1/* 2 * Copyright (C) 2006-2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include "SkPoint.h" 18 19void SkIPoint::rotateCW(SkIPoint* dst) const { 20 SkASSERT(dst); 21 22 // use a tmp in case this == dst 23 int32_t tmp = fX; 24 dst->fX = -fY; 25 dst->fY = tmp; 26} 27 28void SkIPoint::rotateCCW(SkIPoint* dst) const { 29 SkASSERT(dst); 30 31 // use a tmp in case this == dst 32 int32_t tmp = fX; 33 dst->fX = fY; 34 dst->fY = -tmp; 35} 36 37/////////////////////////////////////////////////////////////////////////////// 38 39void SkPoint::setIRectFan(int l, int t, int r, int b, size_t stride) { 40 SkASSERT(stride >= sizeof(SkPoint)); 41 42 ((SkPoint*)((intptr_t)this + 0 * stride))->set(SkIntToScalar(l), 43 SkIntToScalar(t)); 44 ((SkPoint*)((intptr_t)this + 1 * stride))->set(SkIntToScalar(l), 45 SkIntToScalar(b)); 46 ((SkPoint*)((intptr_t)this + 2 * stride))->set(SkIntToScalar(r), 47 SkIntToScalar(b)); 48 ((SkPoint*)((intptr_t)this + 3 * stride))->set(SkIntToScalar(r), 49 SkIntToScalar(t)); 50} 51 52void SkPoint::setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, 53 size_t stride) { 54 SkASSERT(stride >= sizeof(SkPoint)); 55 56 ((SkPoint*)((intptr_t)this + 0 * stride))->set(l, t); 57 ((SkPoint*)((intptr_t)this + 1 * stride))->set(l, b); 58 ((SkPoint*)((intptr_t)this + 2 * stride))->set(r, b); 59 ((SkPoint*)((intptr_t)this + 3 * stride))->set(r, t); 60} 61 62void SkPoint::rotateCW(SkPoint* dst) const { 63 SkASSERT(dst); 64 65 // use a tmp in case this == dst 66 SkScalar tmp = fX; 67 dst->fX = -fY; 68 dst->fY = tmp; 69} 70 71void SkPoint::rotateCCW(SkPoint* dst) const { 72 SkASSERT(dst); 73 74 // use a tmp in case this == dst 75 SkScalar tmp = fX; 76 dst->fX = fY; 77 dst->fY = -tmp; 78} 79 80void SkPoint::scale(SkScalar scale, SkPoint* dst) const { 81 SkASSERT(dst); 82 dst->set(SkScalarMul(fX, scale), SkScalarMul(fY, scale)); 83} 84 85#define kNearlyZero (SK_Scalar1 / 8092) 86 87bool SkPoint::normalize() { 88 return this->setLength(fX, fY, SK_Scalar1); 89} 90 91bool SkPoint::setNormalize(SkScalar x, SkScalar y) { 92 return this->setLength(x, y, SK_Scalar1); 93} 94 95bool SkPoint::setLength(SkScalar length) { 96 return this->setLength(fX, fY, length); 97} 98 99#ifdef SK_SCALAR_IS_FLOAT 100 101SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { 102 return sk_float_sqrt(dx * dx + dy * dy); 103} 104 105SkScalar SkPoint::Normalize(SkPoint* pt) { 106 float mag = SkPoint::Length(pt->fX, pt->fY); 107 if (mag > kNearlyZero) { 108 float scale = 1 / mag; 109 pt->fX *= scale; 110 pt->fY *= scale; 111 return mag; 112 } 113 return 0; 114} 115 116bool SkPoint::setLength(float x, float y, float length) { 117 float mag = sk_float_sqrt(x * x + y * y); 118 if (mag > kNearlyZero) { 119 length /= mag; 120 fX = x * length; 121 fY = y * length; 122 return true; 123 } 124 return false; 125} 126 127#else 128 129#include "Sk64.h" 130 131SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { 132 Sk64 tmp1, tmp2; 133 134 tmp1.setMul(dx, dx); 135 tmp2.setMul(dy, dy); 136 tmp1.add(tmp2); 137 138 return tmp1.getSqrt(); 139} 140 141#ifdef SK_DEBUGx 142static SkFixed fixlen(SkFixed x, SkFixed y) { 143 float fx = (float)x; 144 float fy = (float)y; 145 146 return (int)floorf(sqrtf(fx*fx + fy*fy) + 0.5f); 147} 148#endif 149 150static inline uint32_t squarefixed(unsigned x) { 151 x >>= 16; 152 return x*x; 153} 154 155#if 1 // Newton iter for setLength 156 157static inline unsigned invsqrt_iter(unsigned V, unsigned U) { 158 unsigned x = V * U >> 14; 159 x = x * U >> 14; 160 x = (3 << 14) - x; 161 x = (U >> 1) * x >> 14; 162 return x; 163} 164 165static const uint16_t gInvSqrt14GuessTable[] = { 166 0x4000, 0x3c57, 0x393e, 0x3695, 0x3441, 0x3235, 0x3061, 167 0x2ebd, 0x2d41, 0x2be7, 0x2aaa, 0x2987, 0x287a, 0x2780, 168 0x2698, 0x25be, 0x24f3, 0x2434, 0x2380, 0x22d6, 0x2235, 169 0x219d, 0x210c, 0x2083, 0x2000, 0x1f82, 0x1f0b, 0x1e99, 170 0x1e2b, 0x1dc2, 0x1d5d, 0x1cfc, 0x1c9f, 0x1c45, 0x1bee, 171 0x1b9b, 0x1b4a, 0x1afc, 0x1ab0, 0x1a67, 0x1a20, 0x19dc, 172 0x1999, 0x1959, 0x191a, 0x18dd, 0x18a2, 0x1868, 0x1830, 173 0x17fa, 0x17c4, 0x1791, 0x175e, 0x172d, 0x16fd, 0x16ce 174}; 175 176#define BUILD_INVSQRT_TABLEx 177#ifdef BUILD_INVSQRT_TABLE 178static void build_invsqrt14_guess_table() { 179 for (int i = 8; i <= 63; i++) { 180 unsigned x = SkToU16((1 << 28) / SkSqrt32(i << 25)); 181 printf("0x%x, ", x); 182 } 183 printf("\n"); 184} 185#endif 186 187static unsigned fast_invsqrt(uint32_t x) { 188#ifdef BUILD_INVSQRT_TABLE 189 unsigned top2 = x >> 25; 190 SkASSERT(top2 >= 8 && top2 <= 63); 191 192 static bool gOnce; 193 if (!gOnce) { 194 build_invsqrt14_guess_table(); 195 gOnce = true; 196 } 197#endif 198 199 unsigned V = x >> 14; // make V .14 200 201 unsigned top = x >> 25; 202 SkASSERT(top >= 8 && top <= 63); 203 SkASSERT(top - 8 < SK_ARRAY_COUNT(gInvSqrt14GuessTable)); 204 unsigned U = gInvSqrt14GuessTable[top - 8]; 205 206 U = invsqrt_iter(V, U); 207 return invsqrt_iter(V, U); 208} 209 210/* We "normalize" x,y to be .14 values (so we can square them and stay 32bits. 211 Then we Newton-iterate this in .14 space to compute the invser-sqrt, and 212 scale by it at the end. The .14 space means we can execute our iterations 213 and stay in 32bits as well, making the multiplies much cheaper than calling 214 SkFixedMul. 215*/ 216bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) { 217 if (ox == 0) { 218 if (oy == 0) { 219 return false; 220 } 221 this->set(0, SkApplySign(length, SkExtractSign(oy))); 222 return true; 223 } 224 if (oy == 0) { 225 this->set(SkApplySign(length, SkExtractSign(ox)), 0); 226 return true; 227 } 228 229 unsigned x = SkAbs32(ox); 230 unsigned y = SkAbs32(oy); 231 int zeros = SkCLZ(x | y); 232 233 // make x,y 1.14 values so our fast sqr won't overflow 234 if (zeros > 17) { 235 x <<= zeros - 17; 236 y <<= zeros - 17; 237 } else { 238 x >>= 17 - zeros; 239 y >>= 17 - zeros; 240 } 241 SkASSERT((x | y) <= 0x7FFF); 242 243 unsigned invrt = fast_invsqrt(x*x + y*y); 244 245 x = x * invrt >> 12; 246 y = y * invrt >> 12; 247 248 if (length != SK_Fixed1) { 249 x = SkFixedMul(x, length); 250 y = SkFixedMul(y, length); 251 } 252 this->set(SkApplySign(x, SkExtractSign(ox)), 253 SkApplySign(y, SkExtractSign(oy))); 254 return true; 255} 256#else 257/* 258 Normalize x,y, and then scale them by length. 259 260 The obvious way to do this would be the following: 261 S64 tmp1, tmp2; 262 tmp1.setMul(x,x); 263 tmp2.setMul(y,y); 264 tmp1.add(tmp2); 265 len = tmp1.getSqrt(); 266 x' = SkFixedDiv(x, len); 267 y' = SkFixedDiv(y, len); 268 This is fine, but slower than what we do below. 269 270 The present technique does not compute the starting length, but 271 rather fiddles with x,y iteratively, all the while checking its 272 magnitude^2 (avoiding a sqrt). 273 274 We normalize by first shifting x,y so that at least one of them 275 has bit 31 set (after taking the abs of them). 276 Then we loop, refining x,y by squaring them and comparing 277 against a very large 1.0 (1 << 28), and then adding or subtracting 278 a delta (which itself is reduced by half each time through the loop). 