cvbgfg_acmmm2003.cpp revision 6acb9a7ea3d7564944e12cbc73a857b88c1301ee
1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//
12// Copyright (C) 2000, Intel Corporation, all rights reserved.
13// Third party copyrights are property of their respective owners.
14//
15// Redistribution and use in source and binary forms, with or without modification,
16// are permitted provided that the following conditions are met:
17//
18//   * Redistribution's of source code must retain the above copyright notice,
19//     this list of conditions and the following disclaimer.
20//
21//   * Redistribution's in binary form must reproduce the above copyright notice,
22//     this list of conditions and the following disclaimer in the documentation
23//     and/or other materials provided with the distribution.
24//
25//   * The name of Intel Corporation may not be used to endorse or promote products
26//     derived from this software without specific prior written permission.
27//
28// This software is provided by the copyright holders and contributors "as is" and
29// any express or implied warranties, including, but not limited to, the implied
30// warranties of merchantability and fitness for a particular purpose are disclaimed.
31// In no event shall the Intel Corporation or contributors be liable for any direct,
32// indirect, incidental, special, exemplary, or consequential damages
33// (including, but not limited to, procurement of substitute goods or services;
34// loss of use, data, or profits; or business interruption) however caused
35// and on any theory of liability, whether in contract, strict liability,
36// or tort (including negligence or otherwise) arising in any way out of
37// the use of this software, even if advised of the possibility of such damage.
38//
39//M*/
40
41
42// This file implements the foreground/background pixel
43// discrimination algorithm described in
44//
45//     Foreground Object Detection from Videos Containing Complex Background
46//     Li, Huan, Gu, Tian 2003 9p
47//     http://muq.org/~cynbe/bib/foreground-object-detection-from-videos-containing-complex-background.pdf
48
49
50#include "_cvaux.h"
51
52#include <math.h>
53#include <stdio.h>
54#include <stdlib.h>
55//#include <algorithm>
56
57static double* _cv_max_element( double* start, double* end )
58{
59    double* p = start++;
60
61    for( ; start != end;  ++start) {
62
63        if (*p < *start)   p = start;
64    }
65
66    return p;
67}
68
69static void CV_CDECL icvReleaseFGDStatModel( CvFGDStatModel** model );
70static int CV_CDECL icvUpdateFGDStatModel( IplImage* curr_frame,
71                                           CvFGDStatModel*  model );
72
73// Function cvCreateFGDStatModel initializes foreground detection process
74// parameters:
75//      first_frame - frame from video sequence
76//      parameters  - (optional) if NULL default parameters of the algorithm will be used
77//      p_model     - pointer to CvFGDStatModel structure
78CV_IMPL CvBGStatModel*
79cvCreateFGDStatModel( IplImage* first_frame, CvFGDStatModelParams* parameters )
80{
81    CvFGDStatModel* p_model = 0;
82
83    CV_FUNCNAME( "cvCreateFGDStatModel" );
84
85    __BEGIN__;
86
87    int i, j, k, pixel_count, buf_size;
88    CvFGDStatModelParams params;
89
90    if( !CV_IS_IMAGE(first_frame) )
91        CV_ERROR( CV_StsBadArg, "Invalid or NULL first_frame parameter" );
92
93    if (first_frame->nChannels != 3)
94        CV_ERROR( CV_StsBadArg, "first_frame must have 3 color channels" );
95
96    // Initialize parameters:
