ConstantFold.cpp revision fdfeb6976f07ad10d809b922ed7376ba2a3539be
1//===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements folding of constants for LLVM.  This implements the
11// (internal) ConstantFold.h interface, which is used by the
12// ConstantExpr::get* methods to automatically fold constants when possible.
13//
14// The current constant folding implementation is implemented in two pieces: the
15// pieces that don't need TargetData, and the pieces that do. This is to avoid
16// a dependence in VMCore on Target.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ConstantFold.h"
21#include "llvm/Constants.h"
22#include "llvm/Instructions.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Support/Compiler.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/GetElementPtrTypeIterator.h"
31#include "llvm/Support/ManagedStatic.h"
32#include "llvm/Support/MathExtras.h"
33#include <limits>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37//                ConstantFold*Instruction Implementations
38//===----------------------------------------------------------------------===//
39
40/// BitCastConstantVector - Convert the specified ConstantVector node to the
41/// specified vector type.  At this point, we know that the elements of the
42/// input vector constant are all simple integer or FP values.
43static Constant *BitCastConstantVector(ConstantVector *CV,
44                                       const VectorType *DstTy) {
45  // If this cast changes element count then we can't handle it here:
46  // doing so requires endianness information.  This should be handled by
47  // Analysis/ConstantFolding.cpp
48  unsigned NumElts = DstTy->getNumElements();
49  if (NumElts != CV->getNumOperands())
50    return 0;
51
52  // Check to verify that all elements of the input are simple.
53  for (unsigned i = 0; i != NumElts; ++i) {
54    if (!isa<ConstantInt>(CV->getOperand(i)) &&
55        !isa<ConstantFP>(CV->getOperand(i)))
56      return 0;
57  }
58
59  // Bitcast each element now.
60  std::vector<Constant*> Result;
61  const Type *DstEltTy = DstTy->getElementType();
62  for (unsigned i = 0; i != NumElts; ++i)
63    Result.push_back(ConstantExpr::getBitCast(CV->getOperand(i),
64                                                    DstEltTy));
65  return ConstantVector::get(Result);
66}
67
68/// This function determines which opcode to use to fold two constant cast
69/// expressions together. It uses CastInst::isEliminableCastPair to determine
70/// the opcode. Consequently its just a wrapper around that function.
71/// @brief Determine if it is valid to fold a cast of a cast
72static unsigned
73foldConstantCastPair(
74  unsigned opc,          ///< opcode of the second cast constant expression
75  ConstantExpr *Op,      ///< the first cast constant expression
76  const Type *DstTy      ///< desintation type of the first cast
77) {
78  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
79  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
80  assert(CastInst::isCast(opc) && "Invalid cast opcode");
81
82  // The the types and opcodes for the two Cast constant expressions
83  const Type *SrcTy = Op->getOperand(0)->getType();
84  const Type *MidTy = Op->getType();
85  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
86  Instruction::CastOps secondOp = Instruction::CastOps(opc);
87
88  // Let CastInst::isEliminableCastPair do the heavy lifting.
89  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
90                                        Type::getInt64Ty(DstTy->getContext()));
91}
92
93static Constant *FoldBitCast(Constant *V, const Type *DestTy) {
94  const Type *SrcTy = V->getType();
95  if (SrcTy == DestTy)
96    return V; // no-op cast
97
98  // Check to see if we are casting a pointer to an aggregate to a pointer to
99  // the first element.  If so, return the appropriate GEP instruction.
100  if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
101    if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy))
102      if (PTy->getAddressSpace() == DPTy->getAddressSpace()) {
103        SmallVector<Value*, 8> IdxList;
104        Value *Zero =
105          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
106        IdxList.push_back(Zero);
107        const Type *ElTy = PTy->getElementType();
108        while (ElTy != DPTy->getElementType()) {
109          if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
110            if (STy->getNumElements() == 0) break;
111            ElTy = STy->getElementType(0);
112            IdxList.push_back(Zero);
113          } else if (const SequentialType *STy =
114                     dyn_cast<SequentialType>(ElTy)) {
115            if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
116            ElTy = STy->getElementType();
117            IdxList.push_back(Zero);
118          } else {
119            break;
120          }
121        }
122
123        if (ElTy == DPTy->getElementType())
124          // This GEP is inbounds because all indices are zero.
125          return ConstantExpr::getInBoundsGetElementPtr(V, &IdxList[0],
126                                                        IdxList.size());
127      }
128
129  // Handle casts from one vector constant to another.  We know that the src
130  // and dest type have the same size (otherwise its an illegal cast).
131  if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
132    if (const VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
133      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
134             "Not cast between same sized vectors!");
135      SrcTy = NULL;
136      // First, check for null.  Undef is already handled.
137      if (isa<ConstantAggregateZero>(V))
138        return Constant::getNullValue(DestTy);
139
140      if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
141        return BitCastConstantVector(CV, DestPTy);
142    }
143
144    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
145    // This allows for other simplifications (although some of them
146    // can only be handled by Analysis/ConstantFolding.cpp).
147    if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
148      return ConstantExpr::getBitCast(ConstantVector::get(&V, 1), DestPTy);
149  }
150
151  // Finally, implement bitcast folding now.   The code below doesn't handle
152  // bitcast right.
153  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast.
154    return ConstantPointerNull::get(cast<PointerType>(DestTy));
155
156  // Handle integral constant input.
157  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (DestTy->isInteger())
159      // Integral -> Integral. This is a no-op because the bit widths must
160      // be the same. Consequently, we just fold to V.
161      return V;
162
163    if (DestTy->isFloatingPoint())
164      return ConstantFP::get(DestTy->getContext(),
165                             APFloat(CI->getValue(),
166                                     !DestTy->isPPC_FP128Ty()));
167
168    // Otherwise, can't fold this (vector?)
169    return 0;
170  }
171
172  // Handle ConstantFP input: FP -> Integral.
173  if (ConstantFP *FP = dyn_cast<ConstantFP>(V))
174    return ConstantInt::get(FP->getContext(),
175                            FP->getValueAPF().bitcastToAPInt());
176
177  return 0;
178}
179
180
181/// ExtractConstantBytes - V is an integer constant which only has a subset of
182/// its bytes used.  The bytes used are indicated by ByteStart (which is the
183/// first byte used, counting from the least significant byte) and ByteSize,
184/// which is the number of bytes used.
185///
186/// This function analyzes the specified constant to see if the specified byte
187/// range can be returned as a simplified constant.  If so, the constant is
188/// returned, otherwise null is returned.
189///
190static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
191                                      unsigned ByteSize) {
192  assert(isa<IntegerType>(C->getType()) &&
193         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
194         "Non-byte sized integer input");
195  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
196  assert(ByteSize && "Must be accessing some piece");
197  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
198  assert(ByteSize != CSize && "Should not extract everything");
199
200  // Constant Integers are simple.
201  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
202    APInt V = CI->getValue();
203    if (ByteStart)
204      V = V.lshr(ByteStart*8);
205    V.trunc(ByteSize*8);
206    return ConstantInt::get(CI->getContext(), V);
207  }
208
209  // In the input is a constant expr, we might be able to recursively simplify.
210  // If not, we definitely can't do anything.
211  ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
212  if (CE == 0) return 0;
213
214  switch (CE->getOpcode()) {
215  default: return 0;
216  case Instruction::Or: {
217    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
218    if (RHS == 0)
219      return 0;
220
221    // X | -1 -> -1.
222    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
223      if (RHSC->isAllOnesValue())
224        return RHSC;
225
226    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
227    if (LHS == 0)
228      return 0;
229    return ConstantExpr::getOr(LHS, RHS);
230  }
231  case Instruction::And: {
232    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
233    if (RHS == 0)
234      return 0;
235
236    // X & 0 -> 0.
237    if (RHS->isNullValue())
238      return RHS;
239
240    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
241    if (LHS == 0)
242      return 0;
243    return ConstantExpr::getAnd(LHS, RHS);
244  }
245  case Instruction::LShr: {
246    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
247    if (Amt == 0)
248      return 0;
249    unsigned ShAmt = Amt->getZExtValue();
250    // Cannot analyze non-byte shifts.
251    if ((ShAmt & 7) != 0)
252      return 0;
253    ShAmt >>= 3;
254
255    // If the extract is known to be all zeros, return zero.
256    if (ByteStart >= CSize-ShAmt)
257      return Constant::getNullValue(IntegerType::get(CE->getContext(),
258                                                     ByteSize*8));
259    // If the extract is known to be fully in the input, extract it.
260    if (ByteStart+ByteSize+ShAmt <= CSize)
261      return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
262
263    // TODO: Handle the 'partially zero' case.
264    return 0;
265  }
266
267  case Instruction::Shl: {
268    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
269    if (Amt == 0)
270      return 0;
271    unsigned ShAmt = Amt->getZExtValue();
272    // Cannot analyze non-byte shifts.
273    if ((ShAmt & 7) != 0)
274      return 0;
275    ShAmt >>= 3;
276
277    // If the extract is known to be all zeros, return zero.
278    if (ByteStart+ByteSize <= ShAmt)
279      return Constant::getNullValue(IntegerType::get(CE->getContext(),
280                                                     ByteSize*8));
281    // If the extract is known to be fully in the input, extract it.
282    if (ByteStart >= ShAmt)
283      return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
284
285    // TODO: Handle the 'partially zero' case.
286    return 0;
287  }
288
289  case Instruction::ZExt: {
290    unsigned SrcBitSize =
291      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
292
293    // If extracting something that is completely zero, return 0.
294    if (ByteStart*8 >= SrcBitSize)
295      return Constant::getNullValue(IntegerType::get(CE->getContext(),
296                                                     ByteSize*8));
297
298    // If exactly extracting the input, return it.
299    if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
300      return CE->getOperand(0);
301
302    // If extracting something completely in the input, if if the input is a
303    // multiple of 8 bits, recurse.
304    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
305      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
306
307    // Otherwise, if extracting a subset of the input, which is not multiple of
308    // 8 bits, do a shift and trunc to get the bits.
309    if ((ByteStart+ByteSize)*8 < SrcBitSize) {
310      assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
311      Constant *Res = CE->getOperand(0);
312      if (ByteStart)
313        Res = ConstantExpr::getLShr(Res,
314                                 ConstantInt::get(Res->getType(), ByteStart*8));
315      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
316                                                          ByteSize*8));
317    }
318
319    // TODO: Handle the 'partially zero' case.
