objects.h revision ac95265630a4e0c317a7a7201d17a57df7d9bcce
1// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_OBJECTS_H_
29#define V8_OBJECTS_H_
30
31#include "builtins.h"
32#include "code-stubs.h"
33#include "smart-pointer.h"
34#include "unicode-inl.h"
35#if V8_TARGET_ARCH_ARM
36#include "arm/constants-arm.h"
37#elif V8_TARGET_ARCH_MIPS
38#include "mips/constants-mips.h"
39#endif
40
41//
42// All object types in the V8 JavaScript are described in this file.
43//
44// Inheritance hierarchy:
45//   - Object
46//     - Smi          (immediate small integer)
47//     - Failure      (immediate for marking failed operation)
48//     - HeapObject   (superclass for everything allocated in the heap)
49//       - JSObject
50//         - JSArray
51//         - JSRegExp
52//         - JSFunction
53//         - GlobalObject
54//           - JSGlobalObject
55//           - JSBuiltinsObject
56//         - JSGlobalProxy
57//        - JSValue
58//       - ByteArray
59//       - PixelArray
60//       - ExternalArray
61//         - ExternalByteArray
62//         - ExternalUnsignedByteArray
63//         - ExternalShortArray
64//         - ExternalUnsignedShortArray
65//         - ExternalIntArray
66//         - ExternalUnsignedIntArray
67//         - ExternalFloatArray
68//       - FixedArray
69//         - DescriptorArray
70//         - HashTable
71//           - Dictionary
72//           - SymbolTable
73//           - CompilationCacheTable
74//           - CodeCacheHashTable
75//           - MapCache
76//         - Context
77//         - GlobalContext
78//         - JSFunctionResultCache
79//       - String
80//         - SeqString
81//           - SeqAsciiString
82//           - SeqTwoByteString
83//         - ConsString
84//         - ExternalString
85//           - ExternalAsciiString
86//           - ExternalTwoByteString
87//       - HeapNumber
88//       - Code
89//       - Map
90//       - Oddball
91//       - Proxy
92//       - SharedFunctionInfo
93//       - Struct
94//         - AccessorInfo
95//         - AccessCheckInfo
96//         - InterceptorInfo
97//         - CallHandlerInfo
98//         - TemplateInfo
99//           - FunctionTemplateInfo
100//           - ObjectTemplateInfo
101//         - Script
102//         - SignatureInfo
103//         - TypeSwitchInfo
104//         - DebugInfo
105//         - BreakPointInfo
106//         - CodeCache
107//
108// Formats of Object*:
109//  Smi:        [31 bit signed int] 0
110//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01
111//  Failure:    [30 bit signed int] 11
112
113// Ecma-262 3rd 8.6.1
114enum PropertyAttributes {
115  NONE              = v8::None,
116  READ_ONLY         = v8::ReadOnly,
117  DONT_ENUM         = v8::DontEnum,
118  DONT_DELETE       = v8::DontDelete,
119  ABSENT            = 16  // Used in runtime to indicate a property is absent.
120  // ABSENT can never be stored in or returned from a descriptor's attributes
121  // bitfield.  It is only used as a return value meaning the attributes of
122  // a non-existent property.
123};
124
125namespace v8 {
126namespace internal {
127
128
129// PropertyDetails captures type and attributes for a property.
130// They are used both in property dictionaries and instance descriptors.
131class PropertyDetails BASE_EMBEDDED {
132 public:
133
134  PropertyDetails(PropertyAttributes attributes,
135                  PropertyType type,
136                  int index = 0) {
137    ASSERT(TypeField::is_valid(type));
138    ASSERT(AttributesField::is_valid(attributes));
139    ASSERT(IndexField::is_valid(index));
140
141    value_ = TypeField::encode(type)
142        | AttributesField::encode(attributes)
143        | IndexField::encode(index);
144
145    ASSERT(type == this->type());
146    ASSERT(attributes == this->attributes());
147    ASSERT(index == this->index());
148  }
149
150  // Conversion for storing details as Object*.
151  inline PropertyDetails(Smi* smi);
152  inline Smi* AsSmi();
153
154  PropertyType type() { return TypeField::decode(value_); }
155
156  bool IsTransition() {
157    PropertyType t = type();
158    ASSERT(t != INTERCEPTOR);
159    return t == MAP_TRANSITION || t == CONSTANT_TRANSITION;
160  }
161
162  bool IsProperty() {
163    return type() < FIRST_PHANTOM_PROPERTY_TYPE;
164  }
165
166  PropertyAttributes attributes() { return AttributesField::decode(value_); }
167
168  int index() { return IndexField::decode(value_); }
169
170  inline PropertyDetails AsDeleted();
171
172  static bool IsValidIndex(int index) { return IndexField::is_valid(index); }
173
174  bool IsReadOnly() { return (attributes() & READ_ONLY) != 0; }
175  bool IsDontDelete() { return (attributes() & DONT_DELETE) != 0; }
176  bool IsDontEnum() { return (attributes() & DONT_ENUM) != 0; }
177  bool IsDeleted() { return DeletedField::decode(value_) != 0;}
178
179  // Bit fields in value_ (type, shift, size). Must be public so the
180  // constants can be embedded in generated code.
181  class TypeField:       public BitField<PropertyType,       0, 3> {};
182  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
183  class DeletedField:    public BitField<uint32_t,           6, 1> {};
184  class IndexField:      public BitField<uint32_t,           7, 32-7> {};
185
186  static const int kInitialIndex = 1;
187 private:
188  uint32_t value_;
189};
190
191
192// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
193enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };
194
195
196// PropertyNormalizationMode is used to specify whether to keep
197// inobject properties when normalizing properties of a JSObject.
198enum PropertyNormalizationMode {
199  CLEAR_INOBJECT_PROPERTIES,
200  KEEP_INOBJECT_PROPERTIES
201};
202
203
204// All Maps have a field instance_type containing a InstanceType.
205// It describes the type of the instances.
206//
207// As an example, a JavaScript object is a heap object and its map
208// instance_type is JS_OBJECT_TYPE.
209//
210// The names of the string instance types are intended to systematically
211// mirror their encoding in the instance_type field of the map.  The default
212// encoding is considered TWO_BYTE.  It is not mentioned in the name.  ASCII
213// encoding is mentioned explicitly in the name.  Likewise, the default
214// representation is considered sequential.  It is not mentioned in the
215// name.  The other representations (eg, CONS, EXTERNAL) are explicitly
216// mentioned.  Finally, the string is either a SYMBOL_TYPE (if it is a
217// symbol) or a STRING_TYPE (if it is not a symbol).
218//
219// NOTE: The following things are some that depend on the string types having
220// instance_types that are less than those of all other types:
221// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
222// Object::IsString.
223//
224// NOTE: Everything following JS_VALUE_TYPE is considered a
225// JSObject for GC purposes. The first four entries here have typeof
226// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
227#define INSTANCE_TYPE_LIST_ALL(V)                                              \
228  V(SYMBOL_TYPE)                                                               \
229  V(ASCII_SYMBOL_TYPE)                                                         \
230  V(CONS_SYMBOL_TYPE)                                                          \
231  V(CONS_ASCII_SYMBOL_TYPE)                                                    \
232  V(EXTERNAL_SYMBOL_TYPE)                                                      \
233  V(EXTERNAL_ASCII_SYMBOL_TYPE)                                                \
234  V(STRING_TYPE)                                                               \
235  V(ASCII_STRING_TYPE)                                                         \
236  V(CONS_STRING_TYPE)                                                          \
237  V(CONS_ASCII_STRING_TYPE)                                                    \
238  V(EXTERNAL_STRING_TYPE)                                                      \
239  V(EXTERNAL_ASCII_STRING_TYPE)                                                \
240  V(PRIVATE_EXTERNAL_ASCII_STRING_TYPE)                                        \
241                                                                               \
242  V(MAP_TYPE)                                                                  \
243  V(CODE_TYPE)                                                                 \
244  V(JS_GLOBAL_PROPERTY_CELL_TYPE)                                              \
245  V(ODDBALL_TYPE)                                                              \
246                                                                               \
247  V(HEAP_NUMBER_TYPE)                                                          \
248  V(PROXY_TYPE)                                                                \
249  V(BYTE_ARRAY_TYPE)                                                           \
250  V(PIXEL_ARRAY_TYPE)                                                          \
251  /* Note: the order of these external array */                                \
252  /* types is relied upon in */                                                \
253  /* Object::IsExternalArray(). */                                             \
254  V(EXTERNAL_BYTE_ARRAY_TYPE)                                                  \
255  V(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE)                                         \
256  V(EXTERNAL_SHORT_ARRAY_TYPE)                                                 \
257  V(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE)                                        \
258  V(EXTERNAL_INT_ARRAY_TYPE)                                                   \
259  V(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE)                                          \
260  V(EXTERNAL_FLOAT_ARRAY_TYPE)                                                 \
261  V(FILLER_TYPE)                                                               \
262                                                                               \
263  V(FIXED_ARRAY_TYPE)                                                          \
264  V(ACCESSOR_INFO_TYPE)                                                        \
265  V(ACCESS_CHECK_INFO_TYPE)                                                    \
266  V(INTERCEPTOR_INFO_TYPE)                                                     \
267  V(SHARED_FUNCTION_INFO_TYPE)                                                 \
268  V(CALL_HANDLER_INFO_TYPE)                                                    \
269  V(FUNCTION_TEMPLATE_INFO_TYPE)                                               \
270  V(OBJECT_TEMPLATE_INFO_TYPE)                                                 \
271  V(SIGNATURE_INFO_TYPE)                                                       \
272  V(TYPE_SWITCH_INFO_TYPE)                                                     \
273  V(SCRIPT_TYPE)                                                               \
274  V(CODE_CACHE_TYPE)                                                           \
275                                                                               \
276  V(JS_VALUE_TYPE)                                                             \
277  V(JS_OBJECT_TYPE)                                                            \
278  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                                          \
279  V(JS_GLOBAL_OBJECT_TYPE)                                                     \
280  V(JS_BUILTINS_OBJECT_TYPE)                                                   \
281  V(JS_GLOBAL_PROXY_TYPE)                                                      \
282  V(JS_ARRAY_TYPE)                                                             \
283  V(JS_REGEXP_TYPE)                                                            \
284                                                                               \
285  V(JS_FUNCTION_TYPE)                                                          \
286
287#ifdef ENABLE_DEBUGGER_SUPPORT
288#define INSTANCE_TYPE_LIST_DEBUGGER(V)                                         \
289  V(DEBUG_INFO_TYPE)                                                           \
290  V(BREAK_POINT_INFO_TYPE)
291#else
292#define INSTANCE_TYPE_LIST_DEBUGGER(V)
293#endif
294
295#define INSTANCE_TYPE_LIST(V)                                                  \
296  INSTANCE_TYPE_LIST_ALL(V)                                                    \
297  INSTANCE_TYPE_LIST_DEBUGGER(V)
298
299
300// Since string types are not consecutive, this macro is used to
301// iterate over them.
302#define STRING_TYPE_LIST(V)                                                    \
303  V(SYMBOL_TYPE,                                                               \
304    SeqTwoByteString::kAlignedSize,                                            \
305    symbol,                                                                    \
306    Symbol)                                                                    \
307  V(ASCII_SYMBOL_TYPE,                                                         \
308    SeqAsciiString::kAlignedSize,                                              \
309    ascii_symbol,                                                              \
310    AsciiSymbol)                                                               \
311  V(CONS_SYMBOL_TYPE,                                                          \
312    ConsString::kSize,                                                         \
313    cons_symbol,                                                               \
314    ConsSymbol)                                                                \
315  V(CONS_ASCII_SYMBOL_TYPE,                                                    \
316    ConsString::kSize,                                                         \
317    cons_ascii_symbol,                                                         \
318    ConsAsciiSymbol)                                                           \
319  V(EXTERNAL_SYMBOL_TYPE,                                                      \
320    ExternalTwoByteString::kSize,                                              \
321    external_symbol,                                                           \
322    ExternalSymbol)                                                            \
323  V(EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE,                                      \
324    ExternalTwoByteString::kSize,                                              \
325    external_symbol_with_ascii_data,                                           \
326    ExternalSymbolWithAsciiData)                                               \
327  V(EXTERNAL_ASCII_SYMBOL_TYPE,                                                \
328    ExternalAsciiString::kSize,                                                \
329    external_ascii_symbol,                                                     \
330    ExternalAsciiSymbol)                                                       \
331  V(STRING_TYPE,                                                               \
332    SeqTwoByteString::kAlignedSize,                                            \
333    string,                                                                    \
334    String)                                                                    \
335  V(ASCII_STRING_TYPE,                                                         \
336    SeqAsciiString::kAlignedSize,                                              \
337    ascii_string,                                                              \
338    AsciiString)                                                               \
339  V(CONS_STRING_TYPE,                                                          \
340    ConsString::kSize,                                                         \
341    cons_string,                                                               \
342    ConsString)                                                                \
343  V(CONS_ASCII_STRING_TYPE,                                                    \
344    ConsString::kSize,                                                         \
345    cons_ascii_string,                                                         \
346    ConsAsciiString)                                                           \
347  V(EXTERNAL_STRING_TYPE,                                                      \
348    ExternalTwoByteString::kSize,                                              \
349    external_string,                                                           \
350    ExternalString)                                                            \
351  V(EXTERNAL_STRING_WITH_ASCII_DATA_TYPE,                                      \
352    ExternalTwoByteString::kSize,                                              \
353    external_string_with_ascii_data,                                           \
354    ExternalStringWithAsciiData)                                               \
355  V(EXTERNAL_ASCII_STRING_TYPE,                                                \
356    ExternalAsciiString::kSize,                                                \
357    external_ascii_string,                                                     \
358    ExternalAsciiString)                                                       \
359
360// A struct is a simple object a set of object-valued fields.  Including an
361// object type in this causes the compiler to generate most of the boilerplate
362// code for the class including allocation and garbage collection routines,
363// casts and predicates.  All you need to define is the class, methods and
364// object verification routines.  Easy, no?
365//
366// Note that for subtle reasons related to the ordering or numerical values of
367// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
368// manually.
369#define STRUCT_LIST_ALL(V)                                                     \
370  V(ACCESSOR_INFO, AccessorInfo, accessor_info)                                \
371  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                     \
372  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                       \
373  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                     \
374  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)      \
375  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)            \
376  V(SIGNATURE_INFO, SignatureInfo, signature_info)                             \
377  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                        \
378  V(SCRIPT, Script, script)                                                    \
379  V(CODE_CACHE, CodeCache, code_cache)
380
381#ifdef ENABLE_DEBUGGER_SUPPORT
382#define STRUCT_LIST_DEBUGGER(V)                                                \
383  V(DEBUG_INFO, DebugInfo, debug_info)                                         \
384  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)
385#else
386#define STRUCT_LIST_DEBUGGER(V)
387#endif
388
389#define STRUCT_LIST(V)                                                         \
390  STRUCT_LIST_ALL(V)                                                           \
391  STRUCT_LIST_DEBUGGER(V)
392
393// We use the full 8 bits of the instance_type field to encode heap object
394// instance types.  The high-order bit (bit 7) is set if the object is not a
395// string, and cleared if it is a string.
396const uint32_t kIsNotStringMask = 0x80;
397const uint32_t kStringTag = 0x0;
398const uint32_t kNotStringTag = 0x80;
399
400// Bit 6 indicates that the object is a symbol (if set) or not (if cleared).
401// There are not enough types that the non-string types (with bit 7 set) can
402// have bit 6 set too.
403const uint32_t kIsSymbolMask = 0x40;
404const uint32_t kNotSymbolTag = 0x0;
405const uint32_t kSymbolTag = 0x40;
406
407// If bit 7 is clear then bit 2 indicates whether the string consists of
408// two-byte characters or one-byte characters.
409const uint32_t kStringEncodingMask = 0x4;
410const uint32_t kTwoByteStringTag = 0x0;
411const uint32_t kAsciiStringTag = 0x4;
412
413// If bit 7 is clear, the low-order 2 bits indicate the representation
414// of the string.
415const uint32_t kStringRepresentationMask = 0x03;
416enum StringRepresentationTag {
417  kSeqStringTag = 0x0,
418  kConsStringTag = 0x1,
419  kExternalStringTag = 0x2
420};
421const uint32_t kIsConsStringMask = 0x1;
422
423// If bit 7 is clear, then bit 3 indicates whether this two-byte
424// string actually contains ascii data.
425const uint32_t kAsciiDataHintMask = 0x08;
426const uint32_t kAsciiDataHintTag = 0x08;
427
428
429// A ConsString with an empty string as the right side is a candidate
430// for being shortcut by the garbage collector unless it is a
431// symbol. It's not common to have non-flat symbols, so we do not
432// shortcut them thereby avoiding turning symbols into strings. See
433// heap.cc and mark-compact.cc.
434const uint32_t kShortcutTypeMask =
435    kIsNotStringMask |
436    kIsSymbolMask |
437    kStringRepresentationMask;
438const uint32_t kShortcutTypeTag = kConsStringTag;
439
440
441enum InstanceType {
442  // String types.
443  SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kSeqStringTag,
444  ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kSeqStringTag,
445  CONS_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kConsStringTag,
446  CONS_ASCII_SYMBOL_TYPE = kAsciiStringTag | kSymbolTag | kConsStringTag,
447  EXTERNAL_SYMBOL_TYPE = kTwoByteStringTag | kSymbolTag | kExternalStringTag,
448  EXTERNAL_SYMBOL_WITH_ASCII_DATA_TYPE =
449      kTwoByteStringTag | kSymbolTag | kExternalStringTag | kAsciiDataHintTag,
450  EXTERNAL_ASCII_SYMBOL_TYPE =
451      kAsciiStringTag | kSymbolTag | kExternalStringTag,
452  STRING_TYPE = kTwoByteStringTag | kSeqStringTag,
453  ASCII_STRING_TYPE = kAsciiStringTag | kSeqStringTag,
454  CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag,
455  CONS_ASCII_STRING_TYPE = kAsciiStringTag | kConsStringTag,
456  EXTERNAL_STRING_TYPE = kTwoByteStringTag | kExternalStringTag,
457  EXTERNAL_STRING_WITH_ASCII_DATA_TYPE =
458      kTwoByteStringTag | kExternalStringTag | kAsciiDataHintTag,
459  EXTERNAL_ASCII_STRING_TYPE = kAsciiStringTag | kExternalStringTag,
460  PRIVATE_EXTERNAL_ASCII_STRING_TYPE = EXTERNAL_ASCII_STRING_TYPE,
461
462  // Objects allocated in their own spaces (never in new space).
463  MAP_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE
464  CODE_TYPE,
465  ODDBALL_TYPE,
466  JS_GLOBAL_PROPERTY_CELL_TYPE,
467
468  // "Data", objects that cannot contain non-map-word pointers to heap
469  // objects.
470  HEAP_NUMBER_TYPE,
471  PROXY_TYPE,
472  BYTE_ARRAY_TYPE,
473  PIXEL_ARRAY_TYPE,
474  EXTERNAL_BYTE_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
475  EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
476  EXTERNAL_SHORT_ARRAY_TYPE,
477  EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
478  EXTERNAL_INT_ARRAY_TYPE,
479  EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
480  EXTERNAL_FLOAT_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
481  FILLER_TYPE,  // LAST_DATA_TYPE
482
483  // Structs.
484  ACCESSOR_INFO_TYPE,
485  ACCESS_CHECK_INFO_TYPE,
486  INTERCEPTOR_INFO_TYPE,
487  CALL_HANDLER_INFO_TYPE,
488  FUNCTION_TEMPLATE_INFO_TYPE,
489  OBJECT_TEMPLATE_INFO_TYPE,
490  SIGNATURE_INFO_TYPE,
491  TYPE_SWITCH_INFO_TYPE,
492  SCRIPT_TYPE,
493  CODE_CACHE_TYPE,
494  // The following two instance types are only used when ENABLE_DEBUGGER_SUPPORT
495  // is defined. However as include/v8.h contain some of the instance type
496  // constants always having them avoids them getting different numbers
497  // depending on whether ENABLE_DEBUGGER_SUPPORT is defined or not.
498  DEBUG_INFO_TYPE,
499  BREAK_POINT_INFO_TYPE,
500
501  FIXED_ARRAY_TYPE,
502  SHARED_FUNCTION_INFO_TYPE,
503
504  JS_VALUE_TYPE,  // FIRST_JS_OBJECT_TYPE
505  JS_OBJECT_TYPE,
506  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
507  JS_GLOBAL_OBJECT_TYPE,
508  JS_BUILTINS_OBJECT_TYPE,
509  JS_GLOBAL_PROXY_TYPE,
510  JS_ARRAY_TYPE,
511  JS_REGEXP_TYPE,  // LAST_JS_OBJECT_TYPE
512
513  JS_FUNCTION_TYPE,
514
515  // Pseudo-types
516  FIRST_TYPE = 0x0,
517  LAST_TYPE = JS_FUNCTION_TYPE,
518  INVALID_TYPE = FIRST_TYPE - 1,
519  FIRST_NONSTRING_TYPE = MAP_TYPE,
520  // Boundaries for testing for an external array.
521  FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_BYTE_ARRAY_TYPE,
522  LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_FLOAT_ARRAY_TYPE,
523  // Boundary for promotion to old data space/old pointer space.
524  LAST_DATA_TYPE = FILLER_TYPE,
525  // Boundaries for testing the type is a JavaScript "object".  Note that
526  // function objects are not counted as objects, even though they are
527  // implemented as such; only values whose typeof is "object" are included.
528  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
529  LAST_JS_OBJECT_TYPE = JS_REGEXP_TYPE
530};
531
532
533STATIC_CHECK(JS_OBJECT_TYPE == Internals::kJSObjectType);
534STATIC_CHECK(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
535STATIC_CHECK(PROXY_TYPE == Internals::kProxyType);
536
537
538enum CompareResult {
539  LESS      = -1,
540  EQUAL     =  0,
541  GREATER   =  1,
542
543  NOT_EQUAL = GREATER
544};
545
546
547#define DECL_BOOLEAN_ACCESSORS(name)   \
548  inline bool name();                  \
549  inline void set_##name(bool value);  \
550
551
552#define DECL_ACCESSORS(name, type)                                      \
553  inline type* name();                                                  \
554  inline void set_##name(type* value,                                   \
555                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \
556
557
558class StringStream;
559class ObjectVisitor;
560
561struct ValueInfo : public Malloced {
562  ValueInfo() : type(FIRST_TYPE), ptr(NULL), str(NULL), number(0) { }
563  InstanceType type;
564  Object* ptr;
565  const char* str;
566  double number;
567};
568
569
570// A template-ized version of the IsXXX functions.
571template <class C> static inline bool Is(Object* obj);
572
573
574// Object is the abstract superclass for all classes in the
575// object hierarchy.
576// Object does not use any virtual functions to avoid the
577// allocation of the C++ vtable.
578// Since Smi and Failure are subclasses of Object no
579// data members can be present in Object.
580class Object BASE_EMBEDDED {
581 public:
582  // Type testing.
583  inline bool IsSmi();
584  inline bool IsHeapObject();
585  inline bool IsHeapNumber();
586  inline bool IsString();
587  inline bool IsSymbol();
588  // See objects-inl.h for more details
589  inline bool IsSeqString();
590  inline bool IsExternalString();
591  inline bool IsExternalTwoByteString();
592  inline bool IsExternalAsciiString();
593  inline bool IsSeqTwoByteString();
594  inline bool IsSeqAsciiString();
595  inline bool IsConsString();
596
597  inline bool IsNumber();
598  inline bool IsByteArray();
599  inline bool IsPixelArray();
600  inline bool IsExternalArray();
601  inline bool IsExternalByteArray();
602  inline bool IsExternalUnsignedByteArray();
603  inline bool IsExternalShortArray();
604  inline bool IsExternalUnsignedShortArray();
605  inline bool IsExternalIntArray();
606  inline bool IsExternalUnsignedIntArray();
607  inline bool IsExternalFloatArray();
608  inline bool IsFailure();
609  inline bool IsRetryAfterGC();
610  inline bool IsOutOfMemoryFailure();
611  inline bool IsException();
612  inline bool IsJSObject();
613  inline bool IsJSContextExtensionObject();
614  inline bool IsMap();
615  inline bool IsFixedArray();
616  inline bool IsDescriptorArray();
617  inline bool IsContext();
618  inline bool IsCatchContext();
619  inline bool IsGlobalContext();
620  inline bool IsJSFunction();
621  inline bool IsCode();
622  inline bool IsOddball();
623  inline bool IsSharedFunctionInfo();
624  inline bool IsJSValue();
625  inline bool IsStringWrapper();
626  inline bool IsProxy();
627  inline bool IsBoolean();
628  inline bool IsJSArray();
629  inline bool IsJSRegExp();
630  inline bool IsHashTable();
631  inline bool IsDictionary();
632  inline bool IsSymbolTable();
633  inline bool IsJSFunctionResultCache();
634  inline bool IsCompilationCacheTable();
635  inline bool IsCodeCacheHashTable();
636  inline bool IsMapCache();
637  inline bool IsPrimitive();
638  inline bool IsGlobalObject();
639  inline bool IsJSGlobalObject();
640  inline bool IsJSBuiltinsObject();
641  inline bool IsJSGlobalProxy();
642  inline bool IsUndetectableObject();
643  inline bool IsAccessCheckNeeded();
644  inline bool IsJSGlobalPropertyCell();
645
646  // Returns true if this object is an instance of the specified
647  // function template.