97    if( parameters == NULL )
98    {
99        params.Lc      = CV_BGFG_FGD_LC;
100        params.N1c     = CV_BGFG_FGD_N1C;
101        params.N2c     = CV_BGFG_FGD_N2C;
102
103        params.Lcc     = CV_BGFG_FGD_LCC;
104        params.N1cc    = CV_BGFG_FGD_N1CC;
105        params.N2cc    = CV_BGFG_FGD_N2CC;
106
107        params.delta   = CV_BGFG_FGD_DELTA;
108
109        params.alpha1  = CV_BGFG_FGD_ALPHA_1;
110        params.alpha2  = CV_BGFG_FGD_ALPHA_2;
111        params.alpha3  = CV_BGFG_FGD_ALPHA_3;
112
113        params.T       = CV_BGFG_FGD_T;
114        params.minArea = CV_BGFG_FGD_MINAREA;
115
116        params.is_obj_without_holes = 1;
117        params.perform_morphing     = 1;
118    }
119    else
120    {
121        params = *parameters;
122    }
123
124    CV_CALL( p_model = (CvFGDStatModel*)cvAlloc( sizeof(*p_model) ));
125    memset( p_model, 0, sizeof(*p_model) );
126    p_model->type = CV_BG_MODEL_FGD;
127    p_model->release = (CvReleaseBGStatModel)icvReleaseFGDStatModel;
128    p_model->update = (CvUpdateBGStatModel)icvUpdateFGDStatModel;;
129    p_model->params = params;
130
131    // Initialize storage pools:
132    pixel_count = first_frame->width * first_frame->height;
133
134    buf_size = pixel_count*sizeof(p_model->pixel_stat[0]);
135    CV_CALL( p_model->pixel_stat = (CvBGPixelStat*)cvAlloc(buf_size) );
136    memset( p_model->pixel_stat, 0, buf_size );
137
138    buf_size = pixel_count*params.N2c*sizeof(p_model->pixel_stat[0].ctable[0]);
139    CV_CALL( p_model->pixel_stat[0].ctable = (CvBGPixelCStatTable*)cvAlloc(buf_size) );
140    memset( p_model->pixel_stat[0].ctable, 0, buf_size );
141
142    buf_size = pixel_count*params.N2cc*sizeof(p_model->pixel_stat[0].cctable[0]);
143    CV_CALL( p_model->pixel_stat[0].cctable = (CvBGPixelCCStatTable*)cvAlloc(buf_size) );
144    memset( p_model->pixel_stat[0].cctable, 0, buf_size );
145
146    for(     i = 0, k = 0; i < first_frame->height; i++ ) {
147        for( j = 0;        j < first_frame->width;  j++, k++ )
148        {
149            p_model->pixel_stat[k].ctable = p_model->pixel_stat[0].ctable + k*params.N2c;
150            p_model->pixel_stat[k].cctable = p_model->pixel_stat[0].cctable + k*params.N2cc;
151        }
152    }
153
154    // Init temporary images:
155    CV_CALL( p_model->Ftd = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1));
156    CV_CALL( p_model->Fbd = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1));
157    CV_CALL( p_model->foreground = cvCreateImage(cvSize(first_frame->width, first_frame->height), IPL_DEPTH_8U, 1));
158
159    CV_CALL( p_model->background = cvCloneImage(first_frame));
160    CV_CALL( p_model->prev_frame = cvCloneImage(first_frame));
161    CV_CALL( p_model->storage = cvCreateMemStorage());
162
163    __END__;
164
165    if( cvGetErrStatus() < 0 )
166    {
167        CvBGStatModel* base_ptr = (CvBGStatModel*)p_model;
168
169        if( p_model && p_model->release )
170            p_model->release( &base_ptr );
171        else
172            cvFree( &p_model );
173        p_model = 0;
174    }
175
176    return (CvBGStatModel*)p_model;
177}
178
179
180static void CV_CDECL
181icvReleaseFGDStatModel( CvFGDStatModel** _model )
182{
183    CV_FUNCNAME( "icvReleaseFGDStatModel" );
184
185    __BEGIN__;
186
187    if( !_model )
188        CV_ERROR( CV_StsNullPtr, "" );
189
190    if( *_model )
191    {
192        CvFGDStatModel* model = *_model;
193        if( model->pixel_stat )
194        {
195            cvFree( &model->pixel_stat[0].ctable );
