstantInt>(CE2->getOperand(i)))
1354                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1355                else
1356                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1357              }
1358            return ICmpInst::ICMP_EQ;
1359          }
1360        }
1361      }
1362    default:
1363      break;
1364    }
1365  }
1366
1367  return ICmpInst::BAD_ICMP_PREDICATE;
1368}
1369
1370Constant *llvm::ConstantFoldCompareInstruction(LLVMContext &Context,
1371                                               unsigned short pred,
1372                                               const Constant *C1,
1373                                               const Constant *C2) {
1374  const Type *ResultTy;
1375  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1376    ResultTy = Context.getVectorType(Type::Int1Ty, VT->getNumElements());
1377  else
1378    ResultTy = Type::Int1Ty;
1379
1380  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1381  if (pred == FCmpInst::FCMP_FALSE)
1382    return Context.getNullValue(ResultTy);
1383
1384  if (pred == FCmpInst::FCMP_TRUE)
1385    return Context.getAllOnesValue(ResultTy);
1386
1387  // Handle some degenerate cases first
1388  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1389    return Context.getUndef(ResultTy);
1390
1391  // No compile-time operations on this type yet.
1392  if (C1->getType() == Type::PPC_FP128Ty)
1393    return 0;
1394
1395  // icmp eq/ne(null,GV) -> false/true
1396  if (C1->isNullValue()) {
1397    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1398      // Don't try to evaluate aliases.  External weak GV can be null.
1399      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1400        if (pred == ICmpInst::ICMP_EQ)
1401          return Context.getFalse();
1402        else if (pred == ICmpInst::ICMP_NE)
1403          return Context.getTrue();
1404      }
1405  // icmp eq/ne(GV,null) -> false/true
1406  } else if (C2->isNullValue()) {
1407    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1408      // Don't try to evaluate aliases.  External weak GV can be null.
1409      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1410        if (pred == ICmpInst::ICMP_EQ)
1411          return Context.getFalse();
1412        else if (pred == ICmpInst::ICMP_NE)
1413          return Context.getTrue();
1414      }
1415  }
1416
1417  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1418    APInt V1 = cast<ConstantInt>(C1)->getValue();
1419    APInt V2 = cast<ConstantInt>(C2)->getValue();
1420    switch (pred) {
1421    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1422    case ICmpInst::ICMP_EQ:
1423      return ConstantInt::get(Type::Int1Ty, V1 == V2);
1424    case ICmpInst::ICMP_NE:
1425      return ConstantInt::get(Type::Int1Ty, V1 != V2);
1426    case ICmpInst::ICMP_SLT:
1427      return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1428    case ICmpInst::ICMP_SGT:
1429      return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1430    case ICmpInst::ICMP_SLE:
1431      return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1432    case ICmpInst::ICMP_SGE:
1433      return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1434    case ICmpInst::ICMP_ULT:
1435      return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1436    case ICmpInst::ICMP_UGT:
1437      return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1438    case ICmpInst::ICMP_ULE:
1439      return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1440    case ICmpInst::ICMP_UGE:
1441      return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1442    }
1443  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1444    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1445    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1446    APFloat::cmpResult R = C1V.compare(C2V);
1447    switch (pred) {
1448    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1449    case FCmpInst::FCMP_FALSE: return Context.getFalse();
1450    case FCmpInst::FCMP_TRUE:  return Context.getTrue();
1451    case FCmpInst::FCMP_UNO:
1452      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1453    case FCmpInst::FCMP_ORD:
1454      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1455    case FCmpInst::FCMP_UEQ:
1456      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1457                                            R==APFloat::cmpEqual);
1458    case FCmpInst::FCMP_OEQ:
1459      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1460    case FCmpInst::FCMP_UNE:
1461      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1462    case FCmpInst::FCMP_ONE:
1463      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1464                                            R==APFloat::cmpGreaterThan);
1465    case FCmpInst::FCMP_ULT:
1466      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1467                                            R==APFloat::cmpLessThan);
1468    case FCmpInst::FCMP_OLT:
1469      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1470    case FCmpInst::FCMP_UGT:
1471      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1472                                            R==APFloat::cmpGreaterThan);
1473    case FCmpInst::FCMP_OGT:
1474      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1475    case FCmpInst::FCMP_ULE:
1476      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1477    case FCmpInst::FCMP_OLE:
1478      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1479                                            R==APFloat::cmpEqual);
1480    case FCmpInst::FCMP_UGE:
1481      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1482    case FCmpInst::FCMP_OGE:
1483      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1484                                            R==APFloat::cmpEqual);
1485    }
1486  } else if (isa<VectorType>(C1->getType())) {
1487    SmallVector<Constant*, 16> C1Elts, C2Elts;
1488    C1->getVectorElements(Context, C1Elts);
1489    C2->getVectorElements(Context, C2Elts);
1490
1491    // If we can constant fold the comparison of each element, constant fold
1492    // the whole vector comparison.