648  inline bool IsInstanceOf(FunctionTemplateInfo* type);
649
650  inline bool IsStruct();
651#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) inline bool Is##Name();
652  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
653#undef DECLARE_STRUCT_PREDICATE
654
655  // Oddball testing.
656  INLINE(bool IsUndefined());
657  INLINE(bool IsTheHole());
658  INLINE(bool IsNull());
659  INLINE(bool IsTrue());
660  INLINE(bool IsFalse());
661
662  // Extract the number.
663  inline double Number();
664
665  inline bool HasSpecificClassOf(String* name);
666
667  Object* ToObject();             // ECMA-262 9.9.
668  Object* ToBoolean();            // ECMA-262 9.2.
669
670  // Convert to a JSObject if needed.
671  // global_context is used when creating wrapper object.
672  Object* ToObject(Context* global_context);
673
674  // Converts this to a Smi if possible.
675  // Failure is returned otherwise.
676  inline Object* ToSmi();
677
678  void Lookup(String* name, LookupResult* result);
679
680  // Property access.
681  inline Object* GetProperty(String* key);
682  inline Object* GetProperty(String* key, PropertyAttributes* attributes);
683  Object* GetPropertyWithReceiver(Object* receiver,
684                                  String* key,
685                                  PropertyAttributes* attributes);
686  Object* GetProperty(Object* receiver,
687                      LookupResult* result,
688                      String* key,
689                      PropertyAttributes* attributes);
690  Object* GetPropertyWithCallback(Object* receiver,
691                                  Object* structure,
692                                  String* name,
693                                  Object* holder);
694  Object* GetPropertyWithDefinedGetter(Object* receiver,
695                                       JSFunction* getter);
696
697  inline Object* GetElement(uint32_t index);
698  Object* GetElementWithReceiver(Object* receiver, uint32_t index);
699
700  // Return the object's prototype (might be Heap::null_value()).
701  Object* GetPrototype();
702
703  // Tries to convert an object to an array index.  Returns true and sets
704  // the output parameter if it succeeds.
705  inline bool ToArrayIndex(uint32_t* index);
706
707  // Returns true if this is a JSValue containing a string and the index is
708  // < the length of the string.  Used to implement [] on strings.
709  inline bool IsStringObjectWithCharacterAt(uint32_t index);
710
711#ifdef DEBUG
712  // Prints this object with details.
713  void Print();
714  void PrintLn();
715  // Verifies the object.
716  void Verify();
717
718  // Verify a pointer is a valid object pointer.
719  static void VerifyPointer(Object* p);
720#endif
721
722  // Prints this object without details.
723  void ShortPrint();
724
725  // Prints this object without details to a message accumulator.
726  void ShortPrint(StringStream* accumulator);
727
728  // Casting: This cast is only needed to satisfy macros in objects-inl.h.
729  static Object* cast(Object* value) { return value; }
730
731  // Layout description.
732  static const int kHeaderSize = 0;  // Object does not take up any space.
733
734 private:
735  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
736};
737
738
739// Smi represents integer Numbers that can be stored in 31 bits.
740// Smis are immediate which means they are NOT allocated in the heap.
741// The this pointer has the following format: [31 bit signed int] 0
742// For long smis it has the following format:
743//     [32 bit signed int] [31 bits zero padding] 0
744// Smi stands for small integer.
745class Smi: public Object {
746 public:
747  // Returns the integer value.
748  inline int value();
749
750  // Convert a value to a Smi object.
751  static inline Smi* FromInt(int value);
752
753  static inline Smi* FromIntptr(intptr_t value);
754
755  // Returns whether value can be represented in a Smi.
756  static inline bool IsValid(intptr_t value);
757
758  // Casting.
759  static inline Smi* cast(Object* object);
760
761  // Dispatched behavior.
762  void SmiPrint();
763  void SmiPrint(StringStream* accumulator);
764#ifdef DEBUG
765  void SmiVerify();
766#endif
767
768  static const int kMinValue = (-1 << (kSmiValueSize - 1));
769  static const int kMaxValue = -(kMinValue + 1);
770
771 private:
772  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
773};
774
775
776// Failure is used for reporting out of memory situations and
777// propagating exceptions through the runtime system.  Failure objects
778// are transient and cannot occur as part of the object graph.
779//
780// Failures are a single word, encoded as follows:
781// +-------------------------+---+--+--+
782// |...rrrrrrrrrrrrrrrrrrrrrr|sss|tt|11|
783// +-------------------------+---+--+--+
784//                          7 6 4 32 10
785//
786//
787// The low two bits, 0-1, are the failure tag, 11.  The next two bits,
788// 2-3, are a failure type tag 'tt' with possible values:
789//   00 RETRY_AFTER_GC
790//   01 EXCEPTION
791//   10 INTERNAL_ERROR
792//   11 OUT_OF_MEMORY_EXCEPTION
793//
794// The next three bits, 4-6, are an allocation space tag 'sss'.  The
795// allocation space tag is 000 for all failure types except
796// RETRY_AFTER_GC.  For RETRY_AFTER_GC, the possible values are the
797// allocation spaces (the encoding is found in globals.h).
798//
799// The remaining bits is the size of the allocation request in units
800// of the pointer size, and is zeroed except for RETRY_AFTER_GC
801// failures.  The 25 bits (on a 32 bit platform) gives a representable
802// range of 2^27 bytes (128MB).
803
804// Failure type tag info.
805const int kFailureTypeTagSize = 2;
806const int kFailureTypeTagMask = (1 << kFailureTypeTagSize) - 1;
807
808class Failure: public Object {
809 public:
810  // RuntimeStubs assumes EXCEPTION = 1 in the compiler-generated code.
811  enum Type {
812    RETRY_AFTER_GC = 0,
813    EXCEPTION = 1,       // Returning this marker tells the real exception
814                         // is in Top::pending_exception.
815    INTERNAL_ERROR = 2,
816    OUT_OF_MEMORY_EXCEPTION = 3
817  };
818
819  inline Type type() const;
820
821  // Returns the space that needs to be collected for RetryAfterGC failures.
822  inline AllocationSpace allocation_space() const;
823
824  // Returns the number of bytes requested (up to the representable maximum)
825  // for RetryAfterGC failures.
826  inline int requested() const;
827
828  inline bool IsInternalError() const;
829  inline bool IsOutOfMemoryException() const;
830
831  static Failure* RetryAfterGC(int requested_bytes, AllocationSpace space);
832  static inline Failure* RetryAfterGC(int requested_bytes);  // NEW_SPACE
833  static inline Failure* Exception();
834  static inline Failure* InternalError();
835  static inline Failure* OutOfMemoryException();
836  // Casting.
837  static inline Failure* cast(Object* object);
838
839  // Dispatched behavior.
840  void FailurePrint();
841  void FailurePrint(StringStream* accumulator);
842#ifdef DEBUG
843  void FailureVerify();
844#endif
845
846 private:
847  inline intptr_t value() const;
848  static inline Failure* Construct(Type type, intptr_t value = 0);
849
850  DISALLOW_IMPLICIT_CONSTRUCTORS(Failure);
851};
852
853
854// Heap objects typically have a map pointer in their first word.  However,
855// during GC other data (eg, mark bits, forwarding addresses) is sometimes
856// encoded in the first word.  The class MapWord is an abstraction of the
857// value in a heap object's first word.
858class MapWord BASE_EMBEDDED {
859 public:
860  // Normal state: the map word contains a map pointer.
861
862  // Create a map word from a map pointer.
863  static inline MapWord FromMap(Map* map);
864
865  // View this map word as a map pointer.
866  inline Map* ToMap();
867
868
869  // Scavenge collection: the map word of live objects in the from space
870  // contains a forwarding address (a heap object pointer in the to space).
871
872  // True if this map word is a forwarding address for a scavenge
873  // collection.  Only valid during a scavenge collection (specifically,
874  // when all map words are heap object pointers, ie. not during a full GC).
875  inline bool IsForwardingAddress();
876
877  // Create a map word from a forwarding address.
878  static inline MapWord FromForwardingAddress(HeapObject* object);
879
880  // View this map word as a forwarding address.
881  inline HeapObject* ToForwardingAddress();
882
883  // Marking phase of full collection: the map word of live objects is
884  // marked, and may be marked as overflowed (eg, the object is live, its
885  // children have not been visited, and it does not fit in the marking
886  // stack).
887
888  // True if this map word's mark bit is set.
889  inline bool IsMarked();
890
891  // Return this map word but with its mark bit set.
892  inline void SetMark();
893
894  // Return this map word but with its mark bit cleared.
895  inline void ClearMark();
896
897  // True if this map word's overflow bit is set.
898  inline bool IsOverflowed();
899
900  // Return this map word but with its overflow bit set.
901  inline void SetOverflow();
902
903  // Return this map word but with its overflow bit cleared.
904  inline void ClearOverflow();
905
906
907  // Compacting phase of a full compacting collection: the map word of live
908  // objects contains an encoding of the original map address along with the
909  // forwarding address (represented as an offset from the first live object
910  // in the same page as the (old) object address).
911
912  // Create a map word from a map address and a forwarding address offset.
913  static inline MapWord EncodeAddress(Address map_address, int offset);
914
915  // Return the map address encoded in this map word.
916  inline Address DecodeMapAddress(MapSpace* map_space);
917
918  // Return the forwarding offset encoded in this map word.
919  inline int DecodeOffset();
920
921
922  // During serialization: the map word is used to hold an encoded
923  // address, and possibly a mark bit (set and cleared with SetMark
924  // and ClearMark).
925
926  // Create a map word from an encoded address.
927  static inline MapWord FromEncodedAddress(Address address);
928
929  inline Address ToEncodedAddress();
930
931  // Bits used by the marking phase of the garbage collector.
932  //
933  // The first word of a heap object is normally a map pointer. The last two
934  // bits are tagged as '01' (kHeapObjectTag). We reuse the last two bits to
935  // mark an object as live and/or overflowed:
936  //   last bit = 0, marked as alive
937  //   second bit = 1, overflowed
938  // An object is only marked as overflowed when it is marked as live while
939  // the marking stack is overflowed.
940  static const int kMarkingBit = 0;  // marking bit
941  static const int kMarkingMask = (1 << kMarkingBit);  // marking mask
942  static const int kOverflowBit = 1;  // overflow bit
943  static const int kOverflowMask = (1 << kOverflowBit);  // overflow mask
944
945  // Forwarding pointers and map pointer encoding. On 32 bit all the bits are
946  // used.
947  // +-----------------+------------------+-----------------+
948  // |forwarding offset|page offset of map|page index of map|
949  // +-----------------+------------------+-----------------+
950  //          ^                 ^                  ^
951  //          |                 |                  |
952  //          |                 |          kMapPageIndexBits
953  //          |         kMapPageOffsetBits
954  // kForwardingOffsetBits
955  static const int kMapPageOffsetBits = kPageSizeBits - kMapAlignmentBits;
956  static const int kForwardingOffsetBits = kPageSizeBits - kObjectAlignmentBits;
957#ifdef V8_HOST_ARCH_64_BIT
958  static const int kMapPageIndexBits = 16;
959#else
960  // Use all the 32-bits to encode on a 32-bit platform.
961  static const int kMapPageIndexBits =
962      32 - (kMapPageOffsetBits + kForwardingOffsetBits);
963#endif
964
965  static const int kMapPageIndexShift = 0;
966  static const int kMapPageOffsetShift =
967      kMapPageIndexShift + kMapPageIndexBits;
968  static const int kForwardingOffsetShift =
969      kMapPageOffsetShift + kMapPageOffsetBits;
970
971  // Bit masks covering the different parts the encoding.
972  static const uintptr_t kMapPageIndexMask =
973      (1 << kMapPageOffsetShift) - 1;
974  static const uintptr_t kMapPageOffsetMask =
975      ((1 << kForwardingOffsetShift) - 1) & ~kMapPageIndexMask;
976  static const uintptr_t kForwardingOffsetMask =
977      ~(kMapPageIndexMask | kMapPageOffsetMask);
978
979 private:
980  // HeapObject calls the private constructor and directly reads the value.
981  friend class HeapObject;
982
983  explicit MapWord(uintptr_t value) : value_(value) {}
984
985  uintptr_t value_;
986};
987
988
989// HeapObject is the superclass for all classes describing heap allocated
990// objects.
991class HeapObject: public Object {
992 public:
993  // [map]: Contains a map which contains the object's reflective
994  // information.
995  inline Map* map();
996  inline void set_map(Map* value);
997
998  // During garbage collection, the map word of a heap object does not
999  // necessarily contain a map pointer.
1000  inline MapWord map_word();
1001  inline void set_map_word(MapWord map_word);
1002
1003  // Converts an address to a HeapObject pointer.
1004  static inline HeapObject* FromAddress(Address address);
1005
1006  // Returns the address of this HeapObject.
1007  inline Address address();
1008
1009  // Iterates over pointers contained in the object (including the Map)
1010  void Iterate(ObjectVisitor* v);
1011
1012  // Iterates over all pointers contained in the object except the
1013  // first map pointer.  The object type is given in the first
1014  // parameter. This function does not access the map pointer in the
1015  // object, and so is safe to call while the map pointer is modified.
1016  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);
1017
1018  // This method only applies to struct objects.  Iterates over all the fields
1019  // of this struct.
1020  void IterateStructBody(int object_size, ObjectVisitor* v);
1021
1022  // Returns the heap object's size in bytes
1023  inline int Size();
1024
1025  // Given a heap object's map pointer, returns the heap size in bytes
1026  // Useful when the map pointer field is used for other purposes.
1027  // GC internal.
1028  inline int SizeFromMap(Map* map);
1029
1030  // Support for the marking heap objects during the marking phase of GC.
1031  // True if the object is marked live.
1032  inline bool IsMarked();
1033
1034  // Mutate this object's map pointer to indicate that the object is live.
1035  inline void SetMark();
1036
1037  // Mutate this object's map pointer to remove the indication that the
1038  // object is live (ie, partially restore the map pointer).
1039  inline void ClearMark();
1040
1041  // True if this object is marked as overflowed.  Overflowed objects have
1042  // been reached and marked during marking of the heap, but their children
1043  // have not necessarily been marked and they have not been pushed on the
1044  // marking stack.
1045  inline bool IsOverflowed();
1046
1047  // Mutate this object's map pointer to indicate that the object is
1048  // overflowed.
1049  inline void SetOverflow();
1050
1051  // Mutate this object's map pointer to remove the indication that the
1052  // object is overflowed (ie, partially restore the map pointer).
1053  inline void ClearOverflow();
1054
1055  // Returns the field at offset in obj, as a read/write Object* reference.
1056  // Does no checking, and is safe to use during GC, while maps are invalid.
1057  // Does not invoke write barrier, so should only be assigned to
1058  // during marking GC.
1059  static inline Object** RawField(HeapObject* obj, int offset);
1060
1061  // Casting.
1062  static inline HeapObject* cast(Object* obj);
1063
1064  // Return the write barrier mode for this. Callers of this function
1065  // must be able to present a reference to an AssertNoAllocation
1066  // object as a sign that they are not going to use this function
1067  // from code that allocates and thus invalidates the returned write
1068  // barrier mode.
1069  inline WriteBarrierMode GetWriteBarrierMode(const AssertNoAllocation&);
1070
1071  // Dispatched behavior.
1072  void HeapObjectShortPrint(StringStream* accumulator);
1073#ifdef DEBUG
1074  void HeapObjectPrint();
1075  void HeapObjectVerify();
1076  inline void VerifyObjectField(int offset);
1077  inline void VerifySmiField(int offset);
1078
1079  void PrintHeader(const char* id);
1080
1081  // Verify a pointer is a valid HeapObject pointer that points to object
1082  // areas in the heap.
1083  static void VerifyHeapPointer(Object* p);
1084#endif
1085
1086  // Layout description.
1087  // First field in a heap object is map.
1088  static const int kMapOffset = Object::kHeaderSize;
1089  static const int kHeaderSize = kMapOffset + kPointerSize;
1090
1091  STATIC_CHECK(kMapOffset == Internals::kHeapObjectMapOffset);
1092
1093 protected:
1094  // helpers for calling an ObjectVisitor to iterate over pointers in the
1095  // half-open range [start, end) specified as integer offsets
1096  inline void IteratePointers(ObjectVisitor* v, int start, int end);
1097  // as above, for the single element at "offset"
1098  inline void IteratePointer(ObjectVisitor* v, int offset);
1099
1100  // Computes the object size from the map.
1101  // Should only be used from SizeFromMap.
1102  int SlowSizeFromMap(Map* map);
1103
1104 private:
1105  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
1106};
1107
1108
1109// The HeapNumber class describes heap allocated numbers that cannot be
1110// represented in a Smi (small integer)
1111class HeapNumber: public HeapObject {
1112 public:
1113  // [value]: number value.
1114  inline double value();
1115  inline void set_value(double value);
1116
1117  // Casting.
1118  static inline HeapNumber* cast(Object* obj);
1119
1120  // Dispatched behavior.
1121  Object* HeapNumberToBoolean();
1122  void HeapNumberPrint();
1123  void HeapNumberPrint(StringStream* accumulator);
1124#ifdef DEBUG
1125  void HeapNumberVerify();
1126#endif
1127
1128  inline int get_exponent();
1129  inline int get_sign();
1130
1131  // Layout description.
1132  static const int kValueOffset = HeapObject::kHeaderSize;
1133  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
1134  // is a mixture of sign, exponent and mantissa.  Our current platforms are all
1135  // little endian apart from non-EABI arm which is little endian with big
1136  // endian floating point word ordering!
1137#if !defined(V8_HOST_ARCH_ARM) || defined(USE_ARM_EABI)
1138  static const int kMantissaOffset = kValueOffset;
1139  static const int kExponentOffset = kValueOffset + 4;
1140#else
1141  static const int kMantissaOffset = kValueOffset + 4;
1142  static const int kExponentOffset = kValueOffset;
1143# define BIG_ENDIAN_FLOATING_POINT 1
1144#endif
1145  static const int kSize = kValueOffset + kDoubleSize;
1146  static const uint32_t kSignMask = 0x80000000u;
1147  static const uint32_t kExponentMask = 0x7ff00000u;
1148  static const uint32_t kMantissaMask = 0xfffffu;
1149  static const int kMantissaBits = 52;
1150  static const int kExponentBits = 11;
1151  static const int kExponentBias = 1023;
1152  static const int kExponentShift = 20;
1153  static const int kMantissaBitsInTopWord = 20;
1154  static const int kNonMantissaBitsInTopWord = 12;
1155
1156 private:
1157  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
1158};
1159
1160
1161// The JSObject describes real heap allocated JavaScript objects with
1162// properties.
1163// Note that the map of JSObject changes during execution to enable inline
1164// caching.
1165class JSObject: public HeapObject {
1166 public:
1167  enum DeleteMode { NORMAL_DELETION, FORCE_DELETION };
1168  enum ElementsKind {
1169    FAST_ELEMENTS,
1170    DICTIONARY_ELEMENTS,
1171    PIXEL_ELEMENTS,
1172    EXTERNAL_BYTE_ELEMENTS,
1173    EXTERNAL_UNSIGNED_BYTE_ELEMENTS,
1174    EXTERNAL_SHORT_ELEMENTS,
1175    EXTERNAL_UNSIGNED_SHORT_ELEMENTS,
1176    EXTERNAL_INT_ELEMENTS,
1177    EXTERNAL_UNSIGNED_INT_ELEMENTS,
1178    EXTERNAL_FLOAT_ELEMENTS
1179  };
1180
1181  // [properties]: Backing storage for properties.
1182  // properties is a FixedArray in the fast case and a Dictionary in the
1183  // slow case.
1184  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
1185  inline void initialize_properties();
1186  inline bool HasFastProperties();
1187  inline StringDictionary* property_dictionary();  // Gets slow properties.
1188
1189  // [elements]: The elements (properties with names that are integers).
1190  // elements is a FixedArray in the fast case, a Dictionary in the slow
1191  // case, and a PixelArray or ExternalArray in special cases.
1192  DECL_ACCESSORS(elements, HeapObject)
1193  inline void initialize_elements();
1194  inline Object* ResetElements();
1195  inline ElementsKind GetElementsKind();
1196  inline bool HasFastElements();
1197  inline bool HasDictionaryElements();
1198  inline bool HasPixelElements();
1199  inline bool HasExternalArrayElements();
1200  inline bool HasExternalByteElements();
1201  inline bool HasExternalUnsignedByteElements();
1202  inline bool HasExternalShortElements();
1203  inline bool HasExternalUnsignedShortElements();
1204  inline bool HasExternalIntElements();
1205  inline bool HasExternalUnsignedIntElements();
1206  inline bool HasExternalFloatElements();
1207  inline bool AllowsSetElementsLength();
1208  inline NumberDictionary* element_dictionary();  // Gets slow elements.
1209
1210  // Collects elements starting at index 0.
1211  // Undefined values are placed after non-undefined values.
1212  // Returns the number of non-undefined values.
1213  Object* PrepareElementsForSort(uint32_t limit);
1214  // As PrepareElementsForSort, but only on objects where elements is
1215  // a dictionary, and it will stay a dictionary.
1216  Object* PrepareSlowElementsForSort(uint32_t limit);
1217
1218  Object* SetProperty(String* key,
1219                      Object* value,
1220                      PropertyAttributes attributes);
1221  Object* SetProperty(LookupResult* result,
1222                      String* key,
1223                      Object* value,
1224                      PropertyAttributes attributes);
1225  Object* SetPropertyWithFailedAccessCheck(LookupResult* result,
1226                                           String* name,
1227                                           Object* value);
1228  Object* SetPropertyWithCallback(Object* structure,
1229                                  String* name,
1230                                  Object* value,
1231                                  JSObject* holder);
1232  Object* SetPropertyWithDefinedSetter(JSFunction* setter,
1233                                       Object* value);
1234  Object* SetPropertyWithInterceptor(String* name,
1235                                     Object* value,
1236                                     PropertyAttributes attributes);
1237  Object* SetPropertyPostInterceptor(String* name,
1238                                     Object* value,
1239                                     PropertyAttributes attributes);
1240  Object* IgnoreAttributesAndSetLocalProperty(String* key,
1241                                              Object* value,
1242                                              PropertyAttributes attributes);
1243
1244  // Retrieve a value in a normalized object given a lookup result.
1245  // Handles the special representation of JS global objects.
1246  Object* GetNormalizedProperty(LookupResult* result);
1247
1248  // Sets the property value in a normalized object given a lookup result.
1249  // Handles the special representation of JS global objects.
1250  Object* SetNormalizedProperty(LookupResult* result, Object* value);
1251
1252  // Sets the property value in a normalized object given (key, value, details).
1253  // Handles the special representation of JS global objects.
1254  Object* SetNormalizedProperty(String* name,
1255                                Object* value,
1256                                PropertyDetails details);
1257
1258  // Deletes the named property in a normalized object.
1259  Object* DeleteNormalizedProperty(String* name, DeleteMode mode);
1260
1261  // Returns the class name ([[Class]] property in the specification).
1262  String* class_name();
1263
1264  // Returns the constructor name (the name (possibly, inferred name) of the
1265  // function that was used to instantiate the object).
1266  String* constructor_name();
1267
1268  // Retrieve interceptors.
1269  InterceptorInfo* GetNamedInterceptor();
1270  InterceptorInfo* GetIndexedInterceptor();
1271
1272  inline PropertyAttributes GetPropertyAttribute(String* name);
1273  PropertyAttributes GetPropertyAttributeWithReceiver(JSObject* receiver,
1274                                                      String* name);
1275  PropertyAttributes GetLocalPropertyAttribute(String* name);
1276
1277  Object* DefineAccessor(String* name, bool is_getter, JSFunction* fun,
1278                         PropertyAttributes attributes);
1279  Object* LookupAccessor(String* name, bool is_getter);
1280
1281  Object* DefineAccessor(AccessorInfo* info);
1282
1283  // Used from Object::GetProperty().
1284  Object* GetPropertyWithFailedAccessCheck(Object* receiver,
1285                                           LookupResult* result,
1286                                           String* name,
1287                                           PropertyAttributes* attributes);
1288  Object* GetPropertyWithInterceptor(JSObject* receiver,
1289                                     String* name,
1290                                     PropertyAttributes* attributes);
1291  Object* GetPropertyPostInterceptor(JSObject* receiver,
1292                                     String* name,
1293                                     PropertyAttributes* attributes);
1294  Object* GetLocalPropertyPostInterceptor(JSObject* receiver,
1295                                          String* name,
1296                                          PropertyAttributes* attributes);
1297
1298  // Returns true if this is an instance of an api function and has
1299  // been modified since it was created.  May give false positives.