320    return 0;
321  }
322  }
323}
324
325/// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
326/// on Ty, with any known factors factored out. If Folded is false,
327/// return null if no factoring was possible, to avoid endlessly
328/// bouncing an unfoldable expression back into the top-level folder.
329///
330static Constant *getFoldedSizeOf(const Type *Ty, const Type *DestTy,
331                                 bool Folded) {
332  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
333    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
334    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
335    return ConstantExpr::getNUWMul(E, N);
336  }
337  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
338    Constant *N = ConstantInt::get(DestTy, VTy->getNumElements());
339    Constant *E = getFoldedSizeOf(VTy->getElementType(), DestTy, true);
340    return ConstantExpr::getNUWMul(E, N);
341  }
342  if (const StructType *STy = dyn_cast<StructType>(Ty))
343    if (!STy->isPacked()) {
344      unsigned NumElems = STy->getNumElements();
345      // An empty struct has size zero.
346      if (NumElems == 0)
347        return ConstantExpr::getNullValue(DestTy);
348      // Check for a struct with all members having the same size.
349      Constant *MemberSize =
350        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
351      bool AllSame = true;
352      for (unsigned i = 1; i != NumElems; ++i)
353        if (MemberSize !=
354            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
355          AllSame = false;
356          break;
357        }
358      if (AllSame) {
359        Constant *N = ConstantInt::get(DestTy, NumElems);
360        return ConstantExpr::getNUWMul(MemberSize, N);
361      }
362    }
363
364  // Pointer size doesn't depend on the pointee type, so canonicalize them
365  // to an arbitrary pointee.
366  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
367    if (!PTy->getElementType()->isInteger(1))
368      return
369        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
370                                         PTy->getAddressSpace()),
371                        DestTy, true);
372
373  // If there's no interesting folding happening, bail so that we don't create
374  // a constant that looks like it needs folding but really doesn't.
375  if (!Folded)
376    return 0;
377
378  // Base case: Get a regular sizeof expression.
379  Constant *C = ConstantExpr::getSizeOf(Ty);
380  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
381                                                    DestTy, false),
382                            C, DestTy);
383  return C;
384}
385
386/// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
387/// on Ty, with any known factors factored out. If Folded is false,
388/// return null if no factoring was possible, to avoid endlessly
389/// bouncing an unfoldable expression back into the top-level folder.
390///
391static Constant *getFoldedAlignOf(const Type *Ty, const Type *DestTy,
392                                  bool Folded) {
393  // The alignment of an array is equal to the alignment of the
394  // array element. Note that this is not always true for vectors.
395  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
396    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
397    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398                                                      DestTy,
399                                                      false),
400                              C, DestTy);
401    return C;
402  }
403
404  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
405    // Packed structs always have an alignment of 1.
406    if (STy->isPacked())
407      return ConstantInt::get(DestTy, 1);
408
409    // Otherwise, struct alignment is the maximum alignment of any member.
410    // Without target data, we can't compare much, but we can check to see
411    // if all the members have the same alignment.
412    unsigned NumElems = STy->getNumElements();
413    // An empty struct has minimal alignment.
414    if (NumElems == 0)
415      return ConstantInt::get(DestTy, 1);
416    // Check for a struct with all members having the same alignment.
417    Constant *MemberAlign =
418      getFoldedAlignOf(STy->getElementType(0), DestTy, true);
419    bool AllSame = true;
420    for (unsigned i = 1; i != NumElems; ++i)
421      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
422        AllSame = false;
423        break;
424      }
425    if (AllSame)
426      return MemberAlign;
427  }
428
429  // Pointer alignment doesn't depend on the pointee type, so canonicalize them
430  // to an arbitrary pointee.
431  if (const PointerType *PTy = dyn_cast<PointerType>(Ty))
432    if (!PTy->getElementType()->isInteger(1))
433      return
434        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
435                                                           1),
436                                          PTy->getAddressSpace()),
437                         DestTy, true);
438
439  // If there's no interesting folding happening, bail so that we don't create
440  // a constant that looks like it needs folding but really doesn't.
441  if (!Folded)
442    return 0;
443
444  // Base case: Get a regular alignof expression.
445  Constant *C = ConstantExpr::getAlignOf(Ty);
446  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
447                                                    DestTy, false),
448                            C, DestTy);
449  return C;
450}
451
452/// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
453/// on Ty and FieldNo, with any known factors factored out. If Folded is false,
454/// return null if no factoring was possible, to avoid endlessly
455/// bouncing an unfoldable expression back into the top-level folder.
456///
457static Constant *getFoldedOffsetOf(const Type *Ty, Constant *FieldNo,
458                                   const Type *DestTy,
459                                   bool Folded) {
460  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
461    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
462                                                                DestTy, false),
463                                        FieldNo, DestTy);
464    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
465    return ConstantExpr::getNUWMul(E, N);
466  }
467  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
468    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
469                                                                DestTy, false),
470                                        FieldNo, DestTy);
471    Constant *E = getFoldedSizeOf(VTy->getElementType(), DestTy, true);
472    return ConstantExpr::getNUWMul(E, N);
473  }
474  if (const StructType *STy = dyn_cast<StructType>(Ty))
475    if (!STy->isPacked()) {
476      unsigned NumElems = STy->getNumElements();
477      // An empty struct has no members.
478      if (NumElems == 0)
479        return 0;
480      // Check for a struct with all members having the same size.
481      Constant *MemberSize =
482        getFoldedSizeOf(STy->getElementType(0), DestTy, true);
483      bool AllSame = true;
484      for (unsigned i = 1; i != NumElems; ++i)
485        if (MemberSize !=
486            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
487          AllSame = false;
488          break;
489        }
490      if (AllSame) {
491        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
492                                                                    false,
493                                                                    DestTy,
494                                                                    false),
495                                            FieldNo, DestTy);
496        return ConstantExpr::getNUWMul(MemberSize, N);
497      }
498    }
499
500  // If there's no interesting folding happening, bail so that we don't create
501  // a constant that looks like it needs folding but really doesn't.
502  if (!Folded)
503    return 0;
504
505  // Base case: Get a regular offsetof expression.
506  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
507  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
508                                                    DestTy, false),
509                            C, DestTy);
510  return C;
511}
512
513Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
514                                            const Type *DestTy) {
515  if (isa<UndefValue>(V)) {
516    // zext(undef) = 0, because the top bits will be zero.
517    // sext(undef) = 0, because the top bits will all be the same.
518    // [us]itofp(undef) = 0, because the result value is bounded.
519    if (opc == Instruction::ZExt || opc == Instruction::SExt ||
520        opc == Instruction::UIToFP || opc == Instruction::SIToFP)
521      return Constant::getNullValue(DestTy);
522    return UndefValue::get(DestTy);
523  }
524  // No compile-time operations on this type yet.
525  if (V->getType()->isPPC_FP128Ty() || DestTy->isPPC_FP128Ty())
526    return 0;
527
528  // If the cast operand is a constant expression, there's a few things we can
529  // do to try to simplify it.
530  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
531    if (CE->isCast()) {
532      // Try hard to fold cast of cast because they are often eliminable.
533      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
534        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
535    } else if (CE->getOpcode() == Instruction::GetElementPtr) {
536      // If all of the indexes in the GEP are null values, there is no pointer
537      // adjustment going on.  We might as well cast the source pointer.
538      bool isAllNull = true;
539      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
540        if (!CE->getOperand(i)->isNullValue()) {
541          isAllNull = false;
542          break;
543        }
544      if (isAllNull)
545        // This is casting one pointer type to another, always BitCast
546        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
547    }
548  }
549
550  // If the cast operand is a constant vector, perform the cast by
551  // operating on each element. In the cast of bitcasts, the element
552  // count may be mismatched; don't attempt to handle that here.
553  if (ConstantVector *CV = dyn_cast<ConstantVector>(V))
554    if (isa<VectorType>(DestTy) &&
555        cast<VectorType>(DestTy)->getNumElements() ==
556        CV->getType()->getNumElements()) {
557      std::vector<Constant*> res;
558      const VectorType *DestVecTy = cast<VectorType>(DestTy);
559      const Type *DstEltTy = DestVecTy->getElementType();
560      for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
561        res.push_back(ConstantExpr::getCast(opc,
562                                            CV->getOperand(i), DstEltTy));
563      return ConstantVector::get(DestVecTy, res);
564    }
565
566  // We actually have to do a cast now. Perform the cast according to the
567  // opcode specified.
568  switch (opc) {
569  default:
570    llvm_unreachable("Failed to cast constant expression");
571  case Instruction::FPTrunc:
572  case Instruction::FPExt:
573    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
574      bool ignored;
575      APFloat Val = FPC->getValueAPF();
576      Val.convert(DestTy->isFloatTy() ? APFloat::IEEEsingle :
577                  DestTy->isDoubleTy() ? APFloat::IEEEdouble :
578                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
579                  DestTy->isFP128Ty() ? APFloat::IEEEquad :
580                  APFloat::Bogus,
581                  APFloat::rmNearestTiesToEven, &ignored);
582      return ConstantFP::get(V->getContext(), Val);
583    }
584    return 0; // Can't fold.
585  case Instruction::FPToUI:
586  case Instruction::FPToSI:
587    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
588      const APFloat &V = FPC->getValueAPF();
589      bool ignored;
590      uint64_t x[2];
591      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
592      (void) V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
593                                APFloat::rmTowardZero, &ignored);
594      APInt Val(DestBitWidth, 2, x);
595      return ConstantInt::get(FPC->getContext(), Val);
596    }
597    return 0; // Can't fold.
598  case Instruction::IntToPtr:   //always treated as unsigned
599    if (V->isNullValue())       // Is it an integral null value?
600      return ConstantPointerNull::get(cast<PointerType>(DestTy));
601    return 0;                   // Other pointer types cannot be casted
602  case Instruction::PtrToInt:   // always treated as unsigned
603    // Is it a null pointer value?
604    if (V->isNullValue())
605      return ConstantInt::get(DestTy, 0);
606    // If this is a sizeof-like expression, pull out multiplications by
607    // known factors to expose them to subsequent folding. If it's an
608    // alignof-like expression, factor out known factors.
