ConstantFold.cpp revision ed6af24e146a5d358115123f0d2be694c1fa3a84
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// template-based folder for simple primitive constants like ConstantInt, and
16// the special case hackery that we use to symbolically evaluate expressions
17// that use ConstantExprs.
18//
19//===----------------------------------------------------------------------===//
20
21#include "ConstantFold.h"
22#include "llvm/Constants.h"
23#include "llvm/Instructions.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/GlobalAlias.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Support/ManagedStatic.h"
31#include "llvm/Support/MathExtras.h"
32#include <limits>
33using namespace llvm;
34
35//===----------------------------------------------------------------------===//
36//                ConstantFold*Instruction Implementations
37//===----------------------------------------------------------------------===//
38
39/// BitCastConstantVector - Convert the specified ConstantVector node to the
40/// specified vector type.  At this point, we know that the elements of the
41/// input vector constant are all simple integer or FP values.
42static Constant *BitCastConstantVector(ConstantVector *CV,
43                                       const VectorType *DstTy) {
44  // If this cast changes element count then we can't handle it here:
45  // doing so requires endianness information.  This should be handled by
46  // Analysis/ConstantFolding.cpp
47  unsigned NumElts = DstTy->getNumElements();
48  if (NumElts != CV->getNumOperands())
49    return 0;
50
51  // Check to verify that all elements of the input are simple.
52  for (unsigned i = 0; i != NumElts; ++i) {
53    if (!isa<ConstantInt>(CV->getOperand(i)) &&
54        !isa<ConstantFP>(CV->getOperand(i)))
55      return 0;
56  }
57
58  // Bitcast each element now.
59  std::vector<Constant*> Result;
60  const Type *DstEltTy = DstTy->getElementType();
61  for (unsigned i = 0; i != NumElts; ++i)
62    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i), DstEltTy));
63  return ConstantVector::get(Result);
64}
65
66/// This function determines which opcode to use to fold two constant cast
67/// expressions together. It uses CastInst::isEliminableCastPair to determine
68/// the opcode. Consequently its just a wrapper around that function.
69/// @brief Determine if it is valid to fold a cast of a cast
70static unsigned
71foldConstantCastPair(
72  unsigned opc,          ///< opcode of the second cast constant expression
73  const ConstantExpr*Op, ///< the first cast constant expression
74  const Type *DstTy      ///< desintation type of the first cast
75) {
76  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
77  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
78  assert(CastInst::isCast(opc) && "Invalid cast opcode");
79
80  // The the types and opcodes for the two Cast constant expressions
81  const Type *SrcTy = Op->getOperand(0)->getType();
82  const Type *MidTy = Op->getType();
83  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
84  Instruction::CastOps secondOp = Instruction::CastOps(opc);
85
86  // Let CastInst::isEliminableCastPair do the heavy lifting.
87  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
88                                        Type::Int64Ty);
89}
90
91static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
92  const Type *SrcTy = V->getType();
93  if (SrcTy == DestTy)
94    return V; // no-op cast
95
96  // Check to see if we are casting a pointer to an aggregate to a pointer to
97  // the first element.  If so, return the appropriate GEP instruction.
98  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
99    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
100      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
101        SmallVector<Value*, 8> IdxList;
102        IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
103        const Type *ElTy = PTy->getElementType();
104        while (ElTy != DPTy->getElementType()) {
105          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
106            if (STy->getNumElements() == 0) break;
107            ElTy = STy->getElementType(0);
108            IdxList.push_back(Constant::getNullValue(Type::Int32Ty));
109          } else if (const SequentialType *STy =
110                     dyn_cast<SequentialType>(ElTy)) {
111            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
112            ElTy = STy->getElementType();
113            IdxList.push_back(IdxList[0]);
114          } else {
115            break;
116          }
117        }
118
119        if (ElTy == DPTy->getElementType())
120          return ConstantExpr::getGetElementPtr(V, &IdxList[0], IdxList.size());
121      }
122
123  // Handle casts from one vector constant to another.  We know that the src
124  // and dest type have the same size (otherwise its an illegal cast).
125  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
126    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
127      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
128             "Not cast between same sized vectors!");
129      SrcTy = NULL;
130      // First, check for null.  Undef is already handled.
131      if (isa<ConstantAggregateZero>(V))
132        return Constant::getNullValue(DestTy);
133
134      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
135        return BitCastConstantVector(CV, DestPTy);
136    }
137
138    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
139    // This allows for other simplifications (although some of them
140    // can only be handled by Analysis/ConstantFolding.cpp).
141    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
142      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
143  }
144
145  // Finally, implement bitcast folding now.   The code below doesn't handle
146  // bitcast right.
147  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
148    return ConstantPointerNull::get(cast<PointerType>(DestTy));
149
150  // Handle integral constant input.
151  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
152    if (DestTy->isInteger())
153      // Integral -> Integral. This is a no-op because the bit widths must
154      // be the same. Consequently, we just fold to V.
155      return V;
156
157    if (DestTy->isFloatingPoint()) {
158      assert((DestTy == Type::DoubleTy || DestTy == Type::FloatTy) &&
159             "Unknown FP type!");
160      return ConstantFP::get(APFloat(CI->getValue()));
161    }
162    // Otherwise, can't fold this (vector?)
163    return 0;
164  }
165
166  // Handle ConstantFP input.
167  if (const ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
168    // FP -> Integral.
169    if (DestTy == Type::Int32Ty) {
170      return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
171    } else {
172      assert(DestTy == Type::Int64Ty && "only support f32/f64 for now!");
173      return ConstantInt::get(FP->getValueAPF().bitcastToAPInt());
174    }
175  }
176  return 0;
177}
178
179
180Constant *llvm::ConstantFoldCastInstruction(unsigned opc, const Constant *V,
181                                            const Type *DestTy) {
182  if (isa<UndefValue>(V)) {
183    // zext(undef) = 0, because the top bits will be zero.
184    // sext(undef) = 0, because the top bits will all be the same.
185    // [us]itofp(undef) = 0, because the result value is bounded.
186    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
187        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
188      return Constant::getNullValue(DestTy);
189    return UndefValue::get(DestTy);
190  }
191  // No compile-time operations on this type yet.
192  if (V->getType() == Type::PPC_FP128Ty || DestTy == Type::PPC_FP128Ty)
193    return 0;
194
195  // If the cast operand is a constant expression, there's a few things we can
196  // do to try to simplify it.
197  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
198    if (CE->isCast()) {
199      // Try hard to fold cast of cast because they are often eliminable.
200      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
201        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
202    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
203      // If all of the indexes in the GEP are null values, there is no pointer
204      // adjustment going on.  We might as well cast the source pointer.
205      bool isAllNull = true;
206      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
207        if (!CE->getOperand(i)->isNullValue()) {
208          isAllNull = false;
209          break;
210        }
211      if (isAllNull)
212        // This is casting one pointer type to another, always BitCast
213        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
214    }
215  }
216
217  // We actually have to do a cast now. Perform the cast according to the
218  // opcode specified.
219  switch (opc) {
220  case Instruction::FPTrunc:
221  case Instruction::FPExt:
222    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
223      bool ignored;
224      APFloat Val = FPC->getValueAPF();
225      Val.convert(DestTy == Type::FloatTy ? APFloat::IEEEsingle :
226                  DestTy == Type::DoubleTy ? APFloat::IEEEdouble :
227                  DestTy == Type::X86_FP80Ty ? APFloat::x87DoubleExtended :
228                  DestTy == Type::FP128Ty ? APFloat::IEEEquad :
229                  APFloat::Bogus,
230                  APFloat::rmNearestTiesToEven, &ignored);
231      return ConstantFP::get(Val);
232    }
233    return 0; // Can't fold.
