1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <math.h>
29
30#include "v8.h"
31#include "bignum-dtoa.h"
32
33#include "bignum.h"
34#include "double.h"
35
36namespace v8 {
37namespace internal {
38
39static int NormalizedExponent(uint64_t significand, int exponent) {
40  ASSERT(significand != 0);
41  while ((significand & Double::kHiddenBit) == 0) {
42    significand = significand << 1;
43    exponent = exponent - 1;
44  }
45  return exponent;
46}
47
48
49// Forward declarations:
50// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
51static int EstimatePower(int exponent);
52// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
53// and denominator.
54static void InitialScaledStartValues(double v,
55                                     int estimated_power,
56                                     bool need_boundary_deltas,
57                                     Bignum* numerator,
58                                     Bignum* denominator,
59                                     Bignum* delta_minus,
60                                     Bignum* delta_plus);
61// Multiplies numerator/denominator so that its values lies in the range 1-10.
62// Returns decimal_point s.t.
63//  v = numerator'/denominator' * 10^(decimal_point-1)
64//     where numerator' and denominator' are the values of numerator and
65//     denominator after the call to this function.
66static void FixupMultiply10(int estimated_power, bool is_even,
67                            int* decimal_point,
68                            Bignum* numerator, Bignum* denominator,
69                            Bignum* delta_minus, Bignum* delta_plus);
70// Generates digits from the left to the right and stops when the generated
71// digits yield the shortest decimal representation of v.
72static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
73                                   Bignum* delta_minus, Bignum* delta_plus,
74                                   bool is_even,
75                                   Vector<char> buffer, int* length);
76// Generates 'requested_digits' after the decimal point.
77static void BignumToFixed(int requested_digits, int* decimal_point,
78                          Bignum* numerator, Bignum* denominator,
79                          Vector<char>(buffer), int* length);
80// Generates 'count' digits of numerator/denominator.
81// Once 'count' digits have been produced rounds the result depending on the
82// remainder (remainders of exactly .5 round upwards). Might update the
83// decimal_point when rounding up (for example for 0.9999).
84static void GenerateCountedDigits(int count, int* decimal_point,
85                                  Bignum* numerator, Bignum* denominator,
86                                  Vector<char>(buffer), int* length);
87
88
89void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
90                Vector<char> buffer, int* length, int* decimal_point) {
91  ASSERT(v > 0);
92  ASSERT(!Double(v).IsSpecial());
93  uint64_t significand = Double(v).Significand();
94  bool is_even = (significand & 1) == 0;
95  int exponent = Double(v).Exponent();
96  int normalized_exponent = NormalizedExponent(significand, exponent);
97  // estimated_power might be too low by 1.
98  int estimated_power = EstimatePower(normalized_exponent);
99
100  // Shortcut for Fixed.
101  // The requested digits correspond to the digits after the point. If the
102  // number is much too small, then there is no need in trying to get any
103  // digits.
104  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
105    buffer[0] = '\0';
106    *length = 0;
107    // Set decimal-point to -requested_digits. This is what Gay does.
108    // Note that it should not have any effect anyways since the string is
109    // empty.
110    *decimal_point = -requested_digits;
111    return;
112  }
113
114  Bignum numerator;
115  Bignum denominator;
116  Bignum delta_minus;
117  Bignum delta_plus;
118  // Make sure the bignum can grow large enough. The smallest double equals
119  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
120  // The maximum double is 1.7976931348623157e308 which needs fewer than
121  // 308*4 binary digits.
122  ASSERT(Bignum::kMaxSignificantBits >= 324*4);
123  bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
124  InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
125                           &numerator, &denominator,
126                           &delta_minus, &delta_plus);
127  // We now have v = (numerator / denominator) * 10^estimated_power.
