1// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
32#include <string.h>
33
34#include "globals.h"
35#include "checks.h"
36#include "allocation.h"
37
38namespace v8 {
39namespace internal {
40
41// ----------------------------------------------------------------------------
42// General helper functions
43
44#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
45
46// Returns true iff x is a power of 2 (or zero). Cannot be used with the
47// maximally negative value of the type T (the -1 overflows).
48template <typename T>
49static inline bool IsPowerOf2(T x) {
50  return IS_POWER_OF_TWO(x);
51}
52
53
54// X must be a power of 2.  Returns the number of trailing zeros.
55template <typename T>
56static inline int WhichPowerOf2(T x) {
57  ASSERT(IsPowerOf2(x));
58  ASSERT(x != 0);
59  if (x < 0) return 31;
60  int bits = 0;
61#ifdef DEBUG
62  int original_x = x;
63#endif
64  if (x >= 0x10000) {
65    bits += 16;
66    x >>= 16;
67  }
68  if (x >= 0x100) {
69    bits += 8;
70    x >>= 8;
71  }
72  if (x >= 0x10) {
73    bits += 4;
74    x >>= 4;
75  }
76  switch (x) {
77    default: UNREACHABLE();
78    case 8: bits++;  // Fall through.
79    case 4: bits++;  // Fall through.
80    case 2: bits++;  // Fall through.
81    case 1: break;
82  }
83  ASSERT_EQ(1 << bits, original_x);
84  return bits;
85  return 0;
86}
87
88
89// The C++ standard leaves the semantics of '>>' undefined for
90// negative signed operands. Most implementations do the right thing,
91// though.
92static inline int ArithmeticShiftRight(int x, int s) {
93  return x >> s;
94}
95
96
97// Compute the 0-relative offset of some absolute value x of type T.
98// This allows conversion of Addresses and integral types into
99// 0-relative int offsets.
100template <typename T>
101static inline intptr_t OffsetFrom(T x) {
102  return x - static_cast<T>(0);
103}
104
105
106// Compute the absolute value of type T for some 0-relative offset x.
107// This allows conversion of 0-relative int offsets into Addresses and
108// integral types.
109template <typename T>
110static inline T AddressFrom(intptr_t x) {
111  return static_cast<T>(static_cast<T>(0) + x);
112}
113
114
115// Return the largest multiple of m which is <= x.
116template <typename T>
117static inline T RoundDown(T x, int m) {
118  ASSERT(IsPowerOf2(m));
119  return AddressFrom<T>(OffsetFrom(x) & -m);
120}
121
122
123// Return the smallest multiple of m which is >= x.
124template <typename T>
125static inline T RoundUp(T x, int m) {
126  return RoundDown(x + m - 1, m);
127}
128
129
130template <typename T>
131static int Compare(const T& a, const T& b) {
132  if (a == b)
133    return 0;
134  else if (a < b)
135    return -1;
136  else
137    return 1;
138}
139
140
141template <typename T>
142static int PointerValueCompare(const T* a, const T* b) {
143  return Compare<T>(*a, *b);
144}
145
146
147// Returns the smallest power of two which is >= x. If you pass in a
148// number that is already a power of two, it is returned as is.
149// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
150// figure 3-3, page 48, where the function is called clp2.
151static inline uint32_t RoundUpToPowerOf2(uint32_t x) {
152  ASSERT(x <= 0x80000000u);
153  x = x - 1;
154  x = x | (x >> 1);
155  x = x | (x >> 2);
156  x = x | (x >> 4);
157  x = x | (x >> 8);
158  x = x | (x >> 16);
159  return x + 1;
160}
161
162
163
164template <typename T>
165static inline bool IsAligned(T value, T alignment) {
166  ASSERT(IsPowerOf2(alignment));
167  return (value & (alignment - 1)) == 0;
168}
169
170
171// Returns true if (addr + offset) is aligned.
172static inline bool IsAddressAligned(Address addr,
173                                    intptr_t alignment,
174                                    int offset) {
175  intptr_t offs = OffsetFrom(addr + offset);
176  return IsAligned(offs, alignment);
177}
178
179
180// Returns the maximum of the two parameters.
181template <typename T>
182static T Max(T a, T b) {
183  return a < b ? b : a;
184}
185
186
187// Returns the minimum of the two parameters.
188template <typename T>
189static T Min(T a, T b) {
190  return a < b ? a : b;
191}
192
193
194inline int StrLength(const char* string) {
195  size_t length = strlen(string);
196  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
197  return static_cast<int>(length);
198}
199
200
201// ----------------------------------------------------------------------------
202// BitField is a help template for encoding and decode bitfield with
203// unsigned content.