279 For speed we want the squaring to be with a simple integer mul. To keep 280 that from overflowing we shift our coordinates down until we are dealing 281 with at most 15 bits (2^15-1)^2 * 2 says withing 32 bits) 282 When our square is close to 1.0, we shift x,y down into fixed range. 283*/ 284bool SkPoint::setLength(SkFixed ox, SkFixed oy, SkFixed length) { 285 if (ox == 0) { 286 if (oy == 0) 287 return false; 288 this->set(0, SkApplySign(length, SkExtractSign(oy))); 289 return true; 290 } 291 if (oy == 0) { 292 this->set(SkApplySign(length, SkExtractSign(ox)), 0); 293 return true; 294 } 295 296 SkFixed x = SkAbs32(ox); 297 SkFixed y = SkAbs32(oy); 298 299 // shift x,y so that the greater of them is 15bits (1.14 fixed point) 300 { 301 int shift = SkCLZ(x | y); 302 // make them .30 303 x <<= shift - 1; 304 y <<= shift - 1; 305 } 306 307 SkFixed dx = x; 308 SkFixed dy = y; 309 310 for (int i = 0; i < 17; i++) { 311 dx >>= 1; 312 dy >>= 1; 313 314 U32 len2 = squarefixed(x) + squarefixed(y); 315 if (len2 >> 28) { 316 x -= dx; 317 y -= dy; 318 } else { 319 x += dx; 320 y += dy; 321 } 322 } 323 x >>= 14; 324 y >>= 14; 325 326#ifdef SK_DEBUGx // measure how far we are from unit-length 327 { 328 static int gMaxError; 329 static int gMaxDiff; 330 331 SkFixed len = fixlen(x, y); 332 int err = len - SK_Fixed1; 333 err = SkAbs32(err); 334 335 if (err > gMaxError) { 336 gMaxError = err; 337 SkDebugf("gMaxError %d\n", err); 338 } 339 340 float fx = SkAbs32(ox)/65536.0f; 341 float fy = SkAbs32(oy)/65536.0f; 342 float mag = sqrtf(fx*fx + fy*fy); 343 fx /= mag; 344 fy /= mag; 345 SkFixed xx = (int)floorf(fx * 65536 + 0.5f); 346 SkFixed yy = (int)floorf(fy * 65536 + 0.5f); 347 err = SkMax32(SkAbs32(xx-x), SkAbs32(yy-y)); 348 if (err > gMaxDiff) { 349 gMaxDiff = err; 350 SkDebugf("gMaxDiff %d\n", err); 351 } 352 } 353#endif 354 355 x = SkApplySign(x, SkExtractSign(ox)); 356 y = SkApplySign(y, SkExtractSign(oy)); 357 if (length != SK_Fixed1) { 358 x = SkFixedMul(x, length); 359 y = SkFixedMul(y, length); 360 } 361 362 this->set(x, y); 363 return true; 364} 365#endif 366 367#endif 368 369/////////////////////////////////////////////////////////////////////////////// 370 371SkScalar SkPoint::distanceToLineSegmentBetweenSqd(const SkPoint& a, 372 const SkPoint& b) const { 373 // See comments to distanceToLineBetweenSqd. If the projection of c onto 374 // u is between a and b then this returns the same result as that 375 // function. Otherwise, it returns the distance to the closer of a and 376 // b. Let the projection of v onto u be v'. There are three cases: 377 // 1. v' points opposite to u. c is not between a and b and is closer 378 // to a than b. 379 // 2. v' points along u and has magnitude less than y. c is between 380 // a and b and the distance to the segment is the same as distance 381 // to the line ab. 382 // 3. v' points along u and has greater magnitude than u. c is not 383 // not between a and b and is closer to b than a. 384 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're 385 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise 386 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to 387 // avoid a sqrt to compute |u|. 388 389 SkVector u = b - a; 390 SkVector v = *this - a; 391 392 SkScalar uLengthSqd = u.lengthSqd(); 393 SkScalar uDotV = SkPoint::DotProduct(u, v); 394 395 if (uDotV <= 0) { 396 return v.lengthSqd(); 397 } else if (uDotV > uLengthSqd) { 398 return b.distanceToSqd(*this); 399 } else { 400 SkScalar det = u.cross(v); 401 return SkScalarMulDiv(det, det, uLengthSqd); 402 } 403} 404 405