196            cvFree( &model->pixel_stat[0].cctable );
197            cvFree( &model->pixel_stat );
198        }
199
200        cvReleaseImage( &model->Ftd );
201        cvReleaseImage( &model->Fbd );
202        cvReleaseImage( &model->foreground );
203        cvReleaseImage( &model->background );
204        cvReleaseImage( &model->prev_frame );
205        cvReleaseMemStorage(&model->storage);
206
207        cvFree( _model );
208    }
209
210    __END__;
211}
212
213//  Function cvChangeDetection performs change detection for Foreground detection algorithm
214// parameters:
215//      prev_frame -
216//      curr_frame -
217//      change_mask -
218CV_IMPL int
219cvChangeDetection( IplImage*  prev_frame,
220                   IplImage*  curr_frame,
221                   IplImage*  change_mask )
222{
223    int i, j, b, x, y, thres;
224    const int PIXELRANGE=256;
225
226    if( !prev_frame
227    ||  !curr_frame
228    ||  !change_mask
229    ||   prev_frame->nChannels  != 3
230    ||   curr_frame->nChannels  != 3
231    ||   change_mask->nChannels != 1
232    ||   prev_frame->depth  != IPL_DEPTH_8U
233    ||   curr_frame->depth  != IPL_DEPTH_8U
234    ||   change_mask->depth != IPL_DEPTH_8U
235    ||   prev_frame->width  != curr_frame->width
236    ||   prev_frame->height != curr_frame->height
237    ||   prev_frame->width  != change_mask->width
238    ||   prev_frame->height != change_mask->height
239    ){
240        return 0;
241    }
242
243    cvZero ( change_mask );
244
245    // All operations per colour
246    for (b=0 ; b<prev_frame->nChannels ; b++) {
247
248        // Create histogram:
249
250        long HISTOGRAM[PIXELRANGE];
251        for (i=0 ; i<PIXELRANGE; i++) HISTOGRAM[i]=0;
252
253        for (y=0 ; y<curr_frame->height ; y++)
254        {
255            uchar* rowStart1 = (uchar*)curr_frame->imageData + y * curr_frame->widthStep + b;
256            uchar* rowStart2 = (uchar*)prev_frame->imageData + y * prev_frame->widthStep + b;
257            for (x=0 ; x<curr_frame->width ; x++, rowStart1+=curr_frame->nChannels, rowStart2+=prev_frame->nChannels) {
258                int diff = abs( int(*rowStart1) - int(*rowStart2) );
259                HISTOGRAM[diff]++;
260            }
261        }
262
263        double relativeVariance[PIXELRANGE];
264        for (i=0 ; i<PIXELRANGE; i++) relativeVariance[i]=0;
265
266        for (thres=PIXELRANGE-2; thres>=0 ; thres--)
267        {
268            //            fprintf(stderr, "Iter %d\n", thres);
269            double sum=0;
270            double sqsum=0;
271            int count=0;
272            //            fprintf(stderr, "Iter %d entering loop\n", thres);
273            for (j=thres ; j<PIXELRANGE ; j++) {
274                sum   += double(j)*double(HISTOGRAM[j]);
275                sqsum += double(j*j)*double(HISTOGRAM[j]);
276                count += HISTOGRAM[j];
277            }
278            count = count == 0 ? 1 : count;
279            //            fprintf(stderr, "Iter %d finishing loop\n", thres);
280            double my = sum / count;
281            double sigma = sqrt( sqsum/count - my*my);
282            //            fprintf(stderr, "Iter %d sum=%g sqsum=%g count=%d sigma = %g\n", thres, sum, sqsum, count, sigma);
283            //            fprintf(stderr, "Writing to %x\n", &(relativeVariance[thres]));
284            relativeVariance[thres] = sigma;
285            //            fprintf(stderr, "Iter %d finished\n", thres);
286        }
287
288        // Find maximum:
