cvbgfg_acmmm2003.cpp revision 6acb9a7ea3d7564944e12cbc73a857b88c1301ee
1/*M/////////////////////////////////////////////////////////////////////////////////////// 2// 3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4// 5// By downloading, copying, installing or using the software you agree to this license. 6// If you do not agree to this license, do not download, install, 7// copy or use the software. 8// 9// 10// Intel License Agreement 11// 12// Copyright (C) 2000, Intel Corporation, all rights reserved. 13// Third party copyrights are property of their respective owners. 14// 15// Redistribution and use in source and binary forms, with or without modification, 16// are permitted provided that the following conditions are met: 17// 18// * Redistribution's of source code must retain the above copyright notice, 19// this list of conditions and the following disclaimer. 20// 21// * Redistribution's in binary form must reproduce the above copyright notice, 22// this list of conditions and the following disclaimer in the documentation 23// and/or other materials provided with the distribution. 24// 25// * The name of Intel Corporation may not be used to endorse or promote products 26// derived from this software without specific prior written permission. 27// 28// This software is provided by the copyright holders and contributors "as is" and 29// any express or implied warranties, including, but not limited to, the implied 30// warranties of merchantability and fitness for a particular purpose are disclaimed. 31// In no event shall the Intel Corporation or contributors be liable for any direct, 32// indirect, incidental, special, exemplary, or consequential damages 33// (including, but not limited to, procurement of substitute goods or services; 34// loss of use, data, or profits; or business interruption) however caused 35// and on any theory of liability, whether in contract, strict liability, 36// or tort (including negligence or otherwise) arising in any way out of 37// the use of this software, even if advised of the possibility of such damage. 38// 39//M*/ 40 41 42// This file implements the foreground/background pixel 43// discrimination algorithm described in 44// 45// Foreground Object Detection from Videos Containing Complex Background 46// Li, Huan, Gu, Tian 2003 9p 47// http://muq.org/~cynbe/bib/foreground-object-detection-from-videos-containing-complex-background.pdf 48 49 50#include "_cvaux.h" 51 52#include <math.h> 53#include <stdio.h> 54#include <stdlib.h> 55//#include <algorithm> 56 57static double* _cv_max_element( double* start, double* end ) 58{ 59 double* p = start++; 60 61 for( ; start != end; ++start) { 62 63 if (*p < *start) p = start; 64 } 65 66 return p; 67} 68 69static void CV_CDECL icvReleaseFGDStatModel( CvFGDStatModel** model ); 70static int CV_CDECL icvUpdateFGDStatModel( IplImage* curr_frame, 71 CvFGDStatModel* model ); 72 73// Function cvCreateFGDStatModel initializes foreground detection process 74// parameters: 75// first_frame - frame from video sequence 76// parameters - (optional) if NULL default parameters of the algorithm will be used 77// p_model - pointer to CvFGDStatModel structure 78CV_IMPL CvBGStatModel* 79cvCreateFGDStatModel( IplImage* first_frame, CvFGDStatModelParams* parameters ) 80{ 81 CvFGDStatModel* p_model = 0; 82 83 CV_FUNCNAME( "cvCreateFGDStatModel" ); 84 85 __BEGIN__; 86 87 int i, j, k, pixel_count, buf_size; 88 CvFGDStatModelParams params; 89 90 if( !CV_IS_IMAGE(first_frame) ) 91 CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" ); 92 93 if (first_frame->nChannels != 3) 94 CV_ERROR( CV_StsBadArg, "first_frame must have 3 color channels" ); 95 96 // Initialize parameters: 97 if( parameters == NULL ) 98 { 99 params.Lc = CV_BGFG_FGD_LC; 100 params.N1c = CV_BGFG_FGD_N1C; 101 params.N2c = CV_BGFG_FGD_N2C; 102 103 params.Lcc = CV_BGFG_FGD_LCC; 104 params.N1cc = CV_BGFG_FGD_N1CC; 105 params.N2cc = CV_BGFG_FGD_N2CC; 106 107 params.delta = CV_BGFG_FGD_DELTA; 108 109 params.alpha1 = CV_BGFG_FGD_ALPHA_1; 110 params.alpha2 = CV_BGFG_FGD_ALPHA_2; 111 params.alpha3 = CV_BGFG_FGD_ALPHA_3; 112 113 params.T = CV_BGFG_FGD_T; 114 params.minArea = CV_BGFG_FGD_MINAREA; 115 116 params.is_obj_without_holes = 1; 117 params.perform_morphing = 1; 118 } 119 else 120 { 121 params = *parameters; 122 } 123 124 CV_CALL( p_model = (CvFGDStatModel*)cvAlloc( sizeof(*p_model) )); 125 memset( p_model, 0, sizeof(*p_model) ); 126 p_model->type = CV_BG_MODEL_FGD; 127 p_model->release = (CvReleaseBGStatModel)icvReleaseFGDStatModel; 128 p_model->update = (CvUpdateBGStatModel)icvUpdateFGDStatModel;; 129 p_model->params = params; 130 131 // Initialize storage pools: 132 pixel_count = first_frame->width * first_frame->height; 133 134 buf_size = pixel_count*sizeof(p_model->pixel_stat[0]); 135 CV_CALL( p_model->pixel_stat = (CvBGPixelStat*)cvAlloc(buf_size) ); 136 memset( p_model->pixel_stat, 0, buf_size ); 137 138 buf_size = pixel_count*params.N2c*sizeof(p_model->pixel_stat[0].ctable[0]); 139 CV_CALL( p_model->pixel_stat[0].ctable = (CvBGPixelCStatTable*)cvAlloc(buf_size) ); 140 memset( p_model->pixel_stat[0].ctable, 0, buf_size ); 141 142 buf_size = pixel_count*params.N2cc*sizeof(p_model->pixel_stat[0].cctable[0]); 143 CV_CALL( p_model->pixel_stat[0].cctable = (CvBGPixelCCStatTable*)cvAlloc(buf_size) ); 144 memset( p_model->pixel_stat[0].cctable, 0, buf_size ); 145 146 for( i = 0, k = 0; i < first_frame->height; i++ ) { 147 for( j = 0; j < first_frame->width; j++, k++ ) 148 { 149 p_model->pixel_stat[k].ctable = p_model->pixel_stat[0].ctable + k*params.N2c; 150 p_model->pixel_stat[k].cctable = p_model->pixel_stat[0].cctable + k*params.N2cc; 151 } 152 } 153 154 // Init temporary images: 155 CV_CALL( p_model->Ftd = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1)); 156 CV_CALL( p_model->Fbd = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1)); 157 CV_CALL( p_model->foreground = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1)); 158 159 CV_CALL( p_model->background = cvCloneImage(first_frame)); 160 CV_CALL( p_model->prev_frame = cvCloneImage(first_frame)); 161 CV_CALL( p_model->storage = cvCreateMemStorage()); 162 163 __END__; 164 165 if( cvGetErrStatus() < 0 ) 166 { 167 CvBGStatModel* base_ptr = (CvBGStatModel*)p_model; 168 169 if( p_model && p_model->release ) 170 p_model->release( &base_ptr ); 171 else 172 cvFree( &p_model ); 173 p_model = 0; 174 } 175 176 return (CvBGStatModel*)p_model; 177} 178 179 180static void CV_CDECL 181icvReleaseFGDStatModel( CvFGDStatModel** _model ) 182{ 183 CV_FUNCNAME( "icvReleaseFGDStatModel" ); 184 185 __BEGIN__; 186 187 if( !