1300  bool IsDirty();
1301
1302  bool HasProperty(String* name) {
1303    return GetPropertyAttribute(name) != ABSENT;
1304  }
1305
1306  // Can cause a GC if it hits an interceptor.
1307  bool HasLocalProperty(String* name) {
1308    return GetLocalPropertyAttribute(name) != ABSENT;
1309  }
1310
1311  // If the receiver is a JSGlobalProxy this method will return its prototype,
1312  // otherwise the result is the receiver itself.
1313  inline Object* BypassGlobalProxy();
1314
1315  // Accessors for hidden properties object.
1316  //
1317  // Hidden properties are not local properties of the object itself.
1318  // Instead they are stored on an auxiliary JSObject stored as a local
1319  // property with a special name Heap::hidden_symbol(). But if the
1320  // receiver is a JSGlobalProxy then the auxiliary object is a property
1321  // of its prototype.
1322  //
1323  // Has/Get/SetHiddenPropertiesObject methods don't allow the holder to be
1324  // a JSGlobalProxy. Use BypassGlobalProxy method above to get to the real
1325  // holder.
1326  //
1327  // These accessors do not touch interceptors or accessors.
1328  inline bool HasHiddenPropertiesObject();
1329  inline Object* GetHiddenPropertiesObject();
1330  inline Object* SetHiddenPropertiesObject(Object* hidden_obj);
1331
1332  Object* DeleteProperty(String* name, DeleteMode mode);
1333  Object* DeleteElement(uint32_t index, DeleteMode mode);
1334
1335  // Tests for the fast common case for property enumeration.
1336  bool IsSimpleEnum();
1337
1338  // Do we want to keep the elements in fast case when increasing the
1339  // capacity?
1340  bool ShouldConvertToSlowElements(int new_capacity);
1341  // Returns true if the backing storage for the slow-case elements of
1342  // this object takes up nearly as much space as a fast-case backing
1343  // storage would.  In that case the JSObject should have fast
1344  // elements.
1345  bool ShouldConvertToFastElements();
1346
1347  // Return the object's prototype (might be Heap::null_value()).
1348  inline Object* GetPrototype();
1349
1350  // Set the object's prototype (only JSObject and null are allowed).
1351  Object* SetPrototype(Object* value, bool skip_hidden_prototypes);
1352
1353  // Tells whether the index'th element is present.
1354  inline bool HasElement(uint32_t index);
1355  bool HasElementWithReceiver(JSObject* receiver, uint32_t index);
1356  bool HasLocalElement(uint32_t index);
1357
1358  bool HasElementWithInterceptor(JSObject* receiver, uint32_t index);
1359  bool HasElementPostInterceptor(JSObject* receiver, uint32_t index);
1360
1361  Object* SetFastElement(uint32_t index, Object* value);
1362
1363  // Set the index'th array element.
1364  // A Failure object is returned if GC is needed.
1365  Object* SetElement(uint32_t index, Object* value);
1366
1367  // Returns the index'th element.
1368  // The undefined object if index is out of bounds.
1369  Object* GetElementWithReceiver(JSObject* receiver, uint32_t index);
1370  Object* GetElementWithInterceptor(JSObject* receiver, uint32_t index);
1371
1372  Object* SetFastElementsCapacityAndLength(int capacity, int length);
1373  Object* SetSlowElements(Object* length);
1374
1375  // Lookup interceptors are used for handling properties controlled by host
1376  // objects.
1377  inline bool HasNamedInterceptor();
1378  inline bool HasIndexedInterceptor();
1379
1380  // Support functions for v8 api (needed for correct interceptor behavior).
1381  bool HasRealNamedProperty(String* key);
1382  bool HasRealElementProperty(uint32_t index);
1383  bool HasRealNamedCallbackProperty(String* key);
1384
1385  // Initializes the array to a certain length
1386  Object* SetElementsLength(Object* length);
1387
1388  // Get the header size for a JSObject.  Used to compute the index of
1389  // internal fields as well as the number of internal fields.
1390  inline int GetHeaderSize();
1391
1392  inline int GetInternalFieldCount();
1393  inline Object* GetInternalField(int index);
1394  inline void SetInternalField(int index, Object* value);
1395
1396  // Lookup a property.  If found, the result is valid and has
1397  // detailed information.
1398  void LocalLookup(String* name, LookupResult* result);
1399  void Lookup(String* name, LookupResult* result);
1400
1401  // The following lookup functions skip interceptors.
1402  void LocalLookupRealNamedProperty(String* name, LookupResult* result);
1403  void LookupRealNamedProperty(String* name, LookupResult* result);
1404  void LookupRealNamedPropertyInPrototypes(String* name, LookupResult* result);
1405  void LookupCallbackSetterInPrototypes(String* name, LookupResult* result);
1406  bool SetElementWithCallbackSetterInPrototypes(uint32_t index, Object* value);
1407  void LookupCallback(String* name, LookupResult* result);
1408
1409  // Returns the number of properties on this object filtering out properties
1410  // with the specified attributes (ignoring interceptors).
1411  int NumberOfLocalProperties(PropertyAttributes filter);
1412  // Returns the number of enumerable properties (ignoring interceptors).
1413  int NumberOfEnumProperties();
1414  // Fill in details for properties into storage starting at the specified
1415  // index.
1416  void GetLocalPropertyNames(FixedArray* storage, int index);
1417
1418  // Returns the number of properties on this object filtering out properties
1419  // with the specified attributes (ignoring interceptors).
1420  int NumberOfLocalElements(PropertyAttributes filter);
1421  // Returns the number of enumerable elements (ignoring interceptors).
1422  int NumberOfEnumElements();
1423  // Returns the number of elements on this object filtering out elements
1424  // with the specified attributes (ignoring interceptors).
1425  int GetLocalElementKeys(FixedArray* storage, PropertyAttributes filter);
1426  // Count and fill in the enumerable elements into storage.
1427  // (storage->length() == NumberOfEnumElements()).
1428  // If storage is NULL, will count the elements without adding
1429  // them to any storage.
1430  // Returns the number of enumerable elements.
1431  int GetEnumElementKeys(FixedArray* storage);
1432
1433  // Add a property to a fast-case object using a map transition to
1434  // new_map.
1435  Object* AddFastPropertyUsingMap(Map* new_map,
1436                                  String* name,
1437                                  Object* value);
1438
1439  // Add a constant function property to a fast-case object.
1440  // This leaves a CONSTANT_TRANSITION in the old map, and
1441  // if it is called on a second object with this map, a
1442  // normal property is added instead, with a map transition.
1443  // This avoids the creation of many maps with the same constant
1444  // function, all orphaned.
1445  Object* AddConstantFunctionProperty(String* name,
1446                                      JSFunction* function,
1447                                      PropertyAttributes attributes);
1448
1449  Object* ReplaceSlowProperty(String* name,
1450                              Object* value,
1451                              PropertyAttributes attributes);
1452
1453  // Converts a descriptor of any other type to a real field,
1454  // backed by the properties array.  Descriptors of visible
1455  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1456  // Converts the descriptor on the original object's map to a
1457  // map transition, and the the new field is on the object's new map.
1458  Object* ConvertDescriptorToFieldAndMapTransition(
1459      String* name,
1460      Object* new_value,
1461      PropertyAttributes attributes);
1462
1463  // Converts a descriptor of any other type to a real field,
1464  // backed by the properties array.  Descriptors of visible
1465  // types, such as CONSTANT_FUNCTION, keep their enumeration order.
1466  Object* ConvertDescriptorToField(String* name,
1467                                   Object* new_value,
1468                                   PropertyAttributes attributes);
1469
1470  // Add a property to a fast-case object.
1471  Object* AddFastProperty(String* name,
1472                          Object* value,
1473                          PropertyAttributes attributes);
1474
1475  // Add a property to a slow-case object.
1476  Object* AddSlowProperty(String* name,
1477                          Object* value,
1478                          PropertyAttributes attributes);
1479
1480  // Add a property to an object.
1481  Object* AddProperty(String* name,
1482                      Object* value,
1483                      PropertyAttributes attributes);
1484
1485  // Convert the object to use the canonical dictionary
1486  // representation. If the object is expected to have additional properties
1487  // added this number can be indicated to have the backing store allocated to
1488  // an initial capacity for holding these properties.
1489  Object* NormalizeProperties(PropertyNormalizationMode mode,
1490                              int expected_additional_properties);
1491  Object* NormalizeElements();
1492
1493  // Transform slow named properties to fast variants.
1494  // Returns failure if allocation failed.
1495  Object* TransformToFastProperties(int unused_property_fields);
1496
1497  // Access fast-case object properties at index.
1498  inline Object* FastPropertyAt(int index);
1499  inline Object* FastPropertyAtPut(int index, Object* value);
1500
1501  // Access to in object properties.
1502  inline Object* InObjectPropertyAt(int index);
1503  inline Object* InObjectPropertyAtPut(int index,
1504                                       Object* value,
1505                                       WriteBarrierMode mode
1506                                       = UPDATE_WRITE_BARRIER);
1507
1508  // initializes the body after properties slot, properties slot is
1509  // initialized by set_properties
1510  // Note: this call does not update write barrier, it is caller's
1511  // reponsibility to ensure that *v* can be collected without WB here.
1512  inline void InitializeBody(int object_size);
1513
1514  // Check whether this object references another object
1515  bool ReferencesObject(Object* obj);
1516
1517  // Casting.
1518  static inline JSObject* cast(Object* obj);
1519
1520  // Disalow further properties to be added to the object.
1521  Object* PreventExtensions();
1522
1523
1524  // Dispatched behavior.
1525  void JSObjectIterateBody(int object_size, ObjectVisitor* v);
1526  void JSObjectShortPrint(StringStream* accumulator);
1527#ifdef DEBUG
1528  void JSObjectPrint();
1529  void JSObjectVerify();
1530  void PrintProperties();
1531  void PrintElements();
1532
1533  // Structure for collecting spill information about JSObjects.
1534  class SpillInformation {
1535   public:
1536    void Clear();
1537    void Print();
1538    int number_of_objects_;
1539    int number_of_objects_with_fast_properties_;
1540    int number_of_objects_with_fast_elements_;
1541    int number_of_fast_used_fields_;
1542    int number_of_fast_unused_fields_;
1543    int number_of_slow_used_properties_;
1544    int number_of_slow_unused_properties_;
1545    int number_of_fast_used_elements_;
1546    int number_of_fast_unused_elements_;
1547    int number_of_slow_used_elements_;
1548    int number_of_slow_unused_elements_;
1549  };
1550
1551  void IncrementSpillStatistics(SpillInformation* info);
1552#endif
1553  Object* SlowReverseLookup(Object* value);
1554
1555  // Maximal number of fast properties for the JSObject. Used to
1556  // restrict the number of map transitions to avoid an explosion in
1557  // the number of maps for objects used as dictionaries.
1558  inline int MaxFastProperties();
1559
1560  // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
1561  // Also maximal value of JSArray's length property.
1562  static const uint32_t kMaxElementCount = 0xffffffffu;
1563
1564  static const uint32_t kMaxGap = 1024;
1565  static const int kMaxFastElementsLength = 5000;
1566  static const int kInitialMaxFastElementArray = 100000;
1567  static const int kMaxFastProperties = 8;
1568  static const int kMaxInstanceSize = 255 * kPointerSize;
1569  // When extending the backing storage for property values, we increase
1570  // its size by more than the 1 entry necessary, so sequentially adding fields
1571  // to the same object requires fewer allocations and copies.
1572  static const int kFieldsAdded = 3;
1573
1574  // Layout description.
1575  static const int kPropertiesOffset = HeapObject::kHeaderSize;
1576  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
1577  static const int kHeaderSize = kElementsOffset + kPointerSize;
1578
1579  STATIC_CHECK(kHeaderSize == Internals::kJSObjectHeaderSize);
1580
1581 private:
1582  Object* GetElementWithCallback(Object* receiver,
1583                                 Object* structure,
1584                                 uint32_t index,
1585                                 Object* holder);
1586  Object* SetElementWithCallback(Object* structure,
1587                                 uint32_t index,
1588                                 Object* value,
1589                                 JSObject* holder);
1590  Object* SetElementWithInterceptor(uint32_t index, Object* value);
1591  Object* SetElementWithoutInterceptor(uint32_t index, Object* value);
1592
1593  Object* GetElementPostInterceptor(JSObject* receiver, uint32_t index);
1594
1595  Object* DeletePropertyPostInterceptor(String* name, DeleteMode mode);
1596  Object* DeletePropertyWithInterceptor(String* name);
1597
1598  Object* DeleteElementPostInterceptor(uint32_t index, DeleteMode mode);
1599  Object* DeleteElementWithInterceptor(uint32_t index);
1600
1601  PropertyAttributes GetPropertyAttributePostInterceptor(JSObject* receiver,
1602                                                         String* name,
1603                                                         bool continue_search);
1604  PropertyAttributes GetPropertyAttributeWithInterceptor(JSObject* receiver,
1605                                                         String* name,
1606                                                         bool continue_search);
1607  PropertyAttributes GetPropertyAttributeWithFailedAccessCheck(
1608      Object* receiver,
1609      LookupResult* result,
1610      String* name,
1611      bool continue_search);
1612  PropertyAttributes GetPropertyAttribute(JSObject* receiver,
1613                                          LookupResult* result,
1614                                          String* name,
1615                                          bool continue_search);
1616
1617  // Returns true if most of the elements backing storage is used.
1618  bool HasDenseElements();
1619
1620  bool CanSetCallback(String* name);
1621  Object* SetElementCallback(uint32_t index,
1622                             Object* structure,
1623                             PropertyAttributes attributes);
1624  Object* SetPropertyCallback(String* name,
1625                              Object* structure,
1626                              PropertyAttributes attributes);
1627  Object* DefineGetterSetter(String* name, PropertyAttributes attributes);
1628
1629  void LookupInDescriptor(String* name, LookupResult* result);
1630
1631  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
1632};
1633
1634
1635// FixedArray describes fixed-sized arrays with element type Object*.
1636class FixedArray: public HeapObject {
1637 public:
1638  // [length]: length of the array.
1639  inline int length();
1640  inline void set_length(int value);
1641
1642  // Setter and getter for elements.
1643  inline Object* get(int index);
1644  // Setter that uses write barrier.
1645  inline void set(int index, Object* value);
1646
1647  // Setter that doesn't need write barrier).
1648  inline void set(int index, Smi* value);
1649  // Setter with explicit barrier mode.
1650  inline void set(int index, Object* value, WriteBarrierMode mode);
1651
1652  // Setters for frequently used oddballs located in old space.
1653  inline void set_undefined(int index);
1654  inline void set_null(int index);
1655  inline void set_the_hole(int index);
1656
1657  // Gives access to raw memory which stores the array's data.
1658  inline Object** data_start();
1659
1660  // Copy operations.
1661  inline Object* Copy();
1662  Object* CopySize(int new_length);
1663
1664  // Add the elements of a JSArray to this FixedArray.
1665  Object* AddKeysFromJSArray(JSArray* array);
1666
1667  // Compute the union of this and other.
1668  Object* UnionOfKeys(FixedArray* other);
1669
1670  // Copy a sub array from the receiver to dest.
1671  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);
1672
1673  // Garbage collection support.
1674  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }
1675
1676  // Code Generation support.
1677  static int OffsetOfElementAt(int index) { return SizeFor(index); }
1678
1679  // Casting.
1680  static inline FixedArray* cast(Object* obj);
1681
1682  // Layout description.
1683  // Length is smi tagged when it is stored.
1684  static const int kLengthOffset = HeapObject::kHeaderSize;
1685  static const int kHeaderSize = kLengthOffset + kPointerSize;
1686
1687  // Maximal allowed size, in bytes, of a single FixedArray.
1688  // Prevents overflowing size computations, as well as extreme memory
1689  // consumption.
1690  static const int kMaxSize = 512 * MB;
1691  // Maximally allowed length of a FixedArray.
1692  static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;
1693
1694  // Dispatched behavior.
1695  int FixedArraySize() { return SizeFor(length()); }
1696  void FixedArrayIterateBody(ObjectVisitor* v);
1697#ifdef DEBUG
1698  void FixedArrayPrint();
1699  void FixedArrayVerify();
1700  // Checks if two FixedArrays have identical contents.
1701  bool IsEqualTo(FixedArray* other);
1702#endif
1703
1704  // Swap two elements in a pair of arrays.  If this array and the
1705  // numbers array are the same object, the elements are only swapped
1706  // once.
1707  void SwapPairs(FixedArray* numbers, int i, int j);
1708
1709  // Sort prefix of this array and the numbers array as pairs wrt. the
1710  // numbers.  If the numbers array and the this array are the same
1711  // object, the prefix of this array is sorted.
1712  void SortPairs(FixedArray* numbers, uint32_t len);
1713
1714 protected:
1715  // Set operation on FixedArray without using write barriers. Can
1716  // only be used for storing old space objects or smis.
1717  static inline void fast_set(FixedArray* array, int index, Object* value);
1718
1719 private:
1720  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
1721};
1722
1723
1724// DescriptorArrays are fixed arrays used to hold instance descriptors.
1725// The format of the these objects is:
1726//   [0]: point to a fixed array with (value, detail) pairs.
1727//   [1]: next enumeration index (Smi), or pointer to small fixed array:
1728//          [0]: next enumeration index (Smi)
1729//          [1]: pointer to fixed array with enum cache
1730//   [2]: first key
1731//   [length() - 1]: last key
1732//
1733class DescriptorArray: public FixedArray {
1734 public:
1735  // Is this the singleton empty_descriptor_array?
1736  inline bool IsEmpty();
1737
1738  // Returns the number of descriptors in the array.
1739  int number_of_descriptors() {
1740    return IsEmpty() ? 0 : length() - kFirstIndex;
1741  }
1742
1743  int NextEnumerationIndex() {
1744    if (IsEmpty()) return PropertyDetails::kInitialIndex;
1745    Object* obj = get(kEnumerationIndexIndex);
1746    if (obj->IsSmi()) {
1747      return Smi::cast(obj)->value();
1748    } else {
1749      Object* index = FixedArray::cast(obj)->get(kEnumCacheBridgeEnumIndex);
1750      return Smi::cast(index)->value();
1751    }
1752  }
1753
1754  // Set next enumeration index and flush any enum cache.
1755  void SetNextEnumerationIndex(int value) {
1756    if (!IsEmpty()) {
1757      fast_set(this, kEnumerationIndexIndex, Smi::FromInt(value));
1758    }
1759  }
1760  bool HasEnumCache() {
1761    return !IsEmpty() && !get(kEnumerationIndexIndex)->IsSmi();
1762  }
1763
1764  Object* GetEnumCache() {
1765    ASSERT(HasEnumCache());
1766    FixedArray* bridge = FixedArray::cast(get(kEnumerationIndexIndex));
1767    return bridge->get(kEnumCacheBridgeCacheIndex);
1768  }
1769
1770  // Initialize or change the enum cache,
1771  // using the supplied storage for the small "bridge".
1772  void SetEnumCache(FixedArray* bridge_storage, FixedArray* new_cache);
1773
1774  // Accessors for fetching instance descriptor at descriptor number.
1775  inline String* GetKey(int descriptor_number);
1776  inline Object* GetValue(int descriptor_number);
1777  inline Smi* GetDetails(int descriptor_number);
1778  inline PropertyType GetType(int descriptor_number);
1779  inline int GetFieldIndex(int descriptor_number);
1780  inline JSFunction* GetConstantFunction(int descriptor_number);
1781  inline Object* GetCallbacksObject(int descriptor_number);
1782  inline AccessorDescriptor* GetCallbacks(int descriptor_number);
1783  inline bool IsProperty(int descriptor_number);
1784  inline bool IsTransition(int descriptor_number);
1785  inline bool IsNullDescriptor(int descriptor_number);
1786  inline bool IsDontEnum(int descriptor_number);
1787
1788  // Accessor for complete descriptor.
1789  inline void Get(int descriptor_number, Descriptor* desc);
1790  inline void Set(int descriptor_number, Descriptor* desc);
1791
1792  // Transfer complete descriptor from another descriptor array to
1793  // this one.
1794  inline void CopyFrom(int index, DescriptorArray* src, int src_index);
1795
1796  // Copy the descriptor array, insert a new descriptor and optionally
1797  // remove map transitions.  If the descriptor is already present, it is
1798  // replaced.  If a replaced descriptor is a real property (not a transition
1799  // or null), its enumeration index is kept as is.
1800  // If adding a real property, map transitions must be removed.  If adding
1801  // a transition, they must not be removed.  All null descriptors are removed.
1802  Object* CopyInsert(Descriptor* descriptor, TransitionFlag transition_flag);
1803
1804  // Remove all transitions.  Return  a copy of the array with all transitions
1805  // removed, or a Failure object if the new array could not be allocated.
1806  Object* RemoveTransitions();
1807
1808  // Sort the instance descriptors by the hash codes of their keys.
1809  void Sort();
1810
1811  // Search the instance descriptors for given name.
1812  inline int Search(String* name);
1813
1814  // Tells whether the name is present int the array.
1815  bool Contains(String* name) { return kNotFound != Search(name); }
1816
1817  // Perform a binary search in the instance descriptors represented
1818  // by this fixed array.  low and high are descriptor indices.  If there
1819  // are three instance descriptors in this array it should be called
1820  // with low=0 and high=2.
1821  int BinarySearch(String* name, int low, int high);
1822
1823  // Perform a linear search in the instance descriptors represented
1824  // by this fixed array.  len is the number of descriptor indices that are
1825  // valid.  Does not require the descriptors to be sorted.
1826  int LinearSearch(String* name, int len);
1827
1828  // Allocates a DescriptorArray, but returns the singleton
1829  // empty descriptor array object if number_of_descriptors is 0.
1830  static Object* Allocate(int number_of_descriptors);
1831
1832  // Casting.
1833  static inline DescriptorArray* cast(Object* obj);
1834
1835  // Constant for denoting key was not found.
1836  static const int kNotFound = -1;
1837
1838  static const int kContentArrayIndex = 0;
1839  static const int kEnumerationIndexIndex = 1;
1840  static const int kFirstIndex = 2;
1841
1842  // The length of the "bridge" to the enum cache.
1843  static const int kEnumCacheBridgeLength = 2;
1844  static const int kEnumCacheBridgeEnumIndex = 0;
1845  static const int kEnumCacheBridgeCacheIndex = 1;
1846
1847  // Layout description.
1848  static const int kContentArrayOffset = FixedArray::kHeaderSize;
1849  static const int kEnumerationIndexOffset = kContentArrayOffset + kPointerSize;
1850  static const int kFirstOffset = kEnumerationIndexOffset + kPointerSize;
1851
1852  // Layout description for the bridge array.
1853  static const int kEnumCacheBridgeEnumOffset = FixedArray::kHeaderSize;
1854  static const int kEnumCacheBridgeCacheOffset =
1855    kEnumCacheBridgeEnumOffset + kPointerSize;
1856
1857#ifdef DEBUG
1858  // Print all the descriptors.
1859  void PrintDescriptors();
1860
1861  // Is the descriptor array sorted and without duplicates?
1862  bool IsSortedNoDuplicates();
1863
1864  // Are two DescriptorArrays equal?
1865  bool IsEqualTo(DescriptorArray* other);
1866#endif
1867
1868  // The maximum number of descriptors we want in a descriptor array (should
1869  // fit in a page).
1870  static const int kMaxNumberOfDescriptors = 1024 + 512;
1871
1872 private:
1873  // Conversion from descriptor number to array indices.
1874  static int ToKeyIndex(int descriptor_number) {
1875    return descriptor_number+kFirstIndex;
1876  }
1877
1878  static int ToDetailsIndex(int descriptor_number) {
1879    return (descriptor_number << 1) + 1;
1880  }
1881
1882  static int ToValueIndex(int descriptor_number) {
1883    return descriptor_number << 1;
1884  }
1885
1886  bool is_null_descriptor(int descriptor_number) {
1887    return PropertyDetails(GetDetails(descriptor_number)).type() ==
1888        NULL_DESCRIPTOR;
1889  }
1890  // Swap operation on FixedArray without using write barriers.
1891  static inline void fast_swap(FixedArray* array, int first, int second);
1892
1893  // Swap descriptor first and second.
1894  inline void Swap(int first, int second);
1895
1896  FixedArray* GetContentArray() {
1897    return FixedArray::cast(get(kContentArrayIndex));
1898  }
1899  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
1900};
1901
1902
1903// HashTable is a subclass of FixedArray that implements a hash table
1904// that uses open addressing and quadratic probing.
1905//
1906// In order for the quadratic probing to work, elements that have not
1907// yet been used and elements that have been deleted are
1908// distinguished.  Probing continues when deleted elements are
1909// encountered and stops when unused elements are encountered.