204template<class T, int shift, int size>
205class BitField {
206 public:
207  // Tells whether the provided value fits into the bit field.
208  static bool is_valid(T value) {
209    return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
210  }
211
212  // Returns a uint32_t mask of bit field.
213  static uint32_t mask() {
214    // To use all bits of a uint32 in a bitfield without compiler warnings we
215    // have to compute 2^32 without using a shift count of 32.
216    return ((1U << shift) << size) - (1U << shift);
217  }
218
219  // Returns a uint32_t with the bit field value encoded.
220  static uint32_t encode(T value) {
221    ASSERT(is_valid(value));
222    return static_cast<uint32_t>(value) << shift;
223  }
224
225  // Extracts the bit field from the value.
226  static T decode(uint32_t value) {
227    return static_cast<T>((value & mask()) >> shift);
228  }
229
230  // Value for the field with all bits set.
231  static T max() {
232    return decode(mask());
233  }
234};
235
236
237// ----------------------------------------------------------------------------
238// Hash function.
239
240// Thomas Wang, Integer Hash Functions.
241// http://www.concentric.net/~Ttwang/tech/inthash.htm
242static inline uint32_t ComputeIntegerHash(uint32_t key) {
243  uint32_t hash = key;
244  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
245  hash = hash ^ (hash >> 12);
246  hash = hash + (hash << 2);
247  hash = hash ^ (hash >> 4);
248  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
249  hash = hash ^ (hash >> 16);
250  return hash;
251}
252
253
254// ----------------------------------------------------------------------------
255// Miscellaneous
256
257// A static resource holds a static instance that can be reserved in
258// a local scope using an instance of Access.  Attempts to re-reserve
259// the instance will cause an error.
260template <typename T>
261class StaticResource {
262 public:
263  StaticResource() : is_reserved_(false)  {}
264
265 private:
266  template <typename S> friend class Access;
267  T instance_;
268  bool is_reserved_;
269};
270
271
272// Locally scoped access to a static resource.
273template <typename T>
274class Access {
275 public:
276  explicit Access(StaticResource<T>* resource)
277    : resource_(resource)
278    , instance_(&resource->instance_) {
279    ASSERT(!resource->is_reserved_);
280    resource->is_reserved_ = true;
281  }
282
283  ~Access() {
284    resource_->is_reserved_ = false;
285    resource_ = NULL;
286    instance_ = NULL;
287  }
288
289  T* value()  { return instance_; }
290  T* operator -> ()  { return instance_; }
291
292 private:
293  StaticResource<T>* resource_;
294  T* instance_;
295};
296
297
298template <typename T>
299class Vector {
300 public:
301  Vector() : start_(NULL), length_(0) {}
302  Vector(T* data, int length) : start_(data), length_(length) {
303    ASSERT(length == 0 || (length > 0 && data != NULL));
304  }
305
306  static Vector<T> New(int length) {
307    return Vector<T>(NewArray<T>(length), length);
308  }
309
310  // Returns a vector using the same backing storage as this one,
311  // spanning from and including 'from', to but not including 'to'.
312  Vector<T> SubVector(int from, int to) {
313    ASSERT(to <= length_);
314    ASSERT(from < to);
315    ASSERT(0 <= from);
316    return Vector<T>(start() + from, to - from);
317  }
318
319  // Returns the length of the vector.
320  int length() const { return length_; }
321
322  // Returns whether or not the vector is empty.
323  bool is_empty() const { return length_ == 0; }
324
325  // Returns the pointer to the start of the data in the vector.
326  T* start() const { return start_; }
327
328  // Access individual vector elements - checks bounds in debug mode.
329  T& operator[](int index) const {
330    ASSERT(0 <= index && index < length_);
331    return start_[index];
332  }
333
334  const T& at(int index) const { return operator[](index); }
335
336  T& first() { return start_[0]; }
337
338  T& last() { return start_[length_ - 1]; }
339
340  // Returns a clone of this vector with a new backing store.
341  Vector<T> Clone() const {
342    T* result = NewArray<T>(length_);
343    for (int i = 0; i < length_; i++) result[i] = start_[i];
344    return Vector<T>(result, length_);
345  }
346
347  void Sort(int (*cmp)(const T*, const T*)) {
348    typedef int (*RawComparer)(const void*, const void*);
349    qsort(start(),
350          length(),
351          sizeof(T),
352          reinterpret_cast<RawComparer>(cmp));
353  }
354
355  void Sort() {
356    Sort(PointerValueCompare<T>);
357  }
358
359  void Truncate(int length) {
360    ASSERT(length <= length_);
361    length_ = length;
362  }
363
364  // Releases the array underlying this vector. Once disposed the
365  // vector is empty.