609    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
610      if (CE->getOpcode() == Instruction::GetElementPtr &&
611          CE->getOperand(0)->isNullValue()) {
612        const Type *Ty =
613          cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
614        if (CE->getNumOperands() == 2) {
615          // Handle a sizeof-like expression.
616          Constant *Idx = CE->getOperand(1);
617          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
618          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
619            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
620                                                                DestTy, false),
621                                        Idx, DestTy);
622            return ConstantExpr::getMul(C, Idx);
623          }
624        } else if (CE->getNumOperands() == 3 &&
625                   CE->getOperand(1)->isNullValue()) {
626          // Handle an alignof-like expression.
627          if (const StructType *STy = dyn_cast<StructType>(Ty))
628            if (!STy->isPacked()) {
629              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
630              if (CI->isOne() &&
631                  STy->getNumElements() == 2 &&
632                  STy->getElementType(0)->isInteger(1)) {
633                return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
634              }
635            }
636          // Handle an offsetof-like expression.
637          if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)){
638            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
639                                                DestTy, false))
640              return C;
641          }
642        }
643      }
644    // Other pointer types cannot be casted
645    return 0;
646  case Instruction::UIToFP:
647  case Instruction::SIToFP:
648    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
649      APInt api = CI->getValue();
650      const uint64_t zero[] = {0, 0};
651      APFloat apf = APFloat(APInt(DestTy->getPrimitiveSizeInBits(),
652                                  2, zero));
653      (void)apf.convertFromAPInt(api,
654                                 opc==Instruction::SIToFP,
655                                 APFloat::rmNearestTiesToEven);
656      return ConstantFP::get(V->getContext(), apf);
657    }
658    return 0;
659  case Instruction::ZExt:
660    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
661      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
662      APInt Result(CI->getValue());
663      Result.zext(BitWidth);
664      return ConstantInt::get(V->getContext(), Result);
665    }
666    return 0;
667  case Instruction::SExt:
668    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
669      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
670      APInt Result(CI->getValue());
671      Result.sext(BitWidth);
672      return ConstantInt::get(V->getContext(), Result);
673    }
674    return 0;
675  case Instruction::Trunc: {
676    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
677    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
678      APInt Result(CI->getValue());
679      Result.trunc(DestBitWidth);
680      return ConstantInt::get(V->getContext(), Result);
681    }
682
683    // The input must be a constantexpr.  See if we can simplify this based on
684    // the bytes we are demanding.  Only do this if the source and dest are an
685    // even multiple of a byte.
686    if ((DestBitWidth & 7) == 0 &&
687        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
688      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
689        return Res;
690
691    return 0;
692  }
693  case Instruction::BitCast:
694    return FoldBitCast(V, DestTy);
695  }
696}
697
698Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
699                                              Constant *V1, Constant *V2) {
700  if (ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
701    return CB->getZExtValue() ? V1 : V2;
702
703  if (isa<UndefValue>(V1)) return V2;
704  if (isa<UndefValue>(V2)) return V1;
705  if (isa<UndefValue>(Cond)) return V1;
706  if (V1 == V2) return V1;
707  return 0;
708}
709
710Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
711                                                      Constant *Idx) {
712  if (isa<UndefValue>(Val))  // ee(undef, x) -> undef
713    return UndefValue::get(cast<VectorType>(Val->getType())->getElementType());
714  if (Val->isNullValue())  // ee(zero, x) -> zero
715    return Constant::getNullValue(
716                          cast<VectorType>(Val->getType())->getElementType());
717
718  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
719    if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
720      return CVal->getOperand(CIdx->getZExtValue());
721    } else if (isa<UndefValue>(Idx)) {
722      // ee({w,x,y,z}, undef) -> w (an arbitrary value).
723      return CVal->getOperand(0);
724    }
725  }
726  return 0;
727}
728
729Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
730                                                     Constant *Elt,
731                                                     Constant *Idx) {
732  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
733  if (!CIdx) return 0;
734  APInt idxVal = CIdx->getValue();
735  if (isa<UndefValue>(Val)) {
736    // Insertion of scalar constant into vector undef
737    // Optimize away insertion of undef
738    if (isa<UndefValue>(Elt))
739      return Val;
740    // Otherwise break the aggregate undef into multiple undefs and do
741    // the insertion
742    unsigned numOps =
743      cast<VectorType>(Val->getType())->getNumElements();
744    std::vector<Constant*> Ops;
745    Ops.reserve(numOps);
746    for (unsigned i = 0; i < numOps; ++i) {
747      Constant *Op =
748        (idxVal == i) ? Elt : UndefValue::get(Elt->getType());
749      Ops.push_back(Op);
750    }
751    return ConstantVector::get(Ops);
752  }
753  if (isa<ConstantAggregateZero>(Val)) {
754    // Insertion of scalar constant into vector aggregate zero
755    // Optimize away insertion of zero
756    if (Elt->isNullValue())
757      return Val;
758    // Otherwise break the aggregate zero into multiple zeros and do
759    // the insertion
760    unsigned numOps =
761      cast<VectorType>(Val->getType())->getNumElements();
762    std::vector<Constant*> Ops;
763    Ops.reserve(numOps);
764    for (unsigned i = 0; i < numOps; ++i) {
765      Constant *Op =
766        (idxVal == i) ? Elt : Constant::getNullValue(Elt->getType());
767      Ops.push_back(Op);
768    }
769    return ConstantVector::get(Ops);
770  }
771  if (ConstantVector *CVal = dyn_cast<ConstantVector>(Val)) {
772    // Insertion of scalar constant into vector constant
773    std::vector<Constant*> Ops;
774    Ops.reserve(CVal->getNumOperands());
775    for (unsigned i = 0; i < CVal->getNumOperands(); ++i) {
776      Constant *Op =
777        (idxVal == i) ? Elt : cast<Constant>(CVal->getOperand(i));
778      Ops.push_back(Op);
779    }
780    return ConstantVector::get(Ops);
781  }
782
783  return 0;
784}
785
786/// GetVectorElement - If C is a ConstantVector, ConstantAggregateZero or Undef
787/// return the specified element value.  Otherwise return null.
788static Constant *GetVectorElement(Constant *C, unsigned EltNo) {
789  if (ConstantVector *CV = dyn_cast<ConstantVector>(C))
790    return CV->getOperand(EltNo);
791
792  const Type *EltTy = cast<VectorType>(C->getType())->getElementType();
793  if (isa<ConstantAggregateZero>(C))
794    return Constant::getNullValue(EltTy);
795  if (isa<UndefValue>(C))
796    return UndefValue::get(EltTy);
797  return 0;
798}
799
800Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
801                                                     Constant *V2,
802                                                     Constant *Mask) {
803  // Undefined shuffle mask -> undefined value.
804  if (isa<UndefValue>(Mask)) return UndefValue::get(V1->getType());
805
806  unsigned MaskNumElts = cast<VectorType>(Mask->getType())->getNumElements();
807  unsigned SrcNumElts = cast<VectorType>(V1->getType())->getNumElements();
808  const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
809
810  // Loop over the shuffle mask, evaluating each element.
811  SmallVector<Constant*, 32> Result;
812  for (unsigned i = 0; i != MaskNumElts; ++i) {
813    Constant *InElt = GetVectorElement(Mask, i);
814    if (InElt == 0) return 0;
815
816    if (isa<UndefValue>(InElt))
817      InElt = UndefValue::get(EltTy);
818    else if (ConstantInt *CI = dyn_cast<ConstantInt>(InElt)) {
819      unsigned Elt = CI->getZExtValue();
820      if (Elt >= SrcNumElts*2)
821        InElt = UndefValue::get(EltTy);
822      else if (Elt >= SrcNumElts)
823        InElt = GetVectorElement(V2, Elt - SrcNumElts);
824      else
825        InElt = GetVectorElement(V1, Elt);
826      if (InElt == 0) return 0;
827    } else {
828      // Unknown value.
829      return 0;
830    }
831    Result.push_back(InElt);
832  }
833
834  return ConstantVector::get(&Result[0], Result.size());
835}
836
837Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
838                                                    const unsigned *Idxs,
839                                                    unsigned NumIdx) {
840  // Base case: no indices, so return the entire value.
841  if (NumIdx == 0)
842    return Agg;
843
844  if (isa<UndefValue>(Agg))  // ev(undef, x) -> undef
845    return UndefValue::get(ExtractValueInst::getIndexedType(Agg->getType(),
846                                                            Idxs,
847                                                            Idxs + NumIdx));
848
849  if (isa<ConstantAggregateZero>(Agg))  // ev(0, x) -> 0
850    return
851      Constant::getNullValue(ExtractValueInst::getIndexedType(Agg->getType(),
852                                                              Idxs,
853                                                              Idxs + NumIdx));
854
855  // Otherwise recurse.
856  if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg))
857    return ConstantFoldExtractValueInstruction(CS->getOperand(*Idxs),
858                                               Idxs+1, NumIdx-1);
859
860  if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg))
861    return ConstantFoldExtractValueInstruction(CA->getOperand(*Idxs),
862                                               Idxs+1, NumIdx-1);
863  ConstantVector *CV = cast<ConstantVector>(Agg);
864  return ConstantFoldExtractValueInstruction(CV->getOperand(*Idxs),
865                                             Idxs+1, NumIdx-1);
866}
867
868Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
869                                                   Constant *Val,
870                                                   const unsigned *Idxs,
871                                                   unsigned NumIdx) {
872  // Base case: no indices, so replace the entire value.
873  if (NumIdx == 0)
874    return Val;
875
876  if (isa<UndefValue>(Agg)) {
877    // Insertion of constant into aggregate undef
878    // Optimize away insertion of undef.
879    if (isa<UndefValue>(Val))
880      return Agg;
881
882    // Otherwise break the aggregate undef into multiple undefs and do
883    // the insertion.
884    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
885    unsigned numOps;
886    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
887      numOps = AR->getNumElements();
888    else if (isa<UnionType>(AggTy))
889      numOps = 1;
890    else
891      numOps = cast<StructType>(AggTy)->getNumElements();
892
893    std::vector<Constant*> Ops(numOps);
894    for (unsigned i = 0; i < numOps; ++i) {
895      const Type *MemberTy = AggTy->getTypeAtIndex(i);
896      Constant *Op =
897        (*Idxs == i) ?