1910//
1911// - Elements with key == undefined have not been used yet.
1912// - Elements with key == null have been deleted.
1913//
1914// The hash table class is parameterized with a Shape and a Key.
1915// Shape must be a class with the following interface:
1916//   class ExampleShape {
1917//    public:
1918//      // Tells whether key matches other.
1919//     static bool IsMatch(Key key, Object* other);
1920//     // Returns the hash value for key.
1921//     static uint32_t Hash(Key key);
1922//     // Returns the hash value for object.
1923//     static uint32_t HashForObject(Key key, Object* object);
1924//     // Convert key to an object.
1925//     static inline Object* AsObject(Key key);
1926//     // The prefix size indicates number of elements in the beginning
1927//     // of the backing storage.
1928//     static const int kPrefixSize = ..;
1929//     // The Element size indicates number of elements per entry.
1930//     static const int kEntrySize = ..;
1931//   };
1932// The prefix size indicates an amount of memory in the
1933// beginning of the backing storage that can be used for non-element
1934// information by subclasses.
1935
1936template<typename Shape, typename Key>
1937class HashTable: public FixedArray {
1938 public:
1939  // Returns the number of elements in the hash table.
1940  int NumberOfElements() {
1941    return Smi::cast(get(kNumberOfElementsIndex))->value();
1942  }
1943
1944  // Returns the number of deleted elements in the hash table.
1945  int NumberOfDeletedElements() {
1946    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
1947  }
1948
1949  // Returns the capacity of the hash table.
1950  int Capacity() {
1951    return Smi::cast(get(kCapacityIndex))->value();
1952  }
1953
1954  // ElementAdded should be called whenever an element is added to a
1955  // hash table.
1956  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }
1957
1958  // ElementRemoved should be called whenever an element is removed from
1959  // a hash table.
1960  void ElementRemoved() {
1961    SetNumberOfElements(NumberOfElements() - 1);
1962    SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
1963  }
1964  void ElementsRemoved(int n) {
1965    SetNumberOfElements(NumberOfElements() - n);
1966    SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
1967  }
1968
1969  // Returns a new HashTable object. Might return Failure.
1970  static Object* Allocate(int at_least_space_for,
1971                          PretenureFlag pretenure = NOT_TENURED);
1972
1973  // Returns the key at entry.
1974  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }
1975
1976  // Tells whether k is a real key.  Null and undefined are not allowed
1977  // as keys and can be used to indicate missing or deleted elements.
1978  bool IsKey(Object* k) {
1979    return !k->IsNull() && !k->IsUndefined();
1980  }
1981
1982  // Garbage collection support.
1983  void IteratePrefix(ObjectVisitor* visitor);
1984  void IterateElements(ObjectVisitor* visitor);
1985
1986  // Casting.
1987  static inline HashTable* cast(Object* obj);
1988
1989  // Compute the probe offset (quadratic probing).
1990  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
1991    return (n + n * n) >> 1;
1992  }
1993
1994  static const int kNumberOfElementsIndex = 0;
1995  static const int kNumberOfDeletedElementsIndex = 1;
1996  static const int kCapacityIndex = 2;
1997  static const int kPrefixStartIndex = 3;
1998  static const int kElementsStartIndex =
1999      kPrefixStartIndex + Shape::kPrefixSize;
2000  static const int kEntrySize = Shape::kEntrySize;
2001  static const int kElementsStartOffset =
2002      kHeaderSize + kElementsStartIndex * kPointerSize;
2003  static const int kCapacityOffset =
2004      kHeaderSize + kCapacityIndex * kPointerSize;
2005
2006  // Constant used for denoting a absent entry.
2007  static const int kNotFound = -1;
2008
2009  // Maximal capacity of HashTable. Based on maximal length of underlying
2010  // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
2011  // cannot overflow.
2012  static const int kMaxCapacity =
2013      (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;
2014
2015  // Find entry for key otherwise return -1.
2016  int FindEntry(Key key);
2017
2018 protected:
2019
2020  // Find the entry at which to insert element with the given key that
2021  // has the given hash value.
2022  uint32_t FindInsertionEntry(uint32_t hash);
2023
2024  // Returns the index for an entry (of the key)
2025  static inline int EntryToIndex(int entry) {
2026    return (entry * kEntrySize) + kElementsStartIndex;
2027  }
2028
2029  // Update the number of elements in the hash table.
2030  void SetNumberOfElements(int nof) {
2031    fast_set(this, kNumberOfElementsIndex, Smi::FromInt(nof));
2032  }
2033
2034  // Update the number of deleted elements in the hash table.
2035  void SetNumberOfDeletedElements(int nod) {
2036    fast_set(this, kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
2037  }
2038
2039  // Sets the capacity of the hash table.
2040  void SetCapacity(int capacity) {
2041    // To scale a computed hash code to fit within the hash table, we
2042    // use bit-wise AND with a mask, so the capacity must be positive
2043    // and non-zero.
2044    ASSERT(capacity > 0);
2045    ASSERT(capacity <= kMaxCapacity);
2046    fast_set(this, kCapacityIndex, Smi::FromInt(capacity));
2047  }
2048
2049
2050  // Returns probe entry.
2051  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
2052    ASSERT(IsPowerOf2(size));
2053    return (hash + GetProbeOffset(number)) & (size - 1);
2054  }
2055
2056  static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
2057    return hash & (size - 1);
2058  }
2059
2060  static uint32_t NextProbe(uint32_t last, uint32_t number, uint32_t size) {
2061    return (last + number) & (size - 1);
2062  }
2063
2064  // Ensure enough space for n additional elements.
2065  Object* EnsureCapacity(int n, Key key);
2066};
2067
2068
2069
2070// HashTableKey is an abstract superclass for virtual key behavior.
2071class HashTableKey {
2072 public:
2073  // Returns whether the other object matches this key.
2074  virtual bool IsMatch(Object* other) = 0;
2075  // Returns the hash value for this key.
2076  virtual uint32_t Hash() = 0;
2077  // Returns the hash value for object.
2078  virtual uint32_t HashForObject(Object* key) = 0;
2079  // Returns the key object for storing into the hash table.
2080  // If allocations fails a failure object is returned.
2081  virtual Object* AsObject() = 0;
2082  // Required.
2083  virtual ~HashTableKey() {}
2084};
2085
2086class SymbolTableShape {
2087 public:
2088  static bool IsMatch(HashTableKey* key, Object* value) {
2089    return key->IsMatch(value);
2090  }
2091  static uint32_t Hash(HashTableKey* key) {
2092    return key->Hash();
2093  }
2094  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2095    return key->HashForObject(object);
2096  }
2097  static Object* AsObject(HashTableKey* key) {
2098    return key->AsObject();
2099  }
2100
2101  static const int kPrefixSize = 0;
2102  static const int kEntrySize = 1;
2103};
2104
2105// SymbolTable.
2106//
2107// No special elements in the prefix and the element size is 1
2108// because only the symbol itself (the key) needs to be stored.
2109class SymbolTable: public HashTable<SymbolTableShape, HashTableKey*> {
2110 public:
2111  // Find symbol in the symbol table.  If it is not there yet, it is
2112  // added.  The return value is the symbol table which might have
2113  // been enlarged.  If the return value is not a failure, the symbol
2114  // pointer *s is set to the symbol found.
2115  Object* LookupSymbol(Vector<const char> str, Object** s);
2116  Object* LookupString(String* key, Object** s);
2117
2118  // Looks up a symbol that is equal to the given string and returns
2119  // true if it is found, assigning the symbol to the given output
2120  // parameter.
2121  bool LookupSymbolIfExists(String* str, String** symbol);
2122  bool LookupTwoCharsSymbolIfExists(uint32_t c1, uint32_t c2, String** symbol);
2123
2124  // Casting.
2125  static inline SymbolTable* cast(Object* obj);
2126
2127 private:
2128  Object* LookupKey(HashTableKey* key, Object** s);
2129
2130  DISALLOW_IMPLICIT_CONSTRUCTORS(SymbolTable);
2131};
2132
2133
2134class MapCacheShape {
2135 public:
2136  static bool IsMatch(HashTableKey* key, Object* value) {
2137    return key->IsMatch(value);
2138  }
2139  static uint32_t Hash(HashTableKey* key) {
2140    return key->Hash();
2141  }
2142
2143  static uint32_t HashForObject(HashTableKey* key, Object* object) {
2144    return key->HashForObject(object);
2145  }
2146
2147  static Object* AsObject(HashTableKey* key) {
2148    return key->AsObject();
2149  }
2150
2151  static const int kPrefixSize = 0;
2152  static const int kEntrySize = 2;
2153};
2154
2155
2156// MapCache.
2157//
2158// Maps keys that are a fixed array of symbols to a map.
2159// Used for canonicalize maps for object literals.
2160class MapCache: public HashTable<MapCacheShape, HashTableKey*> {
2161 public:
2162  // Find cached value for a string key, otherwise return null.
2163  Object* Lookup(FixedArray* key);
2164  Object* Put(FixedArray* key, Map* value);
2165  static inline MapCache* cast(Object* obj);
2166
2167 private:
2168  DISALLOW_IMPLICIT_CONSTRUCTORS(MapCache);
2169};
2170
2171
2172template <typename Shape, typename Key>
2173class Dictionary: public HashTable<Shape, Key> {
2174 public:
2175
2176  static inline Dictionary<Shape, Key>* cast(Object* obj) {
2177    return reinterpret_cast<Dictionary<Shape, Key>*>(obj);
2178  }
2179
2180  // Returns the value at entry.
2181  Object* ValueAt(int entry) {
2182    return this->get(HashTable<Shape, Key>::EntryToIndex(entry)+1);
2183  }
2184
2185  // Set the value for entry.
2186  void ValueAtPut(int entry, Object* value) {
2187    // Check that this value can actually be written.
2188    PropertyDetails details = DetailsAt(entry);
2189    // If a value has not been initilized we allow writing to it even if
2190    // it is read only (a declared const that has not been initialized).
2191    if (details.IsReadOnly() && !ValueAt(entry)->IsTheHole()) return;
2192    this->set(HashTable<Shape, Key>::EntryToIndex(entry)+1, value);
2193  }
2194
2195  // Returns the property details for the property at entry.
2196  PropertyDetails DetailsAt(int entry) {
2197    ASSERT(entry >= 0);  // Not found is -1, which is not caught by get().
2198    return PropertyDetails(
2199        Smi::cast(this->get(HashTable<Shape, Key>::EntryToIndex(entry) + 2)));
2200  }
2201
2202  // Set the details for entry.
2203  void DetailsAtPut(int entry, PropertyDetails value) {
2204    this->set(HashTable<Shape, Key>::EntryToIndex(entry) + 2, value.AsSmi());
2205  }
2206
2207  // Sorting support
2208  void CopyValuesTo(FixedArray* elements);
2209
2210  // Delete a property from the dictionary.
2211  Object* DeleteProperty(int entry, JSObject::DeleteMode mode);
2212
2213  // Returns the number of elements in the dictionary filtering out properties
2214  // with the specified attributes.
2215  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
2216
2217  // Returns the number of enumerable elements in the dictionary.
2218  int NumberOfEnumElements();
2219
2220  // Copies keys to preallocated fixed array.
2221  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter);
2222  // Fill in details for properties into storage.
2223  void CopyKeysTo(FixedArray* storage);
2224
2225  // Accessors for next enumeration index.
2226  void SetNextEnumerationIndex(int index) {
2227    this->fast_set(this, kNextEnumerationIndexIndex, Smi::FromInt(index));
2228  }
2229
2230  int NextEnumerationIndex() {
2231    return Smi::cast(FixedArray::get(kNextEnumerationIndexIndex))->value();
2232  }
2233
2234  // Returns a new array for dictionary usage. Might return Failure.
2235  static Object* Allocate(int at_least_space_for);
2236
2237  // Ensure enough space for n additional elements.
2238  Object* EnsureCapacity(int n, Key key);
2239
2240#ifdef DEBUG
2241  void Print();
2242#endif
2243  // Returns the key (slow).
2244  Object* SlowReverseLookup(Object* value);
2245
2246  // Sets the entry to (key, value) pair.
2247  inline void SetEntry(int entry,
2248                       Object* key,
2249                       Object* value,
2250                       PropertyDetails details);
2251
2252  Object* Add(Key key, Object* value, PropertyDetails details);
2253
2254 protected:
2255  // Generic at put operation.
2256  Object* AtPut(Key key, Object* value);
2257
2258  // Add entry to dictionary.
2259  Object* AddEntry(Key key,
2260                   Object* value,
2261                   PropertyDetails details,
2262                   uint32_t hash);
2263
2264  // Generate new enumeration indices to avoid enumeration index overflow.
2265  Object* GenerateNewEnumerationIndices();
2266  static const int kMaxNumberKeyIndex =
2267      HashTable<Shape, Key>::kPrefixStartIndex;
2268  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
2269};
2270
2271
2272class StringDictionaryShape {
2273 public:
2274  static inline bool IsMatch(String* key, Object* other);
2275  static inline uint32_t Hash(String* key);
2276  static inline uint32_t HashForObject(String* key, Object* object);
2277  static inline Object* AsObject(String* key);
2278  static const int kPrefixSize = 2;
2279  static const int kEntrySize = 3;
2280  static const bool kIsEnumerable = true;
2281};
2282
2283
2284class StringDictionary: public Dictionary<StringDictionaryShape, String*> {
2285 public:
2286  static inline StringDictionary* cast(Object* obj) {
2287    ASSERT(obj->IsDictionary());
2288    return reinterpret_cast<StringDictionary*>(obj);
2289  }
2290
2291  // Copies enumerable keys to preallocated fixed array.
2292  void CopyEnumKeysTo(FixedArray* storage, FixedArray* sort_array);
2293
2294  // For transforming properties of a JSObject.
2295  Object* TransformPropertiesToFastFor(JSObject* obj,
2296                                       int unused_property_fields);
2297};
2298
2299
2300class NumberDictionaryShape {
2301 public:
2302  static inline bool IsMatch(uint32_t key, Object* other);
2303  static inline uint32_t Hash(uint32_t key);
2304  static inline uint32_t HashForObject(uint32_t key, Object* object);
2305  static inline Object* AsObject(uint32_t key);
2306  static const int kPrefixSize = 2;
2307  static const int kEntrySize = 3;
2308  static const bool kIsEnumerable = false;
2309};
2310
2311
2312class NumberDictionary: public Dictionary<NumberDictionaryShape, uint32_t> {
2313 public:
2314  static NumberDictionary* cast(Object* obj) {
2315    ASSERT(obj->IsDictionary());
2316    return reinterpret_cast<NumberDictionary*>(obj);
2317  }
2318
2319  // Type specific at put (default NONE attributes is used when adding).
2320  Object* AtNumberPut(uint32_t key, Object* value);
2321  Object* AddNumberEntry(uint32_t key,
2322                         Object* value,
2323                         PropertyDetails details);
2324
2325  // Set an existing entry or add a new one if needed.
2326  Object* Set(uint32_t key, Object* value, PropertyDetails details);
2327
2328  void UpdateMaxNumberKey(uint32_t key);
2329
2330  // If slow elements are required we will never go back to fast-case
2331  // for the elements kept in this dictionary.  We require slow
2332  // elements if an element has been added at an index larger than
2333  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
2334  // when defining a getter or setter with a number key.
2335  inline bool requires_slow_elements();
2336  inline void set_requires_slow_elements();
2337
2338  // Get the value of the max number key that has been added to this
2339  // dictionary.  max_number_key can only be called if
2340  // requires_slow_elements returns false.
2341  inline uint32_t max_number_key();
2342
2343  // Remove all entries were key is a number and (from <= key && key < to).
2344  void RemoveNumberEntries(uint32_t from, uint32_t to);
2345
2346  // Bit masks.
2347  static const int kRequiresSlowElementsMask = 1;
2348  static const int kRequiresSlowElementsTagSize = 1;
2349  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
2350};
2351
2352
2353// JSFunctionResultCache caches results of some JSFunction invocation.
2354// It is a fixed array with fixed structure:
2355//   [0]: factory function
2356//   [1]: finger index
2357//   [2]: current cache size
2358//   [3]: dummy field.
2359// The rest of array are key/value pairs.
2360class JSFunctionResultCache: public FixedArray {
2361 public:
2362  static const int kFactoryIndex = 0;
2363  static const int kFingerIndex = kFactoryIndex + 1;
2364  static const int kCacheSizeIndex = kFingerIndex + 1;
2365  static const int kDummyIndex = kCacheSizeIndex + 1;
2366  static const int kEntriesIndex = kDummyIndex + 1;
2367
2368  static const int kEntrySize = 2;  // key + value
2369
2370  static const int kFactoryOffset = kHeaderSize;
2371  static const int kFingerOffset = kFactoryOffset + kPointerSize;
2372  static const int kCacheSizeOffset = kFingerOffset + kPointerSize;
2373
2374  inline void MakeZeroSize();
2375  inline void Clear();
2376
2377  // Casting
2378  static inline JSFunctionResultCache* cast(Object* obj);
2379
2380#ifdef DEBUG
2381  void JSFunctionResultCacheVerify();
2382#endif
2383};
2384
2385
2386// ByteArray represents fixed sized byte arrays.  Used by the outside world,
2387// such as PCRE, and also by the memory allocator and garbage collector to
2388// fill in free blocks in the heap.
2389class ByteArray: public HeapObject {
2390 public:
2391  // [length]: length of the array.
2392  inline int length();
2393  inline void set_length(int value);
2394
2395  // Setter and getter.
2396  inline byte get(int index);
2397  inline void set(int index, byte value);
2398
2399  // Treat contents as an int array.
2400  inline int get_int(int index);
2401
2402  static int SizeFor(int length) {
2403    return OBJECT_POINTER_ALIGN(kHeaderSize + length);
2404  }
2405  // We use byte arrays for free blocks in the heap.  Given a desired size in
2406  // bytes that is a multiple of the word size and big enough to hold a byte
2407  // array, this function returns the number of elements a byte array should
2408  // have.
2409  static int LengthFor(int size_in_bytes) {
2410    ASSERT(IsAligned(size_in_bytes, kPointerSize));
2411    ASSERT(size_in_bytes >= kHeaderSize);
2412    return size_in_bytes - kHeaderSize;
2413  }
2414
2415  // Returns data start address.
2416  inline Address GetDataStartAddress();
2417
2418  // Returns a pointer to the ByteArray object for a given data start address.
2419  static inline ByteArray* FromDataStartAddress(Address address);
2420
2421  // Casting.
2422  static inline ByteArray* cast(Object* obj);
2423
2424  // Dispatched behavior.
2425  int ByteArraySize() { return SizeFor(length()); }
2426#ifdef DEBUG
2427  void ByteArrayPrint();
2428  void ByteArrayVerify();
2429#endif
2430
2431  // Layout description.
2432  // Length is smi tagged when it is stored.
2433  static const int kLengthOffset = HeapObject::kHeaderSize;
2434  static const int kHeaderSize = kLengthOffset + kPointerSize;
2435
2436  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2437
2438  // Maximal memory consumption for a single ByteArray.
2439  static const int kMaxSize = 512 * MB;
2440  // Maximal length of a single ByteArray.
2441  static const int kMaxLength = kMaxSize - kHeaderSize;
2442
2443 private:
2444  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
2445};
2446
2447
2448// A PixelArray represents a fixed-size byte array with special semantics
2449// used for implementing the CanvasPixelArray object. Please see the
2450// specification at:
2451// http://www.whatwg.org/specs/web-apps/current-work/
2452//                      multipage/the-canvas-element.html#canvaspixelarray
2453// In particular, write access clamps the value written to 0 or 255 if the
2454// value written is outside this range.
2455class PixelArray: public HeapObject {
2456 public:
2457  // [length]: length of the array.
2458  inline int length();
2459  inline void set_length(int value);
2460
2461  // [external_pointer]: The pointer to the external memory area backing this
2462  // pixel array.
2463  DECL_ACCESSORS(external_pointer, uint8_t)  // Pointer to the data store.
2464
2465  // Setter and getter.
2466  inline uint8_t get(int index);
2467  inline void set(int index, uint8_t value);
2468
2469  // This accessor applies the correct conversion from Smi, HeapNumber and
2470  // undefined and clamps the converted value between 0 and 255.
2471  Object* SetValue(uint32_t index, Object* value);
2472
2473  // Casting.
2474  static inline PixelArray* cast(Object* obj);
2475
2476#ifdef DEBUG
2477  void PixelArrayPrint();
2478  void PixelArrayVerify();
2479#endif  // DEBUG
2480
2481  // Maximal acceptable length for a pixel array.
2482  static const int kMaxLength = 0x3fffffff;
2483
2484  // PixelArray headers are not quadword aligned.
2485  static const int kLengthOffset = HeapObject::kHeaderSize;
2486  static const int kExternalPointerOffset =
2487      POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
2488  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2489  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2490
2491 private:
2492  DISALLOW_IMPLICIT_CONSTRUCTORS(PixelArray);
2493};
2494
2495
2496// An ExternalArray represents a fixed-size array of primitive values
2497// which live outside the JavaScript heap. Its subclasses are used to
2498// implement the CanvasArray types being defined in the WebGL
2499// specification. As of this writing the first public draft is not yet
2500// available, but Khronos members can access the draft at:
2501//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
2502//
2503// The semantics of these arrays differ from CanvasPixelArray.
2504// Out-of-range values passed to the setter are converted via a C
2505// cast, not clamping. Out-of-range indices cause exceptions to be
2506// raised rather than being silently ignored.
2507class ExternalArray: public HeapObject {
2508 public:
2509  // [length]: length of the array.
2510  inline int length();
2511  inline void set_length(int value);
2512
2513  // [external_pointer]: The pointer to the external memory area backing this
2514  // external array.
2515  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.
2516
2517  // Casting.
2518  static inline ExternalArray* cast(Object* obj);
2519
2520  // Maximal acceptable length for an external array.
2521  static const int kMaxLength = 0x3fffffff;
2522
2523  // ExternalArray headers are not quadword aligned.
2524  static const int kLengthOffset = HeapObject::kHeaderSize;
2525  static const int kExternalPointerOffset =
2526      POINTER_SIZE_ALIGN(kLengthOffset + kIntSize);
2527  static const int kHeaderSize = kExternalPointerOffset + kPointerSize;
2528  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);
2529
2530 private:
2531  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
2532};
2533
2534
2535class ExternalByteArray: public ExternalArray {
2536 public:
2537  // Setter and getter.
2538  inline int8_t get(int index);
2539  inline void set(int index, int8_t value);
2540
2541  // This accessor applies the correct conversion from Smi, HeapNumber
2542  // and undefined.
2543  Object* SetValue(uint32_t index, Object* value);
2544
2545  // Casting.
2546  static inline ExternalByteArray* cast(Object* obj);
2547
2548#ifdef DEBUG
2549  void ExternalByteArrayPrint();
2550  void ExternalByteArrayVerify();
2551#endif  // DEBUG
2552
2553 private:
2554  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalByteArray);
2555};
2556
2557
2558class ExternalUnsignedByteArray: public ExternalArray {
2559 public:
2560  // Setter and getter.
2561  inline uint8_t get(int index);
2562  inline void set(int index, uint8_t value);
2563
2564  // This accessor applies the correct conversion from Smi, HeapNumber
2565  // and undefined.
2566  Object* SetValue(uint32_t index, Object* value);
2567
2568  // Casting.
2569  static inline ExternalUnsignedByteArray* cast(Object* obj);
2570
2571#ifdef DEBUG
2572  void ExternalUnsignedByteArrayPrint();
2573  void ExternalUnsignedByteArrayVerify();
2574#endif  // DEBUG
2575
2576 private:
2577  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedByteArray);
2578};
2579
2580
2581class ExternalShortArray: public ExternalArray {
2582 public:
2583  // Setter and getter.
2584  inline int16_t get(int index);
2585  inline void set(int index, int16_t value);
2586
2587  // This accessor applies the correct conversion from Smi, HeapNumber
2588  // and undefined.
2589  Object* SetValue(uint32_t index, Object* value);
2590
2591  // Casting.
2592  static inline ExternalShortArray* cast(Object* obj);
2593
2594#ifdef DEBUG
2595  void ExternalShortArrayPrint();
2596  void ExternalShortArrayVerify();
2597#endif  // DEBUG
2598
2599 private:
2600  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalShortArray);
2601};
2602
2603
2604class ExternalUnsignedShortArray: public ExternalArray {
2605 public:
2606  // Setter and getter.
2607  inline uint16_t get(int index);
2608  inline void set(int index, uint16_t value);
2609
2610  // This accessor applies the correct conversion from Smi, HeapNumber
2611  // and undefined.
2612  Object* SetValue(uint32_t index, Object* value);
2613
2614  // Casting.
2615  static inline ExternalUnsignedShortArray* cast(Object* obj);
2616
2617#ifdef DEBUG
2618  void ExternalUnsignedShortArrayPrint();
2619  void ExternalUnsignedShortArrayVerify();
2620#endif  // DEBUG
2621
2622 private:
2623  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedShortArray);
2624};
2625
2626
2627class ExternalIntArray: public ExternalArray {
2628 public:
2629  // Setter and getter.