366  void Dispose() {
367    DeleteArray(start_);
368    start_ = NULL;
369    length_ = 0;
370  }
371
372  inline Vector<T> operator+(int offset) {
373    ASSERT(offset < length_);
374    return Vector<T>(start_ + offset, length_ - offset);
375  }
376
377  // Factory method for creating empty vectors.
378  static Vector<T> empty() { return Vector<T>(NULL, 0); }
379
380  template<typename S>
381  static Vector<T> cast(Vector<S> input) {
382    return Vector<T>(reinterpret_cast<T*>(input.start()),
383                     input.length() * sizeof(S) / sizeof(T));
384  }
385
386 protected:
387  void set_start(T* start) { start_ = start; }
388
389 private:
390  T* start_;
391  int length_;
392};
393
394
395// A pointer that can only be set once and doesn't allow NULL values.
396template<typename T>
397class SetOncePointer {
398 public:
399  SetOncePointer() : pointer_(NULL) { }
400
401  bool is_set() const { return pointer_ != NULL; }
402
403  T* get() const {
404    ASSERT(pointer_ != NULL);
405    return pointer_;
406  }
407
408  void set(T* value) {
409    ASSERT(pointer_ == NULL && value != NULL);
410    pointer_ = value;
411  }
412
413 private:
414  T* pointer_;
415};
416
417
418template <typename T, int kSize>
419class EmbeddedVector : public Vector<T> {
420 public:
421  EmbeddedVector() : Vector<T>(buffer_, kSize) { }
422
423  explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
424    for (int i = 0; i < kSize; ++i) {
425      buffer_[i] = initial_value;
426    }
427  }
428
429  // When copying, make underlying Vector to reference our buffer.
430  EmbeddedVector(const EmbeddedVector& rhs)
431      : Vector<T>(rhs) {
432    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
433    set_start(buffer_);
434  }
435
436  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
437    if (this == &rhs) return *this;
438    Vector<T>::operator=(rhs);
439    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
440    this->set_start(buffer_);
441    return *this;
442  }
443
444 private:
445  T buffer_[kSize];
446};
447
448
449template <typename T>
450class ScopedVector : public Vector<T> {
451 public:
452  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
453  ~ScopedVector() {
454    DeleteArray(this->start());
455  }
456
457 private:
458  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
459};
460
461
462inline Vector<const char> CStrVector(const char* data) {
463  return Vector<const char>(data, StrLength(data));
464}
465
466inline Vector<char> MutableCStrVector(char* data) {
467  return Vector<char>(data, StrLength(data));
468}
469
470inline Vector<char> MutableCStrVector(char* data, int max) {
471  int length = StrLength(data);
472  return Vector<char>(data, (length < max) ? length : max);
473}
474
475
476/*
477 * A class that collects values into a backing store.
478 * Specialized versions of the class can allow access to the backing store
479 * in different ways.
480 * There is no guarantee that the backing store is contiguous (and, as a
481 * consequence, no guarantees that consecutively added elements are adjacent
482 * in memory). The collector may move elements unless it has guaranteed not
483 * to.
484 */
485template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
486class Collector {
487 public:
488  explicit Collector(int initial_capacity = kMinCapacity)
489      : index_(0), size_(0) {
490    if (initial_capacity < kMinCapacity) {
491      initial_capacity = kMinCapacity;
492    }
493    current_chunk_ = Vector<T>::New(initial_capacity);
494  }
495
496  virtual ~Collector() {
497    // Free backing store (in reverse allocation order).
498    current_chunk_.Dispose();
499    for (int i = chunks_.length() - 1; i >= 0; i--) {
500      chunks_.at(i).Dispose();
501    }
502  }
503
504  // Add a single element.
505  inline void Add(T value) {
506    if (index_ >= current_chunk_.length()) {
507      Grow(1);
508    }
509    current_chunk_[index_] = value;
510    index_++;
511    size_++;
512  }
513
514  // Add a block of contiguous elements and return a Vector backed by the
515  // memory area.
516  // A basic Collector will keep this vector valid as long as the Collector
517  // is alive.
518  inline Vector<T> AddBlock(int size, T initial_value) {
519    ASSERT(size > 0);
520    if (size > current_chunk_.length() - index_) {
521      Grow(size);
522    }
523    T* position = current_chunk_.start() + index_;
524    index_ += size;
525    size_ += size;
526    for (int i = 0; i < size; i++) {
527      position[i] = initial_value;
528    }
529    return Vector<T>(position, size);
530  }
531
532
533  // Add a contiguous block of elements and return a vector backed
534  // by the added block.