_model ) 188 CV_ERROR( CV_StsNullPtr, "" ); 189 190 if( *_model ) 191 { 192 CvFGDStatModel* model = *_model; 193 if( model->pixel_stat ) 194 { 195 cvFree( &model->pixel_stat[0].ctable ); 196 cvFree( &model->pixel_stat[0].cctable ); 197 cvFree( &model->pixel_stat ); 198 } 199 200 cvReleaseImage( &model->Ftd ); 201 cvReleaseImage( &model->Fbd ); 202 cvReleaseImage( &model->foreground ); 203 cvReleaseImage( &model->background ); 204 cvReleaseImage( &model->prev_frame ); 205 cvReleaseMemStorage(&model->storage); 206 207 cvFree( _model ); 208 } 209 210 __END__; 211} 212 213// Function cvChangeDetection performs change detection for Foreground detection algorithm 214// parameters: 215// prev_frame - 216// curr_frame - 217// change_mask - 218CV_IMPL int 219cvChangeDetection( IplImage* prev_frame, 220 IplImage* curr_frame, 221 IplImage* change_mask ) 222{ 223 int i, j, b, x, y, thres; 224 const int PIXELRANGE=256; 225 226 if( !prev_frame 227 || !curr_frame 228 || !change_mask 229 || prev_frame->nChannels != 3 230 || curr_frame->nChannels != 3 231 || change_mask->nChannels != 1 232 || prev_frame->depth != IPL_DEPTH_8U 233 || curr_frame->depth != IPL_DEPTH_8U 234 || change_mask->depth != IPL_DEPTH_8U 235 || prev_frame->width != curr_frame->width 236 || prev_frame->height != curr_frame->height 237 || prev_frame->width != change_mask->width 238 || prev_frame->height != change_mask->height 239 ){ 240 return 0; 241 } 242 243 cvZero ( change_mask ); 244 245 // All operations per colour 246 for (b=0 ; b<prev_frame->nChannels ; b++) { 247 248 // Create histogram: 249 250 long HISTOGRAM[PIXELRANGE]; 251 for (i=0 ; i<PIXELRANGE; i++) HISTOGRAM[i]=0; 252 253 for (y=0 ; y<curr_frame->height ; y++) 254 { 255 uchar* rowStart1 = (uchar*)curr_frame->imageData + y * curr_frame->widthStep + b; 256 uchar* rowStart2 = (uchar*)prev_frame->imageData + y * prev_frame->widthStep + b; 257 for (x=0 ; x<curr_frame->width ; x++, rowStart1+=curr_frame->nChannels, rowStart2+=prev_frame->nChannels) { 258 int diff = abs( int(*rowStart1) - int(*rowStart2) ); 259 HISTOGRAM[diff]++; 260 } 261 } 262 263 double relativeVariance[PIXELRANGE]; 264 for (i=0 ; i<PIXELRANGE; i++) relativeVariance[i]=0; 265 266 for (thres=PIXELRANGE-2; thres>=0 ; thres--) 267 { 268 // fprintf(stderr, "Iter %d\n", thres); 269 double sum=0; 270 double sqsum=0; 271 int count=0; 272 // fprintf(stderr, "Iter %d entering loop\n", thres); 273 for (j=thres ; j<PIXELRANGE ; j++) { 274 sum += double(j)*double(HISTOGRAM[j]); 275 sqsum += double(j*j)*double(HISTOGRAM[j]); 276 count += HISTOGRAM[j]; 277 } 278 count = count == 0 ? 