2630  inline int32_t get(int index);
2631  inline void set(int index, int32_t value);
2632
2633  // This accessor applies the correct conversion from Smi, HeapNumber
2634  // and undefined.
2635  Object* SetValue(uint32_t index, Object* value);
2636
2637  // Casting.
2638  static inline ExternalIntArray* cast(Object* obj);
2639
2640#ifdef DEBUG
2641  void ExternalIntArrayPrint();
2642  void ExternalIntArrayVerify();
2643#endif  // DEBUG
2644
2645 private:
2646  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalIntArray);
2647};
2648
2649
2650class ExternalUnsignedIntArray: public ExternalArray {
2651 public:
2652  // Setter and getter.
2653  inline uint32_t get(int index);
2654  inline void set(int index, uint32_t value);
2655
2656  // This accessor applies the correct conversion from Smi, HeapNumber
2657  // and undefined.
2658  Object* SetValue(uint32_t index, Object* value);
2659
2660  // Casting.
2661  static inline ExternalUnsignedIntArray* cast(Object* obj);
2662
2663#ifdef DEBUG
2664  void ExternalUnsignedIntArrayPrint();
2665  void ExternalUnsignedIntArrayVerify();
2666#endif  // DEBUG
2667
2668 private:
2669  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUnsignedIntArray);
2670};
2671
2672
2673class ExternalFloatArray: public ExternalArray {
2674 public:
2675  // Setter and getter.
2676  inline float get(int index);
2677  inline void set(int index, float value);
2678
2679  // This accessor applies the correct conversion from Smi, HeapNumber
2680  // and undefined.
2681  Object* SetValue(uint32_t index, Object* value);
2682
2683  // Casting.
2684  static inline ExternalFloatArray* cast(Object* obj);
2685
2686#ifdef DEBUG
2687  void ExternalFloatArrayPrint();
2688  void ExternalFloatArrayVerify();
2689#endif  // DEBUG
2690
2691 private:
2692  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloatArray);
2693};
2694
2695
2696// Code describes objects with on-the-fly generated machine code.
2697class Code: public HeapObject {
2698 public:
2699  // Opaque data type for encapsulating code flags like kind, inline
2700  // cache state, and arguments count.
2701  enum Flags { };
2702
2703  enum Kind {
2704    FUNCTION,
2705    STUB,
2706    BUILTIN,
2707    LOAD_IC,
2708    KEYED_LOAD_IC,
2709    CALL_IC,
2710    KEYED_CALL_IC,
2711    STORE_IC,
2712    KEYED_STORE_IC,
2713    BINARY_OP_IC,
2714    // No more than 16 kinds. The value currently encoded in four bits in
2715    // Flags.
2716
2717    // Pseudo-kinds.
2718    REGEXP = BUILTIN,
2719    FIRST_IC_KIND = LOAD_IC,
2720    LAST_IC_KIND = BINARY_OP_IC
2721  };
2722
2723  enum {
2724    NUMBER_OF_KINDS = KEYED_STORE_IC + 1
2725  };
2726
2727#ifdef ENABLE_DISASSEMBLER
2728  // Printing
2729  static const char* Kind2String(Kind kind);
2730  static const char* ICState2String(InlineCacheState state);
2731  static const char* PropertyType2String(PropertyType type);
2732  void Disassemble(const char* name);
2733#endif  // ENABLE_DISASSEMBLER
2734
2735  // [instruction_size]: Size of the native instructions
2736  inline int instruction_size();
2737  inline void set_instruction_size(int value);
2738
2739  // [relocation_info]: Code relocation information
2740  DECL_ACCESSORS(relocation_info, ByteArray)
2741
2742  // Unchecked accessor to be used during GC.
2743  inline ByteArray* unchecked_relocation_info();
2744
2745  inline int relocation_size();
2746
2747  // [sinfo_size]: Size of scope information.
2748  inline int sinfo_size();
2749  inline void set_sinfo_size(int value);
2750
2751  // [flags]: Various code flags.
2752  inline Flags flags();
2753  inline void set_flags(Flags flags);
2754
2755  // [flags]: Access to specific code flags.
2756  inline Kind kind();
2757  inline InlineCacheState ic_state();  // Only valid for IC stubs.
2758  inline InLoopFlag ic_in_loop();  // Only valid for IC stubs.
2759  inline PropertyType type();  // Only valid for monomorphic IC stubs.
2760  inline int arguments_count();  // Only valid for call IC stubs.
2761
2762  // Testers for IC stub kinds.
2763  inline bool is_inline_cache_stub();
2764  inline bool is_load_stub() { return kind() == LOAD_IC; }
2765  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
2766  inline bool is_store_stub() { return kind() == STORE_IC; }
2767  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
2768  inline bool is_call_stub() { return kind() == CALL_IC; }
2769  inline bool is_keyed_call_stub() { return kind() == KEYED_CALL_IC; }
2770
2771  // [major_key]: For kind STUB or BINARY_OP_IC, the major key.
2772  inline CodeStub::Major major_key();
2773  inline void set_major_key(CodeStub::Major major);
2774
2775  // Flags operations.
2776  static inline Flags ComputeFlags(Kind kind,
2777                                   InLoopFlag in_loop = NOT_IN_LOOP,
2778                                   InlineCacheState ic_state = UNINITIALIZED,
2779                                   PropertyType type = NORMAL,
2780                                   int argc = -1,
2781                                   InlineCacheHolderFlag holder = OWN_MAP);
2782
2783  static inline Flags ComputeMonomorphicFlags(
2784      Kind kind,
2785      PropertyType type,
2786      InlineCacheHolderFlag holder = OWN_MAP,
2787      InLoopFlag in_loop = NOT_IN_LOOP,
2788      int argc = -1);
2789
2790  static inline Kind ExtractKindFromFlags(Flags flags);
2791  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
2792  static inline InLoopFlag ExtractICInLoopFromFlags(Flags flags);
2793  static inline PropertyType ExtractTypeFromFlags(Flags flags);
2794  static inline int ExtractArgumentsCountFromFlags(Flags flags);
2795  static inline InlineCacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
2796  static inline Flags RemoveTypeFromFlags(Flags flags);
2797
2798  // Convert a target address into a code object.
2799  static inline Code* GetCodeFromTargetAddress(Address address);
2800
2801  // Returns the address of the first instruction.
2802  inline byte* instruction_start();
2803
2804  // Returns the address right after the last instruction.
2805  inline byte* instruction_end();
2806
2807  // Returns the size of the instructions, padding, and relocation information.
2808  inline int body_size();
2809
2810  // Returns the address of the first relocation info (read backwards!).
2811  inline byte* relocation_start();
2812
2813  // Code entry point.
2814  inline byte* entry();
2815
2816  // Returns true if pc is inside this object's instructions.
2817  inline bool contains(byte* pc);
2818
2819  // Returns the address of the scope information.
2820  inline byte* sinfo_start();
2821
2822  // Relocate the code by delta bytes. Called to signal that this code
2823  // object has been moved by delta bytes.
2824  void Relocate(intptr_t delta);
2825
2826  // Migrate code described by desc.
2827  void CopyFrom(const CodeDesc& desc);
2828
2829  // Returns the object size for a given body and sinfo size (Used for
2830  // allocation).
2831  static int SizeFor(int body_size, int sinfo_size) {
2832    ASSERT_SIZE_TAG_ALIGNED(body_size);
2833    ASSERT_SIZE_TAG_ALIGNED(sinfo_size);
2834    return RoundUp(kHeaderSize + body_size + sinfo_size, kCodeAlignment);
2835  }
2836
2837  // Calculate the size of the code object to report for log events. This takes
2838  // the layout of the code object into account.
2839  int ExecutableSize() {
2840    // Check that the assumptions about the layout of the code object holds.
2841    ASSERT_EQ(static_cast<int>(instruction_start() - address()),
2842              Code::kHeaderSize);
2843    return instruction_size() + Code::kHeaderSize;
2844  }
2845
2846  // Locating source position.
2847  int SourcePosition(Address pc);
2848  int SourceStatementPosition(Address pc);
2849
2850  // Casting.
2851  static inline Code* cast(Object* obj);
2852
2853  // Dispatched behavior.
2854  int CodeSize() { return SizeFor(body_size(), sinfo_size()); }
2855  void CodeIterateBody(ObjectVisitor* v);
2856#ifdef DEBUG
2857  void CodePrint();
2858  void CodeVerify();
2859#endif
2860  // Code entry points are aligned to 32 bytes.
2861  static const int kCodeAlignmentBits = 5;
2862  static const int kCodeAlignment = 1 << kCodeAlignmentBits;
2863  static const int kCodeAlignmentMask = kCodeAlignment - 1;
2864
2865  // Layout description.
2866  static const int kInstructionSizeOffset = HeapObject::kHeaderSize;
2867  static const int kRelocationInfoOffset = kInstructionSizeOffset + kIntSize;
2868  static const int kSInfoSizeOffset = kRelocationInfoOffset + kPointerSize;
2869  static const int kFlagsOffset = kSInfoSizeOffset + kIntSize;
2870  static const int kKindSpecificFlagsOffset  = kFlagsOffset + kIntSize;
2871  // Add padding to align the instruction start following right after
2872  // the Code object header.
2873  static const int kHeaderSize =
2874      (kKindSpecificFlagsOffset + kIntSize + kCodeAlignmentMask) &
2875          ~kCodeAlignmentMask;
2876
2877  // Byte offsets within kKindSpecificFlagsOffset.
2878  static const int kStubMajorKeyOffset = kKindSpecificFlagsOffset + 1;
2879
2880  // Flags layout.
2881  static const int kFlagsICStateShift        = 0;
2882  static const int kFlagsICInLoopShift       = 3;
2883  static const int kFlagsTypeShift           = 4;
2884  static const int kFlagsKindShift           = 7;
2885  static const int kFlagsICHolderShift       = 11;
2886  static const int kFlagsArgumentsCountShift = 12;
2887
2888  static const int kFlagsICStateMask        = 0x00000007;  // 00000000111
2889  static const int kFlagsICInLoopMask       = 0x00000008;  // 00000001000
2890  static const int kFlagsTypeMask           = 0x00000070;  // 00001110000
2891  static const int kFlagsKindMask           = 0x00000780;  // 11110000000
2892  static const int kFlagsCacheInPrototypeMapMask = 0x00000800;
2893  static const int kFlagsArgumentsCountMask = 0xFFFFF000;
2894
2895  static const int kFlagsNotUsedInLookup =
2896      (kFlagsICInLoopMask | kFlagsTypeMask | kFlagsCacheInPrototypeMapMask);
2897
2898 private:
2899  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
2900};
2901
2902
2903// All heap objects have a Map that describes their structure.
2904//  A Map contains information about:
2905//  - Size information about the object
2906//  - How to iterate over an object (for garbage collection)
2907class Map: public HeapObject {
2908 public:
2909  // Instance size.
2910  inline int instance_size();
2911  inline void set_instance_size(int value);
2912
2913  // Count of properties allocated in the object.
2914  inline int inobject_properties();
2915  inline void set_inobject_properties(int value);
2916
2917  // Count of property fields pre-allocated in the object when first allocated.
2918  inline int pre_allocated_property_fields();
2919  inline void set_pre_allocated_property_fields(int value);
2920
2921  // Instance type.
2922  inline InstanceType instance_type();
2923  inline void set_instance_type(InstanceType value);
2924
2925  // Tells how many unused property fields are available in the
2926  // instance (only used for JSObject in fast mode).
2927  inline int unused_property_fields();
2928  inline void set_unused_property_fields(int value);
2929
2930  // Bit field.
2931  inline byte bit_field();
2932  inline void set_bit_field(byte value);
2933
2934  // Bit field 2.
2935  inline byte bit_field2();
2936  inline void set_bit_field2(byte value);
2937
2938  // Tells whether the object in the prototype property will be used
2939  // for instances created from this function.  If the prototype
2940  // property is set to a value that is not a JSObject, the prototype
2941  // property will not be used to create instances of the function.
2942  // See ECMA-262, 13.2.2.
2943  inline void set_non_instance_prototype(bool value);
2944  inline bool has_non_instance_prototype();
2945
2946  // Tells whether function has special prototype property. If not, prototype
2947  // property will not be created when accessed (will return undefined),
2948  // and construction from this function will not be allowed.
2949  inline void set_function_with_prototype(bool value);
2950  inline bool function_with_prototype();
2951
2952  // Tells whether the instance with this map should be ignored by the
2953  // __proto__ accessor.
2954  inline void set_is_hidden_prototype() {
2955    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
2956  }
2957
2958  inline bool is_hidden_prototype() {
2959    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
2960  }
2961
2962  // Records and queries whether the instance has a named interceptor.
2963  inline void set_has_named_interceptor() {
2964    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
2965  }
2966
2967  inline bool has_named_interceptor() {
2968    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
2969  }
2970
2971  // Records and queries whether the instance has an indexed interceptor.
2972  inline void set_has_indexed_interceptor() {
2973    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
2974  }
2975
2976  inline bool has_indexed_interceptor() {
2977    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
2978  }
2979
2980  // Tells whether the instance is undetectable.
2981  // An undetectable object is a special class of JSObject: 'typeof' operator
2982  // returns undefined, ToBoolean returns false. Otherwise it behaves like
2983  // a normal JS object.  It is useful for implementing undetectable
2984  // document.all in Firefox & Safari.
2985  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
2986  inline void set_is_undetectable() {
2987    set_bit_field(bit_field() | (1 << kIsUndetectable));
2988  }
2989
2990  inline bool is_undetectable() {
2991    return ((1 << kIsUndetectable) & bit_field()) != 0;
2992  }
2993
2994  // Tells whether the instance has a call-as-function handler.
2995  inline void set_has_instance_call_handler() {
2996    set_bit_field(bit_field() | (1 << kHasInstanceCallHandler));
2997  }
2998
2999  inline bool has_instance_call_handler() {
3000    return ((1 << kHasInstanceCallHandler) & bit_field()) != 0;
3001  }
3002
3003  inline void set_is_extensible(bool value);
3004  inline bool is_extensible();
3005
3006  // Tells whether the instance has fast elements.
3007  void set_has_fast_elements(bool value) {
3008    if (value) {
3009      set_bit_field2(bit_field2() | (1 << kHasFastElements));
3010    } else {
3011      set_bit_field2(bit_field2() & ~(1 << kHasFastElements));
3012    }
3013  }
3014
3015  bool has_fast_elements() {
3016    return ((1 << kHasFastElements) & bit_field2()) != 0;
3017  }
3018
3019  // Tells whether the instance needs security checks when accessing its
3020  // properties.
3021  inline void set_is_access_check_needed(bool access_check_needed);
3022  inline bool is_access_check_needed();
3023
3024  // [prototype]: implicit prototype object.
3025  DECL_ACCESSORS(prototype, Object)
3026
3027  // [constructor]: points back to the function responsible for this map.
3028  DECL_ACCESSORS(constructor, Object)
3029
3030  // [instance descriptors]: describes the object.
3031  DECL_ACCESSORS(instance_descriptors, DescriptorArray)
3032
3033  // [stub cache]: contains stubs compiled for this map.
3034  DECL_ACCESSORS(code_cache, Object)
3035
3036  Object* CopyDropDescriptors();
3037
3038  // Returns a copy of the map, with all transitions dropped from the
3039  // instance descriptors.
3040  Object* CopyDropTransitions();
3041
3042  // Returns this map if it has the fast elements bit set, otherwise
3043  // returns a copy of the map, with all transitions dropped from the
3044  // descriptors and the fast elements bit set.
3045  inline Object* GetFastElementsMap();
3046
3047  // Returns this map if it has the fast elements bit cleared,
3048  // otherwise returns a copy of the map, with all transitions dropped
3049  // from the descriptors and the fast elements bit cleared.
3050  inline Object* GetSlowElementsMap();
3051
3052  // Returns the property index for name (only valid for FAST MODE).
3053  int PropertyIndexFor(String* name);
3054
3055  // Returns the next free property index (only valid for FAST MODE).
3056  int NextFreePropertyIndex();
3057
3058  // Returns the number of properties described in instance_descriptors.
3059  int NumberOfDescribedProperties();
3060
3061  // Casting.
3062  static inline Map* cast(Object* obj);
3063
3064  // Locate an accessor in the instance descriptor.
3065  AccessorDescriptor* FindAccessor(String* name);
3066
3067  // Code cache operations.
3068
3069  // Clears the code cache.
3070  inline void ClearCodeCache();
3071
3072  // Update code cache.
3073  Object* UpdateCodeCache(String* name, Code* code);
3074
3075  // Returns the found code or undefined if absent.
3076  Object* FindInCodeCache(String* name, Code::Flags flags);
3077
3078  // Returns the non-negative index of the code object if it is in the
3079  // cache and -1 otherwise.
3080  int IndexInCodeCache(Object* name, Code* code);
3081
3082  // Removes a code object from the code cache at the given index.
3083  void RemoveFromCodeCache(String* name, Code* code, int index);
3084
3085  // For every transition in this map, makes the transition's
3086  // target's prototype pointer point back to this map.
3087  // This is undone in MarkCompactCollector::ClearNonLiveTransitions().
3088  void CreateBackPointers();
3089
3090  // Set all map transitions from this map to dead maps to null.
3091  // Also, restore the original prototype on the targets of these
3092  // transitions, so that we do not process this map again while
3093  // following back pointers.
3094  void ClearNonLiveTransitions(Object* real_prototype);
3095
3096  // Dispatched behavior.
3097  void MapIterateBody(ObjectVisitor* v);
3098#ifdef DEBUG
3099  void MapPrint();
3100  void MapVerify();
3101#endif
3102
3103  static const int kMaxPreAllocatedPropertyFields = 255;
3104
3105  // Layout description.
3106  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
3107  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
3108  static const int kPrototypeOffset = kInstanceAttributesOffset + kIntSize;
3109  static const int kConstructorOffset = kPrototypeOffset + kPointerSize;
3110  static const int kInstanceDescriptorsOffset =
3111      kConstructorOffset + kPointerSize;
3112  static const int kCodeCacheOffset = kInstanceDescriptorsOffset + kPointerSize;
3113  static const int kPadStart = kCodeCacheOffset + kPointerSize;
3114  static const int kSize = MAP_POINTER_ALIGN(kPadStart);
3115
3116  // Layout of pointer fields. Heap iteration code relies on them
3117  // being continiously allocated.
3118  static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
3119  static const int kPointerFieldsEndOffset =
3120      Map::kCodeCacheOffset + kPointerSize;
3121
3122  // Byte offsets within kInstanceSizesOffset.
3123  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
3124  static const int kInObjectPropertiesByte = 1;
3125  static const int kInObjectPropertiesOffset =
3126      kInstanceSizesOffset + kInObjectPropertiesByte;
3127  static const int kPreAllocatedPropertyFieldsByte = 2;
3128  static const int kPreAllocatedPropertyFieldsOffset =
3129      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
3130  // The byte at position 3 is not in use at the moment.
3131
3132  // Byte offsets within kInstanceAttributesOffset attributes.
3133  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
3134  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 1;
3135  static const int kBitFieldOffset = kInstanceAttributesOffset + 2;
3136  static const int kBitField2Offset = kInstanceAttributesOffset + 3;
3137
3138  STATIC_CHECK(kInstanceTypeOffset == Internals::kMapInstanceTypeOffset);
3139
3140  // Bit positions for bit field.
3141  static const int kUnused = 0;  // To be used for marking recently used maps.
3142  static const int kHasNonInstancePrototype = 1;
3143  static const int kIsHiddenPrototype = 2;
3144  static const int kHasNamedInterceptor = 3;
3145  static const int kHasIndexedInterceptor = 4;
3146  static const int kIsUndetectable = 5;
3147  static const int kHasInstanceCallHandler = 6;
3148  static const int kIsAccessCheckNeeded = 7;
3149
3150  // Bit positions for bit field 2
3151  static const int kIsExtensible = 0;
3152  static const int kFunctionWithPrototype = 1;
3153  static const int kHasFastElements = 2;
3154
3155  // Layout of the default cache. It holds alternating name and code objects.
3156  static const int kCodeCacheEntrySize = 2;
3157  static const int kCodeCacheEntryNameOffset = 0;
3158  static const int kCodeCacheEntryCodeOffset = 1;
3159
3160 private:
3161  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
3162};
3163
3164
3165// An abstract superclass, a marker class really, for simple structure classes.
3166// It doesn't carry much functionality but allows struct classes to me
3167// identified in the type system.
3168class Struct: public HeapObject {
3169 public:
3170  inline void InitializeBody(int object_size);
3171  static inline Struct* cast(Object* that);
3172};
3173
3174
3175// Script describes a script which has been added to the VM.
3176class Script: public Struct {
3177 public:
3178  // Script types.
3179  enum Type {
3180    TYPE_NATIVE = 0,
3181    TYPE_EXTENSION = 1,
3182    TYPE_NORMAL = 2
3183  };
3184
3185  // Script compilation types.
3186  enum CompilationType {
3187    COMPILATION_TYPE_HOST = 0,
3188    COMPILATION_TYPE_EVAL = 1,
3189    COMPILATION_TYPE_JSON = 2
3190  };
3191
3192  // [source]: the script source.
3193  DECL_ACCESSORS(source, Object)
3194
3195  // [name]: the script name.
3196  DECL_ACCESSORS(name, Object)
3197
3198  // [id]: the script id.
3199  DECL_ACCESSORS(id, Object)
3200
3201  // [line_offset]: script line offset in resource from where it was extracted.
3202  DECL_ACCESSORS(line_offset, Smi)
3203
3204  // [column_offset]: script column offset in resource from where it was
3205  // extracted.
3206  DECL_ACCESSORS(column_offset, Smi)
3207
3208  // [data]: additional data associated with this script.
3209  DECL_ACCESSORS(data, Object)
3210
3211  // [context_data]: context data for the context this script was compiled in.
3212  DECL_ACCESSORS(context_data, Object)
3213
3214  // [wrapper]: the wrapper cache.
3215  DECL_ACCESSORS(wrapper, Proxy)
3216
3217  // [type]: the script type.
3218  DECL_ACCESSORS(type, Smi)
3219
3220  // [compilation]: how the the script was compiled.
3221  DECL_ACCESSORS(compilation_type, Smi)
3222
3223  // [line_ends]: FixedArray of line ends positions.
3224  DECL_ACCESSORS(line_ends, Object)
3225
3226  // [eval_from_shared]: for eval scripts the shared funcion info for the
3227  // function from which eval was called.
3228  DECL_ACCESSORS(eval_from_shared, Object)
3229
3230  // [eval_from_instructions_offset]: the instruction offset in the code for the
3231  // function from which eval was called where eval was called.
3232  DECL_ACCESSORS(eval_from_instructions_offset, Smi)
3233
3234  static inline Script* cast(Object* obj);
3235
3236  // If script source is an external string, check that the underlying
3237  // resource is accessible. Otherwise, always return true.
3238  inline bool HasValidSource();
3239
3240#ifdef DEBUG
3241  void ScriptPrint();
3242  void ScriptVerify();
3243#endif
3244
3245  static const int kSourceOffset = HeapObject::kHeaderSize;
3246  static const int kNameOffset = kSourceOffset + kPointerSize;
3247  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
3248  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
3249  static const int kDataOffset = kColumnOffsetOffset + kPointerSize;
3250  static const int kContextOffset = kDataOffset + kPointerSize;
3251  static const int kWrapperOffset = kContextOffset + kPointerSize;
3252  static const int kTypeOffset = kWrapperOffset + kPointerSize;
3253  static const int kCompilationTypeOffset = kTypeOffset + kPointerSize;
3254  static const int kLineEndsOffset = kCompilationTypeOffset + kPointerSize;
3255  static const int kIdOffset = kLineEndsOffset + kPointerSize;
3256  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
3257  static const int kEvalFrominstructionsOffsetOffset =
3258      kEvalFromSharedOffset + kPointerSize;
3259  static const int kSize = kEvalFrominstructionsOffsetOffset + kPointerSize;
3260
3261 private:
3262  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
3263};
3264
3265
3266// SharedFunctionInfo describes the JSFunction information that can be
3267// shared by multiple instances of the function.
3268class SharedFunctionInfo: public HeapObject {
3269 public:
3270  // [name]: Function name.
3271  DECL_ACCESSORS(name, Object)
3272
3273  // [code]: Function code.
3274  DECL_ACCESSORS(code, Code)
3275
3276  // [construct stub]: Code stub for constructing instances of this function.
3277  DECL_ACCESSORS(construct_stub, Code)
3278
3279  // Returns if this function has been compiled to native code yet.
3280  inline bool is_compiled();
3281
3282  // [length]: The function length - usually the number of declared parameters.
3283  // Use up to 2^30 parameters.
3284  inline int length();
3285  inline void set_length(int value);
3286
3287  // [formal parameter count]: The declared number of parameters.