234  case Instruction::FPToUI:
235  case Instruction::FPToSI:
236    if (const ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
237      const APFloat &V = FPC->getValueAPF();
238      bool ignored;
239      uint64_t x[2];
240      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
241      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
242                                APFloat::rmTowardZero, &ignored);
243      APInt Val(DestBitWidth, 2, x);
244      return ConstantInt::get(Val);
245    }
246    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
247      std::vector<Constant*> res;
248      const VectorType *DestVecTy = cast<VectorType>(DestTy);
249      const Type *DstEltTy = DestVecTy->getElementType();
250      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
251        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
252      return ConstantVector::get(DestVecTy, res);
253    }
254    return 0; // Can't fold.
255  case Instruction::IntToPtr:   //always treated as unsigned
256    if (V->isNullValue())       // Is it an integral null value?
257      return ConstantPointerNull::get(cast<PointerType>(DestTy));
258    return 0;                   // Other pointer types cannot be casted
259  case Instruction::PtrToInt:   // always treated as unsigned
260    if (V->isNullValue())       // is it a null pointer value?
261      return ConstantInt::get(DestTy, 0);
262    return 0;                   // Other pointer types cannot be casted
263  case Instruction::UIToFP:
264  case Instruction::SIToFP:
265    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
266      APInt api = CI->getValue();
267      const uint64_t zero[] = {0, 0};
268      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
269                                  2, zero));
270      (void)apf.convertFromAPInt(api,
271                                 opc==Instruction::SIToFP,
272                                 APFloat::rmNearestTiesToEven);
273      return ConstantFP::get(apf);
274    }
275    if (const ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
276      std::vector<Constant*> res;
277      const VectorType *DestVecTy = cast<VectorType>(DestTy);
278      const Type *DstEltTy = DestVecTy->getElementType();
279      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
280        res.push_back(ConstantExpr::getCast(opc, CV->getOperand(i), DstEltTy));
281      return ConstantVector::get(DestVecTy, res);
282    }
283    return 0;
284  case Instruction::ZExt:
285    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
286      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
287      APInt Result(CI->getValue());
288      Result.zext(BitWidth);
289      return ConstantInt::get(Result);
290    }
291    return 0;
292  case Instruction::SExt:
293    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
294      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
295      APInt Result(CI->getValue());
296      Result.sext(BitWidth);
297      return ConstantInt::get(Result);
298    }
299    return 0;
300  case Instruction::Trunc:
301    if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
302      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
303      APInt Result(CI->getValue());
304      Result.trunc(BitWidth);
305      return ConstantInt::get(Result);
306    }
307    return 0;
308  case Instruction::BitCast:
309    return FoldBitCast(const_cast<Constant*>(V), DestTy);
310  default:
311    assert(!"Invalid CE CastInst opcode");
312    break;
313  }
314
315  assert(0 && "Failed to cast constant expression");
316  return 0;
317}
318
319Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
320                                              const Constant *V1,
321                                              const Constant *V2) {
322  if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
323    return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
324
325  if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
326  if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
327  if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
328  if (V1 == V2) return const_cast<Constant*>(V1);
329  return 0;
330}
331
332Constant *llvm::ConstantFoldExtractElementInstruction(const Constant *Val,
333                                                      const Constant *Idx) {
334  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
335    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
336  if (Val->isNullValue())  // ee(zero, x) -> zero
337    return Constant::getNullValue(
338                          cast<VectorType>(Val->getType())->getElementType());
339
340  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
341    if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
342      return CVal->getOperand(CIdx->getZExtValue());
343    } else if (isa<UndefValue>(Idx)) {
344      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
345      return CVal->getOperand(0);
346    }
347  }
348  return 0;
349}
350
351Constant *llvm::ConstantFoldInsertElementInstruction(const Constant *Val,
352                                                     const Constant *Elt,
353                                                     const Constant *Idx) {
354  const ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
355  if (!CIdx) return 0;
356  APInt idxVal = CIdx->getValue();
357  if (isa<UndefValue>(Val)) {
358    // Insertion of scalar constant into vector undef
359    // Optimize away insertion of undef
360    if (isa<UndefValue>(Elt))
361      return const_cast<Constant*>(Val);
362    // Otherwise break the aggregate undef into multiple undefs and do
363    // the insertion
364    unsigned numOps =
365      cast<VectorType>(Val->getType())->getNumElements();
366    std::vector<Constant*> Ops;
367    Ops.reserve(numOps);
368    for (unsigned i = 0; i < numOps; ++i) {
369      const Constant *Op =
370        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
371      Ops.push_back(const_cast<Constant*>(Op));
372    }
373    return ConstantVector::get(Ops);
374  }
375  if (isa<ConstantAggregateZero>(Val)) {
376    // Insertion of scalar constant into vector aggregate zero
377    // Optimize away insertion of zero
378    if (Elt->isNullValue())
379      return const_cast<Constant*>(Val);
380    // Otherwise break the aggregate zero into multiple zeros and do
381    // the insertion
382    unsigned numOps =
383      cast<VectorType>(Val->getType())->getNumElements();
384    std::vector<Constant*> Ops;
385    Ops.reserve(numOps);
386    for (unsigned i = 0; i < numOps; ++i) {
387      const Constant *Op =
388        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
389      Ops.push_back(const_cast<Constant*>(Op));
390    }
391    return ConstantVector::get(Ops);
392  }
393  if (const ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
394    // Insertion of scalar constant into vector constant
395    std::vector<Constant*> Ops;
396    Ops.reserve(CVal->getNumOperands());
397    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
398      const Constant *Op =
399        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
400      Ops.push_back(const_cast<Constant*>(Op));
401    }
402    return ConstantVector::get(Ops);
403  }
404
405  return 0;
406}
407
408/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
409/// return the specified element value.  Otherwise return null.
410static Constant *GetVectorElement(const Constant *C, unsigned EltNo) {
411  if (const ConstantVector *CV = dyn_cast<ConstantVector>(C))
412    return CV->getOperand(EltNo);
413
414  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
415  if (isa<ConstantAggregateZero>(C))
416    return Constant::getNullValue(EltTy);
417  if (isa<UndefValue>(C))
418    return UndefValue::get(EltTy);
419  return 0;
420}
421
422Constant *llvm::ConstantFoldShuffleVectorInstruction(const Constant *V1,
423                                                     const Constant *V2,
424                                                     const Constant *Mask) {
425  // Undefined shuffle mask -> undefined value.
426  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
427
428  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
429  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
430  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
431
432  // Loop over the shuffle mask, evaluating each element.
433  SmallVector<Constant*, 32> Result;
434  for (unsigned i = 0; i != MaskNumElts; ++i) {
435    Constant *InElt = GetVectorElement(Mask, i);
436    if (InElt == 0) return 0;
437
438    if (isa<UndefValue>(InElt))
439      InElt = UndefValue::get(EltTy);
440    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
441      unsigned Elt = CI->getZExtValue();
442      if (Elt >= SrcNumElts*2)
443        InElt = UndefValue::get(EltTy);
444      else if (Elt >= SrcNumElts)
445        InElt = GetVectorElement(V2, Elt - SrcNumElts);
446      else
447        InElt = GetVectorElement(V1, Elt);
448      if (InElt == 0) return 0;
449    } else {
450      // Unknown value.