128  FixupMultiply10(estimated_power, is_even, decimal_point,
129                  &numerator, &denominator,
130                  &delta_minus, &delta_plus);
131  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
132  //  1 <= (numerator + delta_plus) / denominator < 10
133  switch (mode) {
134    case BIGNUM_DTOA_SHORTEST:
135      GenerateShortestDigits(&numerator, &denominator,
136                             &delta_minus, &delta_plus,
137                             is_even, buffer, length);
138      break;
139    case BIGNUM_DTOA_FIXED:
140      BignumToFixed(requested_digits, decimal_point,
141                    &numerator, &denominator,
142                    buffer, length);
143      break;
144    case BIGNUM_DTOA_PRECISION:
145      GenerateCountedDigits(requested_digits, decimal_point,
146                            &numerator, &denominator,
147                            buffer, length);
148      break;
149    default:
150      UNREACHABLE();
151  }
152  buffer[*length] = '\0';
153}
154
155
156// The procedure starts generating digits from the left to the right and stops
157// when the generated digits yield the shortest decimal representation of v. A
158// decimal representation of v is a number lying closer to v than to any other
159// double, so it converts to v when read.
160//
161// This is true if d, the decimal representation, is between m- and m+, the
162// upper and lower boundaries. d must be strictly between them if !is_even.
163//           m- := (numerator - delta_minus) / denominator
164//           m+ := (numerator + delta_plus) / denominator
165//
166// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
167//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
168//   will be produced. This should be the standard precondition.
169static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
170                                   Bignum* delta_minus, Bignum* delta_plus,
171                                   bool is_even,
172                                   Vector<char> buffer, int* length) {
173  // Small optimization: if delta_minus and delta_plus are the same just reuse
174  // one of the two bignums.
175  if (Bignum::Equal(*delta_minus, *delta_plus)) {
176    delta_plus = delta_minus;
177  }
178  *length = 0;
179  while (true) {
180    uint16_t digit;
181    digit = numerator->DivideModuloIntBignum(*denominator);
182    ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
183    // digit = numerator / denominator (integer division).
184    // numerator = numerator % denominator.
185    buffer[(*length)++] = digit + '0';
186
187    // Can we stop already?
188    // If the remainder of the division is less than the distance to the lower
189    // boundary we can stop. In this case we simply round down (discarding the
190    // remainder).
191    // Similarly we test if we can round up (using the upper boundary).
192    bool in_delta_room_minus;
193    bool in_delta_room_plus;
194    if (is_even) {
195      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
196    } else {
197      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
198    }
199    if (is_even) {
200      in_delta_room_plus =
201          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
202    } else {
203      in_delta_room_plus =
204          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
205    }
206    if (!in_delta_room_minus && !in_delta_room_plus) {
207      // Prepare for next iteration.
208      numerator->Times10();
209      delta_minus->Times10();
210      // We optimized delta_plus to be equal to delta_minus (if they share the
211      // same value). So don't multiply delta_plus if they point to the same
212      // object.
213      if (delta_minus != delta_plus) {
214        delta_plus->Times10();
215      }
216    } else if (in_delta_room_minus && in_delta_room_plus) {
217      // Let's see if 2*numerator < denominator.
218      // If yes, then the next digit would be < 5 and we can round down.
219      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
220      if (compare < 0) {
221        // Remaining digits are less than .5. -> Round down (== do nothing).
222      } else if (compare > 0) {
223        // Remaining digits are more than .5 of denominator. -> Round up.
224        // Note that the last digit could not be a '9' as otherwise the whole
225        // loop would have stopped earlier.
226        // We still have an assert here in case the preconditions were not
227        // satisfied.
228        ASSERT(buffer[(*length) - 1] != '9');
229        buffer[(*length) - 1]++;
230      } else {
231        // Halfway case.
232        // TODO(floitsch): need a way to solve half-way cases.
233        //   For now let's round towards even (since this is what Gay seems to
234        //   do).
235
236        if ((buffer[(*length) - 1] - '0') % 2 == 0) {
237          // Round down => Do nothing.
238        } else {
239          ASSERT(buffer[(*length) - 1] != '9');
240          buffer[(*length) - 1]++;
241        }
242      }
243      return;
244    } else if (in_delta_room_minus) {
245      // Round down (== do nothing).
246      return;
247    } else {  // in_delta_room_plus
248      // Round up.