1493    SmallVector<Constant*, 4> ResElts;
1494    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1495      // Compare the elements, producing an i1 result or constant expr.
1496      ResElts.push_back(
1497                    ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1498    }
1499    return ConstantVector::get(&ResElts[0], ResElts.size());
1500  }
1501
1502  if (C1->getType()->isFloatingPoint()) {
1503    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1504    switch (evaluateFCmpRelation(Context, C1, C2)) {
1505    default: llvm_unreachable("Unknown relation!");
1506    case FCmpInst::FCMP_UNO:
1507    case FCmpInst::FCMP_ORD:
1508    case FCmpInst::FCMP_UEQ:
1509    case FCmpInst::FCMP_UNE:
1510    case FCmpInst::FCMP_ULT:
1511    case FCmpInst::FCMP_UGT:
1512    case FCmpInst::FCMP_ULE:
1513    case FCmpInst::FCMP_UGE:
1514    case FCmpInst::FCMP_TRUE:
1515    case FCmpInst::FCMP_FALSE:
1516    case FCmpInst::BAD_FCMP_PREDICATE:
1517      break; // Couldn't determine anything about these constants.
1518    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1519      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1520                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1521                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1522      break;
1523    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1524      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1525                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1526                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1527      break;
1528    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1529      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1530                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1531                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1532      break;
1533    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1534      // We can only partially decide this relation.
1535      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1536        Result = 0;
1537      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1538        Result = 1;
1539      break;
1540    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1541      // We can only partially decide this relation.
1542      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1543        Result = 0;
1544      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1545        Result = 1;
1546      break;
1547    case ICmpInst::ICMP_NE: // We know that C1 != C2
1548      // We can only partially decide this relation.
1549      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1550        Result = 0;
1551      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1552        Result = 1;
1553      break;
1554    }
1555
1556    // If we evaluated the result, return it now.
1557    if (Result != -1)
1558      return ConstantInt::get(Type::Int1Ty, Result);
1559
1560  } else {
1561    // Evaluate the relation between the two constants, per the predicate.
1562    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1563    switch (evaluateICmpRelation(Context, C1, C2, CmpInst::isSigned(pred))) {
1564    default: llvm_unreachable("Unknown relational!");
1565    case ICmpInst::BAD_ICMP_PREDICATE:
1566      break;  // Couldn't determine anything about these constants.
1567    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1568      // If we know the constants are equal, we can decide the result of this
1569      // computation precisely.
1570      Result = (pred == ICmpInst::ICMP_EQ  ||
1571                pred == ICmpInst::ICMP_ULE ||
1572                pred == ICmpInst::ICMP_SLE ||
1573                pred == ICmpInst::ICMP_UGE ||
1574                pred == ICmpInst::ICMP_SGE);
1575      break;
1576    case ICmpInst::ICMP_ULT:
1577      // If we know that C1 < C2, we can decide the result of this computation
1578      // precisely.