3288  inline int formal_parameter_count();
3289  inline void set_formal_parameter_count(int value);
3290
3291  // Set the formal parameter count so the function code will be
3292  // called without using argument adaptor frames.
3293  inline void DontAdaptArguments();
3294
3295  // [expected_nof_properties]: Expected number of properties for the function.
3296  inline int expected_nof_properties();
3297  inline void set_expected_nof_properties(int value);
3298
3299  // [instance class name]: class name for instances.
3300  DECL_ACCESSORS(instance_class_name, Object)
3301
3302  // [function data]: This field holds some additional data for function.
3303  // Currently it either has FunctionTemplateInfo to make benefit the API
3304  // or Smi identifying a custom call generator.
3305  // In the long run we don't want all functions to have this field but
3306  // we can fix that when we have a better model for storing hidden data
3307  // on objects.
3308  DECL_ACCESSORS(function_data, Object)
3309
3310  inline bool IsApiFunction();
3311  inline FunctionTemplateInfo* get_api_func_data();
3312  inline bool HasCustomCallGenerator();
3313  inline int custom_call_generator_id();
3314
3315  // [script info]: Script from which the function originates.
3316  DECL_ACCESSORS(script, Object)
3317
3318  // [num_literals]: Number of literals used by this function.
3319  inline int num_literals();
3320  inline void set_num_literals(int value);
3321
3322  // [start_position_and_type]: Field used to store both the source code
3323  // position, whether or not the function is a function expression,
3324  // and whether or not the function is a toplevel function. The two
3325  // least significants bit indicates whether the function is an
3326  // expression and the rest contains the source code position.
3327  inline int start_position_and_type();
3328  inline void set_start_position_and_type(int value);
3329
3330  // [debug info]: Debug information.
3331  DECL_ACCESSORS(debug_info, Object)
3332
3333  // [inferred name]: Name inferred from variable or property
3334  // assignment of this function. Used to facilitate debugging and
3335  // profiling of JavaScript code written in OO style, where almost
3336  // all functions are anonymous but are assigned to object
3337  // properties.
3338  DECL_ACCESSORS(inferred_name, String)
3339
3340  // Position of the 'function' token in the script source.
3341  inline int function_token_position();
3342  inline void set_function_token_position(int function_token_position);
3343
3344  // Position of this function in the script source.
3345  inline int start_position();
3346  inline void set_start_position(int start_position);
3347
3348  // End position of this function in the script source.
3349  inline int end_position();
3350  inline void set_end_position(int end_position);
3351
3352  // Is this function a function expression in the source code.
3353  inline bool is_expression();
3354  inline void set_is_expression(bool value);
3355
3356  // Is this function a top-level function (scripts, evals).
3357  inline bool is_toplevel();
3358  inline void set_is_toplevel(bool value);
3359
3360  // Bit field containing various information collected by the compiler to
3361  // drive optimization.
3362  inline int compiler_hints();
3363  inline void set_compiler_hints(int value);
3364
3365  // Add information on assignments of the form this.x = ...;
3366  void SetThisPropertyAssignmentsInfo(
3367      bool has_only_simple_this_property_assignments,
3368      FixedArray* this_property_assignments);
3369
3370  // Clear information on assignments of the form this.x = ...;
3371  void ClearThisPropertyAssignmentsInfo();
3372
3373  // Indicate that this function only consists of assignments of the form
3374  // this.x = y; where y is either a constant or refers to an argument.
3375  inline bool has_only_simple_this_property_assignments();
3376
3377  inline bool try_full_codegen();
3378  inline void set_try_full_codegen(bool flag);
3379
3380  // Indicates if this function can be lazy compiled.
3381  // This is used to determine if we can safely flush code from a function
3382  // when doing GC if we expect that the function will no longer be used.
3383  inline bool allows_lazy_compilation();
3384  inline void set_allows_lazy_compilation(bool flag);
3385
3386  // Check whether a inlined constructor can be generated with the given
3387  // prototype.
3388  bool CanGenerateInlineConstructor(Object* prototype);
3389
3390  // For functions which only contains this property assignments this provides
3391  // access to the names for the properties assigned.
3392  DECL_ACCESSORS(this_property_assignments, Object)
3393  inline int this_property_assignments_count();
3394  inline void set_this_property_assignments_count(int value);
3395  String* GetThisPropertyAssignmentName(int index);
3396  bool IsThisPropertyAssignmentArgument(int index);
3397  int GetThisPropertyAssignmentArgument(int index);
3398  Object* GetThisPropertyAssignmentConstant(int index);
3399
3400  // [source code]: Source code for the function.
3401  bool HasSourceCode();
3402  Object* GetSourceCode();
3403
3404  // Calculate the instance size.
3405  int CalculateInstanceSize();
3406
3407  // Calculate the number of in-object properties.
3408  int CalculateInObjectProperties();
3409
3410  // Dispatched behavior.
3411  void SharedFunctionInfoIterateBody(ObjectVisitor* v);
3412  // Set max_length to -1 for unlimited length.
3413  void SourceCodePrint(StringStream* accumulator, int max_length);
3414#ifdef DEBUG
3415  void SharedFunctionInfoPrint();
3416  void SharedFunctionInfoVerify();
3417#endif
3418
3419  // Casting.
3420  static inline SharedFunctionInfo* cast(Object* obj);
3421
3422  // Constants.
3423  static const int kDontAdaptArgumentsSentinel = -1;
3424
3425  // Layout description.
3426  // Pointer fields.
3427  static const int kNameOffset = HeapObject::kHeaderSize;
3428  static const int kCodeOffset = kNameOffset + kPointerSize;
3429  static const int kConstructStubOffset = kCodeOffset + kPointerSize;
3430  static const int kInstanceClassNameOffset =
3431      kConstructStubOffset + kPointerSize;
3432  static const int kFunctionDataOffset =
3433      kInstanceClassNameOffset + kPointerSize;
3434  static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
3435  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
3436  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
3437  static const int kThisPropertyAssignmentsOffset =
3438      kInferredNameOffset + kPointerSize;
3439#if V8_HOST_ARCH_32_BIT
3440  // Smi fields.
3441  static const int kLengthOffset =
3442      kThisPropertyAssignmentsOffset + kPointerSize;
3443  static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
3444  static const int kExpectedNofPropertiesOffset =
3445      kFormalParameterCountOffset + kPointerSize;
3446  static const int kNumLiteralsOffset =
3447      kExpectedNofPropertiesOffset + kPointerSize;
3448  static const int kStartPositionAndTypeOffset =
3449      kNumLiteralsOffset + kPointerSize;
3450  static const int kEndPositionOffset =
3451      kStartPositionAndTypeOffset + kPointerSize;
3452  static const int kFunctionTokenPositionOffset =
3453      kEndPositionOffset + kPointerSize;
3454  static const int kCompilerHintsOffset =
3455      kFunctionTokenPositionOffset + kPointerSize;
3456  static const int kThisPropertyAssignmentsCountOffset =
3457      kCompilerHintsOffset + kPointerSize;
3458  // Total size.
3459  static const int kSize = kThisPropertyAssignmentsCountOffset + kPointerSize;
3460#else
3461  // The only reason to use smi fields instead of int fields
3462  // is to allow interation without maps decoding during
3463  // garbage collections.
3464  // To avoid wasting space on 64-bit architectures we use
3465  // the following trick: we group integer fields into pairs
3466  // First integer in each pair is shifted left by 1.
3467  // By doing this we guarantee that LSB of each kPointerSize aligned
3468  // word is not set and thus this word cannot be treated as pointer
3469  // to HeapObject during old space traversal.
3470  static const int kLengthOffset =
3471      kThisPropertyAssignmentsOffset + kPointerSize;
3472  static const int kFormalParameterCountOffset =
3473      kLengthOffset + kIntSize;
3474
3475  static const int kExpectedNofPropertiesOffset =
3476      kFormalParameterCountOffset + kIntSize;
3477  static const int kNumLiteralsOffset =
3478      kExpectedNofPropertiesOffset + kIntSize;
3479
3480  static const int kEndPositionOffset =
3481      kNumLiteralsOffset + kIntSize;
3482  static const int kStartPositionAndTypeOffset =
3483      kEndPositionOffset + kIntSize;
3484
3485  static const int kFunctionTokenPositionOffset =
3486      kStartPositionAndTypeOffset + kIntSize;
3487  static const int kCompilerHintsOffset =
3488      kFunctionTokenPositionOffset + kIntSize;
3489
3490  static const int kThisPropertyAssignmentsCountOffset =
3491      kCompilerHintsOffset + kIntSize;
3492
3493  // Total size.
3494  static const int kSize = kThisPropertyAssignmentsCountOffset + kIntSize;
3495
3496#endif
3497  static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);
3498
3499 private:
3500  // Bit positions in start_position_and_type.
3501  // The source code start position is in the 30 most significant bits of
3502  // the start_position_and_type field.
3503  static const int kIsExpressionBit = 0;
3504  static const int kIsTopLevelBit   = 1;
3505  static const int kStartPositionShift = 2;
3506  static const int kStartPositionMask = ~((1 << kStartPositionShift) - 1);
3507
3508  // Bit positions in compiler_hints.
3509  static const int kHasOnlySimpleThisPropertyAssignments = 0;
3510  static const int kTryFullCodegen = 1;
3511  static const int kAllowLazyCompilation = 2;
3512
3513  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
3514};
3515
3516
3517// JSFunction describes JavaScript functions.
3518class JSFunction: public JSObject {
3519 public:
3520  // [prototype_or_initial_map]:
3521  DECL_ACCESSORS(prototype_or_initial_map, Object)
3522
3523  // [shared_function_info]: The information about the function that
3524  // can be shared by instances.
3525  DECL_ACCESSORS(shared, SharedFunctionInfo)
3526
3527  // [context]: The context for this function.
3528  inline Context* context();
3529  inline Object* unchecked_context();
3530  inline void set_context(Object* context);
3531
3532  // [code]: The generated code object for this function.  Executed
3533  // when the function is invoked, e.g. foo() or new foo(). See
3534  // [[Call]] and [[Construct]] description in ECMA-262, section
3535  // 8.6.2, page 27.
3536  inline Code* code();
3537  inline void set_code(Code* value);
3538
3539  // Tells whether this function is builtin.
3540  inline bool IsBuiltin();
3541
3542  // [literals]: Fixed array holding the materialized literals.
3543  //
3544  // If the function contains object, regexp or array literals, the
3545  // literals array prefix contains the object, regexp, and array
3546  // function to be used when creating these literals.  This is
3547  // necessary so that we do not dynamically lookup the object, regexp
3548  // or array functions.  Performing a dynamic lookup, we might end up
3549  // using the functions from a new context that we should not have
3550  // access to.
3551  DECL_ACCESSORS(literals, FixedArray)
3552
3553  // The initial map for an object created by this constructor.
3554  inline Map* initial_map();
3555  inline void set_initial_map(Map* value);
3556  inline bool has_initial_map();
3557
3558  // Get and set the prototype property on a JSFunction. If the
3559  // function has an initial map the prototype is set on the initial
3560  // map. Otherwise, the prototype is put in the initial map field
3561  // until an initial map is needed.
3562  inline bool has_prototype();
3563  inline bool has_instance_prototype();
3564  inline Object* prototype();
3565  inline Object* instance_prototype();
3566  Object* SetInstancePrototype(Object* value);
3567  Object* SetPrototype(Object* value);
3568
3569  // After prototype is removed, it will not be created when accessed, and
3570  // [[Construct]] from this function will not be allowed.
3571  Object* RemovePrototype();
3572  inline bool should_have_prototype();
3573
3574  // Accessor for this function's initial map's [[class]]
3575  // property. This is primarily used by ECMA native functions.  This
3576  // method sets the class_name field of this function's initial map
3577  // to a given value. It creates an initial map if this function does
3578  // not have one. Note that this method does not copy the initial map
3579  // if it has one already, but simply replaces it with the new value.
3580  // Instances created afterwards will have a map whose [[class]] is
3581  // set to 'value', but there is no guarantees on instances created
3582  // before.
3583  Object* SetInstanceClassName(String* name);
3584
3585  // Returns if this function has been compiled to native code yet.
3586  inline bool is_compiled();
3587
3588  // Casting.
3589  static inline JSFunction* cast(Object* obj);
3590
3591  // Dispatched behavior.
3592#ifdef DEBUG
3593  void JSFunctionPrint();
3594  void JSFunctionVerify();
3595#endif
3596
3597  // Returns the number of allocated literals.
3598  inline int NumberOfLiterals();
3599
3600  // Retrieve the global context from a function's literal array.
3601  static Context* GlobalContextFromLiterals(FixedArray* literals);
3602
3603  // Layout descriptors.
3604  static const int kPrototypeOrInitialMapOffset = JSObject::kHeaderSize;
3605  static const int kSharedFunctionInfoOffset =
3606      kPrototypeOrInitialMapOffset + kPointerSize;
3607  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
3608  static const int kLiteralsOffset = kContextOffset + kPointerSize;
3609  static const int kSize = kLiteralsOffset + kPointerSize;
3610
3611  // Layout of the literals array.
3612  static const int kLiteralsPrefixSize = 1;
3613  static const int kLiteralGlobalContextIndex = 0;
3614 private:
3615  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
3616};
3617
3618
3619// JSGlobalProxy's prototype must be a JSGlobalObject or null,
3620// and the prototype is hidden. JSGlobalProxy always delegates
3621// property accesses to its prototype if the prototype is not null.
3622//
3623// A JSGlobalProxy can be reinitialized which will preserve its identity.
3624//
3625// Accessing a JSGlobalProxy requires security check.
3626
3627class JSGlobalProxy : public JSObject {
3628 public:
3629  // [context]: the owner global context of this proxy object.
3630  // It is null value if this object is not used by any context.
3631  DECL_ACCESSORS(context, Object)
3632
3633  // Casting.
3634  static inline JSGlobalProxy* cast(Object* obj);
3635
3636  // Dispatched behavior.
3637#ifdef DEBUG
3638  void JSGlobalProxyPrint();
3639  void JSGlobalProxyVerify();
3640#endif
3641
3642  // Layout description.
3643  static const int kContextOffset = JSObject::kHeaderSize;
3644  static const int kSize = kContextOffset + kPointerSize;
3645
3646 private:
3647
3648  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
3649};
3650
3651
3652// Forward declaration.
3653class JSBuiltinsObject;
3654
3655// Common super class for JavaScript global objects and the special
3656// builtins global objects.
3657class GlobalObject: public JSObject {
3658 public:
3659  // [builtins]: the object holding the runtime routines written in JS.
3660  DECL_ACCESSORS(builtins, JSBuiltinsObject)
3661
3662  // [global context]: the global context corresponding to this global object.
3663  DECL_ACCESSORS(global_context, Context)
3664
3665  // [global receiver]: the global receiver object of the context
3666  DECL_ACCESSORS(global_receiver, JSObject)
3667
3668  // Retrieve the property cell used to store a property.
3669  Object* GetPropertyCell(LookupResult* result);
3670
3671  // Ensure that the global object has a cell for the given property name.
3672  Object* EnsurePropertyCell(String* name);
3673
3674  // Casting.
3675  static inline GlobalObject* cast(Object* obj);
3676
3677  // Layout description.
3678  static const int kBuiltinsOffset = JSObject::kHeaderSize;
3679  static const int kGlobalContextOffset = kBuiltinsOffset + kPointerSize;
3680  static const int kGlobalReceiverOffset = kGlobalContextOffset + kPointerSize;
3681  static const int kHeaderSize = kGlobalReceiverOffset + kPointerSize;
3682
3683 private:
3684  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
3685
3686  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
3687};
3688
3689
3690// JavaScript global object.
3691class JSGlobalObject: public GlobalObject {
3692 public:
3693
3694  // Casting.
3695  static inline JSGlobalObject* cast(Object* obj);
3696
3697  // Dispatched behavior.
3698#ifdef DEBUG
3699  void JSGlobalObjectPrint();
3700  void JSGlobalObjectVerify();
3701#endif
3702
3703  // Layout description.
3704  static const int kSize = GlobalObject::kHeaderSize;
3705
3706 private:
3707  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
3708};
3709
3710
3711// Builtins global object which holds the runtime routines written in
3712// JavaScript.
3713class JSBuiltinsObject: public GlobalObject {
3714 public:
3715  // Accessors for the runtime routines written in JavaScript.
3716  inline Object* javascript_builtin(Builtins::JavaScript id);
3717  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);
3718
3719  // Accessors for code of the runtime routines written in JavaScript.
3720  inline Code* javascript_builtin_code(Builtins::JavaScript id);
3721  inline void set_javascript_builtin_code(Builtins::JavaScript id, Code* value);
3722
3723  // Casting.
3724  static inline JSBuiltinsObject* cast(Object* obj);
3725
3726  // Dispatched behavior.
3727#ifdef DEBUG
3728  void JSBuiltinsObjectPrint();
3729  void JSBuiltinsObjectVerify();
3730#endif
3731
3732  // Layout description.  The size of the builtins object includes
3733  // room for two pointers per runtime routine written in javascript
3734  // (function and code object).
3735  static const int kJSBuiltinsCount = Builtins::id_count;
3736  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
3737  static const int kJSBuiltinsCodeOffset =
3738      GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);
3739  static const int kSize =
3740      kJSBuiltinsCodeOffset + (kJSBuiltinsCount * kPointerSize);
3741
3742  static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
3743    return kJSBuiltinsOffset + id * kPointerSize;
3744  }
3745
3746  static int OffsetOfCodeWithId(Builtins::JavaScript id) {
3747    return kJSBuiltinsCodeOffset + id * kPointerSize;
3748  }
3749
3750 private:
3751  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
3752};
3753
3754
3755// Representation for JS Wrapper objects, String, Number, Boolean, Date, etc.
3756class JSValue: public JSObject {
3757 public:
3758  // [value]: the object being wrapped.
3759  DECL_ACCESSORS(value, Object)
3760
3761  // Casting.
3762  static inline JSValue* cast(Object* obj);
3763
3764  // Dispatched behavior.
3765#ifdef DEBUG
3766  void JSValuePrint();
3767  void JSValueVerify();
3768#endif
3769
3770  // Layout description.
3771  static const int kValueOffset = JSObject::kHeaderSize;
3772  static const int kSize = kValueOffset + kPointerSize;
3773
3774 private:
3775  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
3776};
3777
3778// Regular expressions
3779// The regular expression holds a single reference to a FixedArray in
3780// the kDataOffset field.
3781// The FixedArray contains the following data:
3782// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
3783// - reference to the original source string
3784// - reference to the original flag string
3785// If it is an atom regexp
3786// - a reference to a literal string to search for
3787// If it is an irregexp regexp:
3788// - a reference to code for ASCII inputs (bytecode or compiled).
3789// - a reference to code for UC16 inputs (bytecode or compiled).
3790// - max number of registers used by irregexp implementations.
3791// - number of capture registers (output values) of the regexp.
3792class JSRegExp: public JSObject {
3793 public:
3794  // Meaning of Type:
3795  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
3796  // ATOM: A simple string to match against using an indexOf operation.
3797  // IRREGEXP: Compiled with Irregexp.
3798  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
3799  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
3800  enum Flag { NONE = 0, GLOBAL = 1, IGNORE_CASE = 2, MULTILINE = 4 };
3801
3802  class Flags {
3803   public:
3804    explicit Flags(uint32_t value) : value_(value) { }
3805    bool is_global() { return (value_ & GLOBAL) != 0; }
3806    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
3807    bool is_multiline() { return (value_ & MULTILINE) != 0; }
3808    uint32_t value() { return value_; }
3809   private:
3810    uint32_t value_;
3811  };
3812
3813  DECL_ACCESSORS(data, Object)
3814
3815  inline Type TypeTag();
3816  inline int CaptureCount();
3817  inline Flags GetFlags();
3818  inline String* Pattern();
3819  inline Object* DataAt(int index);
3820  // Set implementation data after the object has been prepared.
3821  inline void SetDataAt(int index, Object* value);
3822  static int code_index(bool is_ascii) {
3823    if (is_ascii) {
3824      return kIrregexpASCIICodeIndex;
3825    } else {
3826      return kIrregexpUC16CodeIndex;
3827    }
3828  }
3829
3830  static inline JSRegExp* cast(Object* obj);
3831
3832  // Dispatched behavior.
3833#ifdef DEBUG
3834  void JSRegExpVerify();
3835#endif
3836
3837  static const int kDataOffset = JSObject::kHeaderSize;
3838  static const int kSize = kDataOffset + kPointerSize;
3839
3840  // Indices in the data array.
3841  static const int kTagIndex = 0;
3842  static const int kSourceIndex = kTagIndex + 1;
3843  static const int kFlagsIndex = kSourceIndex + 1;
3844  static const int kDataIndex = kFlagsIndex + 1;
3845  // The data fields are used in different ways depending on the
3846  // value of the tag.
3847  // Atom regexps (literal strings).
3848  static const int kAtomPatternIndex = kDataIndex;
3849
3850  static const int kAtomDataSize = kAtomPatternIndex + 1;
3851
3852  // Irregexp compiled code or bytecode for ASCII. If compilation
3853  // fails, this fields hold an exception object that should be
3854  // thrown if the regexp is used again.
3855  static const int kIrregexpASCIICodeIndex = kDataIndex;
3856  // Irregexp compiled code or bytecode for UC16.  If compilation
3857  // fails, this fields hold an exception object that should be
3858  // thrown if the regexp is used again.
3859  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;
3860  // Maximal number of registers used by either ASCII or UC16.
3861  // Only used to check that there is enough stack space
3862  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 2;
3863  // Number of captures in the compiled regexp.
3864  static const int kIrregexpCaptureCountIndex = kDataIndex + 3;
3865
3866  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;
3867
3868  // Offsets directly into the data fixed array.
3869  static const int kDataTagOffset =
3870      FixedArray::kHeaderSize + kTagIndex * kPointerSize;
3871  static const int kDataAsciiCodeOffset =
3872      FixedArray::kHeaderSize + kIrregexpASCIICodeIndex * kPointerSize;
3873  static const int kDataUC16CodeOffset =
3874      FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
3875  static const int kIrregexpCaptureCountOffset =
3876      FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;
3877
3878  // In-object fields.
3879  static const int kSourceFieldIndex = 0;
3880  static const int kGlobalFieldIndex = 1;
3881  static const int kIgnoreCaseFieldIndex = 2;
3882  static const int kMultilineFieldIndex = 3;
3883  static const int kLastIndexFieldIndex = 4;
3884};
3885
3886
3887class CompilationCacheShape {
3888 public:
3889  static inline bool IsMatch(HashTableKey* key, Object* value) {
3890    return key->IsMatch(value);
3891  }
3892
3893  static inline uint32_t Hash(HashTableKey* key) {
3894    return key->Hash();
3895  }
3896
3897  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3898    return key->HashForObject(object);
3899  }
3900
3901  static Object* AsObject(HashTableKey* key) {
3902    return key->AsObject();
3903  }
3904
3905  static const int kPrefixSize = 0;
3906  static const int kEntrySize = 2;
3907};
3908
3909
3910class CompilationCacheTable: public HashTable<CompilationCacheShape,
3911                                              HashTableKey*> {
3912 public:
3913  // Find cached value for a string key, otherwise return null.
3914  Object* Lookup(String* src);
3915  Object* LookupEval(String* src, Context* context);
3916  Object* LookupRegExp(String* source, JSRegExp::Flags flags);
3917  Object* Put(String* src, Object* value);
3918  Object* PutEval(String* src, Context* context, Object* value);
3919  Object* PutRegExp(String* src, JSRegExp::Flags flags, FixedArray* value);
3920
3921  static inline CompilationCacheTable* cast(Object* obj);
3922
3923 private:
3924  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
3925};
3926
3927
3928class CodeCache: public Struct {
3929 public:
3930  DECL_ACCESSORS(default_cache, FixedArray)
3931  DECL_ACCESSORS(normal_type_cache, Object)
3932
3933  // Add the code object to the cache.
3934  Object* Update(String* name, Code* code);
3935
3936  // Lookup code object in the cache. Returns code object if found and undefined
3937  // if not.
3938  Object* Lookup(String* name, Code::Flags flags);
3939
3940  // Get the internal index of a code object in the cache. Returns -1 if the
3941  // code object is not in that cache. This index can be used to later call
3942  // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
3943  // RemoveByIndex.
3944  int GetIndex(Object* name, Code* code);
3945
3946  // Remove an object from the cache with the provided internal index.
3947  void RemoveByIndex(Object* name, Code* code, int index);
3948
3949  static inline CodeCache* cast(Object* obj);
3950
3951#ifdef DEBUG
3952  void CodeCachePrint();
3953  void CodeCacheVerify();
3954#endif
3955
3956  static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
3957  static const int kNormalTypeCacheOffset =
3958      kDefaultCacheOffset + kPointerSize;
3959  static const int kSize = kNormalTypeCacheOffset + kPointerSize;
3960
3961 private:
3962  Object* UpdateDefaultCache(String* name, Code* code);
3963  Object* UpdateNormalTypeCache(String* name, Code* code);
3964  Object* LookupDefaultCache(String* name, Code::Flags flags);
3965  Object* LookupNormalTypeCache(String* name, Code::Flags flags);
3966
3967  // Code cache layout of the default cache. Elements are alternating name and
3968  // code objects for non normal load/store/call IC's.