249      // Note again that the last digit could not be '9' since this would have
250      // stopped the loop earlier.
251      // We still have an ASSERT here, in case the preconditions were not
252      // satisfied.
253      ASSERT(buffer[(*length) -1] != '9');
254      buffer[(*length) - 1]++;
255      return;
256    }
257  }
258}
259
260
261// Let v = numerator / denominator < 10.
262// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
263// from left to right. Once 'count' digits have been produced we decide wether
264// to round up or down. Remainders of exactly .5 round upwards. Numbers such
265// as 9.999999 propagate a carry all the way, and change the
266// exponent (decimal_point), when rounding upwards.
267static void GenerateCountedDigits(int count, int* decimal_point,
268                                  Bignum* numerator, Bignum* denominator,
269                                  Vector<char>(buffer), int* length) {
270  ASSERT(count >= 0);
271  for (int i = 0; i < count - 1; ++i) {
272    uint16_t digit;
273    digit = numerator->DivideModuloIntBignum(*denominator);
274    ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
275    // digit = numerator / denominator (integer division).
276    // numerator = numerator % denominator.
277    buffer[i] = digit + '0';
278    // Prepare for next iteration.
279    numerator->Times10();
280  }
281  // Generate the last digit.
282  uint16_t digit;
283  digit = numerator->DivideModuloIntBignum(*denominator);
284  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
285    digit++;
286  }
287  buffer[count - 1] = digit + '0';
288  // Correct bad digits (in case we had a sequence of '9's). Propagate the
289  // carry until we hat a non-'9' or til we reach the first digit.
290  for (int i = count - 1; i > 0; --i) {
291    if (buffer[i] != '0' + 10) break;
292    buffer[i] = '0';
293    buffer[i - 1]++;
294  }
295  if (buffer[0] == '0' + 10) {
296    // Propagate a carry past the top place.
297    buffer[0] = '1';
298    (*decimal_point)++;
299  }
300  *length = count;
301}
302
303
304// Generates 'requested_digits' after the decimal point. It might omit
305// trailing '0's. If the input number is too small then no digits at all are
306// generated (ex.: 2 fixed digits for 0.00001).
307//
308// Input verifies:  1 <= (numerator + delta) / denominator < 10.
309static void BignumToFixed(int requested_digits, int* decimal_point,
310                          Bignum* numerator, Bignum* denominator,
311                          Vector<char>(buffer), int* length) {
312  // Note that we have to look at more than just the requested_digits, since
313  // a number could be rounded up. Example: v=0.5 with requested_digits=0.
314  // Even though the power of v equals 0 we can't just stop here.
315  if (-(*decimal_point) > requested_digits) {
316    // The number is definitively too small.
317    // Ex: 0.001 with requested_digits == 1.
318    // Set decimal-point to -requested_digits. This is what Gay does.
319    // Note that it should not have any effect anyways since the string is
320    // empty.
321    *decimal_point = -requested_digits;
322    *length = 0;
323    return;
324  } else if (-(*decimal_point) == requested_digits) {
325    // We only need to verify if the number rounds down or up.
326    // Ex: 0.04 and 0.06 with requested_digits == 1.
327    ASSERT(*decimal_point == -requested_digits);
328    // Initially the fraction lies in range (1, 10]. Multiply the denominator
329    // by 10 so that we can compare more easily.
330    denominator->Times10();
331    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
332      // If the fraction is >= 0.5 then we have to include the rounded
333      // digit.
334      buffer[0] = '1';
335      *length = 1;
336      (*decimal_point)++;
337    } else {
338      // Note that we caught most of similar cases earlier.
339      *length = 0;
340    }
341    return;
342  } else {
343    // The requested digits correspond to the digits after the point.
344    // The variable 'needed_digits' includes the digits before the point.
345    int needed_digits = (*decimal_point) + requested_digits;
346    GenerateCountedDigits(needed_digits, decimal_point,
347                          numerator, denominator,
348                          buffer, length);
349  }
350}
351
352
353// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
354// v = f * 2^exponent and 2^52 <= f < 2^53.