1 : count; 279 // fprintf(stderr, "Iter %d finishing loop\n", thres); 280 double my = sum / count; 281 double sigma = sqrt( sqsum/count - my*my); 282 // fprintf(stderr, "Iter %d sum=%g sqsum=%g count=%d sigma = %g\n", thres, sum, sqsum, count, sigma); 283 // fprintf(stderr, "Writing to %x\n", &(relativeVariance[thres])); 284 relativeVariance[thres] = sigma; 285 // fprintf(stderr, "Iter %d finished\n", thres); 286 } 287 288 // Find maximum: 289 uchar bestThres = 0; 290 291 double* pBestThres = _cv_max_element(relativeVariance, relativeVariance+PIXELRANGE); 292 bestThres = (uchar)(*pBestThres); if (bestThres <10) bestThres=10; 293 294 for (y=0 ; y<prev_frame->height ; y++) 295 { 296 uchar* rowStart1 = (uchar*)(curr_frame->imageData) + y * curr_frame->widthStep + b; 297 uchar* rowStart2 = (uchar*)(prev_frame->imageData) + y * prev_frame->widthStep + b; 298 uchar* rowStart3 = (uchar*)(change_mask->imageData) + y * change_mask->widthStep; 299 for (x = 0; x < curr_frame->width; x++, rowStart1+=curr_frame->nChannels, 300 rowStart2+=prev_frame->nChannels, rowStart3+=change_mask->nChannels) { 301 // OR between different color channels 302 int diff = abs( int(*rowStart1) - int(*rowStart2) ); 303 if ( diff > bestThres) 304 *rowStart3 |=255; 305 } 306 } 307 } 308 309 return 1; 310} 311 312 313#define MIN_PV 1E-10 314 315 316#define V_C(k,l) ctable[k].v[l] 317#define PV_C(k) ctable[k].Pv 318#define PVB_C(k) ctable[k].Pvb 319#define V_CC(k,l) cctable[k].v[l] 320#define PV_CC(k) cctable[k].Pv 321#define PVB_CC(k) cctable[k].Pvb 322 323 324// Function cvUpdateFGDStatModel updates statistical model and returns number of foreground regions 325// parameters: 326// curr_frame - current frame from video sequence 327// p_model - pointer to CvFGDStatModel structure 328static int CV_CDECL 329icvUpdateFGDStatModel( IplImage* curr_frame, CvFGDStatModel* model ) 330{ 331 int mask_step = model->Ftd->widthStep; 332 CvSeq *first_seq = NULL, *prev_seq = NULL, *seq = NULL; 333 IplImage* prev_frame = model->prev_frame; 334 int region_count = 0; 335 int FG_pixels_count = 0; 336 int deltaC = cvRound(model->params.delta * 256 / model->params.Lc); 337 int deltaCC = cvRound(model->params.delta * 256 / model->params.Lcc); 338 int i, j, k, l; 339 340 //clear storages 341 cvClearMemStorage(model->storage); 342 cvZero(model->foreground); 343 344 // From foreground pixel candidates using image differencing 345 // with adaptive thresholding. The algorithm is from: 346 // 347 // Thresholding for Change Detection 348 // Paul L. Rosin 1998 6p 349 // http://www.cis.temple.edu/~latecki/Courses/CIS750-03/Papers/thresh-iccv.pdf 350 // 351 cvChangeDetection( prev_frame, curr_frame, model->Ftd ); 352 cvChangeDetection( model->background, curr_frame, model->Fbd ); 353 354 for( i = 0; i < model->Ftd->height; i++ ) 355 { 356 for( j = 0; j < model->Ftd->width; j++ ) 357 { 358 if( ((uchar*)model->Fbd->imageData)[i*mask_step+j] || ((uchar*)model->Ftd->imageData)[i*mask_step+j] ) 359 { 360 float Pb = 0; 361 float Pv = 0; 362 float Pvb = 0; 363 364 CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j; 365 366 CvBGPixelCStatTable* ctable = stat->ctable; 367 CvBGPixelCCStatTable* cctable = stat->cctable; 368 369 uchar* curr_data = (uchar*)(curr_frame->imageData) + i*curr_frame->widthStep + j*3; 370 uchar* prev_data = (uchar*)(prev_frame->imageData) + i*prev_frame->widthStep + j*3; 371 372 int val = 0; 373 374 // Is it a motion pixel? 