1579      Result = (pred == ICmpInst::ICMP_ULT ||
1580                pred == ICmpInst::ICMP_NE  ||
1581                pred == ICmpInst::ICMP_ULE);
1582      break;
1583    case ICmpInst::ICMP_SLT:
1584      // If we know that C1 < C2, we can decide the result of this computation
1585      // precisely.
1586      Result = (pred == ICmpInst::ICMP_SLT ||
1587                pred == ICmpInst::ICMP_NE  ||
1588                pred == ICmpInst::ICMP_SLE);
1589      break;
1590    case ICmpInst::ICMP_UGT:
1591      // If we know that C1 > C2, we can decide the result of this computation
1592      // precisely.
1593      Result = (pred == ICmpInst::ICMP_UGT ||
1594                pred == ICmpInst::ICMP_NE  ||
1595                pred == ICmpInst::ICMP_UGE);
1596      break;
1597    case ICmpInst::ICMP_SGT:
1598      // If we know that C1 > C2, we can decide the result of this computation
1599      // precisely.
1600      Result = (pred == ICmpInst::ICMP_SGT ||
1601                pred == ICmpInst::ICMP_NE  ||
1602                pred == ICmpInst::ICMP_SGE);
1603      break;
1604    case ICmpInst::ICMP_ULE:
1605      // If we know that C1 <= C2, we can only partially decide this relation.
1606      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1607      if (pred == ICmpInst::ICMP_ULT) Result = 1;
1608      break;
1609    case ICmpInst::ICMP_SLE:
1610      // If we know that C1 <= C2, we can only partially decide this relation.
1611      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1612      if (pred == ICmpInst::ICMP_SLT) Result = 1;
1613      break;
1614
1615    case ICmpInst::ICMP_UGE:
1616      // If we know that C1 >= C2, we can only partially decide this relation.
1617      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1618      if (pred == ICmpInst::ICMP_UGT) Result = 1;
1619      break;
1620    case ICmpInst::ICMP_SGE:
1621      // If we know that C1 >= C2, we can only partially decide this relation.
1622      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1623      if (pred == ICmpInst::ICMP_SGT) Result = 1;
1624      break;
1625
1626    case ICmpInst::ICMP_NE:
1627      // If we know that C1 != C2, we can only partially decide this relation.
1628      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1629      if (pred == ICmpInst::ICMP_NE) Result = 1;
1630      break;
1631    }
1632
1633    // If we evaluated the result, return it now.
1634    if (Result != -1)
1635      return ConstantInt::get(Type::Int1Ty, Result);
1636
1637    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1638      // If C2 is a constant expr and C1 isn't, flip them around and fold the
1639      // other way if possible.
1640      switch (pred) {
1641      case ICmpInst::ICMP_EQ:
1642      case ICmpInst::ICMP_NE:
1643        // No change of predicate required.
1644        return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1645
1646      case ICmpInst::ICMP_ULT:
1647      case ICmpInst::ICMP_SLT:
1648      case ICmpInst::ICMP_UGT:
1649      case ICmpInst::ICMP_SGT:
1650      case ICmpInst::ICMP_ULE:
1651      case ICmpInst::ICMP_SLE:
1652      case ICmpInst::ICMP_UGE:
1653      case ICmpInst::ICMP_SGE:
1654        // Change the predicate as necessary to swap the operands.
1655        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1656        return ConstantFoldCompareInstruction(Context, pred, C2, C1);
1657
1658      default:  // These predicates cannot be flopped around.