355// v is hence a normalized double with the given exponent. The output is an
356// approximation for the exponent of the decimal approimation .digits * 10^k.
357//
358// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
359// Note: this property holds for v's upper boundary m+ too.
360//    10^k <= m+ < 10^k+1.
361//   (see explanation below).
362//
363// Examples:
364//  EstimatePower(0)   => 16
365//  EstimatePower(-52) => 0
366//
367// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
368static int EstimatePower(int exponent) {
369  // This function estimates log10 of v where v = f*2^e (with e == exponent).
370  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
371  // Note that f is bounded by its container size. Let p = 53 (the double's
372  // significand size). Then 2^(p-1) <= f < 2^p.
373  //
374  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
375  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
376  // The computed number undershoots by less than 0.631 (when we compute log3
377  // and not log10).
378  //
379  // Optimization: since we only need an approximated result this computation
380  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
381  // not really measurable, though.
382  //
383  // Since we want to avoid overshooting we decrement by 1e10 so that
384  // floating-point imprecisions don't affect us.
385  //
386  // Explanation for v's boundary m+: the computation takes advantage of
387  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
388  // (even for denormals where the delta can be much more important).
389
390  const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
391
392  // For doubles len(f) == 53 (don't forget the hidden bit).
393  const int kSignificandSize = 53;
394  double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
395  return static_cast<int>(estimate);
396}
397
398
399// See comments for InitialScaledStartValues.
400static void InitialScaledStartValuesPositiveExponent(
401    double v, int estimated_power, bool need_boundary_deltas,
402    Bignum* numerator, Bignum* denominator,
403    Bignum* delta_minus, Bignum* delta_plus) {
404  // A positive exponent implies a positive power.
405  ASSERT(estimated_power >= 0);
406  // Since the estimated_power is positive we simply multiply the denominator
407  // by 10^estimated_power.
408
409  // numerator = v.
410  numerator->AssignUInt64(Double(v).Significand());
411  numerator->ShiftLeft(Double(v).Exponent());
412  // denominator = 10^estimated_power.
413  denominator->AssignPowerUInt16(10, estimated_power);
414
415  if (need_boundary_deltas) {
416    // Introduce a common denominator so that the deltas to the boundaries are
417    // integers.
418    denominator->ShiftLeft(1);
419    numerator->ShiftLeft(1);
420    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
421    // denominator (of 2) delta_plus equals 2^e.
422    delta_plus->AssignUInt16(1);
423    delta_plus->ShiftLeft(Double(v).Exponent());
424    // Same for delta_minus (with adjustments below if f == 2^p-1).
425    delta_minus->AssignUInt16(1);
426    delta_minus->ShiftLeft(Double(v).Exponent());
427
428    // If the significand (without the hidden bit) is 0, then the lower
429    // boundary is closer than just half a ulp (unit in the last place).
430    // There is only one exception: if the next lower number is a denormal then
431    // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
432    // have to test it in the other function where exponent < 0).
433    uint64_t v_bits = Double(v).AsUint64();
434    if ((v_bits & Double::kSignificandMask) == 0) {
435      // The lower boundary is closer at half the distance of "normal" numbers.
436      // Increase the common denominator and adapt all but the delta_minus.
437      denominator->ShiftLeft(1);  // *2
438      numerator->ShiftLeft(1);    // *2
439      delta_plus->ShiftLeft(1);   // *2
440    }
441  }
442}
443
444
445// See comments for InitialScaledStartValues
446static void InitialScaledStartValuesNegativeExponentPositivePower(
447    double v, int estimated_power, bool need_boundary_deltas,
448    Bignum* numerator, Bignum* denominator,
449    Bignum* delta_minus, Bignum* delta_plus) {
450  uint64_t significand = Double(v).Significand();
451  int exponent = Double(v).Exponent();
452  // v = f * 2^e with e < 0, and with estimated_power >= 0.
453  // This means that e is close to 0 (have a look at how estimated_power is
454  // computed).