289        uchar bestThres = 0;
290
291        double* pBestThres = _cv_max_element(relativeVariance, relativeVariance+PIXELRANGE);
292        bestThres = (uchar)(*pBestThres); if (bestThres <10) bestThres=10;
293
294        for (y=0 ; y<prev_frame->height ; y++)
295        {
296            uchar* rowStart1 = (uchar*)(curr_frame->imageData) + y * curr_frame->widthStep + b;
297            uchar* rowStart2 = (uchar*)(prev_frame->imageData) + y * prev_frame->widthStep + b;
298            uchar* rowStart3 = (uchar*)(change_mask->imageData) + y * change_mask->widthStep;
299            for (x = 0; x < curr_frame->width; x++, rowStart1+=curr_frame->nChannels,
300                rowStart2+=prev_frame->nChannels, rowStart3+=change_mask->nChannels) {
301                // OR between different color channels
302                int diff = abs( int(*rowStart1) - int(*rowStart2) );
303                if ( diff > bestThres)
304                    *rowStart3 |=255;
305            }
306        }
307    }
308
309    return 1;
310}
311
312
313#define MIN_PV 1E-10
314
315
316#define V_C(k,l) ctable[k].v[l]
317#define PV_C(k) ctable[k].Pv
318#define PVB_C(k) ctable[k].Pvb
319#define V_CC(k,l) cctable[k].v[l]
320#define PV_CC(k) cctable[k].Pv
321#define PVB_CC(k) cctable[k].Pvb
322
323
324// Function cvUpdateFGDStatModel updates statistical model and returns number of foreground regions
325// parameters:
326//      curr_frame  - current frame from video sequence
327//      p_model     - pointer to CvFGDStatModel structure
328static int CV_CDECL
329icvUpdateFGDStatModel( IplImage* curr_frame, CvFGDStatModel*  model )
330{
331    int            mask_step = model->Ftd->widthStep;
332    CvSeq         *first_seq = NULL, *prev_seq = NULL, *seq = NULL;
333    IplImage*      prev_frame = model->prev_frame;
334    int            region_count = 0;
335    int            FG_pixels_count = 0;
336    int            deltaC  = cvRound(model->params.delta * 256 / model->params.Lc);
337    int            deltaCC = cvRound(model->params.delta * 256 / model->params.Lcc);
338    int            i, j, k, l;
339
340    //clear storages
341    cvClearMemStorage(model->storage);
342    cvZero(model->foreground);
343
344    // From foreground pixel candidates using image differencing
345    // with adaptive thresholding.  The algorithm is from:
346    //
347    //    Thresholding for Change Detection
348    //    Paul L. Rosin 1998 6p
349    //    http://www.cis.temple.edu/~latecki/Courses/CIS750-03/Papers/thresh-iccv.pdf
350    //
351    cvChangeDetection( prev_frame, curr_frame, model->Ftd );
352    cvChangeDetection( model->background, curr_frame, model->Fbd );
353
354    for( i = 0; i < model->Ftd->height; i++ )
355    {
356        for( j = 0; j < model->Ftd->width; j++ )
357        {
358            if( ((uchar*)model->Fbd->imageData)[i*mask_step+j] || ((uchar*)model->Ftd->imageData)[i*mask_step+j] )
359            {
360	        float Pb  = 0;
361                float Pv  = 0;
362                float Pvb = 0;
363
364                CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j;
365
366                CvBGPixelCStatTable*   ctable = stat->ctable;
367                CvBGPixelCCStatTable* cctable = stat->cctable;
368
369                uchar* curr_data = (uchar*)(curr_frame->imageData) + i*curr_frame->widthStep + j*3;
370                uchar* prev_data = (uchar*)(prev_frame->imageData) + i*prev_frame->widthStep + j*3;
371
372                int val = 0;
373
374                // Is it a motion pixel?