3969  static const int kCodeCacheEntrySize = 2;
3970  static const int kCodeCacheEntryNameOffset = 0;
3971  static const int kCodeCacheEntryCodeOffset = 1;
3972
3973  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
3974};
3975
3976
3977class CodeCacheHashTableShape {
3978 public:
3979  static inline bool IsMatch(HashTableKey* key, Object* value) {
3980    return key->IsMatch(value);
3981  }
3982
3983  static inline uint32_t Hash(HashTableKey* key) {
3984    return key->Hash();
3985  }
3986
3987  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
3988    return key->HashForObject(object);
3989  }
3990
3991  static Object* AsObject(HashTableKey* key) {
3992    return key->AsObject();
3993  }
3994
3995  static const int kPrefixSize = 0;
3996  static const int kEntrySize = 2;
3997};
3998
3999
4000class CodeCacheHashTable: public HashTable<CodeCacheHashTableShape,
4001                                           HashTableKey*> {
4002 public:
4003  Object* Lookup(String* name, Code::Flags flags);
4004  Object* Put(String* name, Code* code);
4005
4006  int GetIndex(String* name, Code::Flags flags);
4007  void RemoveByIndex(int index);
4008
4009  static inline CodeCacheHashTable* cast(Object* obj);
4010
4011  // Initial size of the fixed array backing the hash table.
4012  static const int kInitialSize = 64;
4013
4014 private:
4015  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
4016};
4017
4018
4019enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
4020enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};
4021
4022
4023class StringHasher {
4024 public:
4025  inline StringHasher(int length);
4026
4027  // Returns true if the hash of this string can be computed without
4028  // looking at the contents.
4029  inline bool has_trivial_hash();
4030
4031  // Add a character to the hash and update the array index calculation.
4032  inline void AddCharacter(uc32 c);
4033
4034  // Adds a character to the hash but does not update the array index
4035  // calculation.  This can only be called when it has been verified
4036  // that the input is not an array index.
4037  inline void AddCharacterNoIndex(uc32 c);
4038
4039  // Returns the value to store in the hash field of a string with
4040  // the given length and contents.
4041  uint32_t GetHashField();
4042
4043  // Returns true if the characters seen so far make up a legal array
4044  // index.
4045  bool is_array_index() { return is_array_index_; }
4046
4047  bool is_valid() { return is_valid_; }
4048
4049  void invalidate() { is_valid_ = false; }
4050
4051 private:
4052
4053  uint32_t array_index() {
4054    ASSERT(is_array_index());
4055    return array_index_;
4056  }
4057
4058  inline uint32_t GetHash();
4059
4060  int length_;
4061  uint32_t raw_running_hash_;
4062  uint32_t array_index_;
4063  bool is_array_index_;
4064  bool is_first_char_;
4065  bool is_valid_;
4066  friend class TwoCharHashTableKey;
4067};
4068
4069
4070// The characteristics of a string are stored in its map.  Retrieving these
4071// few bits of information is moderately expensive, involving two memory
4072// loads where the second is dependent on the first.  To improve efficiency
4073// the shape of the string is given its own class so that it can be retrieved
4074// once and used for several string operations.  A StringShape is small enough
4075// to be passed by value and is immutable, but be aware that flattening a
4076// string can potentially alter its shape.  Also be aware that a GC caused by
4077// something else can alter the shape of a string due to ConsString
4078// shortcutting.  Keeping these restrictions in mind has proven to be error-
4079// prone and so we no longer put StringShapes in variables unless there is a
4080// concrete performance benefit at that particular point in the code.
4081class StringShape BASE_EMBEDDED {
4082 public:
4083  inline explicit StringShape(String* s);
4084  inline explicit StringShape(Map* s);
4085  inline explicit StringShape(InstanceType t);
4086  inline bool IsSequential();
4087  inline bool IsExternal();
4088  inline bool IsCons();
4089  inline bool IsExternalAscii();
4090  inline bool IsExternalTwoByte();
4091  inline bool IsSequentialAscii();
4092  inline bool IsSequentialTwoByte();
4093  inline bool IsSymbol();
4094  inline StringRepresentationTag representation_tag();
4095  inline uint32_t full_representation_tag();
4096  inline uint32_t size_tag();
4097#ifdef DEBUG
4098  inline uint32_t type() { return type_; }
4099  inline void invalidate() { valid_ = false; }
4100  inline bool valid() { return valid_; }
4101#else
4102  inline void invalidate() { }
4103#endif
4104 private:
4105  uint32_t type_;
4106#ifdef DEBUG
4107  inline void set_valid() { valid_ = true; }
4108  bool valid_;
4109#else
4110  inline void set_valid() { }
4111#endif
4112};
4113
4114
4115// The String abstract class captures JavaScript string values:
4116//
4117// Ecma-262:
4118//  4.3.16 String Value
4119//    A string value is a member of the type String and is a finite
4120//    ordered sequence of zero or more 16-bit unsigned integer values.
4121//
4122// All string values have a length field.
4123class String: public HeapObject {
4124 public:
4125  // Get and set the length of the string.
4126  inline int length();
4127  inline void set_length(int value);
4128
4129  // Get and set the hash field of the string.
4130  inline uint32_t hash_field();
4131  inline void set_hash_field(uint32_t value);
4132
4133  inline bool IsAsciiRepresentation();
4134  inline bool IsTwoByteRepresentation();
4135
4136  // Returns whether this string has ascii chars, i.e. all of them can
4137  // be ascii encoded.  This might be the case even if the string is
4138  // two-byte.  Such strings may appear when the embedder prefers
4139  // two-byte external representations even for ascii data.
4140  //
4141  // NOTE: this should be considered only a hint.  False negatives are
4142  // possible.
4143  inline bool HasOnlyAsciiChars();
4144
4145  // Get and set individual two byte chars in the string.
4146  inline void Set(int index, uint16_t value);
4147  // Get individual two byte char in the string.  Repeated calls
4148  // to this method are not efficient unless the string is flat.
4149  inline uint16_t Get(int index);
4150
4151  // Try to flatten the string.  Checks first inline to see if it is
4152  // necessary.  Does nothing if the string is not a cons string.
4153  // Flattening allocates a sequential string with the same data as
4154  // the given string and mutates the cons string to a degenerate
4155  // form, where the first component is the new sequential string and
4156  // the second component is the empty string.  If allocation fails,
4157  // this function returns a failure.  If flattening succeeds, this
4158  // function returns the sequential string that is now the first
4159  // component of the cons string.
4160  //
4161  // Degenerate cons strings are handled specially by the garbage
4162  // collector (see IsShortcutCandidate).
4163  //
4164  // Use FlattenString from Handles.cc to flatten even in case an
4165  // allocation failure happens.
4166  inline Object* TryFlatten(PretenureFlag pretenure = NOT_TENURED);
4167
4168  // Convenience function.  Has exactly the same behavior as
4169  // TryFlatten(), except in the case of failure returns the original
4170  // string.
4171  inline String* TryFlattenGetString(PretenureFlag pretenure = NOT_TENURED);
4172
4173  Vector<const char> ToAsciiVector();
4174  Vector<const uc16> ToUC16Vector();
4175
4176  // Mark the string as an undetectable object. It only applies to
4177  // ascii and two byte string types.
4178  bool MarkAsUndetectable();
4179
4180  // Return a substring.
4181  Object* SubString(int from, int to, PretenureFlag pretenure = NOT_TENURED);
4182
4183  // String equality operations.
4184  inline bool Equals(String* other);
4185  bool IsEqualTo(Vector<const char> str);
4186
4187  // Return a UTF8 representation of the string.  The string is null
4188  // terminated but may optionally contain nulls.  Length is returned
4189  // in length_output if length_output is not a null pointer  The string
4190  // should be nearly flat, otherwise the performance of this method may
4191  // be very slow (quadratic in the length).  Setting robustness_flag to
4192  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
4193  // handles unexpected data without causing assert failures and it does not
4194  // do any heap allocations.  This is useful when printing stack traces.
4195  SmartPointer<char> ToCString(AllowNullsFlag allow_nulls,
4196                               RobustnessFlag robustness_flag,
4197                               int offset,
4198                               int length,
4199                               int* length_output = 0);
4200  SmartPointer<char> ToCString(
4201      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
4202      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
4203      int* length_output = 0);
4204
4205  int Utf8Length();
4206
4207  // Return a 16 bit Unicode representation of the string.
4208  // The string should be nearly flat, otherwise the performance of
4209  // of this method may be very bad.  Setting robustness_flag to
4210  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
4211  // handles unexpected data without causing assert failures and it does not
4212  // do any heap allocations.  This is useful when printing stack traces.
4213  SmartPointer<uc16> ToWideCString(
4214      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);
4215
4216  // Tells whether the hash code has been computed.
4217  inline bool HasHashCode();
4218
4219  // Returns a hash value used for the property table
4220  inline uint32_t Hash();
4221
4222  static uint32_t ComputeHashField(unibrow::CharacterStream* buffer,
4223                                   int length);
4224
4225  static bool ComputeArrayIndex(unibrow::CharacterStream* buffer,
4226                                uint32_t* index,
4227                                int length);
4228
4229  // Externalization.
4230  bool MakeExternal(v8::String::ExternalStringResource* resource);
4231  bool MakeExternal(v8::String::ExternalAsciiStringResource* resource);
4232
4233  // Conversion.
4234  inline bool AsArrayIndex(uint32_t* index);
4235
4236  // Casting.
4237  static inline String* cast(Object* obj);
4238
4239  void PrintOn(FILE* out);
4240
4241  // For use during stack traces.  Performs rudimentary sanity check.
4242  bool LooksValid();
4243
4244  // Dispatched behavior.
4245  void StringShortPrint(StringStream* accumulator);
4246#ifdef DEBUG
4247  void StringPrint();
4248  void StringVerify();
4249#endif
4250  inline bool IsFlat();
4251
4252  // Layout description.
4253  static const int kLengthOffset = HeapObject::kHeaderSize;
4254  static const int kHashFieldOffset = kLengthOffset + kPointerSize;
4255  static const int kSize = kHashFieldOffset + kPointerSize;
4256
4257  // Maximum number of characters to consider when trying to convert a string
4258  // value into an array index.
4259  static const int kMaxArrayIndexSize = 10;
4260
4261  // Max ascii char code.
4262  static const int kMaxAsciiCharCode = unibrow::Utf8::kMaxOneByteChar;
4263  static const unsigned kMaxAsciiCharCodeU = unibrow::Utf8::kMaxOneByteChar;
4264  static const int kMaxUC16CharCode = 0xffff;
4265
4266  // Minimum length for a cons string.
4267  static const int kMinNonFlatLength = 13;
4268
4269  // Mask constant for checking if a string has a computed hash code
4270  // and if it is an array index.  The least significant bit indicates
4271  // whether a hash code has been computed.  If the hash code has been
4272  // computed the 2nd bit tells whether the string can be used as an
4273  // array index.
4274  static const int kHashNotComputedMask = 1;
4275  static const int kIsNotArrayIndexMask = 1 << 1;
4276  static const int kNofHashBitFields = 2;
4277
4278  // Shift constant retrieving hash code from hash field.
4279  static const int kHashShift = kNofHashBitFields;
4280
4281  // Array index strings this short can keep their index in the hash
4282  // field.
4283  static const int kMaxCachedArrayIndexLength = 7;
4284
4285  // For strings which are array indexes the hash value has the string length
4286  // mixed into the hash, mainly to avoid a hash value of zero which would be
4287  // the case for the string '0'. 24 bits are used for the array index value.
4288  static const int kArrayIndexValueBits = 24;
4289  static const int kArrayIndexLengthBits =
4290      kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;
4291
4292  STATIC_CHECK((kArrayIndexLengthBits > 0));
4293
4294  static const int kArrayIndexHashLengthShift =
4295      kArrayIndexValueBits + kNofHashBitFields;
4296
4297  static const int kArrayIndexHashMask = (1 << kArrayIndexHashLengthShift) - 1;
4298
4299  static const int kArrayIndexValueMask =
4300      ((1 << kArrayIndexValueBits) - 1) << kHashShift;
4301
4302  // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
4303  // could use a mask to test if the length of string is less than or equal to
4304  // kMaxCachedArrayIndexLength.
4305  STATIC_CHECK(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));
4306
4307  static const int kContainsCachedArrayIndexMask =
4308      (~kMaxCachedArrayIndexLength << kArrayIndexHashLengthShift) |
4309      kIsNotArrayIndexMask;
4310
4311  // Value of empty hash field indicating that the hash is not computed.
4312  static const int kEmptyHashField =
4313      kIsNotArrayIndexMask | kHashNotComputedMask;
4314
4315  // Value of hash field containing computed hash equal to zero.
4316  static const int kZeroHash = kIsNotArrayIndexMask;
4317
4318  // Maximal string length.
4319  static const int kMaxLength = (1 << (32 - 2)) - 1;
4320
4321  // Max length for computing hash. For strings longer than this limit the
4322  // string length is used as the hash value.
4323  static const int kMaxHashCalcLength = 16383;
4324
4325  // Limit for truncation in short printing.
4326  static const int kMaxShortPrintLength = 1024;
4327
4328  // Support for regular expressions.
4329  const uc16* GetTwoByteData();
4330  const uc16* GetTwoByteData(unsigned start);
4331
4332  // Support for StringInputBuffer
4333  static const unibrow::byte* ReadBlock(String* input,
4334                                        unibrow::byte* util_buffer,
4335                                        unsigned capacity,
4336                                        unsigned* remaining,
4337                                        unsigned* offset);
4338  static const unibrow::byte* ReadBlock(String** input,
4339                                        unibrow::byte* util_buffer,
4340                                        unsigned capacity,
4341                                        unsigned* remaining,
4342                                        unsigned* offset);
4343
4344  // Helper function for flattening strings.
4345  template <typename sinkchar>
4346  static void WriteToFlat(String* source,
4347                          sinkchar* sink,
4348                          int from,
4349                          int to);
4350
4351 protected:
4352  class ReadBlockBuffer {
4353   public:
4354    ReadBlockBuffer(unibrow::byte* util_buffer_,
4355                    unsigned cursor_,
4356                    unsigned capacity_,
4357                    unsigned remaining_) :
4358      util_buffer(util_buffer_),
4359      cursor(cursor_),
4360      capacity(capacity_),
4361      remaining(remaining_) {
4362    }
4363    unibrow::byte* util_buffer;
4364    unsigned       cursor;
4365    unsigned       capacity;
4366    unsigned       remaining;
4367  };
4368
4369  static inline const unibrow::byte* ReadBlock(String* input,
4370                                               ReadBlockBuffer* buffer,
4371                                               unsigned* offset,
4372                                               unsigned max_chars);
4373  static void ReadBlockIntoBuffer(String* input,
4374                                  ReadBlockBuffer* buffer,
4375                                  unsigned* offset_ptr,
4376                                  unsigned max_chars);
4377
4378 private:
4379  // Try to flatten the top level ConsString that is hiding behind this
4380  // string.  This is a no-op unless the string is a ConsString.  Flatten
4381  // mutates the ConsString and might return a failure.
4382  Object* SlowTryFlatten(PretenureFlag pretenure);
4383
4384  static inline bool IsHashFieldComputed(uint32_t field);
4385
4386  // Slow case of String::Equals.  This implementation works on any strings
4387  // but it is most efficient on strings that are almost flat.
4388  bool SlowEquals(String* other);
4389
4390  // Slow case of AsArrayIndex.
4391  bool SlowAsArrayIndex(uint32_t* index);
4392
4393  // Compute and set the hash code.
4394  uint32_t ComputeAndSetHash();
4395
4396  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
4397};
4398
4399
4400// The SeqString abstract class captures sequential string values.
4401class SeqString: public String {
4402 public:
4403
4404  // Casting.
4405  static inline SeqString* cast(Object* obj);
4406
4407 private:
4408  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
4409};
4410
4411
4412// The AsciiString class captures sequential ascii string objects.
4413// Each character in the AsciiString is an ascii character.
4414class SeqAsciiString: public SeqString {
4415 public:
4416  static const bool kHasAsciiEncoding = true;
4417
4418  // Dispatched behavior.
4419  inline uint16_t SeqAsciiStringGet(int index);
4420  inline void SeqAsciiStringSet(int index, uint16_t value);
4421
4422  // Get the address of the characters in this string.
4423  inline Address GetCharsAddress();
4424
4425  inline char* GetChars();
4426
4427  // Casting
4428  static inline SeqAsciiString* cast(Object* obj);
4429
4430  // Garbage collection support.  This method is called by the
4431  // garbage collector to compute the actual size of an AsciiString
4432  // instance.
4433  inline int SeqAsciiStringSize(InstanceType instance_type);
4434
4435  // Computes the size for an AsciiString instance of a given length.
4436  static int SizeFor(int length) {
4437    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
4438  }
4439
4440  // Layout description.
4441  static const int kHeaderSize = String::kSize;
4442  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4443
4444  // Maximal memory usage for a single sequential ASCII string.
4445  static const int kMaxSize = 512 * MB;
4446  // Maximal length of a single sequential ASCII string.
4447  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4448  static const int kMaxLength = (kMaxSize - kHeaderSize);
4449
4450  // Support for StringInputBuffer.
4451  inline void SeqAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4452                                                unsigned* offset,
4453                                                unsigned chars);
4454  inline const unibrow::byte* SeqAsciiStringReadBlock(unsigned* remaining,
4455                                                      unsigned* offset,
4456                                                      unsigned chars);
4457
4458 private:
4459  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqAsciiString);
4460};
4461
4462
4463// The TwoByteString class captures sequential unicode string objects.
4464// Each character in the TwoByteString is a two-byte uint16_t.
4465class SeqTwoByteString: public SeqString {
4466 public:
4467  static const bool kHasAsciiEncoding = false;
4468
4469  // Dispatched behavior.
4470  inline uint16_t SeqTwoByteStringGet(int index);
4471  inline void SeqTwoByteStringSet(int index, uint16_t value);
4472
4473  // Get the address of the characters in this string.
4474  inline Address GetCharsAddress();
4475
4476  inline uc16* GetChars();
4477
4478  // For regexp code.
4479  const uint16_t* SeqTwoByteStringGetData(unsigned start);
4480
4481  // Casting
4482  static inline SeqTwoByteString* cast(Object* obj);
4483
4484  // Garbage collection support.  This method is called by the
4485  // garbage collector to compute the actual size of a TwoByteString
4486  // instance.
4487  inline int SeqTwoByteStringSize(InstanceType instance_type);
4488
4489  // Computes the size for a TwoByteString instance of a given length.
4490  static int SizeFor(int length) {
4491    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
4492  }
4493
4494  // Layout description.
4495  static const int kHeaderSize = String::kSize;
4496  static const int kAlignedSize = POINTER_SIZE_ALIGN(kHeaderSize);
4497
4498  // Maximal memory usage for a single sequential two-byte string.
4499  static const int kMaxSize = 512 * MB;
4500  // Maximal length of a single sequential two-byte string.
4501  // Q.v. String::kMaxLength which is the maximal size of concatenated strings.
4502  static const int kMaxLength = (kMaxSize - kHeaderSize) / sizeof(uint16_t);
4503
4504  // Support for StringInputBuffer.
4505  inline void SeqTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4506                                                  unsigned* offset_ptr,
4507                                                  unsigned chars);
4508
4509 private:
4510  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
4511};
4512
4513
4514// The ConsString class describes string values built by using the
4515// addition operator on strings.  A ConsString is a pair where the
4516// first and second components are pointers to other string values.
4517// One or both components of a ConsString can be pointers to other
4518// ConsStrings, creating a binary tree of ConsStrings where the leaves
4519// are non-ConsString string values.  The string value represented by
4520// a ConsString can be obtained by concatenating the leaf string
4521// values in a left-to-right depth-first traversal of the tree.
4522class ConsString: public String {
4523 public:
4524  // First string of the cons cell.
4525  inline String* first();
4526  // Doesn't check that the result is a string, even in debug mode.  This is
4527  // useful during GC where the mark bits confuse the checks.
4528  inline Object* unchecked_first();
4529  inline void set_first(String* first,
4530                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4531
4532  // Second string of the cons cell.
4533  inline String* second();
4534  // Doesn't check that the result is a string, even in debug mode.  This is
4535  // useful during GC where the mark bits confuse the checks.
4536  inline Object* unchecked_second();
4537  inline void set_second(String* second,
4538                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
4539
4540  // Dispatched behavior.
4541  uint16_t ConsStringGet(int index);
4542
4543  // Casting.
4544  static inline ConsString* cast(Object* obj);
4545
4546  // Garbage collection support.  This method is called during garbage
4547  // collection to iterate through the heap pointers in the body of
4548  // the ConsString.
4549  void ConsStringIterateBody(ObjectVisitor* v);
4550
4551  // Layout description.
4552  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
4553  static const int kSecondOffset = kFirstOffset + kPointerSize;
4554  static const int kSize = kSecondOffset + kPointerSize;
4555
4556  // Support for StringInputBuffer.
4557  inline const unibrow::byte* ConsStringReadBlock(ReadBlockBuffer* buffer,
4558                                                  unsigned* offset_ptr,
4559                                                  unsigned chars);
4560  inline void ConsStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4561                                            unsigned* offset_ptr,
4562                                            unsigned chars);
4563
4564  // Minimum length for a cons string.
4565  static const int kMinLength = 13;
4566
4567 private:
4568  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
4569};
4570
4571
4572// The ExternalString class describes string values that are backed by
4573// a string resource that lies outside the V8 heap.  ExternalStrings
4574// consist of the length field common to all strings, a pointer to the
4575// external resource.  It is important to ensure (externally) that the
4576// resource is not deallocated while the ExternalString is live in the
4577// V8 heap.
4578//
4579// The API expects that all ExternalStrings are created through the
4580// API.  Therefore, ExternalStrings should not be used internally.
4581class ExternalString: public String {
4582 public:
4583  // Casting
4584  static inline ExternalString* cast(Object* obj);
4585
4586  // Layout description.
4587  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
4588  static const int kSize = kResourceOffset + kPointerSize;
4589
4590  STATIC_CHECK(kResourceOffset == Internals::kStringResourceOffset);
4591
4592 private:
4593  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
4594};
4595
4596
4597// The ExternalAsciiString class is an external string backed by an
4598// ASCII string.
4599class ExternalAsciiString: public ExternalString {
4600 public:
4601  static const bool kHasAsciiEncoding = true;
4602
4603  typedef v8::String::ExternalAsciiStringResource Resource;
4604
4605  // The underlying resource.
4606  inline Resource* resource();
4607  inline void set_resource(Resource* buffer);
4608
4609  // Dispatched behavior.
4610  uint16_t ExternalAsciiStringGet(int index);
4611
4612  // Casting.
4613  static inline ExternalAsciiString* cast(Object* obj);
4614
4615  // Garbage collection support.
4616  void ExternalAsciiStringIterateBody(ObjectVisitor* v);
4617
4618  // Support for StringInputBuffer.
4619  const unibrow::byte* ExternalAsciiStringReadBlock(unsigned* remaining,
4620                                                    unsigned* offset,
4621                                                    unsigned chars);
4622  inline void ExternalAsciiStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4623                                                     unsigned* offset,
4624                                                     unsigned chars);
4625
4626 private:
4627  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalAsciiString);
4628};
4629
4630
4631// The ExternalTwoByteString class is an external string backed by a UTF-16
4632// encoded string.
4633class ExternalTwoByteString: public ExternalString {
4634 public:
4635  static const bool kHasAsciiEncoding = false;
4636
4637  typedef v8::String::ExternalStringResource Resource;
4638
4639  // The underlying string resource.
4640  inline Resource* resource();
4641  inline void set_resource(Resource* buffer);
4642
4643  // Dispatched behavior.
4644  uint16_t ExternalTwoByteStringGet(int index);
4645
4646  // For regexp code.
4647  const uint16_t* ExternalTwoByteStringGetData(unsigned start);
4648
4649  // Casting.
4650  static inline ExternalTwoByteString* cast(Object* obj);
4651
4652  // Garbage collection support.
4653  void ExternalTwoByteStringIterateBody(ObjectVisitor* v);
4654
4655  // Support for StringInputBuffer.
4656  void ExternalTwoByteStringReadBlockIntoBuffer(ReadBlockBuffer* buffer,
4657                                                unsigned* offset_ptr,
4658                                                unsigned chars);
4659
4660 private:
4661  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
4662};
4663
4664
4665// Utility superclass for stack-allocated objects that must be updated
4666// on gc.  It provides two ways for the gc to update instances, either
4667// iterating or updating after gc.