455
456  // numerator = significand
457  //  since v = significand * 2^exponent this is equivalent to
458  //  numerator = v * / 2^-exponent
459  numerator->AssignUInt64(significand);
460  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
461  denominator->AssignPowerUInt16(10, estimated_power);
462  denominator->ShiftLeft(-exponent);
463
464  if (need_boundary_deltas) {
465    // Introduce a common denominator so that the deltas to the boundaries are
466    // integers.
467    denominator->ShiftLeft(1);
468    numerator->ShiftLeft(1);
469    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
470    // denominator (of 2) delta_plus equals 2^e.
471    // Given that the denominator already includes v's exponent the distance
472    // to the boundaries is simply 1.
473    delta_plus->AssignUInt16(1);
474    // Same for delta_minus (with adjustments below if f == 2^p-1).
475    delta_minus->AssignUInt16(1);
476
477    // If the significand (without the hidden bit) is 0, then the lower
478    // boundary is closer than just one ulp (unit in the last place).
479    // There is only one exception: if the next lower number is a denormal
480    // then the distance is 1 ulp. Since the exponent is close to zero
481    // (otherwise estimated_power would have been negative) this cannot happen
482    // here either.
483    uint64_t v_bits = Double(v).AsUint64();
484    if ((v_bits & Double::kSignificandMask) == 0) {
485      // The lower boundary is closer at half the distance of "normal" numbers.
486      // Increase the denominator and adapt all but the delta_minus.
487      denominator->ShiftLeft(1);  // *2
488      numerator->ShiftLeft(1);    // *2
489      delta_plus->ShiftLeft(1);   // *2
490    }
491  }
492}
493
494
495// See comments for InitialScaledStartValues
496static void InitialScaledStartValuesNegativeExponentNegativePower(
497    double v, int estimated_power, bool need_boundary_deltas,
498    Bignum* numerator, Bignum* denominator,
499    Bignum* delta_minus, Bignum* delta_plus) {
500  const uint64_t kMinimalNormalizedExponent =
501      V8_2PART_UINT64_C(0x00100000, 00000000);
502  uint64_t significand = Double(v).Significand();
503  int exponent = Double(v).Exponent();
504  // Instead of multiplying the denominator with 10^estimated_power we
505  // multiply all values (numerator and deltas) by 10^-estimated_power.
506
507  // Use numerator as temporary container for power_ten.
508  Bignum* power_ten = numerator;
509  power_ten->AssignPowerUInt16(10, -estimated_power);
510
511  if (need_boundary_deltas) {
512    // Since power_ten == numerator we must make a copy of 10^estimated_power
513    // before we complete the computation of the numerator.
514    // delta_plus = delta_minus = 10^estimated_power
515    delta_plus->AssignBignum(*power_ten);
516    delta_minus->AssignBignum(*power_ten);
517  }
518
519  // numerator = significand * 2 * 10^-estimated_power
520  //  since v = significand * 2^exponent this is equivalent to
521  // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
522  // Remember: numerator has been abused as power_ten. So no need to assign it
523  //  to itself.
524  ASSERT(numerator == power_ten);
525  numerator->MultiplyByUInt64(significand);
526
527  // denominator = 2 * 2^-exponent with exponent < 0.
528  denominator->AssignUInt16(1);
529  denominator->ShiftLeft(-exponent);
530
531  if (need_boundary_deltas) {
532    // Introduce a common denominator so that the deltas to the boundaries are
533    // integers.
534    numerator->ShiftLeft(1);
535    denominator->ShiftLeft(1);
536    // With this shift the boundaries have their correct value, since
537    // delta_plus = 10^-estimated_power, and
538    // delta_minus = 10^-estimated_power.
539    // These assignments have been done earlier.
540
541    // The special case where the lower boundary is twice as close.
542    // This time we have to look out for the exception too.
543    uint64_t v_bits = Double(v).AsUint64();
544    if ((v_bits & Double::kSignificandMask) == 0 &&
545        // The only exception where a significand == 0 has its boundaries at
546        // "normal" distances:
547        (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
548      numerator->ShiftLeft(1);    // *2
549      denominator->ShiftLeft(1);  // *2
550      delta_plus->ShiftLeft(1);   // *2
551    }
552  }
553}
554
555
556// Let v = significand * 2^exponent.
557// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
558// and denominator. The functions GenerateShortestDigits and
559// GenerateCountedDigits will then convert this ratio to its decimal
560// representation d, with the required accuracy.
561// Then d * 10^estimated_power is the representation of v.
562// (Note: the fraction and the estimated_power might get adjusted before
563// generating the decimal representation.)
564//
565// The initial start values consist of:
566//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
567//  - a scaled (common) denominator.
568//  optionally (used by GenerateShortestDigits to decide if it has the shortest
569//  decimal converting back to v):
570//  - v - m-: the distance to the lower boundary.
571//  - m+ - v: the distance to the upper boundary.
572//
573// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
574//
575// Let ep == estimated_power, then the returned values will satisfy:
576//  v / 10^ep = numerator / denominator.
577//  v's boundarys m- and m+:
578//    m- / 10^ep == v / 10^ep - delta_minus / denominator
579//    m+ / 10^ep == v / 10^ep + delta_plus / denominator
580//  Or in other words:
581//    m- == v - delta_minus * 10^ep / denominator;
582//    m+ == v + delta_plus * 10^ep / denominator;
583//
584// Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
585//  or       10^k <= v < 10^(k+1)
586//  we then have 0.1 <= numerator/denominator < 1
587//           or    1 <= numerator/denominator < 10
588//
589// It is then easy to kickstart the digit-generation routine.
590//
591// The boundary-deltas are only filled if need_boundary_deltas is set.
592static void InitialScaledStartValues(double v,
593                                     int estimated_power,
594                                     bool need_boundary_deltas,
595                                     Bignum* numerator,
596                                     Bignum* denominator,
597                                     Bignum* delta_minus,
598                                     Bignum* delta_plus) {
599  if (Double(v).Exponent() >= 0) {
600    InitialScaledStartValuesPositiveExponent(
601        v, estimated_power, need_boundary_deltas,
602        numerator, denominator, delta_minus, delta_plus);
603  } else if (estimated_power >= 0) {
604    InitialScaledStartValuesNegativeExponentPositivePower(
605        v, estimated_power, need_boundary_deltas,
606        numerator, denominator, delta_minus, delta_plus);
607  } else {
608    InitialScaledStartValuesNegativeExponentNegativePower(
609        v, estimated_power, need_boundary_deltas,
610        numerator, denominator, delta_minus, delta_plus);
611  }
612}
613
614
615// This routine multiplies numerator/denominator so that its values lies in the
616// range 1-10. That is after a call to this function we have:
617//    1 <= (numerator + delta_plus) /denominator < 10.
618// Let numerator the input before modification and numerator' the argument
619// after modification, then the output-parameter decimal_point is such that
620//  numerator / denominator * 10^estimated_power ==
621//    numerator' / denominator' * 10^(decimal_point - 1)
622// In some cases estimated_power was too low, and this is already the case. We
623// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
624// estimated_power) but do not touch the numerator or denominator.
625// Otherwise the routine multiplies the numerator and the deltas by 10.
626static void FixupMultiply10(int estimated_power, bool is_even,
627                            int* decimal_point,
628                            Bignum* numerator, Bignum* denominator,
629                            Bignum* delta_minus, Bignum* delta_plus) {
630  bool in_range;
631  if (is_even) {
632    // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
633    // are rounded to the closest floating-point number with even significand.
634    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
635  } else {
636    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
637  }
638  if (in_range) {
639    // Since numerator + delta_plus >= denominator we already have
640    // 1 <= numerator/denominator < 10. Simply update the estimated_power.
641    *decimal_point = estimated_power + 1;
642  } else {
643    *decimal_point = estimated_power;
644    numerator->Times10();
645    if (Bignum::Equal(*delta_minus, *delta_plus)) {
646      delta_minus->Times10();
647      delta_plus->AssignBignum(*delta_minus);
648    } else {
649      delta_minus->Times10();
650      delta_plus->Times10();
651    }
652  }
653}
654
655} }  // namespace v8::internal
656