451      return 0;
452    }
453    Result.push_back(InElt);
454  }
455
456  return ConstantVector::get(&Result[0], Result.size());
457}
458
459Constant *llvm::ConstantFoldExtractValueInstruction(const Constant *Agg,
460                                                    const unsigned *Idxs,
461                                                    unsigned NumIdx) {
462  // Base case: no indices, so return the entire value.
463  if (NumIdx == 0)
464    return const_cast<Constant *>(Agg);
465
466  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
467    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
468                                                            Idxs,
469                                                            Idxs + NumIdx));
470
471  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
472    return
473      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
474                                                              Idxs,
475                                                              Idxs + NumIdx));
476
477  // Otherwise recurse.
478  return ConstantFoldExtractValueInstruction(Agg->getOperand(*Idxs),
479                                             Idxs+1, NumIdx-1);
480}
481
482Constant *llvm::ConstantFoldInsertValueInstruction(const Constant *Agg,
483                                                   const Constant *Val,
484                                                   const unsigned *Idxs,
485                                                   unsigned NumIdx) {
486  // Base case: no indices, so replace the entire value.
487  if (NumIdx == 0)
488    return const_cast<Constant *>(Val);
489
490  if (isa<UndefValue>(Agg)) {
491    // Insertion of constant into aggregate undef
492    // Optimize away insertion of undef
493    if (isa<UndefValue>(Val))
494      return const_cast<Constant*>(Agg);
495    // Otherwise break the aggregate undef into multiple undefs and do
496    // the insertion
497    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
498    unsigned numOps;
499    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
500      numOps = AR->getNumElements();
501    else
502      numOps = cast<StructType>(AggTy)->getNumElements();
503    std::vector<Constant*> Ops(numOps);
504    for (unsigned i = 0; i < numOps; ++i) {
505      const Type *MemberTy = AggTy->getTypeAtIndex(i);
506      const Constant *Op =
507        (*Idxs == i) ?
508        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
509                                           Val, Idxs+1, NumIdx-1) :
510        UndefValue::get(MemberTy);
511      Ops[i] = const_cast<Constant*>(Op);
512    }
513    if (isa<StructType>(AggTy))
514      return ConstantStruct::get(Ops);
515    else
516      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
517  }
518  if (isa<ConstantAggregateZero>(Agg)) {
519    // Insertion of constant into aggregate zero
520    // Optimize away insertion of zero
521    if (Val->isNullValue())
522      return const_cast<Constant*>(Agg);
523    // Otherwise break the aggregate zero into multiple zeros and do
524    // the insertion
525    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
526    unsigned numOps;
527    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
528      numOps = AR->getNumElements();
529    else
530      numOps = cast<StructType>(AggTy)->getNumElements();
531    std::vector<Constant*> Ops(numOps);
532    for (unsigned i = 0; i < numOps; ++i) {
533      const Type *MemberTy = AggTy->getTypeAtIndex(i);
534      const Constant *Op =
535        (*Idxs == i) ?
536        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
537                                           Val, Idxs+1, NumIdx-1) :
538        Constant::getNullValue(MemberTy);
539      Ops[i] = const_cast<Constant*>(Op);
540    }
541    if (isa<StructType>(AggTy))
542      return ConstantStruct::get(Ops);
543    else
544      return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
545  }
546  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
547    // Insertion of constant into aggregate constant
548    std::vector<Constant*> Ops(Agg->getNumOperands());
549    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
550      const Constant *Op =
551        (*Idxs == i) ?
552        ConstantFoldInsertValueInstruction(Agg->getOperand(i),
553                                           Val, Idxs+1, NumIdx-1) :
554        Agg->getOperand(i);
555      Ops[i] = const_cast<Constant*>(Op);
556    }
557    Constant *C;
558    if (isa<StructType>(Agg->getType()))
559      C = ConstantStruct::get(Ops);
560    else
561      C = ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
562    return C;
563  }
564
565  return 0;
566}
567
568/// EvalVectorOp - Given two vector constants and a function pointer, apply the
569/// function pointer to each element pair, producing a new ConstantVector
570/// constant. Either or both of V1 and V2 may be NULL, meaning a
571/// ConstantAggregateZero operand.
572static Constant *EvalVectorOp(const ConstantVector *V1,
573                              const ConstantVector *V2,
574                              const VectorType *VTy,
575                              Constant *(*FP)(Constant*, Constant*)) {
576  std::vector<Constant*> Res;
577  const Type *EltTy = VTy->getElementType();
578  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
579    const Constant *C1 = V1 ? V1->getOperand(i) : Constant::getNullValue(EltTy);
580    const Constant *C2 = V2 ? V2->getOperand(i) : Constant::getNullValue(EltTy);
581    Res.push_back(FP(const_cast<Constant*>(C1),
582                     const_cast<Constant*>(C2)));
583  }
584  return ConstantVector::get(Res);
585}
586
587Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
588                                              const Constant *C1,
589                                              const Constant *C2) {
590  // No compile-time operations on this type yet.
591  if (C1->getType() == Type::PPC_FP128Ty)
592    return 0;
593
594  // Handle UndefValue up front
595  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
596    switch (Opcode) {
597    case Instruction::Xor:
598      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
599        // Handle undef ^ undef -> 0 special case. This is a common
600        // idiom (misuse).
601        return Constant::getNullValue(C1->getType());
602      // Fallthrough
603    case Instruction::Add:
604    case Instruction::Sub:
605      return UndefValue::get(C1->getType());
606    case Instruction::Mul:
607    case Instruction::And:
608      return Constant::getNullValue(C1->getType());
609    case Instruction::UDiv:
610    case Instruction::SDiv:
611    case Instruction::FDiv:
612    case Instruction::URem:
613    case Instruction::SRem:
614    case Instruction::FRem:
615      if (!isa<UndefValue>(C2))                    // undef / X -> 0
616        return Constant::getNullValue(C1->getType());
617      return const_cast<Constant*>(C2);            // X / undef -> undef
618    case Instruction::Or:                          // X | undef -> -1
619      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
620        return ConstantVector::getAllOnesValue(PTy);
621      return ConstantInt::getAllOnesValue(C1->getType());
622    case Instruction::LShr:
623      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
624        return const_cast<Constant*>(C1);           // undef lshr undef -> undef
625      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
626                                                    // undef lshr X -> 0
627    case Instruction::AShr:
628      if (!isa<UndefValue>(C2))
629        return const_cast<Constant*>(C1);           // undef ashr X --> undef
630      else if (isa<UndefValue>(C1))
631        return const_cast<Constant*>(C1);           // undef ashr undef -> undef
632      else
633        return const_cast<Constant*>(C1);           // X ashr undef --> X
634    case Instruction::Shl:
635      // undef << X -> 0   or   X << undef -> 0
636      return Constant::getNullValue(C1->getType());
637    }
638  }
639
640  // Handle simplifications of the RHS when a constant int.