375 if( ((uchar*)model->Ftd->imageData)[i*mask_step+j] ) 376 { 377 if( !stat->is_trained_dyn_model ) { 378 379 val = 1; 380 381 } else { 382 383 // Compare with stored CCt vectors: 384 for( k = 0; PV_CC(k) > model->params.alpha2 && k < model->params.N1cc; k++ ) 385 { 386 if ( abs( V_CC(k,0) - prev_data[0]) <= deltaCC && 387 abs( V_CC(k,1) - prev_data[1]) <= deltaCC && 388 abs( V_CC(k,2) - prev_data[2]) <= deltaCC && 389 abs( V_CC(k,3) - curr_data[0]) <= deltaCC && 390 abs( V_CC(k,4) - curr_data[1]) <= deltaCC && 391 abs( V_CC(k,5) - curr_data[2]) <= deltaCC) 392 { 393 Pv += PV_CC(k); 394 Pvb += PVB_CC(k); 395 } 396 } 397 Pb = stat->Pbcc; 398 if( 2 * Pvb * Pb <= Pv ) val = 1; 399 } 400 } 401 else if( stat->is_trained_st_model ) 402 { 403 // Compare with stored Ct vectors: 404 for( k = 0; PV_C(k) > model->params.alpha2 && k < model->params.N1c; k++ ) 405 { 406 if ( abs( V_C(k,0) - curr_data[0]) <= deltaC && 407 abs( V_C(k,1) - curr_data[1]) <= deltaC && 408 abs( V_C(k,2) - curr_data[2]) <= deltaC ) 409 { 410 Pv += PV_C(k); 411 Pvb += PVB_C(k); 412 } 413 } 414 Pb = stat->Pbc; 415 if( 2 * Pvb * Pb <= Pv ) val = 1; 416 } 417 418 // Update foreground: 419 ((uchar*)model->foreground->imageData)[i*mask_step+j] = (uchar)(val*255); 420 FG_pixels_count += val; 421 422 } // end if( change detection... 423 } // for j... 424 } // for i... 425 //end BG/FG classification 426 427 // Foreground segmentation. 428 // Smooth foreground map: 429 if( model->params.perform_morphing ){ 430 cvMorphologyEx( model->foreground, model->foreground, 0, 0, CV_MOP_OPEN, model->params.perform_morphing ); 431 cvMorphologyEx( model->foreground, model->foreground, 0, 0, CV_MOP_CLOSE, model->params.perform_morphing ); 432 } 433 434 435 if( model->params.minArea > 0 || model->params.is_obj_without_holes ){ 436 437 // Discard under-size foreground regions: 438 // 439 cvFindContours( model->foreground, model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST ); 440 for( seq = first_seq; seq; seq = seq->h_next ) 441 { 442 CvContour* cnt = (CvContour*)seq; 443 if( cnt->rect.width * cnt->rect.height < model->params.minArea || 444 (model->params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq)) ) 445 { 446 // Delete under-size contour: 447 prev_seq = seq->h_prev; 448 if( prev_seq ) 449 { 450 prev_seq->h_next = seq->h_next; 451 if( seq->h_next ) seq->h_next->h_prev = prev_seq; 452 } 453 else 454 { 455 first_seq = seq->h_next; 456 if( seq->h_next ) seq->h_next->h_prev = NULL; 457 } 458 } 459 else 460 { 461 region_count++; 462 } 463 } 464 model->foreground_regions = first_seq; 465 cvZero(model->foreground); 466 cvDrawContours(model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1); 467 468 } else { 469 470 model->foreground_regions = NULL; 471 } 472 473 // Check ALL BG update condition: 474 if( ((float)FG_pixels_count/(model->Ftd->width*model->Ftd->height)) > CV_BGFG_FGD_BG_UPDATE_TRESH ) 475 { 476 for( i = 0; i < model->Ftd->height; i++ ) 477 for( j = 0; j < model->Ftd->width; j++ ) 478 { 479 CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j; 480 stat->is_trained_st_model = stat->is_trained_dyn_model = 1; 481 } 482 } 483 484 485 // Update background model: 486 for( i = 0; i < model->Ftd->height; i++ ) 487 { 488 for( j = 0; j < model->Ftd->width; j++ ) 489 { 490 CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j; 491 CvBGPixelCStatTable* ctable = stat->ctable; 492 CvBGPixelCCStatTable* cctable = stat->cctable; 493 494 uchar *curr_data = (uchar*)(curr_frame->imageData)+i*curr_frame->widthStep+j*3; 495 uchar *prev_data = (uchar*)(prev_frame->imageData)+i*prev_frame->widthStep+j*3; 496 497 if( ((uchar*)model->Ftd->imageData)[i*mask_step+j] || !stat->is_trained_dyn_model ) 498 { 499 float alpha = stat->is_trained_dyn_model ? model->params.alpha2 : model->params.alpha3; 500 float diff = 0; 501 int dist, min_dist = 2147483647, indx = -1; 502 503 //update Pb 504 stat->Pbcc *= (1.f-alpha); 505 if( !((uchar*)model->foreground->imageData)[i*mask_step+j] ) 506 { 507 stat->Pbcc += alpha; 508 } 509 510 // Find best Vi match: 511 for(k = 0; PV_CC(k) && k < model->params.N2cc; k++ ) 512 { 513 // Exponential decay of memory 514 PV_CC(k) *= (1-alpha); 515 PVB_CC(k) *= (1-alpha); 516 if( PV_CC(k) < MIN_PV ) 517 { 518 PV_CC(k) = 0; 519 PVB_CC(k) = 0; 520 continue; 521 } 522 523 dist = 0; 524 for( l = 0; l < 3; l++ ) 525 { 526 int val = abs( V_CC(k,l) - prev_data[l] ); 527 if( val > deltaCC ) break; 528 dist += val; 529 val = abs( V_CC(k,l+3) - curr_data[l] ); 530 if( val > deltaCC) break; 531 dist += val; 532 } 533 if( l == 3 && dist < min_dist ) 534 { 535 min_dist = dist; 536 indx = k; 537 } 538 } 539 540 541 if( indx < 0 ) 542 { // Replace N2th elem in the table by new feature: 543 indx = model->params.N2cc - 1; 544 PV_CC(indx) = alpha; 545 PVB_CC(indx) = alpha; 546 //udate Vt 547 for( l = 0; l < 3; l++ ) 548 { 549 V_CC(indx,l) = prev_data[l]; 550 V_CC(indx,l+3) = curr_data[l]; 551 } 552 } 553 else 554 { // Update: 555 PV_CC(indx) += alpha; 556 if( !((uchar*)model->foreground->imageData)[i*mask_step+j] ) 557 { 558 PVB_CC(indx) += alpha; 559 } 560 } 561 562 //re-sort CCt table by Pv 563 for( k = 0; k < indx; k++ ) 564 { 565 if( PV_CC(k) <= PV_CC(indx) ) 566 { 567 //shift elements 568 CvBGPixelCCStatTable tmp1, tmp2 = cctable[indx]; 569 for( l = k; l <= indx; l++ ) 570 { 571 tmp1 = cctable[l]; 572 cctable[l] = tmp2; 573 tmp2 = tmp1; 574 } 575 break; 576 } 577 } 578 579 580 float sum1=0, sum2=0; 581 //check "once-off" changes 582 for(k = 0; PV_CC(k) && k < model->params.N1cc; k++ ) 583 { 584 sum1 += PV_CC(k); 585 sum2 += PVB_CC(k); 586 } 587 if( sum1 > model->params.T ) stat->is_trained_dyn_model = 1; 588 589 diff = sum1 - stat->Pbcc * sum2; 590 // Update stat table: 591 if( diff > model->params.T ) 592 { 593 //printf("once off change at motion mode\n"); 594 //new BG features are discovered 595 for( k = 0; PV_CC(k) && k < model->params.N1cc; k++ ) 596 { 597 PVB_CC(k) = 598 (PV_CC(k)-stat->Pbcc*PVB_CC(k))/(1-stat->Pbcc); 599 } 600 assert(stat->Pbcc<=1 && stat->Pbcc>=0); 601 } 602 } 603 604 // Handle "stationary" pixel: 605 if( !((uchar*)model->Ftd->imageData)[i*mask_step+j] ) 606 { 607 float alpha = stat->is_trained_st_model ? model->params.alpha2 : model->params.alpha3; 608 float diff = 0; 609 int dist, min_dist = 2147483647, indx = -1; 610 611 //update Pb 612 stat->Pbc *= (1.f-alpha); 613 if( !