4668class Relocatable BASE_EMBEDDED {
4669 public:
4670  inline Relocatable() : prev_(top_) { top_ = this; }
4671  virtual ~Relocatable() {
4672    ASSERT_EQ(top_, this);
4673    top_ = prev_;
4674  }
4675  virtual void IterateInstance(ObjectVisitor* v) { }
4676  virtual void PostGarbageCollection() { }
4677
4678  static void PostGarbageCollectionProcessing();
4679  static int ArchiveSpacePerThread();
4680  static char* ArchiveState(char* to);
4681  static char* RestoreState(char* from);
4682  static void Iterate(ObjectVisitor* v);
4683  static void Iterate(ObjectVisitor* v, Relocatable* top);
4684  static char* Iterate(ObjectVisitor* v, char* t);
4685 private:
4686  static Relocatable* top_;
4687  Relocatable* prev_;
4688};
4689
4690
4691// A flat string reader provides random access to the contents of a
4692// string independent of the character width of the string.  The handle
4693// must be valid as long as the reader is being used.
4694class FlatStringReader : public Relocatable {
4695 public:
4696  explicit FlatStringReader(Handle<String> str);
4697  explicit FlatStringReader(Vector<const char> input);
4698  void PostGarbageCollection();
4699  inline uc32 Get(int index);
4700  int length() { return length_; }
4701 private:
4702  String** str_;
4703  bool is_ascii_;
4704  int length_;
4705  const void* start_;
4706};
4707
4708
4709// Note that StringInputBuffers are not valid across a GC!  To fix this
4710// it would have to store a String Handle instead of a String* and
4711// AsciiStringReadBlock would have to be modified to use memcpy.
4712//
4713// StringInputBuffer is able to traverse any string regardless of how
4714// deeply nested a sequence of ConsStrings it is made of.  However,
4715// performance will be better if deep strings are flattened before they
4716// are traversed.  Since flattening requires memory allocation this is
4717// not always desirable, however (esp. in debugging situations).
4718class StringInputBuffer: public unibrow::InputBuffer<String, String*, 1024> {
4719 public:
4720  virtual void Seek(unsigned pos);
4721  inline StringInputBuffer(): unibrow::InputBuffer<String, String*, 1024>() {}
4722  inline StringInputBuffer(String* backing):
4723      unibrow::InputBuffer<String, String*, 1024>(backing) {}
4724};
4725
4726
4727class SafeStringInputBuffer
4728  : public unibrow::InputBuffer<String, String**, 256> {
4729 public:
4730  virtual void Seek(unsigned pos);
4731  inline SafeStringInputBuffer()
4732      : unibrow::InputBuffer<String, String**, 256>() {}
4733  inline SafeStringInputBuffer(String** backing)
4734      : unibrow::InputBuffer<String, String**, 256>(backing) {}
4735};
4736
4737
4738template <typename T>
4739class VectorIterator {
4740 public:
4741  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
4742  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
4743  T GetNext() { return data_[index_++]; }
4744  bool has_more() { return index_ < data_.length(); }
4745 private:
4746  Vector<const T> data_;
4747  int index_;
4748};
4749
4750
4751// The Oddball describes objects null, undefined, true, and false.
4752class Oddball: public HeapObject {
4753 public:
4754  // [to_string]: Cached to_string computed at startup.
4755  DECL_ACCESSORS(to_string, String)
4756
4757  // [to_number]: Cached to_number computed at startup.
4758  DECL_ACCESSORS(to_number, Object)
4759
4760  // Casting.
4761  static inline Oddball* cast(Object* obj);
4762
4763  // Dispatched behavior.
4764  void OddballIterateBody(ObjectVisitor* v);
4765#ifdef DEBUG
4766  void OddballVerify();
4767#endif
4768
4769  // Initialize the fields.
4770  Object* Initialize(const char* to_string, Object* to_number);
4771
4772  // Layout description.
4773  static const int kToStringOffset = HeapObject::kHeaderSize;
4774  static const int kToNumberOffset = kToStringOffset + kPointerSize;
4775  static const int kSize = kToNumberOffset + kPointerSize;
4776
4777 private:
4778  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
4779};
4780
4781
4782class JSGlobalPropertyCell: public HeapObject {
4783 public:
4784  // [value]: value of the global property.
4785  DECL_ACCESSORS(value, Object)
4786
4787  // Casting.
4788  static inline JSGlobalPropertyCell* cast(Object* obj);
4789
4790  // Dispatched behavior.
4791  void JSGlobalPropertyCellIterateBody(ObjectVisitor* v);
4792#ifdef DEBUG
4793  void JSGlobalPropertyCellVerify();
4794  void JSGlobalPropertyCellPrint();
4795#endif
4796
4797  // Layout description.
4798  static const int kValueOffset = HeapObject::kHeaderSize;
4799  static const int kSize = kValueOffset + kPointerSize;
4800
4801 private:
4802  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalPropertyCell);
4803};
4804
4805
4806
4807// Proxy describes objects pointing from JavaScript to C structures.
4808// Since they cannot contain references to JS HeapObjects they can be
4809// placed in old_data_space.
4810class Proxy: public HeapObject {
4811 public:
4812  // [proxy]: field containing the address.
4813  inline Address proxy();
4814  inline void set_proxy(Address value);
4815
4816  // Casting.
4817  static inline Proxy* cast(Object* obj);
4818
4819  // Dispatched behavior.
4820  inline void ProxyIterateBody(ObjectVisitor* v);
4821#ifdef DEBUG
4822  void ProxyPrint();
4823  void ProxyVerify();
4824#endif
4825
4826  // Layout description.
4827
4828  static const int kProxyOffset = HeapObject::kHeaderSize;
4829  static const int kSize = kProxyOffset + kPointerSize;
4830
4831  STATIC_CHECK(kProxyOffset == Internals::kProxyProxyOffset);
4832
4833 private:
4834  DISALLOW_IMPLICIT_CONSTRUCTORS(Proxy);
4835};
4836
4837
4838// The JSArray describes JavaScript Arrays
4839//  Such an array can be in one of two modes:
4840//    - fast, backing storage is a FixedArray and length <= elements.length();
4841//       Please note: push and pop can be used to grow and shrink the array.
4842//    - slow, backing storage is a HashTable with numbers as keys.
4843class JSArray: public JSObject {
4844 public:
4845  // [length]: The length property.
4846  DECL_ACCESSORS(length, Object)
4847
4848  // Overload the length setter to skip write barrier when the length
4849  // is set to a smi. This matches the set function on FixedArray.
4850  inline void set_length(Smi* length);
4851
4852  Object* JSArrayUpdateLengthFromIndex(uint32_t index, Object* value);
4853
4854  // Initialize the array with the given capacity. The function may
4855  // fail due to out-of-memory situations, but only if the requested
4856  // capacity is non-zero.
4857  Object* Initialize(int capacity);
4858
4859  // Set the content of the array to the content of storage.
4860  inline void SetContent(FixedArray* storage);
4861
4862  // Casting.
4863  static inline JSArray* cast(Object* obj);
4864
4865  // Uses handles.  Ensures that the fixed array backing the JSArray has at
4866  // least the stated size.
4867  inline void EnsureSize(int minimum_size_of_backing_fixed_array);
4868
4869  // Dispatched behavior.
4870#ifdef DEBUG
4871  void JSArrayPrint();
4872  void JSArrayVerify();
4873#endif
4874
4875  // Number of element slots to pre-allocate for an empty array.
4876  static const int kPreallocatedArrayElements = 4;
4877
4878  // Layout description.
4879  static const int kLengthOffset = JSObject::kHeaderSize;
4880  static const int kSize = kLengthOffset + kPointerSize;
4881
4882 private:
4883  // Expand the fixed array backing of a fast-case JSArray to at least
4884  // the requested size.
4885  void Expand(int minimum_size_of_backing_fixed_array);
4886
4887  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
4888};
4889
4890
4891// JSRegExpResult is just a JSArray with a specific initial map.
4892// This initial map adds in-object properties for "index" and "input"
4893// properties, as assigned by RegExp.prototype.exec, which allows
4894// faster creation of RegExp exec results.
4895// This class just holds constants used when creating the result.
4896// After creation the result must be treated as a JSArray in all regards.
4897class JSRegExpResult: public JSArray {
4898 public:
4899  // Offsets of object fields.
4900  static const int kIndexOffset = JSArray::kSize;
4901  static const int kInputOffset = kIndexOffset + kPointerSize;
4902  static const int kSize = kInputOffset + kPointerSize;
4903  // Indices of in-object properties.
4904  static const int kIndexIndex = 0;
4905  static const int kInputIndex = 1;
4906 private:
4907  DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
4908};
4909
4910
4911// An accessor must have a getter, but can have no setter.
4912//
4913// When setting a property, V8 searches accessors in prototypes.
4914// If an accessor was found and it does not have a setter,
4915// the request is ignored.
4916//
4917// If the accessor in the prototype has the READ_ONLY property attribute, then
4918// a new value is added to the local object when the property is set.
4919// This shadows the accessor in the prototype.
4920class AccessorInfo: public Struct {
4921 public:
4922  DECL_ACCESSORS(getter, Object)
4923  DECL_ACCESSORS(setter, Object)
4924  DECL_ACCESSORS(data, Object)
4925  DECL_ACCESSORS(name, Object)
4926  DECL_ACCESSORS(flag, Smi)
4927  DECL_ACCESSORS(load_stub_cache, Object)
4928
4929  inline bool all_can_read();
4930  inline void set_all_can_read(bool value);
4931
4932  inline bool all_can_write();
4933  inline void set_all_can_write(bool value);
4934
4935  inline bool prohibits_overwriting();
4936  inline void set_prohibits_overwriting(bool value);
4937
4938  inline PropertyAttributes property_attributes();
4939  inline void set_property_attributes(PropertyAttributes attributes);
4940
4941  static inline AccessorInfo* cast(Object* obj);
4942
4943#ifdef DEBUG
4944  void AccessorInfoPrint();
4945  void AccessorInfoVerify();
4946#endif
4947
4948  static const int kGetterOffset = HeapObject::kHeaderSize;
4949  static const int kSetterOffset = kGetterOffset + kPointerSize;
4950  static const int kDataOffset = kSetterOffset + kPointerSize;
4951  static const int kNameOffset = kDataOffset + kPointerSize;
4952  static const int kFlagOffset = kNameOffset + kPointerSize;
4953  static const int kLoadStubCacheOffset = kFlagOffset + kPointerSize;
4954  static const int kSize = kLoadStubCacheOffset + kPointerSize;
4955
4956 private:
4957  // Bit positions in flag.
4958  static const int kAllCanReadBit = 0;
4959  static const int kAllCanWriteBit = 1;
4960  static const int kProhibitsOverwritingBit = 2;
4961  class AttributesField: public BitField<PropertyAttributes, 3, 3> {};
4962
4963  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
4964};
4965
4966
4967class AccessCheckInfo: public Struct {
4968 public:
4969  DECL_ACCESSORS(named_callback, Object)
4970  DECL_ACCESSORS(indexed_callback, Object)
4971  DECL_ACCESSORS(data, Object)
4972
4973  static inline AccessCheckInfo* cast(Object* obj);
4974
4975#ifdef DEBUG
4976  void AccessCheckInfoPrint();
4977  void AccessCheckInfoVerify();
4978#endif
4979
4980  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
4981  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
4982  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
4983  static const int kSize = kDataOffset + kPointerSize;
4984
4985 private:
4986  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
4987};
4988
4989
4990class InterceptorInfo: public Struct {
4991 public:
4992  DECL_ACCESSORS(getter, Object)
4993  DECL_ACCESSORS(setter, Object)
4994  DECL_ACCESSORS(query, Object)
4995  DECL_ACCESSORS(deleter, Object)
4996  DECL_ACCESSORS(enumerator, Object)
4997  DECL_ACCESSORS(data, Object)
4998
4999  static inline InterceptorInfo* cast(Object* obj);
5000
5001#ifdef DEBUG
5002  void InterceptorInfoPrint();
5003  void InterceptorInfoVerify();
5004#endif
5005
5006  static const int kGetterOffset = HeapObject::kHeaderSize;
5007  static const int kSetterOffset = kGetterOffset + kPointerSize;
5008  static const int kQueryOffset = kSetterOffset + kPointerSize;
5009  static const int kDeleterOffset = kQueryOffset + kPointerSize;
5010  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
5011  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
5012  static const int kSize = kDataOffset + kPointerSize;
5013
5014 private:
5015  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
5016};
5017
5018
5019class CallHandlerInfo: public Struct {
5020 public:
5021  DECL_ACCESSORS(callback, Object)
5022  DECL_ACCESSORS(data, Object)
5023
5024  static inline CallHandlerInfo* cast(Object* obj);
5025
5026#ifdef DEBUG
5027  void CallHandlerInfoPrint();
5028  void CallHandlerInfoVerify();
5029#endif
5030
5031  static const int kCallbackOffset = HeapObject::kHeaderSize;
5032  static const int kDataOffset = kCallbackOffset + kPointerSize;
5033  static const int kSize = kDataOffset + kPointerSize;
5034
5035 private:
5036  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
5037};
5038
5039
5040class TemplateInfo: public Struct {
5041 public:
5042  DECL_ACCESSORS(tag, Object)
5043  DECL_ACCESSORS(property_list, Object)
5044
5045#ifdef DEBUG
5046  void TemplateInfoVerify();
5047#endif
5048
5049  static const int kTagOffset          = HeapObject::kHeaderSize;
5050  static const int kPropertyListOffset = kTagOffset + kPointerSize;
5051  static const int kHeaderSize         = kPropertyListOffset + kPointerSize;
5052 protected:
5053  friend class AGCCVersionRequiresThisClassToHaveAFriendSoHereItIs;
5054  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
5055};
5056
5057
5058class FunctionTemplateInfo: public TemplateInfo {
5059 public:
5060  DECL_ACCESSORS(serial_number, Object)
5061  DECL_ACCESSORS(call_code, Object)
5062  DECL_ACCESSORS(property_accessors, Object)
5063  DECL_ACCESSORS(prototype_template, Object)
5064  DECL_ACCESSORS(parent_template, Object)
5065  DECL_ACCESSORS(named_property_handler, Object)
5066  DECL_ACCESSORS(indexed_property_handler, Object)
5067  DECL_ACCESSORS(instance_template, Object)
5068  DECL_ACCESSORS(class_name, Object)
5069  DECL_ACCESSORS(signature, Object)
5070  DECL_ACCESSORS(instance_call_handler, Object)
5071  DECL_ACCESSORS(access_check_info, Object)
5072  DECL_ACCESSORS(flag, Smi)
5073
5074  // Following properties use flag bits.
5075  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
5076  DECL_BOOLEAN_ACCESSORS(undetectable)
5077  // If the bit is set, object instances created by this function
5078  // requires access check.
5079  DECL_BOOLEAN_ACCESSORS(needs_access_check)
5080
5081  static inline FunctionTemplateInfo* cast(Object* obj);
5082
5083#ifdef DEBUG
5084  void FunctionTemplateInfoPrint();
5085  void FunctionTemplateInfoVerify();
5086#endif
5087
5088  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
5089  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
5090  static const int kPropertyAccessorsOffset = kCallCodeOffset + kPointerSize;
5091  static const int kPrototypeTemplateOffset =
5092      kPropertyAccessorsOffset + kPointerSize;
5093  static const int kParentTemplateOffset =
5094      kPrototypeTemplateOffset + kPointerSize;
5095  static const int kNamedPropertyHandlerOffset =
5096      kParentTemplateOffset + kPointerSize;
5097  static const int kIndexedPropertyHandlerOffset =
5098      kNamedPropertyHandlerOffset + kPointerSize;
5099  static const int kInstanceTemplateOffset =
5100      kIndexedPropertyHandlerOffset + kPointerSize;
5101  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
5102  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
5103  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
5104  static const int kAccessCheckInfoOffset =
5105      kInstanceCallHandlerOffset + kPointerSize;
5106  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
5107  static const int kSize = kFlagOffset + kPointerSize;
5108
5109 private:
5110  // Bit position in the flag, from least significant bit position.
5111  static const int kHiddenPrototypeBit   = 0;
5112  static const int kUndetectableBit      = 1;
5113  static const int kNeedsAccessCheckBit  = 2;
5114
5115  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
5116};
5117
5118
5119class ObjectTemplateInfo: public TemplateInfo {
5120 public:
5121  DECL_ACCESSORS(constructor, Object)
5122  DECL_ACCESSORS(internal_field_count, Object)
5123
5124  static inline ObjectTemplateInfo* cast(Object* obj);
5125
5126#ifdef DEBUG
5127  void ObjectTemplateInfoPrint();
5128  void ObjectTemplateInfoVerify();
5129#endif
5130
5131  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
5132  static const int kInternalFieldCountOffset =
5133      kConstructorOffset + kPointerSize;
5134  static const int kSize = kInternalFieldCountOffset + kPointerSize;
5135};
5136
5137
5138class SignatureInfo: public Struct {
5139 public:
5140  DECL_ACCESSORS(receiver, Object)
5141  DECL_ACCESSORS(args, Object)
5142
5143  static inline SignatureInfo* cast(Object* obj);
5144
5145#ifdef DEBUG
5146  void SignatureInfoPrint();
5147  void SignatureInfoVerify();
5148#endif
5149
5150  static const int kReceiverOffset = Struct::kHeaderSize;
5151  static const int kArgsOffset     = kReceiverOffset + kPointerSize;
5152  static const int kSize           = kArgsOffset + kPointerSize;
5153
5154 private:
5155  DISALLOW_IMPLICIT_CONSTRUCTORS(SignatureInfo);
5156};
5157
5158
5159class TypeSwitchInfo: public Struct {
5160 public:
5161  DECL_ACCESSORS(types, Object)
5162
5163  static inline TypeSwitchInfo* cast(Object* obj);
5164
5165#ifdef DEBUG
5166  void TypeSwitchInfoPrint();
5167  void TypeSwitchInfoVerify();
5168#endif
5169
5170  static const int kTypesOffset = Struct::kHeaderSize;
5171  static const int kSize        = kTypesOffset + kPointerSize;
5172};
5173
5174
5175#ifdef ENABLE_DEBUGGER_SUPPORT
5176// The DebugInfo class holds additional information for a function being
5177// debugged.
5178class DebugInfo: public Struct {
5179 public:
5180  // The shared function info for the source being debugged.
5181  DECL_ACCESSORS(shared, SharedFunctionInfo)
5182  // Code object for the original code.
5183  DECL_ACCESSORS(original_code, Code)
5184  // Code object for the patched code. This code object is the code object
5185  // currently active for the function.
5186  DECL_ACCESSORS(code, Code)
5187  // Fixed array holding status information for each active break point.
5188  DECL_ACCESSORS(break_points, FixedArray)
5189
5190  // Check if there is a break point at a code position.
5191  bool HasBreakPoint(int code_position);
5192  // Get the break point info object for a code position.
5193  Object* GetBreakPointInfo(int code_position);
5194  // Clear a break point.
5195  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
5196                              int code_position,
5197                              Handle<Object> break_point_object);
5198  // Set a break point.
5199  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
5200                            int source_position, int statement_position,
5201                            Handle<Object> break_point_object);
5202  // Get the break point objects for a code position.
5203  Object* GetBreakPointObjects(int code_position);
5204  // Find the break point info holding this break point object.
5205  static Object* FindBreakPointInfo(Handle<DebugInfo> debug_info,
5206                                    Handle<Object> break_point_object);
5207  // Get the number of break points for this function.
5208  int GetBreakPointCount();
5209
5210  static inline DebugInfo* cast(Object* obj);
5211
5212#ifdef DEBUG
5213  void DebugInfoPrint();
5214  void DebugInfoVerify();
5215#endif
5216
5217  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
5218  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
5219  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
5220  static const int kActiveBreakPointsCountIndex =
5221      kPatchedCodeIndex + kPointerSize;
5222  static const int kBreakPointsStateIndex =
5223      kActiveBreakPointsCountIndex + kPointerSize;
5224  static const int kSize = kBreakPointsStateIndex + kPointerSize;
5225
5226 private:
5227  static const int kNoBreakPointInfo = -1;
5228
5229  // Lookup the index in the break_points array for a code position.
5230  int GetBreakPointInfoIndex(int code_position);
5231
5232  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
5233};
5234
5235
5236// The BreakPointInfo class holds information for break points set in a
5237// function. The DebugInfo object holds a BreakPointInfo object for each code
5238// position with one or more break points.
5239class BreakPointInfo: public Struct {
5240 public:
5241  // The position in the code for the break point.
5242  DECL_ACCESSORS(code_position, Smi)
5243  // The position in the source for the break position.
5244  DECL_ACCESSORS(source_position, Smi)
5245  // The position in the source for the last statement before this break
5246  // position.
5247  DECL_ACCESSORS(statement_position, Smi)
5248  // List of related JavaScript break points.
5249  DECL_ACCESSORS(break_point_objects, Object)
5250
5251  // Removes a break point.
5252  static void ClearBreakPoint(Handle<BreakPointInfo> info,
5253                              Handle<Object> break_point_object);
5254  // Set a break point.
5255  static void SetBreakPoint(Handle<BreakPointInfo> info,
5256                            Handle<Object> break_point_object);
5257  // Check if break point info has this break point object.
5258  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
5259                                  Handle<Object> break_point_object);
5260  // Get the number of break points for this code position.
5261  int GetBreakPointCount();
5262
5263  static inline BreakPointInfo* cast(Object* obj);
5264
5265#ifdef DEBUG
5266  void BreakPointInfoPrint();
5267  void BreakPointInfoVerify();
5268#endif
5269
5270  static const int kCodePositionIndex = Struct::kHeaderSize;
5271  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
5272  static const int kStatementPositionIndex =
5273      kSourcePositionIndex + kPointerSize;
5274  static const int kBreakPointObjectsIndex =
5275      kStatementPositionIndex + kPointerSize;
5276  static const int kSize = kBreakPointObjectsIndex + kPointerSize;
5277
5278 private:
5279  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
5280};
5281#endif  // ENABLE_DEBUGGER_SUPPORT
5282
5283
5284#undef DECL_BOOLEAN_ACCESSORS
5285#undef DECL_ACCESSORS
5286
5287
5288// Abstract base class for visiting, and optionally modifying, the
5289// pointers contained in Objects. Used in GC and serialization/deserialization.
5290class ObjectVisitor BASE_EMBEDDED {
5291 public:
5292  virtual ~ObjectVisitor() {}
5293
5294  // Visits a contiguous arrays of pointers in the half-open range
5295  // [start, end). Any or all of the values may be modified on return.
5296  virtual void VisitPointers(Object** start, Object** end) = 0;
5297
5298  // To allow lazy clearing of inline caches the visitor has
5299  // a rich interface for iterating over Code objects..
5300
5301  // Visits a code target in the instruction stream.
5302  virtual void VisitCodeTarget(RelocInfo* rinfo);
5303
5304  // Visits a runtime entry in the instruction stream.
5305  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}
5306
5307  // Visits the resource of an ASCII or two-byte string.
5308  virtual void VisitExternalAsciiString(
5309      v8::String::ExternalAsciiStringResource** resource) {}
5310  virtual void VisitExternalTwoByteString(
5311      v8::String::ExternalStringResource** resource) {}
5312
5313  // Visits a debug call target in the instruction stream.
5314  virtual void VisitDebugTarget(RelocInfo* rinfo);
5315
5316  // Handy shorthand for visiting a single pointer.
5317  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }
5318
5319  // Visits a contiguous arrays of external references (references to the C++
5320  // heap) in the half-open range [start, end). Any or all of the values
5321  // may be modified on return.
5322  virtual void VisitExternalReferences(Address* start, Address* end) {}
5323
5324  inline void VisitExternalReference(Address* p) {
5325    VisitExternalReferences(p, p + 1);
5326  }
5327
5328#ifdef DEBUG
5329  // Intended for serialization/deserialization checking: insert, or
5330  // check for the presence of, a tag at this position in the stream.
5331  virtual void Synchronize(const char* tag) {}
5332#else
5333  inline void Synchronize(const char* tag) {}
5334#endif
5335};
5336
5337
5338// BooleanBit is a helper class for setting and getting a bit in an
5339// integer or Smi.
5340class BooleanBit : public AllStatic {
5341 public:
5342  static inline bool get(Smi* smi, int bit_position) {
5343    return get(smi->value(), bit_position);
5344  }
5345
5346  static inline bool get(int value, int bit_position) {
5347    return (value & (1 << bit_position)) != 0;
5348  }
5349
5350  static inline Smi* set(Smi* smi, int bit_position, bool v) {
5351    return Smi::FromInt(set(smi->value(), bit_position, v));
5352  }
5353
5354  static inline int set(int value, int bit_position, bool v) {
5355    if (v) {
5356      value |= (1 << bit_position);
5357    } else {
5358      value &= ~(1 << bit_position);
5359    }
5360    return value;
5361  }
5362};
5363
5364} }  // namespace v8::internal
5365
5366#endif  // V8_OBJECTS_H_
5367