535  // A basic Collector will keep this vector valid as long as the Collector
536  // is alive.
537  inline Vector<T> AddBlock(Vector<const T> source) {
538    if (source.length() > current_chunk_.length() - index_) {
539      Grow(source.length());
540    }
541    T* position = current_chunk_.start() + index_;
542    index_ += source.length();
543    size_ += source.length();
544    for (int i = 0; i < source.length(); i++) {
545      position[i] = source[i];
546    }
547    return Vector<T>(position, source.length());
548  }
549
550
551  // Write the contents of the collector into the provided vector.
552  void WriteTo(Vector<T> destination) {
553    ASSERT(size_ <= destination.length());
554    int position = 0;
555    for (int i = 0; i < chunks_.length(); i++) {
556      Vector<T> chunk = chunks_.at(i);
557      for (int j = 0; j < chunk.length(); j++) {
558        destination[position] = chunk[j];
559        position++;
560      }
561    }
562    for (int i = 0; i < index_; i++) {
563      destination[position] = current_chunk_[i];
564      position++;
565    }
566  }
567
568  // Allocate a single contiguous vector, copy all the collected
569  // elements to the vector, and return it.
570  // The caller is responsible for freeing the memory of the returned
571  // vector (e.g., using Vector::Dispose).
572  Vector<T> ToVector() {
573    Vector<T> new_store = Vector<T>::New(size_);
574    WriteTo(new_store);
575    return new_store;
576  }
577
578  // Resets the collector to be empty.
579  virtual void Reset() {
580    for (int i = chunks_.length() - 1; i >= 0; i--) {
581      chunks_.at(i).Dispose();
582    }
583    chunks_.Rewind(0);
584    index_ = 0;
585    size_ = 0;
586  }
587
588  // Total number of elements added to collector so far.
589  inline int size() { return size_; }
590
591 protected:
592  static const int kMinCapacity = 16;
593  List<Vector<T> > chunks_;
594  Vector<T> current_chunk_;  // Block of memory currently being written into.
595  int index_;  // Current index in current chunk.
596  int size_;  // Total number of elements in collector.
597
598  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
599  void Grow(int min_capacity) {
600    ASSERT(growth_factor > 1);
601    int growth = current_chunk_.length() * (growth_factor - 1);
602    if (growth > max_growth) {
603      growth = max_growth;
604    }
605    int new_capacity = current_chunk_.length() + growth;
606    if (new_capacity < min_capacity) {
607      new_capacity = min_capacity + growth;
608    }
609    Vector<T> new_chunk = Vector<T>::New(new_capacity);
610    int new_index = PrepareGrow(new_chunk);
611    if (index_ > 0) {
612      chunks_.Add(current_chunk_.SubVector(0, index_));
613    } else {
614      // Can happen if the call to PrepareGrow moves everything into
615      // the new chunk.
616      current_chunk_.Dispose();
617    }
618    current_chunk_ = new_chunk;
619    index_ = new_index;
620    ASSERT(index_ + min_capacity <= current_chunk_.length());
621  }
622
623  // Before replacing the current chunk, give a subclass the option to move
624  // some of the current data into the new chunk. The function may update
625  // the current index_ value to represent data no longer in the current chunk.
626  // Returns the initial index of the new chunk (after copied data).
627  virtual int PrepareGrow(Vector<T> new_chunk)  {
628    return 0;
629  }
630};
631
632
633/*
634 * A collector that allows sequences of values to be guaranteed to
635 * stay consecutive.
636 * If the backing store grows while a sequence is active, the current
637 * sequence might be moved, but after the sequence is ended, it will
638 * not move again.
639 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
640 * as well, if inside an active sequence where another element is added.
641 */
642template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
643class SequenceCollector : public Collector<T, growth_factor, max_growth> {
644 public:
645  explicit SequenceCollector(int initial_capacity)
646      : Collector<T, growth_factor, max_growth>(initial_capacity),
647        sequence_start_(kNoSequence) { }
648
649  virtual ~SequenceCollector() {}
650
651  void StartSequence() {
652    ASSERT(sequence_start_ == kNoSequence);
653    sequence_start_ = this->index_;
654  }
655
656  Vector<T> EndSequence() {
657    ASSERT(sequence_start_ != kNoSequence);
658    int sequence_start = sequence_start_;
659    sequence_start_ = kNoSequence;
660    if (sequence_start == this->index_) return Vector<T>();
661    return this->current_chunk_.SubVector(sequence_start, this->index_);
662  }
663
664  // Drops the currently added sequence, and all collected elements in it.