641  if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
642    switch (Opcode) {
643    case Instruction::Add:
644      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X + 0 == X
645      break;
646    case Instruction::Sub:
647      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X - 0 == X
648      break;
649    case Instruction::Mul:
650      if (CI2->equalsInt(0)) return const_cast<Constant*>(C2);  // X * 0 == 0
651      if (CI2->equalsInt(1))
652        return const_cast<Constant*>(C1);                       // X * 1 == X
653      break;
654    case Instruction::UDiv:
655    case Instruction::SDiv:
656      if (CI2->equalsInt(1))
657        return const_cast<Constant*>(C1);                     // X / 1 == X
658      if (CI2->equalsInt(0))
659        return UndefValue::get(CI2->getType());               // X / 0 == undef
660      break;
661    case Instruction::URem:
662    case Instruction::SRem:
663      if (CI2->equalsInt(1))
664        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
665      if (CI2->equalsInt(0))
666        return UndefValue::get(CI2->getType());               // X % 0 == undef
667      break;
668    case Instruction::And:
669      if (CI2->isZero()) return const_cast<Constant*>(C2);    // X & 0 == 0
670      if (CI2->isAllOnesValue())
671        return const_cast<Constant*>(C1);                     // X & -1 == X
672
673      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
674        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
675        if (CE1->getOpcode() == Instruction::ZExt) {
676          unsigned DstWidth = CI2->getType()->getBitWidth();
677          unsigned SrcWidth =
678            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
679          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
680          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
681            return const_cast<Constant*>(C1);
682        }
683
684        // If and'ing the address of a global with a constant, fold it.
685        if (CE1->getOpcode() == Instruction::PtrToInt &&
686            isa<GlobalValue>(CE1->getOperand(0))) {
687          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
688
689          // Functions are at least 4-byte aligned.
690          unsigned GVAlign = GV->getAlignment();
691          if (isa<Function>(GV))
692            GVAlign = std::max(GVAlign, 4U);
693
694          if (GVAlign > 1) {
695            unsigned DstWidth = CI2->getType()->getBitWidth();
696            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
697            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
698
699            // If checking bits we know are clear, return zero.
700            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
701              return Constant::getNullValue(CI2->getType());
702          }
703        }
704      }
705      break;
706    case Instruction::Or:
707      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X | 0 == X
708      if (CI2->isAllOnesValue())
709        return const_cast<Constant*>(C2);  // X | -1 == -1
710      break;
711    case Instruction::Xor:
712      if (CI2->equalsInt(0)) return const_cast<Constant*>(C1);  // X ^ 0 == X
713      break;
714    case Instruction::AShr:
715      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
716      if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
717        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
718          return ConstantExpr::getLShr(const_cast<Constant*>(C1),
719                                       const_cast<Constant*>(C2));
720      break;
721    }
722  }
723
724  // At this point we know neither constant is an UndefValue.
725  if (const ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
726    if (const ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
727      using namespace APIntOps;
728      const APInt &C1V = CI1->getValue();
729      const APInt &C2V = CI2->getValue();
730      switch (Opcode) {
731      default:
732        break;
733      case Instruction::Add:
734        return ConstantInt::get(C1V + C2V);
735      case Instruction::Sub:
736        return ConstantInt::get(C1V - C2V);
737      case Instruction::Mul:
738        return ConstantInt::get(C1V * C2V);
739      case Instruction::UDiv:
740        assert(!CI2->isNullValue() && "Div by zero handled above");
741        return ConstantInt::get(C1V.udiv(C2V));
742      case Instruction::SDiv:
743        assert(!CI2->isNullValue() && "Div by zero handled above");
744        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
745          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
746        return ConstantInt::get(C1V.sdiv(C2V));
747      case Instruction::URem:
748        assert(!CI2->isNullValue() && "Div by zero handled above");
749        return ConstantInt::get(C1V.urem(C2V));
750      case Instruction::SRem:
751        assert(!CI2->isNullValue() && "Div by zero handled above");
752        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
753          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
754        return ConstantInt::get(C1V.srem(C2V));
755      case Instruction::And:
756        return ConstantInt::get(C1V & C2V);
757      case Instruction::Or:
758        return ConstantInt::get(C1V | C2V);
759      case Instruction::Xor:
760        return ConstantInt::get(C1V ^ C2V);
761      case Instruction::Shl: {
762        uint32_t shiftAmt = C2V.getZExtValue();
763        if (shiftAmt < C1V.getBitWidth())
764          return ConstantInt::get(C1V.shl(shiftAmt));
765        else
766          return UndefValue::get(C1->getType()); // too big shift is undef
767      }
768      case Instruction::LShr: {
769        uint32_t shiftAmt = C2V.getZExtValue();
770        if (shiftAmt < C1V.getBitWidth())
771          return ConstantInt::get(C1V.lshr(shiftAmt));
772        else
773          return UndefValue::get(C1->getType()); // too big shift is undef
774      }
775      case Instruction::AShr: {
776        uint32_t shiftAmt = C2V.getZExtValue();
777        if (shiftAmt < C1V.getBitWidth())
778          return ConstantInt::get(C1V.ashr(shiftAmt));
779        else
780          return UndefValue::get(C1->getType()); // too big shift is undef
781      }
782      }
783    }
784  } else if (const ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
785    if (const ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
786      APFloat C1V = CFP1->getValueAPF();
787      APFloat C2V = CFP2->getValueAPF();
788      APFloat C3V = C1V;  // copy for modification
789      switch (Opcode) {
790      default:
791        break;
792      case Instruction::Add:
793        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
794        return ConstantFP::get(C3V);
795      case Instruction::Sub:
796        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
797        return ConstantFP::get(C3V);
798      case Instruction::Mul:
799        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
800        return ConstantFP::get(C3V);
801      case Instruction::FDiv:
802        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
803        return ConstantFP::get(C3V);
804      case Instruction::FRem:
805        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
806        return ConstantFP::get(C3V);
807      }
808    }
809  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
810    const ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
811    const ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
812    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
813        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
814      switch (Opcode) {
815      default:
816        break;
817      case Instruction::Add:
818        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAdd);
819      case Instruction::Sub:
820        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSub);
821      case Instruction::Mul:
822        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getMul);
823      case Instruction::UDiv:
824        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getUDiv);
825      case Instruction::SDiv:
826        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSDiv);
827      case Instruction::FDiv:
828        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFDiv);
829      case Instruction::URem:
830        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getURem);
831      case Instruction::SRem:
832        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getSRem);
833      case Instruction::FRem:
834        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getFRem);
835      case Instruction::And:
836        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getAnd);
837      case Instruction::Or:
838        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getOr);
839      case Instruction::Xor:
840        return EvalVectorOp(CP1, CP2, VTy, ConstantExpr::getXor);
841      }
842    }
843  }
844
845  if (isa<ConstantExpr>(C1)) {
846    // There are many possible foldings we could do here.  We should probably
847    // at least fold add of a pointer with an integer into the appropriate
848    // getelementptr.  This will improve alias analysis a bit.
849  } else if (isa<ConstantExpr>(C2)) {
850    // If C2 is a constant expr and C1 isn't, flop them around and fold the
851    // other way if possible.
852    switch (Opcode) {
853    case Instruction::Add:
854    case Instruction::Mul:
855    case Instruction::And:
856    case Instruction::Or:
857    case Instruction::Xor:
858      // No change of opcode required.
859      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
860
861    case Instruction::Shl:
862    case Instruction::LShr:
863    case Instruction::AShr:
864    case Instruction::Sub:
865    case Instruction::SDiv:
866    case Instruction::UDiv:
867    case Instruction::FDiv:
868    case Instruction::URem:
869    case Instruction::SRem:
870    case Instruction::FRem:
871    default:  // These instructions cannot be flopped around.
872      break;
873    }
874  }
875
876  // We don't know how to fold this.
877  return 0;
878}
879
880/// isZeroSizedType - This type is zero sized if its an array or structure of
881/// zero sized types.  The only leaf zero sized type is an empty structure.
882static bool isMaybeZeroSizedType(const Type *Ty) {
883  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
884  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
885
886    // If all of elements have zero size, this does too.