898        ConstantFoldInsertValueInstruction(UndefValue::get(MemberTy),
899                                           Val, Idxs+1, NumIdx-1) :
900        UndefValue::get(MemberTy);
901      Ops[i] = Op;
902    }
903
904    if (const StructType* ST = dyn_cast<StructType>(AggTy))
905      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
906    if (const UnionType* UT = dyn_cast<UnionType>(AggTy)) {
907      assert(Ops.size() == 1 && "Union can only contain a single value!");
908      return ConstantUnion::get(UT, Ops[0]);
909    }
910    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
911  }
912
913  if (isa<ConstantAggregateZero>(Agg)) {
914    // Insertion of constant into aggregate zero
915    // Optimize away insertion of zero.
916    if (Val->isNullValue())
917      return Agg;
918
919    // Otherwise break the aggregate zero into multiple zeros and do
920    // the insertion.
921    const CompositeType *AggTy = cast<CompositeType>(Agg->getType());
922    unsigned numOps;
923    if (const ArrayType *AR = dyn_cast<ArrayType>(AggTy))
924      numOps = AR->getNumElements();
925    else
926      numOps = cast<StructType>(AggTy)->getNumElements();
927
928    std::vector<Constant*> Ops(numOps);
929    for (unsigned i = 0; i < numOps; ++i) {
930      const Type *MemberTy = AggTy->getTypeAtIndex(i);
931      Constant *Op =
932        (*Idxs == i) ?
933        ConstantFoldInsertValueInstruction(Constant::getNullValue(MemberTy),
934                                           Val, Idxs+1, NumIdx-1) :
935        Constant::getNullValue(MemberTy);
936      Ops[i] = Op;
937    }
938
939    if (const StructType *ST = dyn_cast<StructType>(AggTy))
940      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
941    return ConstantArray::get(cast<ArrayType>(AggTy), Ops);
942  }
943
944  if (isa<ConstantStruct>(Agg) || isa<ConstantArray>(Agg)) {
945    // Insertion of constant into aggregate constant.
946    std::vector<Constant*> Ops(Agg->getNumOperands());
947    for (unsigned i = 0; i < Agg->getNumOperands(); ++i) {
948      Constant *Op = cast<Constant>(Agg->getOperand(i));
949      if (*Idxs == i)
950        Op = ConstantFoldInsertValueInstruction(Op, Val, Idxs+1, NumIdx-1);
951      Ops[i] = Op;
952    }
953
954    if (const StructType* ST = dyn_cast<StructType>(Agg->getType()))
955      return ConstantStruct::get(ST->getContext(), Ops, ST->isPacked());
956    return ConstantArray::get(cast<ArrayType>(Agg->getType()), Ops);
957  }
958
959  return 0;
960}
961
962
963Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
964                                              Constant *C1, Constant *C2) {
965  // No compile-time operations on this type yet.
966  if (C1->getType()->isPPC_FP128Ty())
967    return 0;
968
969  // Handle UndefValue up front.
970  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
971    switch (Opcode) {
972    case Instruction::Xor:
973      if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
974        // Handle undef ^ undef -> 0 special case. This is a common
975        // idiom (misuse).
976        return Constant::getNullValue(C1->getType());
977      // Fallthrough
978    case Instruction::Add:
979    case Instruction::Sub:
980      return UndefValue::get(C1->getType());
981    case Instruction::Mul:
982    case Instruction::And:
983      return Constant::getNullValue(C1->getType());
984    case Instruction::UDiv:
985    case Instruction::SDiv:
986    case Instruction::URem:
987    case Instruction::SRem:
988      if (!isa<UndefValue>(C2))                    // undef / X -> 0
989        return Constant::getNullValue(C1->getType());
990      return C2;                                   // X / undef -> undef
991    case Instruction::Or:                          // X | undef -> -1
992      if (const VectorType *PTy = dyn_cast<VectorType>(C1->getType()))
993        return Constant::getAllOnesValue(PTy);
994      return Constant::getAllOnesValue(C1->getType());
995    case Instruction::LShr:
996      if (isa<UndefValue>(C2) && isa<UndefValue>(C1))
997        return C1;                                  // undef lshr undef -> undef
998      return Constant::getNullValue(C1->getType()); // X lshr undef -> 0
999                                                    // undef lshr X -> 0
1000    case Instruction::AShr:
1001      if (!isa<UndefValue>(C2))
1002        return C1;                                  // undef ashr X --> undef
1003      else if (isa<UndefValue>(C1))
1004        return C1;                                  // undef ashr undef -> undef
1005      else
1006        return C1;                                  // X ashr undef --> X
1007    case Instruction::Shl:
1008      // undef << X -> 0   or   X << undef -> 0
1009      return Constant::getNullValue(C1->getType());
1010    }
1011  }
1012
1013  // Handle simplifications when the RHS is a constant int.
1014  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1015    switch (Opcode) {
1016    case Instruction::Add:
1017      if (CI2->equalsInt(0)) return C1;                         // X + 0 == X
1018      break;
1019    case Instruction::Sub:
1020      if (CI2->equalsInt(0)) return C1;                         // X - 0 == X
1021      break;
1022    case Instruction::Mul:
1023      if (CI2->equalsInt(0)) return C2;                         // X * 0 == 0
1024      if (CI2->equalsInt(1))
1025        return C1;                                              // X * 1 == X
1026      break;
1027    case Instruction::UDiv:
1028    case Instruction::SDiv:
1029      if (CI2->equalsInt(1))
1030        return C1;                                            // X / 1 == X
1031      if (CI2->equalsInt(0))
1032        return UndefValue::get(CI2->getType());               // X / 0 == undef
1033      break;
1034    case Instruction::URem:
1035    case Instruction::SRem:
1036      if (CI2->equalsInt(1))
1037        return Constant::getNullValue(CI2->getType());        // X % 1 == 0
1038      if (CI2->equalsInt(0))
1039        return UndefValue::get(CI2->getType());               // X % 0 == undef
1040      break;
1041    case Instruction::And:
1042      if (CI2->isZero()) return C2;                           // X & 0 == 0
1043      if (CI2->isAllOnesValue())
1044        return C1;                                            // X & -1 == X
1045
1046      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1047        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1048        if (CE1->getOpcode() == Instruction::ZExt) {
1049          unsigned DstWidth = CI2->getType()->getBitWidth();
1050          unsigned SrcWidth =
1051            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1052          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1053          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1054            return C1;
1055        }
1056
1057        // If and'ing the address of a global with a constant, fold it.
1058        if (CE1->getOpcode() == Instruction::PtrToInt &&
1059            isa<GlobalValue>(CE1->getOperand(0))) {
1060          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1061
1062          // Functions are at least 4-byte aligned.
1063          unsigned GVAlign = GV->getAlignment();
1064          if (isa<Function>(GV))
1065            GVAlign = std::max(GVAlign, 4U);
1066
1067          if (GVAlign > 1) {
1068            unsigned DstWidth = CI2->getType()->getBitWidth();
1069            unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1070            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1071
1072            // If checking bits we know are clear, return zero.
1073            if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1074              return Constant::getNullValue(CI2->getType());
1075          }
1076        }
1077      }
1078      break;
1079    case Instruction::Or:
1080      if (CI2->equalsInt(0)) return C1;    // X | 0 == X
1081      if (CI2->isAllOnesValue())
1082        return C2;                         // X | -1 == -1
1083      break;
1084    case Instruction::Xor:
1085      if (CI2->equalsInt(0)) return C1;    // X ^ 0 == X
1086
1087      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1088        switch (CE1->getOpcode()) {
1089        default: break;
1090        case Instruction::ICmp:
1091        case Instruction::FCmp:
1092          // cmp pred ^ true -> cmp !pred
1093          assert(CI2->equalsInt(1));
1094          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1095          pred = CmpInst::getInversePredicate(pred);
1096          return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1097                                          CE1->getOperand(1));
1098        }
1099      }
1100      break;
1101    case Instruction::AShr:
1102      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1103      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1104        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero.
1105          return ConstantExpr::getLShr(C1, C2);
1106      break;
1107    }
1108  }
1109
1110  // At this point we know neither constant is an UndefValue.