((uchar*)model->foreground->imageData)[i*mask_step+j] ) 614 { 615 stat->Pbc += alpha; 616 } 617 618 //find best Vi match 619 for( k = 0; k < model->params.N2c; k++ ) 620 { 621 // Exponential decay of memory 622 PV_C(k) *= (1-alpha); 623 PVB_C(k) *= (1-alpha); 624 if( PV_C(k) < MIN_PV ) 625 { 626 PV_C(k) = 0; 627 PVB_C(k) = 0; 628 continue; 629 } 630 631 dist = 0; 632 for( l = 0; l < 3; l++ ) 633 { 634 int val = abs( V_C(k,l) - curr_data[l] ); 635 if( val > deltaC ) break; 636 dist += val; 637 } 638 if( l == 3 && dist < min_dist ) 639 { 640 min_dist = dist; 641 indx = k; 642 } 643 } 644 645 if( indx < 0 ) 646 {//N2th elem in the table is replaced by a new features 647 indx = model->params.N2c - 1; 648 PV_C(indx) = alpha; 649 PVB_C(indx) = alpha; 650 //udate Vt 651 for( l = 0; l < 3; l++ ) 652 { 653 V_C(indx,l) = curr_data[l]; 654 } 655 } else 656 {//update 657 PV_C(indx) += alpha; 658 if( !((uchar*)model->foreground->imageData)[i*mask_step+j] ) 659 { 660 PVB_C(indx) += alpha; 661 } 662 } 663 664 //re-sort Ct table by Pv 665 for( k = 0; k < indx; k++ ) 666 { 667 if( PV_C(k) <= PV_C(indx) ) 668 { 669 //shift elements 670 CvBGPixelCStatTable tmp1, tmp2 = ctable[indx]; 671 for( l = k; l <= indx; l++ ) 672 { 673 tmp1 = ctable[l]; 674 ctable[l] = tmp2; 675 tmp2 = tmp1; 676 } 677 break; 678 } 679 } 680 681 // Check "once-off" changes: 682 float sum1=0, sum2=0; 683 for( k = 0; PV_C(k) && k < model->params.N1c; k++ ) 684 { 685 sum1 += PV_C(k); 686 sum2 += PVB_C(k); 687 } 688 diff = sum1 - stat->Pbc * sum2; 689 if( sum1 > model->params.T ) stat->is_trained_st_model = 1; 690 691 // Update stat table: 692 if( diff > model->params.T ) 693 { 694 //printf("once off change at stat mode\n"); 695 //new BG features are discovered 696 for( k = 0; PV_C(k) && k < model->params.N1c; k++ ) 697 { 698 PVB_C(k) = (PV_C(k)-stat->Pbc*PVB_C(k))/(1-stat->Pbc); 699 } 700 stat->Pbc = 1 - stat->Pbc; 701 } 702 } // if !(change detection) at pixel (i,j) 703 704 // Update the reference BG image: 705 if( !((uchar*)model->foreground->imageData)[i*mask_step+j]) 706 { 707 uchar* ptr = ((uchar*)model->background->imageData) + i*model->background->widthStep+j*3; 708 709 if( !((uchar*)model->Ftd->imageData)[i*mask_step+j] && 710 !((uchar*)model->Fbd->imageData)[i*mask_step+j] ) 711 { 712 // Apply IIR filter: 713 for( l = 0; l < 3; l++ ) 714 { 715 int a = cvRound(ptr[l]*(1 - model->params.alpha1) + model->params.alpha1*curr_data[l]); 716 ptr[l] = (uchar)a; 717 //((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l]*=(1 - model->params.alpha1); 718 //((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l] += model->params.alpha1*curr_data[l]; 719 } 720 } 721 else 722 { 723 // Background change detected: 724 for( l = 0; l < 3; l++ ) 725 { 726 //((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l] = curr_data[l]; 727 ptr[l] = curr_data[l]; 728 } 729 } 730 } 731 } // j 732 } // i 733 734 // Keep previous frame: 735 cvCopy( curr_frame, model->prev_frame ); 736 737 return region_count; 738} 739 740/* End of file. */ 741