887    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
888      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
889    return true;
890
891  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
892    return isMaybeZeroSizedType(ATy->getElementType());
893  }
894  return false;
895}
896
897/// IdxCompare - Compare the two constants as though they were getelementptr
898/// indices.  This allows coersion of the types to be the same thing.
899///
900/// If the two constants are the "same" (after coersion), return 0.  If the
901/// first is less than the second, return -1, if the second is less than the
902/// first, return 1.  If the constants are not integral, return -2.
903///
904static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
905  if (C1 == C2) return 0;
906
907  // Ok, we found a different index.  If they are not ConstantInt, we can't do
908  // anything with them.
909  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
910    return -2; // don't know!
911
912  // Ok, we have two differing integer indices.  Sign extend them to be the same
913  // type.  Long is always big enough, so we use it.
914  if (C1->getType() != Type::Int64Ty)
915    C1 = ConstantExpr::getSExt(C1, Type::Int64Ty);
916
917  if (C2->getType() != Type::Int64Ty)
918    C2 = ConstantExpr::getSExt(C2, Type::Int64Ty);
919
920  if (C1 == C2) return 0;  // They are equal
921
922  // If the type being indexed over is really just a zero sized type, there is
923  // no pointer difference being made here.
924  if (isMaybeZeroSizedType(ElTy))
925    return -2; // dunno.
926
927  // If they are really different, now that they are the same type, then we
928  // found a difference!
929  if (cast<ConstantInt>(C1)->getSExtValue() <
930      cast<ConstantInt>(C2)->getSExtValue())
931    return -1;
932  else
933    return 1;
934}
935
936/// evaluateFCmpRelation - This function determines if there is anything we can
937/// decide about the two constants provided.  This doesn't need to handle simple
938/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
939/// If we can determine that the two constants have a particular relation to
940/// each other, we should return the corresponding FCmpInst predicate,
941/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
942/// ConstantFoldCompareInstruction.
943///
944/// To simplify this code we canonicalize the relation so that the first
945/// operand is always the most "complex" of the two.  We consider ConstantFP
946/// to be the simplest, and ConstantExprs to be the most complex.
947static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
948                                                const Constant *V2) {
949  assert(V1->getType() == V2->getType() &&
950         "Cannot compare values of different types!");
951
952  // No compile-time operations on this type yet.
953  if (V1->getType() == Type::PPC_FP128Ty)
954    return FCmpInst::BAD_FCMP_PREDICATE;
955
956  // Handle degenerate case quickly
957  if (V1 == V2) return FCmpInst::FCMP_OEQ;
958
959  if (!isa<ConstantExpr>(V1)) {
960    if (!isa<ConstantExpr>(V2)) {
961      // We distilled thisUse the standard constant folder for a few cases
962      ConstantInt *R = 0;
963      Constant *C1 = const_cast<Constant*>(V1);
964      Constant *C2 = const_cast<Constant*>(V2);
965      R = dyn_cast<ConstantInt>(
966                             ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
967      if (R && !R->isZero())
968        return FCmpInst::FCMP_OEQ;
969      R = dyn_cast<ConstantInt>(
970                             ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
971      if (R && !R->isZero())
972        return FCmpInst::FCMP_OLT;
973      R = dyn_cast<ConstantInt>(
974                             ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
975      if (R && !R->isZero())
976        return FCmpInst::FCMP_OGT;
977
978      // Nothing more we can do
979      return FCmpInst::BAD_FCMP_PREDICATE;
980    }
981
982    // If the first operand is simple and second is ConstantExpr, swap operands.
983    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
984    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
985      return FCmpInst::getSwappedPredicate(SwappedRelation);
986  } else {
987    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
988    // constantexpr or a simple constant.
989    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
990    switch (CE1->getOpcode()) {
991    case Instruction::FPTrunc:
992    case Instruction::FPExt:
993    case Instruction::UIToFP:
994    case Instruction::SIToFP:
995      // We might be able to do something with these but we don't right now.
996      break;
997    default:
998      break;
999    }
1000  }
1001  // There are MANY other foldings that we could perform here.  They will
1002  // probably be added on demand, as they seem needed.
1003  return FCmpInst::BAD_FCMP_PREDICATE;
1004}
1005
1006/// evaluateICmpRelation - This function determines if there is anything we can
1007/// decide about the two constants provided.  This doesn't need to handle simple
1008/// things like integer comparisons, but should instead handle ConstantExprs
1009/// and GlobalValues.  If we can determine that the two constants have a
1010/// particular relation to each other, we should return the corresponding ICmp
1011/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1012///
1013/// To simplify this code we canonicalize the relation so that the first
1014/// operand is always the most "complex" of the two.  We consider simple
1015/// constants (like ConstantInt) to be the simplest, followed by
1016/// GlobalValues, followed by ConstantExpr's (the most complex).
1017///
1018static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
1019                                                const Constant *V2,
1020                                                bool isSigned) {
1021  assert(V1->getType() == V2->getType() &&
1022         "Cannot compare different types of values!");
1023  if (V1 == V2) return ICmpInst::ICMP_EQ;
1024
1025  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
1026    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2)) {
1027      // We distilled this down to a simple case, use the standard constant
1028      // folder.
1029      ConstantInt *R = 0;
1030      Constant *C1 = const_cast<Constant*>(V1);
1031      Constant *C2 = const_cast<Constant*>(V2);
1032      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1033      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1034      if (R && !R->isZero())
1035        return pred;
1036      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1037      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1038      if (R && !R->isZero())
1039        return pred;
1040      pred = isSigned ?  ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1041      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
1042      if (R && !R->isZero())
1043        return pred;
1044
1045      // If we couldn't figure it out, bail.
1046      return ICmpInst::BAD_ICMP_PREDICATE;
1047    }
1048
1049    // If the first operand is simple, swap operands.
1050    ICmpInst::Predicate SwappedRelation =
1051      evaluateICmpRelation(V2, V1, isSigned);
1052    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1053      return ICmpInst::getSwappedPredicate(SwappedRelation);
1054
1055  } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)) {
1056    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1057      ICmpInst::Predicate SwappedRelation =
1058        evaluateICmpRelation(V2, V1, isSigned);
1059      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1060        return ICmpInst::getSwappedPredicate(SwappedRelation);
1061      else
1062        return ICmpInst::BAD_ICMP_PREDICATE;
1063    }
1064
1065    // Now we know that the RHS is a GlobalValue or simple constant,
1066    // which (since the types must match) means that it's a ConstantPointerNull.
1067    if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1068      // Don't try to decide equality of aliases.
1069      if (!isa<GlobalAlias>(CPR1) && !isa<GlobalAlias>(CPR2))
1070        if (!CPR1->hasExternalWeakLinkage() || !CPR2->hasExternalWeakLinkage())
1071          return ICmpInst::ICMP_NE;
1072    } else {
1073      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1074      // GlobalVals can never be null.  Don't try to evaluate aliases.
1075      if (!CPR1->hasExternalWeakLinkage() && !isa<GlobalAlias>(CPR1))
1076        return ICmpInst::ICMP_NE;
1077    }
1078  } else {
1079    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1080    // constantexpr, a CPR, or a simple constant.
1081    const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1082    const Constant *CE1Op0 = CE1->getOperand(0);
1083
1084    switch (CE1->getOpcode()) {
1085    case Instruction::Trunc:
1086    case Instruction::FPTrunc:
1087    case Instruction::FPExt:
1088    case Instruction::FPToUI:
1089    case Instruction::FPToSI:
1090      break; // We can't evaluate floating point casts or truncations.