1111  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1112    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1113      using namespace APIntOps;
1114      const APInt &C1V = CI1->getValue();
1115      const APInt &C2V = CI2->getValue();
1116      switch (Opcode) {
1117      default:
1118        break;
1119      case Instruction::Add:
1120        return ConstantInt::get(CI1->getContext(), C1V + C2V);
1121      case Instruction::Sub:
1122        return ConstantInt::get(CI1->getContext(), C1V - C2V);
1123      case Instruction::Mul:
1124        return ConstantInt::get(CI1->getContext(), C1V * C2V);
1125      case Instruction::UDiv:
1126        assert(!CI2->isNullValue() && "Div by zero handled above");
1127        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1128      case Instruction::SDiv:
1129        assert(!CI2->isNullValue() && "Div by zero handled above");
1130        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1131          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef
1132        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1133      case Instruction::URem:
1134        assert(!CI2->isNullValue() && "Div by zero handled above");
1135        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1136      case Instruction::SRem:
1137        assert(!CI2->isNullValue() && "Div by zero handled above");
1138        if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1139          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef
1140        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1141      case Instruction::And:
1142        return ConstantInt::get(CI1->getContext(), C1V & C2V);
1143      case Instruction::Or:
1144        return ConstantInt::get(CI1->getContext(), C1V | C2V);
1145      case Instruction::Xor:
1146        return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1147      case Instruction::Shl: {
1148        uint32_t shiftAmt = C2V.getZExtValue();
1149        if (shiftAmt < C1V.getBitWidth())
1150          return ConstantInt::get(CI1->getContext(), C1V.shl(shiftAmt));
1151        else
1152          return UndefValue::get(C1->getType()); // too big shift is undef
1153      }
1154      case Instruction::LShr: {
1155        uint32_t shiftAmt = C2V.getZExtValue();
1156        if (shiftAmt < C1V.getBitWidth())
1157          return ConstantInt::get(CI1->getContext(), C1V.lshr(shiftAmt));
1158        else
1159          return UndefValue::get(C1->getType()); // too big shift is undef
1160      }
1161      case Instruction::AShr: {
1162        uint32_t shiftAmt = C2V.getZExtValue();
1163        if (shiftAmt < C1V.getBitWidth())
1164          return ConstantInt::get(CI1->getContext(), C1V.ashr(shiftAmt));
1165        else
1166          return UndefValue::get(C1->getType()); // too big shift is undef
1167      }
1168      }
1169    }
1170
1171    switch (Opcode) {
1172    case Instruction::SDiv:
1173    case Instruction::UDiv:
1174    case Instruction::URem:
1175    case Instruction::SRem:
1176    case Instruction::LShr:
1177    case Instruction::AShr:
1178    case Instruction::Shl:
1179      if (CI1->equalsInt(0)) return C1;
1180      break;
1181    default:
1182      break;
1183    }
1184  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1185    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1186      APFloat C1V = CFP1->getValueAPF();
1187      APFloat C2V = CFP2->getValueAPF();
1188      APFloat C3V = C1V;  // copy for modification
1189      switch (Opcode) {
1190      default:
1191        break;
1192      case Instruction::FAdd:
1193        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1194        return ConstantFP::get(C1->getContext(), C3V);
1195      case Instruction::FSub:
1196        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1197        return ConstantFP::get(C1->getContext(), C3V);
1198      case Instruction::FMul:
1199        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1200        return ConstantFP::get(C1->getContext(), C3V);
1201      case Instruction::FDiv:
1202        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1203        return ConstantFP::get(C1->getContext(), C3V);
1204      case Instruction::FRem:
1205        (void)C3V.mod(C2V, APFloat::rmNearestTiesToEven);
1206        return ConstantFP::get(C1->getContext(), C3V);
1207      }
1208    }
1209  } else if (const VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1210    ConstantVector *CP1 = dyn_cast<ConstantVector>(C1);
1211    ConstantVector *CP2 = dyn_cast<ConstantVector>(C2);
1212    if ((CP1 != NULL || isa<ConstantAggregateZero>(C1)) &&
1213        (CP2 != NULL || isa<ConstantAggregateZero>(C2))) {
1214      std::vector<Constant*> Res;
1215      const Type* EltTy = VTy->getElementType();
1216      Constant *C1 = 0;
1217      Constant *C2 = 0;
1218      switch (Opcode) {
1219      default:
1220        break;
1221      case Instruction::Add:
1222        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1223          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1224          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1225          Res.push_back(ConstantExpr::getAdd(C1, C2));
1226        }
1227        return ConstantVector::get(Res);
1228      case Instruction::FAdd:
1229        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1230          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1231          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1232          Res.push_back(ConstantExpr::getFAdd(C1, C2));
1233        }
1234        return ConstantVector::get(Res);
1235      case Instruction::Sub:
1236        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1237          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1238          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1239          Res.push_back(ConstantExpr::getSub(C1, C2));
1240        }
1241        return ConstantVector::get(Res);
1242      case Instruction::FSub:
1243        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1244          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1245          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1246          Res.push_back(ConstantExpr::getFSub(C1, C2));
1247        }
1248        return ConstantVector::get(Res);
1249      case Instruction::Mul:
1250        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1251          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1252          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1253          Res.push_back(ConstantExpr::getMul(C1, C2));
1254        }
1255        return ConstantVector::get(Res);
1256      case Instruction::FMul:
1257        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1258          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1259          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1260          Res.push_back(ConstantExpr::getFMul(C1, C2));
1261        }
1262        return ConstantVector::get(Res);
1263      case Instruction::UDiv:
1264        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1265          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1266          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1267          Res.push_back(ConstantExpr::getUDiv(C1, C2));
1268        }
1269        return ConstantVector::get(Res);
1270      case Instruction::SDiv:
1271        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1272          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1273          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1274          Res.push_back(ConstantExpr::getSDiv(C1, C2));
1275        }
1276        return ConstantVector::get(Res);
1277      case Instruction::FDiv:
1278        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1279          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1280          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1281          Res.push_back(ConstantExpr::getFDiv(C1, C2));
1282        }
1283        return ConstantVector::get(Res);
1284      case Instruction::URem:
1285        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1286          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1287          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1288          Res.push_back(ConstantExpr::getURem(C1, C2));
1289        }
1290        return ConstantVector::get(Res);
1291      case Instruction::SRem:
1292        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1293          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1294          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1295          Res.push_back(ConstantExpr::getSRem(C1, C2));
1296        }
1297        return ConstantVector::get(Res);
1298      case Instruction::FRem:
1299        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1300          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1301          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1302          Res.push_back(ConstantExpr::getFRem(C1, C2));
1303        }
1304        return ConstantVector::get(Res);
1305      case Instruction::And:
1306        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1307          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1308          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1309          Res.push_back(ConstantExpr::getAnd(C1, C2));
1310        }
1311        return ConstantVector::get(Res);
1312      case Instruction::Or:
1313        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1314          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1315          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1316          Res.push_back(ConstantExpr::getOr(C1, C2));
1317        }
1318        return ConstantVector::get(Res);
1319      case Instruction::Xor:
1320        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1321          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1322          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1323          Res.push_back(ConstantExpr::getXor(C1, C2));
1324        }
1325        return ConstantVector::get(Res);
1326      case Instruction::LShr:
1327        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1328          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1329          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1330          Res.push_back(ConstantExpr::getLShr(C1, C2));
1331        }
1332        return ConstantVector::get(Res);
1333      case Instruction::AShr:
1334        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1335          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1336          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1337          Res.push_back(ConstantExpr::getAShr(C1, C2));
1338        }
1339        return ConstantVector::get(Res);
1340      case Instruction::Shl:
1341        for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1342          C1 = CP1 ? CP1->getOperand(i) : Constant::getNullValue(EltTy);
1343          C2 = CP2 ? CP2->getOperand(i) : Constant::getNullValue(EltTy);
1344          Res.push_back(ConstantExpr::getShl(C1, C2));
1345        }
1346        return ConstantVector::get(Res);
1347      }
1348    }
1349  }
1350
1351  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1352    // There are many possible foldings we could do here.  We should probably
1353    // at least fold add of a pointer with an integer into the appropriate
1354    // getelementptr.  This will improve alias analysis a bit.
1355
1356    // Given ((a + b) + c), if (b + c) folds to something interesting, return
1357    // (a + (b + c)).
1358    if (Instruction::isAssociative(Opcode, C1->getType()) &&
1359        CE1->getOpcode() == Opcode) {
1360      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1361      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1362        return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1363    }
1364  } else if (isa<ConstantExpr>(C2)) {
1365    // If C2 is a constant expr and C1 isn't, flop them around and fold the
1366    // other way if possible.
1367    switch (Opcode) {
1368    case Instruction::Add:
1369    case Instruction::FAdd:
1370    case Instruction::Mul:
1371    case Instruction::FMul:
1372    case Instruction::And:
1373    case Instruction::Or:
1374    case Instruction::Xor:
1375      // No change of opcode required.
1376      return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1377
1378    case Instruction::Shl:
1379    case Instruction::LShr:
1380    case Instruction::AShr:
1381    case Instruction::Sub:
1382    case Instruction::FSub:
1383    case Instruction::SDiv:
1384    case Instruction::UDiv:
1385    case Instruction::FDiv:
1386    case Instruction::URem:
1387    case Instruction::SRem:
1388    case Instruction::FRem:
1389    default:  // These instructions cannot be flopped around.
1390      break;
1391    }
1392  }
1393
1394  // i1 can be simplified in many cases.
1395  if (C1->getType()->isInteger(1)) {
1396    switch (Opcode) {
1397    case Instruction::Add:
1398    case Instruction::Sub:
1399      return ConstantExpr::getXor(C1, C2);
1400    case Instruction::Mul:
1401      return ConstantExpr::getAnd(C1, C2);
1402    case Instruction::Shl:
1403    case Instruction::LShr:
1404    case Instruction::AShr:
1405      // We can assume that C2 == 0.  If it were one the result would be
1406      // undefined because the shift value is as large as the bitwidth.
1407      return C1;
1408    case Instruction::SDiv:
1409    case Instruction::UDiv:
1410      // We can assume that C2 == 1.  If it were zero the result would be
1411      // undefined through division by zero.
1412      return C1;
1413    case Instruction::URem:
1414    case Instruction::SRem:
1415      // We can assume that C2 == 1.  If it were zero the result would be
1416      // undefined through division by zero.
1417      return ConstantInt::getFalse(C1->getContext());
1418    default:
1419      break;
1420    }
1421  }
1422
1423  // We don't know how to fold this.
1424  return 0;
1425}
1426
1427/// isZeroSizedType - This type is zero sized if its an array or structure of
1428/// zero sized types.  The only leaf zero sized type is an empty structure.
1429static bool isMaybeZeroSizedType(const Type *Ty) {
1430  if (isa<OpaqueType>(Ty)) return true;  // Can't say.
1431  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1432
1433    // If all of elements have zero size, this does too.
1434    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1435      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1436    return true;
1437
1438  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1439    return isMaybeZeroSizedType(ATy->getElementType());
1440  }
1441  return false;
1442}
1443
1444/// IdxCompare - Compare the two constants as though they were getelementptr
1445/// indices.  This allows coersion of the types to be the same thing.
1446///
1447/// If the two constants are the "same" (after coersion), return 0.  If the
1448/// first is less than the second, return -1, if the second is less than the
1449/// first, return 1.  If the constants are not integral, return -2.
1450///
1451static int IdxCompare(Constant *C1, Constant *C2,  const Type *ElTy) {
1452  if (C1 == C2) return 0;
1453
1454  // Ok, we found a different index.  If they are not ConstantInt, we can't do
1455  // anything with them.
1456  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1457    return -2; // don't know!
1458
1459  // Ok, we have two differing integer indices.  Sign extend them to be the same
1460  // type.  Long is always big enough, so we use it.
1461  if (!C1->getType()->isInteger(64))
1462    C1 = ConstantExpr::getSExt(C1, Type::getInt64Ty(C1->getContext()));
1463
1464  if (!C2->getType()->isInteger(64))
1465    C2 = ConstantExpr::getSExt(C2, Type::getInt64Ty(C1->getContext()));
1466
1467  if (C1 == C2) return 0;  // They are equal
1468
1469  // If the type being indexed over is really just a zero sized type, there is
1470  // no pointer difference being made here.