1659        break;
1660      }
1661    }
1662  }
1663  return 0;
1664  }
1665
1666Constant *llvm::ConstantFoldGetElementPtr(LLVMContext &Context,
1667                                          const Constant *C,
1668                                          Constant* const *Idxs,
1669                                          unsigned NumIdx) {
1670  if (NumIdx == 0 ||
1671      (NumIdx == 1 && Idxs[0]->isNullValue()))
1672    return const_cast<Constant*>(C);
1673
1674  if (isa<UndefValue>(C)) {
1675    const PointerType *Ptr = cast<PointerType>(C->getType());
1676    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1677                                                       (Value **)Idxs,
1678                                                       (Value **)Idxs+NumIdx);
1679    assert(Ty != 0 && "Invalid indices for GEP!");
1680    return Context.getUndef(Context.getPointerType(Ty, Ptr->getAddressSpace()));
1681  }
1682
1683  Constant *Idx0 = Idxs[0];
1684  if (C->isNullValue()) {
1685    bool isNull = true;
1686    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1687      if (!Idxs[i]->isNullValue()) {
1688        isNull = false;
1689        break;
1690      }
1691    if (isNull) {
1692      const PointerType *Ptr = cast<PointerType>(C->getType());
1693      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1694                                                         (Value**)Idxs,
1695                                                         (Value**)Idxs+NumIdx);
1696      assert(Ty != 0 && "Invalid indices for GEP!");
1697      return  Context.getConstantPointerNull(
1698                            Context.getPointerType(Ty,Ptr->getAddressSpace()));
1699    }
1700  }
1701
1702  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1703    // Combine Indices - If the source pointer to this getelementptr instruction
1704    // is a getelementptr instruction, combine the indices of the two
1705    // getelementptr instructions into a single instruction.
1706    //
1707    if (CE->getOpcode() == Instruction::GetElementPtr) {
1708      const Type *LastTy = 0;
1709      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1710           I != E; ++I)
1711        LastTy = *I;
1712
1713      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1714        SmallVector<Value*, 16> NewIndices;
1715        NewIndices.reserve(NumIdx + CE->getNumOperands());
1716        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1717          NewIndices.push_back(CE->getOperand(i));
1718
1719        // Add the last index of the source with the first index of the new GEP.
1720        // Make sure to handle the case when they are actually different types.
1721        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1722        // Otherwise it must be an array.
1723        if (!Idx0->isNullValue()) {
1724          const Type *IdxTy = Combined->getType();
1725          if (IdxTy != Idx0->getType()) {
1726            Constant *C1 =
1727              ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1728            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1729                                                          Type::Int64Ty);
1730            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1731          } else {
1732            Combined =
1733              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1734          }
1735        }
1736
1737        NewIndices.push_back(Combined);
1738        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1739        return ConstantExpr::getGetElementPtr(CE->getOperand(0),
1740                                              &NewIndices[0],
1741                                              NewIndices.size());
1742      }
1743    }
1744
1745    // Implement folding of:
1746    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1747    //                        long 0, long 0)
1748    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1749    //
1750    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1751      if (const PointerType *SPT =
1752          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1753        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1754          if (const ArrayType *CAT =
1755        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1756            if (CAT->getElementType() == SAT->getElementType())
1757              return ConstantExpr::getGetElementPtr(
1758                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1759    }
1760
1761    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1762    // Into: inttoptr (i64 0 to i8*)
1763    // This happens with pointers to member functions in C++.
1764    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1765        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1766        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1767      Constant *Base = CE->getOperand(0);
1768      Constant *Offset = Idxs[0];
1769
1770      // Convert the smaller integer to the larger type.
1771      if (Offset->getType()->getPrimitiveSizeInBits() <
1772          Base->getType()->getPrimitiveSizeInBits())
1773        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1774      else if (Base->getType()->getPrimitiveSizeInBits() <
1775               Offset->getType()->getPrimitiveSizeInBits())
1776        Base = ConstantExpr::getZExt(Base, Offset->getType());
1777
1778      Base = ConstantExpr::getAdd(Base, Offset);
1779      return ConstantExpr::getIntToPtr(Base, CE->getType());
1780    }
1781  }
1782  return 0;
1783}
1784
1785