375                if( ((uchar*)model->Ftd->imageData)[i*mask_step+j] )
376                {
377		    if( !stat->is_trained_dyn_model ) {
378
379                        val = 1;
380
381		    } else {
382
383                        // Compare with stored CCt vectors:
384                        for( k = 0;  PV_CC(k) > model->params.alpha2 && k < model->params.N1cc;  k++ )
385                        {
386                            if ( abs( V_CC(k,0) - prev_data[0]) <=  deltaCC &&
387                                 abs( V_CC(k,1) - prev_data[1]) <=  deltaCC &&
388                                 abs( V_CC(k,2) - prev_data[2]) <=  deltaCC &&
389                                 abs( V_CC(k,3) - curr_data[0]) <=  deltaCC &&
390                                 abs( V_CC(k,4) - curr_data[1]) <=  deltaCC &&
391                                 abs( V_CC(k,5) - curr_data[2]) <=  deltaCC)
392                            {
393                                Pv += PV_CC(k);
394                                Pvb += PVB_CC(k);
395                            }
396                        }
397                        Pb = stat->Pbcc;
398                        if( 2 * Pvb * Pb <= Pv ) val = 1;
399                    }
400                }
401                else if( stat->is_trained_st_model )
402                {
403                    // Compare with stored Ct vectors:
404                    for( k = 0;  PV_C(k) > model->params.alpha2 && k < model->params.N1c;  k++ )
405                    {
406                        if ( abs( V_C(k,0) - curr_data[0]) <=  deltaC &&
407                             abs( V_C(k,1) - curr_data[1]) <=  deltaC &&
408                             abs( V_C(k,2) - curr_data[2]) <=  deltaC )
409                        {
410                            Pv += PV_C(k);
411                            Pvb += PVB_C(k);
412                        }
413                    }
414                    Pb = stat->Pbc;
415                    if( 2 * Pvb * Pb <= Pv ) val = 1;
416                }
417
418                // Update foreground:
419                ((uchar*)model->foreground->imageData)[i*mask_step+j] = (uchar)(val*255);
420                FG_pixels_count += val;
421
422            }		// end if( change detection...
423        }		// for j...
424    }			// for i...
425    //end BG/FG classification
426
427    // Foreground segmentation.
428    // Smooth foreground map:
429    if( model->params.perform_morphing ){
430        cvMorphologyEx( model->foreground, model->foreground, 0, 0, CV_MOP_OPEN,  model->params.perform_morphing );
431        cvMorphologyEx( model->foreground, model->foreground, 0, 0, CV_MOP_CLOSE, model->params.perform_morphing );
432    }
433
434
435    if( model->params.minArea > 0 || model->params.is_obj_without_holes ){
436
437        // Discard under-size foreground regions:
438	//
439        cvFindContours( model->foreground, model->storage, &first_seq, sizeof(CvContour), CV_RETR_LIST );
440        for( seq = first_seq; seq; seq = seq->h_next )
441        {
442            CvContour* cnt = (CvContour*)seq;
443            if( cnt->rect.width * cnt->rect.height < model->params.minArea ||
444                (model->params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq)) )
445            {
446                // Delete under-size contour:
447                prev_seq = seq->h_prev;
448                if( prev_seq )
449                {
450                    prev_seq->h_next = seq->h_next;
451                    if( seq->h_next ) seq->h_next->h_prev = prev_seq;
452                }
453                else
454                {
455                    first_seq = seq->h_next;
456                    if( seq->h_next ) seq->h_next->h_prev = NULL;
457                }
458            }
459            else
460            {
461                region_count++;
462            }
463        }
464        model->foreground_regions = first_seq;
465        cvZero(model->foreground);
466        cvDrawContours(model->foreground, first_seq, CV_RGB(0, 0, 255), CV_RGB(0, 0, 255), 10, -1);
467
468    } else {
469
470        model->foreground_regions = NULL;
471    }
472
473    // Check ALL BG update condition:
474    if( ((float)FG_pixels_count/(model->Ftd->width*model->Ftd->height)) > CV_BGFG_FGD_BG_UPDATE_TRESH )
475    {
476         for( i = 0; i < model->Ftd->height; i++ )
477             for( j = 0; j < model->Ftd->width; j++ )
478             {
479                 CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j;
480                 stat->is_trained_st_model = stat->is_trained_dyn_model = 1;
481             }
482    }
483
484
485    // Update background model:
486    for( i = 0; i < model->Ftd->height; i++ )
487    {
488        for( j = 0; j < model->Ftd->width; j++ )
489        {
490            CvBGPixelStat* stat = model->pixel_stat + i * model->Ftd->width + j;
491            CvBGPixelCStatTable* ctable = stat->ctable;
492            CvBGPixelCCStatTable* cctable = stat->cctable;