665  void DropSequence() {
666    ASSERT(sequence_start_ != kNoSequence);
667    int sequence_length = this->index_ - sequence_start_;
668    this->index_ = sequence_start_;
669    this->size_ -= sequence_length;
670    sequence_start_ = kNoSequence;
671  }
672
673  virtual void Reset() {
674    sequence_start_ = kNoSequence;
675    this->Collector<T, growth_factor, max_growth>::Reset();
676  }
677
678 private:
679  static const int kNoSequence = -1;
680  int sequence_start_;
681
682  // Move the currently active sequence to the new chunk.
683  virtual int PrepareGrow(Vector<T> new_chunk) {
684    if (sequence_start_ != kNoSequence) {
685      int sequence_length = this->index_ - sequence_start_;
686      // The new chunk is always larger than the current chunk, so there
687      // is room for the copy.
688      ASSERT(sequence_length < new_chunk.length());
689      for (int i = 0; i < sequence_length; i++) {
690        new_chunk[i] = this->current_chunk_[sequence_start_ + i];
691      }
692      this->index_ = sequence_start_;
693      sequence_start_ = 0;
694      return sequence_length;
695    }
696    return 0;
697  }
698};
699
700
701// Compare ASCII/16bit chars to ASCII/16bit chars.
702template <typename lchar, typename rchar>
703static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
704  const lchar* limit = lhs + chars;
705#ifdef V8_HOST_CAN_READ_UNALIGNED
706  if (sizeof(*lhs) == sizeof(*rhs)) {
707    // Number of characters in a uintptr_t.
708    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
709    while (lhs <= limit - kStepSize) {
710      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
711          *reinterpret_cast<const uintptr_t*>(rhs)) {
712        break;
713      }
714      lhs += kStepSize;
715      rhs += kStepSize;
716    }
717  }
718#endif
719  while (lhs < limit) {
720    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
721    if (r != 0) return r;
722    ++lhs;
723    ++rhs;
724  }
725  return 0;
726}
727
728
729// Calculate 10^exponent.
730static inline int TenToThe(int exponent) {
731  ASSERT(exponent <= 9);
732  ASSERT(exponent >= 1);
733  int answer = 10;
734  for (int i = 1; i < exponent; i++) answer *= 10;
735  return answer;
736}
737
738
739// The type-based aliasing rule allows the compiler to assume that pointers of
740// different types (for some definition of different) never alias each other.
741// Thus the following code does not work:
742//
743// float f = foo();
744// int fbits = *(int*)(&f);
745//
746// The compiler 'knows' that the int pointer can't refer to f since the types
747// don't match, so the compiler may cache f in a register, leaving random data
748// in fbits.  Using C++ style casts makes no difference, however a pointer to
749// char data is assumed to alias any other pointer.  This is the 'memcpy
750// exception'.
751//
752// Bit_cast uses the memcpy exception to move the bits from a variable of one
753// type of a variable of another type.  Of course the end result is likely to
754// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
755// will completely optimize BitCast away.
756//
757// There is an additional use for BitCast.
758// Recent gccs will warn when they see casts that may result in breakage due to
759// the type-based aliasing rule.  If you have checked that there is no breakage
760// you can use BitCast to cast one pointer type to another.  This confuses gcc
761// enough that it can no longer see that you have cast one pointer type to
762// another thus avoiding the warning.
763
764// We need different implementations of BitCast for pointer and non-pointer
765// values. We use partial specialization of auxiliary struct to work around
766// issues with template functions overloading.
767template <class Dest, class Source>
768struct BitCastHelper {
769  STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
770
771  INLINE(static Dest cast(const Source& source)) {
772    Dest dest;
773    memcpy(&dest, &source, sizeof(dest));
774    return dest;
775  }
776};
777
778template <class Dest, class Source>
779struct BitCastHelper<Dest, Source*> {
780  INLINE(static Dest cast(Source* source)) {
781    return BitCastHelper<Dest, uintptr_t>::
782        cast(reinterpret_cast<uintptr_t>(source));
783  }
784};
785
786template <class Dest, class Source>
787INLINE(Dest BitCast(const Source& source));
788
789template <class Dest, class Source>
790inline Dest BitCast(const Source& source) {
791  return BitCastHelper<Dest, Source>::cast(source);
792}
793
794} }  // namespace v8::internal
795
796#endif  // V8_UTILS_H_
797