1471  if (isMaybeZeroSizedType(ElTy))
1472    return -2; // dunno.
1473
1474  // If they are really different, now that they are the same type, then we
1475  // found a difference!
1476  if (cast<ConstantInt>(C1)->getSExtValue() <
1477      cast<ConstantInt>(C2)->getSExtValue())
1478    return -1;
1479  else
1480    return 1;
1481}
1482
1483/// evaluateFCmpRelation - This function determines if there is anything we can
1484/// decide about the two constants provided.  This doesn't need to handle simple
1485/// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1486/// If we can determine that the two constants have a particular relation to
1487/// each other, we should return the corresponding FCmpInst predicate,
1488/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1489/// ConstantFoldCompareInstruction.
1490///
1491/// To simplify this code we canonicalize the relation so that the first
1492/// operand is always the most "complex" of the two.  We consider ConstantFP
1493/// to be the simplest, and ConstantExprs to be the most complex.
1494static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1495  assert(V1->getType() == V2->getType() &&
1496         "Cannot compare values of different types!");
1497
1498  // No compile-time operations on this type yet.
1499  if (V1->getType()->isPPC_FP128Ty())
1500    return FCmpInst::BAD_FCMP_PREDICATE;
1501
1502  // Handle degenerate case quickly
1503  if (V1 == V2) return FCmpInst::FCMP_OEQ;
1504
1505  if (!isa<ConstantExpr>(V1)) {
1506    if (!isa<ConstantExpr>(V2)) {
1507      // We distilled thisUse the standard constant folder for a few cases
1508      ConstantInt *R = 0;
1509      R = dyn_cast<ConstantInt>(
1510                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1511      if (R && !R->isZero())
1512        return FCmpInst::FCMP_OEQ;
1513      R = dyn_cast<ConstantInt>(
1514                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1515      if (R && !R->isZero())
1516        return FCmpInst::FCMP_OLT;
1517      R = dyn_cast<ConstantInt>(
1518                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1519      if (R && !R->isZero())
1520        return FCmpInst::FCMP_OGT;
1521
1522      // Nothing more we can do
1523      return FCmpInst::BAD_FCMP_PREDICATE;
1524    }
1525
1526    // If the first operand is simple and second is ConstantExpr, swap operands.
1527    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1528    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1529      return FCmpInst::getSwappedPredicate(SwappedRelation);
1530  } else {
1531    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1532    // constantexpr or a simple constant.
1533    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1534    switch (CE1->getOpcode()) {
1535    case Instruction::FPTrunc:
1536    case Instruction::FPExt:
1537    case Instruction::UIToFP:
1538    case Instruction::SIToFP:
1539      // We might be able to do something with these but we don't right now.
1540      break;
1541    default:
1542      break;
1543    }
1544  }
1545  // There are MANY other foldings that we could perform here.  They will
1546  // probably be added on demand, as they seem needed.
1547  return FCmpInst::BAD_FCMP_PREDICATE;
1548}
1549
1550/// evaluateICmpRelation - This function determines if there is anything we can
1551/// decide about the two constants provided.  This doesn't need to handle simple
1552/// things like integer comparisons, but should instead handle ConstantExprs
1553/// and GlobalValues.  If we can determine that the two constants have a
1554/// particular relation to each other, we should return the corresponding ICmp
1555/// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1556///
1557/// To simplify this code we canonicalize the relation so that the first
1558/// operand is always the most "complex" of the two.  We consider simple
1559/// constants (like ConstantInt) to be the simplest, followed by
1560/// GlobalValues, followed by ConstantExpr's (the most complex).
1561///
1562static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1563                                                bool isSigned) {
1564  assert(V1->getType() == V2->getType() &&
1565         "Cannot compare different types of values!");
1566  if (V1 == V2) return ICmpInst::ICMP_EQ;
1567
1568  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1569      !isa<BlockAddress>(V1)) {
1570    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1571        !isa<BlockAddress>(V2)) {
1572      // We distilled this down to a simple case, use the standard constant
1573      // folder.
1574      ConstantInt *R = 0;
1575      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1576      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1577      if (R && !R->isZero())
1578        return pred;
1579      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1580      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1581      if (R && !R->isZero())
1582        return pred;
1583      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1584      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1585      if (R && !R->isZero())
1586        return pred;
1587
1588      // If we couldn't figure it out, bail.
1589      return ICmpInst::BAD_ICMP_PREDICATE;
1590    }
1591
1592    // If the first operand is simple, swap operands.
1593    ICmpInst::Predicate SwappedRelation =
1594      evaluateICmpRelation(V2, V1, isSigned);
1595    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1596      return ICmpInst::getSwappedPredicate(SwappedRelation);
1597
1598  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1599    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1600      ICmpInst::Predicate SwappedRelation =
1601        evaluateICmpRelation(V2, V1, isSigned);
1602      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1603        return ICmpInst::getSwappedPredicate(SwappedRelation);
1604      return ICmpInst::BAD_ICMP_PREDICATE;
1605    }
1606
1607    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1608    // constant (which, since the types must match, means that it's a
1609    // ConstantPointerNull).
1610    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1611      // Don't try to decide equality of aliases.
1612      if (!isa<GlobalAlias>(GV) && !isa<GlobalAlias>(GV2))
1613        if (!GV->hasExternalWeakLinkage() || !GV2->hasExternalWeakLinkage())
1614          return ICmpInst::ICMP_NE;
1615    } else if (isa<BlockAddress>(V2)) {
1616      return ICmpInst::ICMP_NE; // Globals never equal labels.
1617    } else {
1618      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1619      // GlobalVals can never be null unless they have external weak linkage.
1620      // We don't try to evaluate aliases here.
1621      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1622        return ICmpInst::ICMP_NE;
1623    }
1624  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1625    if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
1626      ICmpInst::Predicate SwappedRelation =
1627        evaluateICmpRelation(V2, V1, isSigned);
1628      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1629        return ICmpInst::getSwappedPredicate(SwappedRelation);
1630      return ICmpInst::BAD_ICMP_PREDICATE;
1631    }
1632
1633    // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1634    // constant (which, since the types must match, means that it is a
1635    // ConstantPointerNull).
1636    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1637      // Block address in another function can't equal this one, but block
1638      // addresses in the current function might be the same if blocks are
1639      // empty.
1640      if (BA2->getFunction() != BA->getFunction())
1641        return ICmpInst::ICMP_NE;
1642    } else {
1643      // Block addresses aren't null, don't equal the address of globals.
1644      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1645             "Canonicalization guarantee!");
1646      return ICmpInst::ICMP_NE;
1647    }
1648  } else {
1649    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1650    // constantexpr, a global, block address, or a simple constant.
1651    ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1652    Constant *CE1Op0 = CE1->getOperand(0);
1653
1654    switch (CE1->getOpcode()) {
1655    case Instruction::Trunc:
1656    case Instruction::FPTrunc:
1657    case Instruction::FPExt:
1658    case Instruction::FPToUI:
1659    case Instruction::FPToSI:
1660      break; // We can't evaluate floating point casts or truncations.
1661
1662    case Instruction::UIToFP:
1663    case Instruction::SIToFP:
1664    case Instruction::BitCast:
1665    case Instruction::ZExt:
1666    case Instruction::SExt:
1667      // If the cast is not actually changing bits, and the second operand is a
1668      // null pointer, do the comparison with the pre-casted value.
1669      if (V2->isNullValue() &&
1670          (isa<PointerType>(CE1->getType()) || CE1->getType()->isInteger())) {
1671        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1672        if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1673        return evaluateICmpRelation(CE1Op0,
1674                                    Constant::getNullValue(CE1Op0->getType()),
1675                                    isSigned);
1676      }
1677      break;
1678
1679    case Instruction::GetElementPtr:
1680      // Ok, since this is a getelementptr, we know that the constant has a
1681      // pointer type.  Check the various cases.
1682      if (isa<ConstantPointerNull>(V2)) {
1683        // If we are comparing a GEP to a null pointer, check to see if the base
1684        // of the GEP equals the null pointer.
1685        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1686          if (GV->hasExternalWeakLinkage())
1687            // Weak linkage GVals could be zero or not. We're comparing that
1688            // to null pointer so its greater-or-equal
1689            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1690          else
1691            // If its not weak linkage, the GVal must have a non-zero address
1692            // so the result is greater-than
1693            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1694        } else if (isa<ConstantPointerNull>(CE1Op0)) {
1695          // If we are indexing from a null pointer, check to see if we have any
1696          // non-zero indices.
1697          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1698            if (!CE1->getOperand(i)->isNullValue())
1699              // Offsetting from null, must not be equal.
1700              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1701          // Only zero indexes from null, must still be zero.
1702          return ICmpInst::ICMP_EQ;
1703        }
1704        // Otherwise, we can't really say if the first operand is null or not.
1705      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1706        if (isa<ConstantPointerNull>(CE1Op0)) {
1707          if (GV2->hasExternalWeakLinkage())
1708            // Weak linkage GVals could be zero or not. We're comparing it to
1709            // a null pointer, so its less-or-equal
1710            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1711          else
1712            // If its not weak linkage, the GVal must have a non-zero address
1713            // so the result is less-than
1714            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1715        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1716          if (GV == GV2) {
1717            // If this is a getelementptr of the same global, then it must be
1718            // different.  Because the types must match, the getelementptr could
1719            // only have at most one index, and because we fold getelementptr's
1720            // with a single zero index, it must be nonzero.
1721            assert(CE1->getNumOperands() == 2 &&
1722                   !CE1->getOperand(1)->isNullValue() &&
1723                   "Suprising getelementptr!");
1724            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1725          } else {
1726            // If they are different globals, we don't know what the value is,
1727            // but they can't be equal.
1728            return ICmpInst::ICMP_NE;
1729          }
1730        }
1731      } else {
1732        ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1733        Constant *CE2Op0 = CE2->getOperand(0);
1734
1735        // There are MANY other foldings that we could perform here.  They will
1736        // probably be added on demand, as they seem needed.
1737        switch (CE2->getOpcode()) {
1738        default: break;
1739        case Instruction::GetElementPtr:
1740          // By far the most common case to handle is when the base pointers are
1741          // obviously to the same or different globals.