493
494            uchar *curr_data = (uchar*)(curr_frame->imageData)+i*curr_frame->widthStep+j*3;
495            uchar *prev_data = (uchar*)(prev_frame->imageData)+i*prev_frame->widthStep+j*3;
496
497            if( ((uchar*)model->Ftd->imageData)[i*mask_step+j] || !stat->is_trained_dyn_model )
498            {
499                float alpha = stat->is_trained_dyn_model ? model->params.alpha2 : model->params.alpha3;
500                float diff = 0;
501                int dist, min_dist = 2147483647, indx = -1;
502
503                //update Pb
504                stat->Pbcc *= (1.f-alpha);
505                if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
506                {
507                    stat->Pbcc += alpha;
508                }
509
510                // Find best Vi match:
511                for(k = 0; PV_CC(k) && k < model->params.N2cc; k++ )
512                {
513                    // Exponential decay of memory
514                    PV_CC(k)  *= (1-alpha);
515                    PVB_CC(k) *= (1-alpha);
516                    if( PV_CC(k) < MIN_PV )
517                    {
518                        PV_CC(k) = 0;
519                        PVB_CC(k) = 0;
520                        continue;
521                    }
522
523                    dist = 0;
524                    for( l = 0; l < 3; l++ )
525                    {
526                        int val = abs( V_CC(k,l) - prev_data[l] );
527                        if( val > deltaCC ) break;
528                        dist += val;
529                        val = abs( V_CC(k,l+3) - curr_data[l] );
530                        if( val > deltaCC) break;
531                        dist += val;
532                    }
533                    if( l == 3 && dist < min_dist )
534                    {
535                        min_dist = dist;
536                        indx = k;
537                    }
538                }
539
540
541                if( indx < 0 )
542                {   // Replace N2th elem in the table by new feature:
543                    indx = model->params.N2cc - 1;
544                    PV_CC(indx) = alpha;
545                    PVB_CC(indx) = alpha;
546                    //udate Vt
547                    for( l = 0; l < 3; l++ )
548                    {
549                        V_CC(indx,l) = prev_data[l];
550                        V_CC(indx,l+3) = curr_data[l];
551                    }
552                }
553                else
554                {   // Update:
555                    PV_CC(indx) += alpha;
556                    if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
557                    {
558                        PVB_CC(indx) += alpha;
559                    }
560                }
561
562                //re-sort CCt table by Pv
563                for( k = 0; k < indx; k++ )
564                {
565                    if( PV_CC(k) <= PV_CC(indx) )
566                    {
567                        //shift elements
568                        CvBGPixelCCStatTable tmp1, tmp2 = cctable[indx];
569                        for( l = k; l <= indx; l++ )
570                        {
571                            tmp1 = cctable[l];
572                            cctable[l] = tmp2;
573                            tmp2 = tmp1;
574                        }
575                        break;
576                    }
577                }
578
579
580                float sum1=0, sum2=0;
581                //check "once-off" changes
582                for(k = 0; PV_CC(k) && k < model->params.N1cc; k++ )
583                {
584                    sum1 += PV_CC(k);
585                    sum2 += PVB_CC(k);
586                }
587                if( sum1 > model->params.T ) stat->is_trained_dyn_model = 1;
588
589                diff = sum1 - stat->Pbcc * sum2;
590                // Update stat table:
591                if( diff >  model->params.T )
592                {
593                    //printf("once off change at motion mode\n");
594                    //new BG features are discovered
595                    for( k = 0; PV_CC(k) && k < model->params.N1cc; k++ )
596                    {
597                        PVB_CC(k) =
598                            (PV_CC(k)-stat->Pbcc*PVB_CC(k))/(1-stat->Pbcc);
599                    }
600                    assert(stat->Pbcc<=1 && stat->Pbcc>=0);
601                }
602            }
603
604            // Handle "stationary" pixel:
605            if( !((uchar*)model->Ftd->imageData)[i*mask_step+j] )
606            {
607                float alpha = stat->is_trained_st_model ? model->params.alpha2 : model->params.alpha3;
608                float diff = 0;
609                int dist, min_dist = 2147483647, indx = -1;
610
611                //update Pb
612                stat->Pbc *= (1.f-alpha);
613                if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
614                {
615                    stat->Pbc += alpha;