1091
1092    case Instruction::UIToFP:
1093    case Instruction::SIToFP:
1094    case Instruction::BitCast:
1095    case Instruction::ZExt:
1096    case Instruction::SExt:
1097      // If the cast is not actually changing bits, and the second operand is a
1098      // null pointer, do the comparison with the pre-casted value.
1099      if (V2->isNullValue() &&
1100          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1101        bool sgnd = isSigned;
1102        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1103        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1104        return evaluateICmpRelation(CE1Op0,
1105                                    Constant::getNullValue(CE1Op0->getType()),
1106                                    sgnd);
1107      }
1108
1109      // If the dest type is a pointer type, and the RHS is a constantexpr cast
1110      // from the same type as the src of the LHS, evaluate the inputs.  This is
1111      // important for things like "icmp eq (cast 4 to int*), (cast 5 to int*)",
1112      // which happens a lot in compilers with tagged integers.
1113      if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2))
1114        if (CE2->isCast() && isa<PointerType>(CE1->getType()) &&
1115            CE1->getOperand(0)->getType() == CE2->getOperand(0)->getType() &&
1116            CE1->getOperand(0)->getType()->isInteger()) {
1117          bool sgnd = isSigned;
1118          if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1119          if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1120          return evaluateICmpRelation(CE1->getOperand(0), CE2->getOperand(0),
1121                                      sgnd);
1122        }
1123      break;
1124
1125    case Instruction::GetElementPtr:
1126      // Ok, since this is a getelementptr, we know that the constant has a
1127      // pointer type.  Check the various cases.
1128      if (isa<ConstantPointerNull>(V2)) {
1129        // If we are comparing a GEP to a null pointer, check to see if the base
1130        // of the GEP equals the null pointer.
1131        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1132          if (GV->hasExternalWeakLinkage())
1133            // Weak linkage GVals could be zero or not. We're comparing that
1134            // to null pointer so its greater-or-equal
1135            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1136          else
1137            // If its not weak linkage, the GVal must have a non-zero address
1138            // so the result is greater-than
1139            return isSigned ? ICmpInst::ICMP_SGT :  ICmpInst::ICMP_UGT;
1140        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1141          // If we are indexing from a null pointer, check to see if we have any
1142          // non-zero indices.
1143          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1144            if (!CE1->getOperand(i)->isNullValue())
1145              // Offsetting from null, must not be equal.
1146              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1147          // Only zero indexes from null, must still be zero.
1148          return ICmpInst::ICMP_EQ;
1149        }
1150        // Otherwise, we can't really say if the first operand is null or not.
1151      } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
1152        if (isa<ConstantPointerNull>(CE1Op0)) {
1153          if (CPR2->hasExternalWeakLinkage())
1154            // Weak linkage GVals could be zero or not. We're comparing it to
1155            // a null pointer, so its less-or-equal
1156            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1157          else
1158            // If its not weak linkage, the GVal must have a non-zero address
1159            // so the result is less-than
1160            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1161        } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
1162          if (CPR1 == CPR2) {
1163            // If this is a getelementptr of the same global, then it must be
1164            // different.  Because the types must match, the getelementptr could
1165            // only have at most one index, and because we fold getelementptr's
1166            // with a single zero index, it must be nonzero.
1167            assert(CE1->getNumOperands() == 2 &&
1168                   !CE1->getOperand(1)->isNullValue() &&
1169                   "Suprising getelementptr!");
1170            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1171          } else {
1172            // If they are different globals, we don't know what the value is,
1173            // but they can't be equal.
1174            return ICmpInst::ICMP_NE;
1175          }
1176        }
1177      } else {
1178        const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1179        const Constant *CE2Op0 = CE2->getOperand(0);
1180
1181        // There are MANY other foldings that we could perform here.  They will
1182        // probably be added on demand, as they seem needed.
1183        switch (CE2->getOpcode()) {
1184        default: break;
1185        case Instruction::GetElementPtr:
1186          // By far the most common case to handle is when the base pointers are
1187          // obviously to the same or different globals.
1188          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1189            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1190              return ICmpInst::ICMP_NE;
1191            // Ok, we know that both getelementptr instructions are based on the
1192            // same global.  From this, we can precisely determine the relative
1193            // ordering of the resultant pointers.
1194            unsigned i = 1;
1195
1196            // Compare all of the operands the GEP's have in common.
1197            gep_type_iterator GTI = gep_type_begin(CE1);
1198            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1199                 ++i, ++GTI)
1200              switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
1201                                 GTI.getIndexedType())) {
1202              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1203              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1204              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1205              }
1206
1207            // Ok, we ran out of things they have in common.  If any leftovers
1208            // are non-zero then we have a difference, otherwise we are equal.
1209            for (; i < CE1->getNumOperands(); ++i)
1210              if (!CE1->getOperand(i)->isNullValue()) {
1211                if (isa<ConstantInt>(CE1->getOperand(i)))
1212                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1213                else
1214                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1215              }
1216
1217            for (; i < CE2->getNumOperands(); ++i)
1218              if (!CE2->getOperand(i)->isNullValue()) {
1219                if (isa<ConstantInt>(CE2->getOperand(i)))
1220                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1221                else
1222                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1223              }
1224            return ICmpInst::ICMP_EQ;
1225          }
1226        }
1227      }
1228    default:
1229      break;
1230    }
1231  }
1232
1233  return ICmpInst::BAD_ICMP_PREDICATE;
1234}
1235
1236Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1237                                               const Constant *C1,
1238                                               const Constant *C2) {
1239  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1240  if (pred == FCmpInst::FCMP_FALSE) {
1241    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1242      return Constant::getNullValue(VectorType::getInteger(VT));
1243    else
1244      return ConstantInt::getFalse();
1245  }
1246
1247  if (pred == FCmpInst::FCMP_TRUE) {
1248    if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1249      return Constant::getAllOnesValue(VectorType::getInteger(VT));
1250    else
1251      return ConstantInt::getTrue();
1252  }
1253
1254  // Handle some degenerate cases first
1255  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1256    // vicmp/vfcmp -> [vector] undef
1257    if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType()))
1258      return UndefValue::get(VectorType::getInteger(VTy));
1259
1260    // icmp/fcmp -> i1 undef
1261    return UndefValue::get(Type::Int1Ty);
1262  }
1263
1264  // No compile-time operations on this type yet.
1265  if (C1->getType() == Type::PPC_FP128Ty)
1266    return 0;
1267
1268  // icmp eq/ne(null,GV) -> false/true
1269  if (C1->isNullValue()) {
1270    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1271      // Don't try to evaluate aliases.  External weak GV can be null.
1272      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1273        if (pred == ICmpInst::ICMP_EQ)
1274          return ConstantInt::getFalse();
1275        else if (pred == ICmpInst::ICMP_NE)
1276          return ConstantInt::getTrue();
1277      }
1278  // icmp eq/ne(GV,null) -> false/true
1279  } else if (C2->isNullValue()) {
1280    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1281      // Don't try to evaluate aliases.  External weak GV can be null.