1742          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1743            if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
1744              return ICmpInst::ICMP_NE;
1745            // Ok, we know that both getelementptr instructions are based on the
1746            // same global.  From this, we can precisely determine the relative
1747            // ordering of the resultant pointers.
1748            unsigned i = 1;
1749
1750            // The logic below assumes that the result of the comparison
1751            // can be determined by finding the first index that differs.
1752            // This doesn't work if there is over-indexing in any
1753            // subsequent indices, so check for that case first.
1754            if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1755                !CE2->isGEPWithNoNotionalOverIndexing())
1756               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1757
1758            // Compare all of the operands the GEP's have in common.
1759            gep_type_iterator GTI = gep_type_begin(CE1);
1760            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1761                 ++i, ++GTI)
1762              switch (IdxCompare(CE1->getOperand(i),
1763                                 CE2->getOperand(i), GTI.getIndexedType())) {
1764              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1765              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1766              case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1767              }
1768
1769            // Ok, we ran out of things they have in common.  If any leftovers
1770            // are non-zero then we have a difference, otherwise we are equal.
1771            for (; i < CE1->getNumOperands(); ++i)
1772              if (!CE1->getOperand(i)->isNullValue()) {
1773                if (isa<ConstantInt>(CE1->getOperand(i)))
1774                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1775                else
1776                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1777              }
1778
1779            for (; i < CE2->getNumOperands(); ++i)
1780              if (!CE2->getOperand(i)->isNullValue()) {
1781                if (isa<ConstantInt>(CE2->getOperand(i)))
1782                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1783                else
1784                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1785              }
1786            return ICmpInst::ICMP_EQ;
1787          }
1788        }
1789      }
1790    default:
1791      break;
1792    }
1793  }
1794
1795  return ICmpInst::BAD_ICMP_PREDICATE;
1796}
1797
1798Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1799                                               Constant *C1, Constant *C2) {
1800  const Type *ResultTy;
1801  if (const VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1802    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1803                               VT->getNumElements());
1804  else
1805    ResultTy = Type::getInt1Ty(C1->getContext());
1806
1807  // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1808  if (pred == FCmpInst::FCMP_FALSE)
1809    return Constant::getNullValue(ResultTy);
1810
1811  if (pred == FCmpInst::FCMP_TRUE)
1812    return Constant::getAllOnesValue(ResultTy);
1813
1814  // Handle some degenerate cases first
1815  if (isa<UndefValue>(C1) || isa<UndefValue>(C2))
1816    return UndefValue::get(ResultTy);
1817
1818  // No compile-time operations on this type yet.
1819  if (C1->getType()->isPPC_FP128Ty())
1820    return 0;
1821
1822  // icmp eq/ne(null,GV) -> false/true
1823  if (C1->isNullValue()) {
1824    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1825      // Don't try to evaluate aliases.  External weak GV can be null.
1826      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1827        if (pred == ICmpInst::ICMP_EQ)
1828          return ConstantInt::getFalse(C1->getContext());
1829        else if (pred == ICmpInst::ICMP_NE)
1830          return ConstantInt::getTrue(C1->getContext());
1831      }
1832  // icmp eq/ne(GV,null) -> false/true
1833  } else if (C2->isNullValue()) {
1834    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1835      // Don't try to evaluate aliases.  External weak GV can be null.
1836      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1837        if (pred == ICmpInst::ICMP_EQ)
1838          return ConstantInt::getFalse(C1->getContext());
1839        else if (pred == ICmpInst::ICMP_NE)
1840          return ConstantInt::getTrue(C1->getContext());
1841      }
1842  }
1843
1844  // If the comparison is a comparison between two i1's, simplify it.
1845  if (C1->getType()->isInteger(1)) {
1846    switch(pred) {
1847    case ICmpInst::ICMP_EQ:
1848      if (isa<ConstantInt>(C2))
1849        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1850      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1851    case ICmpInst::ICMP_NE:
1852      return ConstantExpr::getXor(C1, C2);
1853    default:
1854      break;
1855    }
1856  }
1857
1858  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1859    APInt V1 = cast<ConstantInt>(C1)->getValue();
1860    APInt V2 = cast<ConstantInt>(C2)->getValue();
1861    switch (pred) {
1862    default: llvm_unreachable("Invalid ICmp Predicate"); return 0;
1863    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2);
1864    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2);
1865    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1866    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1867    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1868    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1869    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1870    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1871    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1872    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1873    }
1874  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1875    APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1876    APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1877    APFloat::cmpResult R = C1V.compare(C2V);
1878    switch (pred) {
1879    default: llvm_unreachable("Invalid FCmp Predicate"); return 0;
1880    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1881    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy);
1882    case FCmpInst::FCMP_UNO:
1883      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1884    case FCmpInst::FCMP_ORD:
1885      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1886    case FCmpInst::FCMP_UEQ:
1887      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1888                                        R==APFloat::cmpEqual);
1889    case FCmpInst::FCMP_OEQ:
1890      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1891    case FCmpInst::FCMP_UNE:
1892      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1893    case FCmpInst::FCMP_ONE:
1894      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1895                                        R==APFloat::cmpGreaterThan);
1896    case FCmpInst::FCMP_ULT:
1897      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1898                                        R==APFloat::cmpLessThan);
1899    case FCmpInst::FCMP_OLT:
1900      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1901    case FCmpInst::FCMP_UGT:
1902      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1903                                        R==APFloat::cmpGreaterThan);
1904    case FCmpInst::FCMP_OGT:
1905      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1906    case FCmpInst::FCMP_ULE:
1907      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1908    case FCmpInst::FCMP_OLE:
1909      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1910                                        R==APFloat::cmpEqual);
1911    case FCmpInst::FCMP_UGE:
1912      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1913    case FCmpInst::FCMP_OGE:
1914      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1915                                        R==APFloat::cmpEqual);
1916    }
1917  } else if (isa<VectorType>(C1->getType())) {
1918    SmallVector<Constant*, 16> C1Elts, C2Elts;
1919    C1->getVectorElements(C1Elts);
1920    C2->getVectorElements(C2Elts);
1921    if (C1Elts.empty() || C2Elts.empty())
1922      return 0;
1923
1924    // If we can constant fold the comparison of each element, constant fold
1925    // the whole vector comparison.
1926    SmallVector<Constant*, 4> ResElts;
1927    for (unsigned i = 0, e = C1Elts.size(); i != e; ++i) {
1928      // Compare the elements, producing an i1 result or constant expr.
1929      ResElts.push_back(ConstantExpr::getCompare(pred, C1Elts[i], C2Elts[i]));
1930    }
1931    return ConstantVector::get(&ResElts[0], ResElts.size());
1932  }
1933
1934  if (C1->getType()->isFloatingPoint()) {
1935    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1936    switch (evaluateFCmpRelation(C1, C2)) {
1937    default: llvm_unreachable("Unknown relation!");
1938    case FCmpInst::FCMP_UNO:
1939    case FCmpInst::FCMP_ORD:
1940    case FCmpInst::FCMP_UEQ:
1941    case FCmpInst::FCMP_UNE:
1942    case FCmpInst::FCMP_ULT:
1943    case FCmpInst::FCMP_UGT:
1944    case FCmpInst::FCMP_ULE:
1945    case FCmpInst::FCMP_UGE:
1946    case FCmpInst::FCMP_TRUE:
1947    case FCmpInst::FCMP_FALSE:
1948    case FCmpInst::BAD_FCMP_PREDICATE:
1949      break; // Couldn't determine anything about these constants.
1950    case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1951      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1952                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1953                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1954      break;
1955    case FCmpInst::FCMP_OLT: // We know that C1 < C2
1956      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1957                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1958                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1959      break;
1960    case FCmpInst::FCMP_OGT: // We know that C1 > C2
1961      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1962                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1963                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1964      break;
1965    case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1966      // We can only partially decide this relation.
1967      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1968        Result = 0;
1969      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1970        Result = 1;
1971      break;
1972    case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1973      // We can only partially decide this relation.
1974      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1975        Result = 0;
1976      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1977        Result = 1;
1978      break;
1979    case ICmpInst::ICMP_NE: // We know that C1 != C2
1980      // We can only partially decide this relation.
1981      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1982        Result = 0;
1983      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1984        Result = 1;
1985      break;
1986    }
1987
1988    // If we evaluated the result, return it now.
1989    if (Result != -1)
1990      return ConstantInt::get(ResultTy, Result);
1991
1992  } else {
1993    // Evaluate the relation between the two constants, per the predicate.
1994    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1995    switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(pred))) {
1996    default: llvm_unreachable("Unknown relational!");
1997    case ICmpInst::BAD_ICMP_PREDICATE:
1998      break;  // Couldn't determine anything about these constants.
1999    case ICmpInst::ICMP_EQ:   // We know the constants are equal!
2000      // If we know the constants are equal, we can decide the result of this
2001      // computation precisely.
2002      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
2003      break;
2004    case ICmpInst::ICMP_ULT:
2005      switch (pred) {
2006      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
2007        Result = 1; break;
2008      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
2009        Result = 0; break;
2010      }
2011      break;
2012    case ICmpInst::ICMP_SLT:
2013      switch (pred) {
2014      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
2015        Result = 1; break;
2016      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
2017        Result = 0; break;
2018      }
2019      break;
2020    case ICmpInst::ICMP_UGT:
2021      switch (pred) {
2022      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
2023        Result = 1; break;
2024      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
2025        Result = 0; break;
2026      }
2027      break;
2028    case ICmpInst::ICMP_SGT:
2029      switch (pred) {
2030      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
2031        Result = 1; break;
2032      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
2033        Result = 0; break;
2034      }
2035      break;
2036    case ICmpInst::ICMP_ULE:
2037      if (pred == ICmpInst::ICMP_UGT) Result = 0;
2038      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
2039      break;
2040    case ICmpInst::ICMP_SLE:
2041      if (pred == ICmpInst::ICMP_SGT) Result = 0;
2042      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2043      break;
2044    case ICmpInst::ICMP_UGE:
2045      if (pred == ICmpInst::ICMP_ULT) Result = 0;
2046      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2047      break;
2048    case ICmpInst::ICMP_SGE:
2049      if (pred == ICmpInst::ICMP_SLT) Result = 0;
2050      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2051      break;
2052    case ICmpInst::ICMP_NE:
2053      if (pred == ICmpInst::ICMP_EQ) Result = 0;
2054      if (pred == ICmpInst::ICMP_NE) Result = 1;
2055      break;
2056    }
2057
2058    // If we evaluated the result, return it now.