616                }
617
618                //find best Vi match
619                for( k = 0; k < model->params.N2c; k++ )
620                {
621                    // Exponential decay of memory
622                    PV_C(k) *= (1-alpha);
623                    PVB_C(k) *= (1-alpha);
624                    if( PV_C(k) < MIN_PV )
625                    {
626                        PV_C(k) = 0;
627                        PVB_C(k) = 0;
628                        continue;
629                    }
630
631                    dist = 0;
632                    for( l = 0; l < 3; l++ )
633                    {
634                        int val = abs( V_C(k,l) - curr_data[l] );
635                        if( val > deltaC ) break;
636                        dist += val;
637                    }
638                    if( l == 3 && dist < min_dist )
639                    {
640                        min_dist = dist;
641                        indx = k;
642                    }
643                }
644
645                if( indx < 0 )
646                {//N2th elem in the table is replaced by a new features
647                    indx = model->params.N2c - 1;
648                    PV_C(indx) = alpha;
649                    PVB_C(indx) = alpha;
650                    //udate Vt
651                    for( l = 0; l < 3; l++ )
652                    {
653                        V_C(indx,l) = curr_data[l];
654                    }
655                } else
656                {//update
657                    PV_C(indx) += alpha;
658                    if( !((uchar*)model->foreground->imageData)[i*mask_step+j] )
659                    {
660                        PVB_C(indx) += alpha;
661                    }
662                }
663
664                //re-sort Ct table by Pv
665                for( k = 0; k < indx; k++ )
666                {
667                    if( PV_C(k) <= PV_C(indx) )
668                    {
669                        //shift elements
670                        CvBGPixelCStatTable tmp1, tmp2 = ctable[indx];
671                        for( l = k; l <= indx; l++ )
672                        {
673                            tmp1 = ctable[l];
674                            ctable[l] = tmp2;
675                            tmp2 = tmp1;
676                        }
677                        break;
678                    }
679                }
680
681                // Check "once-off" changes:
682                float sum1=0, sum2=0;
683                for( k = 0; PV_C(k) && k < model->params.N1c; k++ )
684                {
685                    sum1 += PV_C(k);
686                    sum2 += PVB_C(k);
687                }
688                diff = sum1 - stat->Pbc * sum2;
689                if( sum1 > model->params.T ) stat->is_trained_st_model = 1;
690
691                // Update stat table:
692                if( diff >  model->params.T )
693                {
694                    //printf("once off change at stat mode\n");
695                    //new BG features are discovered
696                    for( k = 0; PV_C(k) && k < model->params.N1c; k++ )
697                    {
698                        PVB_C(k) = (PV_C(k)-stat->Pbc*PVB_C(k))/(1-stat->Pbc);
699                    }
700                    stat->Pbc = 1 - stat->Pbc;
701                }
702            }		// if !(change detection) at pixel (i,j)
703
704            // Update the reference BG image:
705            if( !((uchar*)model->foreground->imageData)[i*mask_step+j])
706            {
707                uchar* ptr = ((uchar*)model->background->imageData) + i*model->background->widthStep+j*3;
708
709                if( !((uchar*)model->Ftd->imageData)[i*mask_step+j] &&
710                    !((uchar*)model->Fbd->imageData)[i*mask_step+j] )
711                {
712                    // Apply IIR filter:
713                    for( l = 0; l < 3; l++ )
714                    {
715                        int a = cvRound(ptr[l]*(1 - model->params.alpha1) + model->params.alpha1*curr_data[l]);
716                        ptr[l] = (uchar)a;
717                        //((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l]*=(1 - model->params.alpha1);
718                        //((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l] += model->params.alpha1*curr_data[l];
719                    }
720                }
721                else
722                {
723                    // Background change detected:
724                    for( l = 0; l < 3; l++ )
725                    {
726                        //((uchar*)model->background->imageData)[i*model->background->widthStep+j*3+l] = curr_data[l];
727                        ptr[l] = curr_data[l];
728                    }
729                }
730            }
731        }		// j
732    }			// i
733
734    // Keep previous frame:
735    cvCopy( curr_frame, model->prev_frame );
736
737    return region_count;
738}
739
740/* End of file. */
741