1282      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1283        if (pred == ICmpInst::ICMP_EQ)
1284          return ConstantInt::getFalse();
1285        else if (pred == ICmpInst::ICMP_NE)
1286          return ConstantInt::getTrue();
1287      }
1288  }
1289
1290  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1291    APInt V1 = cast<ConstantInt>(C1)->getValue();
1292    APInt V2 = cast<ConstantInt>(C2)->getValue();
1293    switch (pred) {
1294    default: assert(0 && "Invalid ICmp Predicate"); return 0;
1295    case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
1296    case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
1297    case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1.slt(V2));
1298    case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1.sgt(V2));
1299    case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1.sle(V2));
1300    case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1.sge(V2));
1301    case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1.ult(V2));
1302    case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1.ugt(V2));
1303    case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1.ule(V2));
1304    case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1.uge(V2));
1305    }
1306  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1307    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1308    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1309    APFloat::cmpResult R = C1V.compare(C2V);
1310    switch (pred) {
1311    default: assert(0 && "Invalid FCmp Predicate"); return 0;
1312    case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
1313    case FCmpInst::FCMP_TRUE:  return ConstantInt::getTrue();
1314    case FCmpInst::FCMP_UNO:
1315      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered);
1316    case FCmpInst::FCMP_ORD:
1317      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpUnordered);
1318    case FCmpInst::FCMP_UEQ:
1319      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1320                                            R==APFloat::cmpEqual);
1321    case FCmpInst::FCMP_OEQ:
1322      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpEqual);
1323    case FCmpInst::FCMP_UNE:
1324      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpEqual);
1325    case FCmpInst::FCMP_ONE:
1326      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1327                                            R==APFloat::cmpGreaterThan);
1328    case FCmpInst::FCMP_ULT:
1329      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1330                                            R==APFloat::cmpLessThan);
1331    case FCmpInst::FCMP_OLT:
1332      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan);
1333    case FCmpInst::FCMP_UGT:
1334      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpUnordered ||
1335                                            R==APFloat::cmpGreaterThan);
1336    case FCmpInst::FCMP_OGT:
1337      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan);
1338    case FCmpInst::FCMP_ULE:
1339      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpGreaterThan);
1340    case FCmpInst::FCMP_OLE:
1341      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpLessThan ||
1342                                            R==APFloat::cmpEqual);
1343    case FCmpInst::FCMP_UGE:
1344      return ConstantInt::get(Type::Int1Ty, R!=APFloat::cmpLessThan);
1345    case FCmpInst::FCMP_OGE:
1346      return ConstantInt::get(Type::Int1Ty, R==APFloat::cmpGreaterThan ||
1347                                            R==APFloat::cmpEqual);
1348    }
1349  } else if (isa<VectorType>(C1->getType())) {
1350    SmallVector<Constant*, 16> C1Elts, C2Elts;
1351    C1->getVectorElements(C1Elts);
1352    C2->getVectorElements(C2Elts);
1353
1354    // If we can constant fold the comparison of each element, constant fold
1355    // the whole vector comparison.
1356    SmallVector<Constant*, 4> ResElts;
1357    const Type *InEltTy = C1Elts[0]->getType();
1358    bool isFP = InEltTy->isFloatingPoint();
1359    const Type *ResEltTy = InEltTy;
1360    if (isFP)
1361      ResEltTy = IntegerType::get(InEltTy->getPrimitiveSizeInBits());
1362
1363    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1364      // Compare the elements, producing an i1 result or constant expr.
1365      Constant *C;
1366      if (isFP)
1367        C = ConstantExpr::getFCmp(pred, C1Elts[i], C2Elts[i]);
1368      else
1369        C = ConstantExpr::getICmp(pred, C1Elts[i], C2Elts[i]);
1370
1371      // If it is a bool or undef result, convert to the dest type.
1372      if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1373        if (CI->isZero())
1374          ResElts.push_back(Constant::getNullValue(ResEltTy));
1375        else
1376          ResElts.push_back(Constant::getAllOnesValue(ResEltTy));
1377      } else if (isa<UndefValue>(C)) {
1378        ResElts.push_back(UndefValue::get(ResEltTy));
1379      } else {
1380        break;
1381      }
1382    }
1383
1384    if (ResElts.size() == C1Elts.size())
1385      return ConstantVector::get(&ResElts[0], ResElts.size());
1386  }
1387
1388  if (C1->getType()->isFloatingPoint()) {
1389    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1390    switch (evaluateFCmpRelation(C1, C2)) {
1391    default: assert(0 && "Unknown relation!");
1392    case FCmpInst::FCMP_UNO:
1393    case FCmpInst::FCMP_ORD:
1394    case FCmpInst::FCMP_UEQ:
1395    case FCmpInst::FCMP_UNE:
1396    case FCmpInst::FCMP_ULT:
1397    case FCmpInst::FCMP_UGT:
1398    case FCmpInst::FCMP_ULE:
1399    case FCmpInst::FCMP_UGE:
1400    case FCmpInst::FCMP_TRUE:
1401    case FCmpInst::FCMP_FALSE:
1402    case FCmpInst::BAD_FCMP_PREDICATE:
1403      break; // Couldn't determine anything about these constants.
1404    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1405      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1406                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1407                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1408      break;
1409    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1410      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1411                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1412                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1413      break;
1414    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1415      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1416                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1417                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1418      break;
1419    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1420      // We can only partially decide this relation.
1421      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1422        Result = 0;
1423      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1424        Result = 1;
1425      break;
1426    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1427      // We can only partially decide this relation.
1428      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1429        Result = 0;
1430      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1431        Result = 1;
1432      break;
1433    case ICmpInst::ICMP_NE: // We know that C1 != C2
1434      // We can only partially decide this relation.
1435      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1436        Result = 0;
1437      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1438        Result = 1;
1439      break;
1440    }
1441
1442    // If we evaluated the result, return it now.
1443    if (Result != -1) {
1444      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1445        if (Result == 0)
1446          return Constant::getNullValue(VectorType::getInteger(VT));
1447        else
1448          return Constant::getAllOnesValue(VectorType::getInteger(VT));
1449      }
1450      return ConstantInt::get(Type::Int1Ty, Result);
1451    }
1452
1453  } else {
1454    // Evaluate the relation between the two constants, per the predicate.
1455    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1456    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1457    default: assert(0 && "Unknown relational!");
1458    case ICmpInst::BAD_ICMP_PREDICATE:
1459      break;  // Couldn't determine anything about these constants.
1460    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1461      // If we know the constants are equal, we can decide the result of this
1462      // computation precisely.
1463      Result = (pred == ICmpInst::ICMP_EQ  ||
1464                pred == ICmpInst::ICMP_ULE ||
1465                pred == ICmpInst::ICMP_SLE ||
1466                pred == ICmpInst::ICMP_UGE ||
1467                pred == ICmpInst::ICMP_SGE);
1468      break;
1469    case ICmpInst::ICMP_ULT:
1470      // If we know that C1 < C2, we can decide the result of this computation
1471      // precisely.
1472      Result = (pred == ICmpInst::ICMP_ULT ||
1473                pred == ICmpInst::ICMP_NE  ||
1474                pred == ICmpInst::ICMP_ULE);
1475      break;
1476    case ICmpInst::ICMP_SLT:
1477      // If we know that C1 < C2, we can decide the result of this computation
1478      // precisely.
1479      Result = (pred == ICmpInst::ICMP_SLT ||
1480                pred == ICmpInst::ICMP_NE  ||
1481                pred == ICmpInst::ICMP_SLE);
1482      break;
1483    case ICmpInst::ICMP_UGT:
1484      // If we know that C1 > C2, we can decide the result of this computation
1485      // precisely.
1486      Result = (pred == ICmpInst::ICMP_UGT ||
1487                pred == ICmpInst::ICMP_NE  ||
1488                pred == ICmpInst::ICMP_UGE);
1489      break;
1490    case ICmpInst::ICMP_SGT:
1491      // If we know that C1 > C2, we can decide the result of this computation
1492      // precisely.