2059    if (Result != -1)
2060      return ConstantInt::get(ResultTy, Result);
2061
2062    // If the right hand side is a bitcast, try using its inverse to simplify
2063    // it by moving it to the left hand side.  We can't do this if it would turn
2064    // a vector compare into a scalar compare or visa versa.
2065    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2066      Constant *CE2Op0 = CE2->getOperand(0);
2067      if (CE2->getOpcode() == Instruction::BitCast &&
2068          isa<VectorType>(CE2->getType())==isa<VectorType>(CE2Op0->getType())) {
2069        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2070        return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2071      }
2072    }
2073
2074    // If the left hand side is an extension, try eliminating it.
2075    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2076      if (CE1->getOpcode() == Instruction::SExt ||
2077          CE1->getOpcode() == Instruction::ZExt) {
2078        Constant *CE1Op0 = CE1->getOperand(0);
2079        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2080        if (CE1Inverse == CE1Op0) {
2081          // Check whether we can safely truncate the right hand side.
2082          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2083          if (ConstantExpr::getZExt(C2Inverse, C2->getType()) == C2) {
2084            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2085          }
2086        }
2087      }
2088    }
2089
2090    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2091        (C1->isNullValue() && !C2->isNullValue())) {
2092      // If C2 is a constant expr and C1 isn't, flip them around and fold the
2093      // other way if possible.
2094      // Also, if C1 is null and C2 isn't, flip them around.
2095      switch (pred) {
2096      case ICmpInst::ICMP_EQ:
2097      case ICmpInst::ICMP_NE:
2098        // No change of predicate required.
2099        return ConstantExpr::getICmp(pred, C2, C1);
2100
2101      case ICmpInst::ICMP_ULT:
2102      case ICmpInst::ICMP_SLT:
2103      case ICmpInst::ICMP_UGT:
2104      case ICmpInst::ICMP_SGT:
2105      case ICmpInst::ICMP_ULE:
2106      case ICmpInst::ICMP_SLE:
2107      case ICmpInst::ICMP_UGE:
2108      case ICmpInst::ICMP_SGE:
2109        // Change the predicate as necessary to swap the operands.
2110        pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2111        return ConstantExpr::getICmp(pred, C2, C1);
2112
2113      default:  // These predicates cannot be flopped around.
2114        break;
2115      }
2116    }
2117  }
2118  return 0;
2119}
2120
2121/// isInBoundsIndices - Test whether the given sequence of *normalized* indices
2122/// is "inbounds".
2123static bool isInBoundsIndices(Constant *const *Idxs, size_t NumIdx) {
2124  // No indices means nothing that could be out of bounds.
2125  if (NumIdx == 0) return true;
2126
2127  // If the first index is zero, it's in bounds.
2128  if (Idxs[0]->isNullValue()) return true;
2129
2130  // If the first index is one and all the rest are zero, it's in bounds,
2131  // by the one-past-the-end rule.
2132  if (!cast<ConstantInt>(Idxs[0])->isOne())
2133    return false;
2134  for (unsigned i = 1, e = NumIdx; i != e; ++i)
2135    if (!Idxs[i]->isNullValue())
2136      return false;
2137  return true;
2138}
2139
2140Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2141                                          bool inBounds,
2142                                          Constant* const *Idxs,
2143                                          unsigned NumIdx) {
2144  if (NumIdx == 0 ||
2145      (NumIdx == 1 && Idxs[0]->isNullValue()))
2146    return C;
2147
2148  if (isa<UndefValue>(C)) {
2149    const PointerType *Ptr = cast<PointerType>(C->getType());
2150    const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2151                                                       (Value **)Idxs,
2152                                                       (Value **)Idxs+NumIdx);
2153    assert(Ty != 0 && "Invalid indices for GEP!");
2154    return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2155  }
2156
2157  Constant *Idx0 = Idxs[0];
2158  if (C->isNullValue()) {
2159    bool isNull = true;
2160    for (unsigned i = 0, e = NumIdx; i != e; ++i)
2161      if (!Idxs[i]->isNullValue()) {
2162        isNull = false;
2163        break;
2164      }
2165    if (isNull) {
2166      const PointerType *Ptr = cast<PointerType>(C->getType());
2167      const Type *Ty = GetElementPtrInst::getIndexedType(Ptr,
2168                                                         (Value**)Idxs,
2169                                                         (Value**)Idxs+NumIdx);
2170      assert(Ty != 0 && "Invalid indices for GEP!");
2171      return  ConstantPointerNull::get(
2172                            PointerType::get(Ty,Ptr->getAddressSpace()));
2173    }
2174  }
2175
2176  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2177    // Combine Indices - If the source pointer to this getelementptr instruction
2178    // is a getelementptr instruction, combine the indices of the two
2179    // getelementptr instructions into a single instruction.
2180    //
2181    if (CE->getOpcode() == Instruction::GetElementPtr) {
2182      const Type *LastTy = 0;
2183      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2184           I != E; ++I)
2185        LastTy = *I;
2186
2187      if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
2188        SmallVector<Value*, 16> NewIndices;
2189        NewIndices.reserve(NumIdx + CE->getNumOperands());
2190        for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
2191          NewIndices.push_back(CE->getOperand(i));
2192
2193        // Add the last index of the source with the first index of the new GEP.
2194        // Make sure to handle the case when they are actually different types.
2195        Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2196        // Otherwise it must be an array.
2197        if (!Idx0->isNullValue()) {
2198          const Type *IdxTy = Combined->getType();
2199          if (IdxTy != Idx0->getType()) {
2200            const Type *Int64Ty = Type::getInt64Ty(IdxTy->getContext());
2201            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, Int64Ty);
2202            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, Int64Ty);
2203            Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2204          } else {
2205            Combined =
2206              ConstantExpr::get(Instruction::Add, Idx0, Combined);
2207          }
2208        }
2209
2210        NewIndices.push_back(Combined);
2211        NewIndices.insert(NewIndices.end(), Idxs+1, Idxs+NumIdx);
2212        return (inBounds && cast<GEPOperator>(CE)->isInBounds()) ?
2213          ConstantExpr::getInBoundsGetElementPtr(CE->getOperand(0),
2214                                                 &NewIndices[0],
2215                                                 NewIndices.size()) :
2216          ConstantExpr::getGetElementPtr(CE->getOperand(0),
2217                                         &NewIndices[0],
2218                                         NewIndices.size());
2219      }
2220    }
2221
2222    // Implement folding of:
2223    //    int* getelementptr ([2 x int]* bitcast ([3 x int]* %X to [2 x int]*),
2224    //                        long 0, long 0)
2225    // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
2226    //
2227    if (CE->isCast() && NumIdx > 1 && Idx0->isNullValue()) {
2228      if (const PointerType *SPT =
2229          dyn_cast<PointerType>(CE->getOperand(0)->getType()))
2230        if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
2231          if (const ArrayType *CAT =
2232        dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
2233            if (CAT->getElementType() == SAT->getElementType())
2234              return inBounds ?
2235                ConstantExpr::getInBoundsGetElementPtr(
2236                      (Constant*)CE->getOperand(0), Idxs, NumIdx) :
2237                ConstantExpr::getGetElementPtr(
2238                      (Constant*)CE->getOperand(0), Idxs, NumIdx);
2239    }
2240  }
2241
2242  // Check to see if any array indices are not within the corresponding
2243  // notional array bounds. If so, try to determine if they can be factored
2244  // out into preceding dimensions.
2245  bool Unknown = false;
2246  SmallVector<Constant *, 8> NewIdxs;
2247  const Type *Ty = C->getType();
2248  const Type *Prev = 0;
2249  for (unsigned i = 0; i != NumIdx;
2250       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2251    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2252      if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2253        if (ATy->getNumElements() <= INT64_MAX &&
2254            ATy->getNumElements() != 0 &&
2255            CI->getSExtValue() >= (int64_t)ATy->getNumElements()) {
2256          if (isa<SequentialType>(Prev)) {
2257            // It's out of range, but we can factor it into the prior
2258            // dimension.
2259            NewIdxs.resize(NumIdx);
2260            ConstantInt *Factor = ConstantInt::get(CI->getType(),
2261                                                   ATy->getNumElements());
2262            NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2263
2264            Constant *PrevIdx = Idxs[i-1];
2265            Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2266
2267            // Before adding, extend both operands to i64 to avoid
2268            // overflow trouble.
2269            if (!PrevIdx->getType()->isInteger(64))
2270              PrevIdx = ConstantExpr::getSExt(PrevIdx,
2271                                           Type::getInt64Ty(Div->getContext()));
2272            if (!Div->getType()->isInteger(64))
2273              Div = ConstantExpr::getSExt(Div,
2274                                          Type::getInt64Ty(Div->getContext()));
2275
2276            NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2277          } else {
2278            // It's out of range, but the prior dimension is a struct
2279            // so we can't do anything about it.
2280            Unknown = true;
2281          }
2282        }
2283    } else {
2284      // We don't know if it's in range or not.
2285      Unknown = true;
2286    }
2287  }
2288
2289  // If we did any factoring, start over with the adjusted indices.
2290  if (!NewIdxs.empty()) {
2291    for (unsigned i = 0; i != NumIdx; ++i)
2292      if (!NewIdxs[i]) NewIdxs[i] = Idxs[i];
2293    return inBounds ?
2294      ConstantExpr::getInBoundsGetElementPtr(C, NewIdxs.data(),
2295                                             NewIdxs.size()) :
2296      ConstantExpr::getGetElementPtr(C, NewIdxs.data(), NewIdxs.size());
2297  }
2298
2299  // If all indices are known integers and normalized, we can do a simple
2300  // check for the "inbounds" property.
2301  if (!Unknown && !inBounds &&
2302      isa<GlobalVariable>(C) && isInBoundsIndices(Idxs, NumIdx))
2303    return ConstantExpr::getInBoundsGetElementPtr(C, Idxs, NumIdx);
2304
2305  return 0;
2306}
2307