1493      Result = (pred == ICmpInst::ICMP_SGT ||
1494                pred == ICmpInst::ICMP_NE  ||
1495                pred == ICmpInst::ICMP_SGE);
1496      break;
1497    case ICmpInst::ICMP_ULE:
1498      // If we know that C1 <= C2, we can only partially decide this relation.
1499      if (pred == ICmpInst::ICMP_UGT) Result = 0;
1500      if (pred == ICmpInst::ICMP_ULT) Result = 1;
1501      break;
1502    case ICmpInst::ICMP_SLE:
1503      // If we know that C1 <= C2, we can only partially decide this relation.
1504      if (pred == ICmpInst::ICMP_SGT) Result = 0;
1505      if (pred == ICmpInst::ICMP_SLT) Result = 1;
1506      break;
1507
1508    case ICmpInst::ICMP_UGE:
1509      // If we know that C1 >= C2, we can only partially decide this relation.
1510      if (pred == ICmpInst::ICMP_ULT) Result = 0;
1511      if (pred == ICmpInst::ICMP_UGT) Result = 1;
1512      break;
1513    case ICmpInst::ICMP_SGE:
1514      // If we know that C1 >= C2, we can only partially decide this relation.
1515      if (pred == ICmpInst::ICMP_SLT) Result = 0;
1516      if (pred == ICmpInst::ICMP_SGT) Result = 1;
1517      break;
1518
1519    case ICmpInst::ICMP_NE:
1520      // If we know that C1 != C2, we can only partially decide this relation.
1521      if (pred == ICmpInst::ICMP_EQ) Result = 0;
1522      if (pred == ICmpInst::ICMP_NE) Result = 1;
1523      break;
1524    }
1525
1526    // If we evaluated the result, return it now.
1527    if (Result != -1) {
1528      if (const VectorType *VT = dyn_cast<VectorType>(C1->getType())) {
1529        if (Result == 0)
1530          return Constant::getNullValue(VT);
1531        else
1532          return Constant::getAllOnesValue(VT);
1533      }
1534      return ConstantInt::get(Type::Int1Ty, Result);
1535    }
1536
1537    if (!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) {
1538      // If C2 is a constant expr and C1 isn't, flop them around and fold the
1539      // other way if possible.
1540      switch (pred) {
1541      case ICmpInst::ICMP_EQ:
1542      case ICmpInst::ICMP_NE:
1543        // No change of predicate required.
1544        return ConstantFoldCompareInstruction(pred, C2, C1);
1545
1546      case ICmpInst::ICMP_ULT:
1547      case ICmpInst::ICMP_SLT:
1548      case ICmpInst::ICMP_UGT:
1549      case ICmpInst::ICMP_SGT:
1550      case ICmpInst::ICMP_ULE:
1551      case ICmpInst::ICMP_SLE:
1552      case ICmpInst::ICMP_UGE:
1553      case ICmpInst::ICMP_SGE:
1554        // Change the predicate as necessary to swap the operands.
1555        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1556        return ConstantFoldCompareInstruction(pred, C2, C1);
1557
1558      default:  // These predicates cannot be flopped around.
1559        break;
1560      }
1561    }
1562  }
1563  return 0;
1564}
1565
1566Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
1567                                          Constant* const *Idxs,
1568                                          unsigned NumIdx) {
1569  if (NumIdx == 0 ||
1570      (NumIdx == 1 && Idxs[0]->isNullValue()))
1571    return const_cast<Constant*>(C);
1572
1573  if (isa<UndefValue>(C)) {
1574    const PointerType *Ptr = cast<PointerType>(C->getType());
1575    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1576                                                       (Value **)Idxs,
1577                                                       (Value **)Idxs+NumIdx);
1578    assert(Ty != 0 && "Invalid indices for GEP!");
1579    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
1580  }
1581
1582  Constant *Idx0 = Idxs[0];
1583  if (C->isNullValue()) {
1584    bool isNull = true;
1585    for (unsigned i = 0, e = NumIdx; i != e; ++i)
1586      if (!Idxs[i]->isNullValue()) {
1587        isNull = false;
1588        break;
1589      }
1590    if (isNull) {
1591      const PointerType *Ptr = cast<PointerType>(C->getType());
1592      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
1593                                                         (Value**)Idxs,
1594                                                         (Value**)Idxs+NumIdx);
1595      assert(Ty != 0 && "Invalid indices for GEP!");
1596      return
1597        ConstantPointerNull::get(PointerType::get(Ty,Ptr->getAddressSpace()));
1598    }
1599  }
1600
1601  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
1602    // Combine Indices - If the source pointer to this getelementptr instruction
1603    // is a getelementptr instruction, combine the indices of the two
1604    // getelementptr instructions into a single instruction.
1605    //
1606    if (CE->getOpcode() == Instruction::GetElementPtr) {
1607      const Type *LastTy = 0;
1608      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
1609           I != E; ++I)
1610        LastTy = *I;
1611
1612      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
1613        SmallVector<Value*, 16> NewIndices;
1614        NewIndices.reserve(NumIdx + CE->getNumOperands());
1615        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
1616          NewIndices.push_back(CE->getOperand(i));
1617
1618        // Add the last index of the source with the first index of the new GEP.
1619        // Make sure to handle the case when they are actually different types.
1620        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
1621        // Otherwise it must be an array.
1622        if (!Idx0->isNullValue()) {
1623          const Type *IdxTy = Combined->getType();
1624          if (IdxTy != Idx0->getType()) {
1625            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Type::Int64Ty);
1626            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined,
1627                                                          Type::Int64Ty);
1628            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
1629          } else {
1630            Combined =
1631              ConstantExpr::get(Instruction::Add, Idx0, Combined);
1632          }
1633        }
1634
1635        NewIndices.push_back(Combined);
1636        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
1637        return ConstantExpr::getGetElementPtr(CE->getOperand(0), &NewIndices[0],
1638                                              NewIndices.size());
1639      }
1640    }
1641
1642    // Implement folding of:
1643    //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
1644    //                        long 0, long 0)
1645    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
1646    //
1647    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
1648      if (const PointerType *SPT =
1649          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
1650        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
1651          if (const ArrayType *CAT =
1652        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
1653            if (CAT->getElementType() == SAT->getElementType())
1654              return ConstantExpr::getGetElementPtr(
1655                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
1656    }
1657
1658    // Fold: getelementptr (i8* inttoptr (i64 1 to i8*), i32 -1)
1659    // Into: inttoptr (i64 0 to i8*)
1660    // This happens with pointers to member functions in C++.
1661    if (CE->getOpcode() == Instruction::IntToPtr && NumIdx == 1 &&
1662        isa<ConstantInt>(CE->getOperand(0)) && isa<ConstantInt>(Idxs[0]) &&
1663        cast<PointerType>(CE->getType())->getElementType() == Type::Int8Ty) {
1664      Constant *Base = CE->getOperand(0);
1665      Constant *Offset = Idxs[0];
1666
1667      // Convert the smaller integer to the larger type.
1668      if (Offset->getType()->getPrimitiveSizeInBits() <
1669          Base->getType()->getPrimitiveSizeInBits())
1670        Offset = ConstantExpr::getSExt(Offset, Base->getType());
1671      else if (Base->getType()->getPrimitiveSizeInBits() <
1672               Offset->getType()->getPrimitiveSizeInBits())
1673        Base = ConstantExpr::getZExt(Base, Base->getType());
1674
1675      Base = ConstantExpr::getAdd(Base, Offset);
1676      return ConstantExpr::getIntToPtr(Base, CE->getType());
1677    }
1678  }
1679  return 0;
1680}
1681
1682