SensorManager.java revision 04d7e83e65e246e154b5b346e3eb0081b741ae88
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.hardware;
18
19import android.os.Looper;
20import android.os.Process;
21import android.os.RemoteException;
22import android.os.Handler;
23import android.os.Message;
24import android.os.ServiceManager;
25import android.util.Log;
26import android.util.SparseArray;
27import android.view.IRotationWatcher;
28import android.view.IWindowManager;
29import android.view.Surface;
30
31import java.util.ArrayList;
32import java.util.Collections;
33import java.util.HashMap;
34import java.util.List;
35
36/**
37 * SensorManager lets you access the device's {@link android.hardware.Sensor
38 * sensors}. Get an instance of this class by calling
39 * {@link android.content.Context#getSystemService(java.lang.String)
40 * Context.getSystemService()} with the argument
41 * {@link android.content.Context#SENSOR_SERVICE}.
42 *
43 * <pre class="prettyprint">
44 * public class SensorActivity extends Activity, implements SensorEventListener {
45 *     private final SensorManager mSensorManager;
46 *     private final Sensor mAccelerometer;
47 *
48 *     public SensorActivity() {
49 *         mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
50 *         mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
51 *         mSensorManager.registerListener(this, mAccelerometer, SensorManager.SENSOR_DELAY_NORMAL);
52 *     }
53 *
54 *     public void onAccuracyChanged(Sensor sensor, int accuracy) {
55 *     }
56 *
57 *     public abstract void onSensorChanged(SensorEvent event) {
58 *     }
59 * }
60 * </pre>
61 *
62 * @see SensorEventListener
63 * @see SensorEvent
64 * @see Sensor
65 *
66 */
67public class SensorManager
68{
69    private static final String TAG = "SensorManager";
70    private static final float[] mTempMatrix = new float[16];
71
72    /* NOTE: sensor IDs must be a power of 2 */
73
74    /**
75     * A constant describing an orientation sensor. See
76     * {@link android.hardware.SensorListener SensorListener} for more details.
77     *
78     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
79     */
80    @Deprecated
81    public static final int SENSOR_ORIENTATION = 1 << 0;
82
83    /**
84     * A constant describing an accelerometer. See
85     * {@link android.hardware.SensorListener SensorListener} for more details.
86     *
87     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
88     */
89    @Deprecated
90    public static final int SENSOR_ACCELEROMETER = 1 << 1;
91
92    /**
93     * A constant describing a temperature sensor See
94     * {@link android.hardware.SensorListener SensorListener} for more details.
95     *
96     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
97     */
98    @Deprecated
99    public static final int SENSOR_TEMPERATURE = 1 << 2;
100
101    /**
102     * A constant describing a magnetic sensor See
103     * {@link android.hardware.SensorListener SensorListener} for more details.
104     *
105     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
106     */
107    @Deprecated
108    public static final int SENSOR_MAGNETIC_FIELD = 1 << 3;
109
110    /**
111     * A constant describing an ambient light sensor See
112     * {@link android.hardware.SensorListener SensorListener} for more details.
113     *
114     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
115     */
116    @Deprecated
117    public static final int SENSOR_LIGHT = 1 << 4;
118
119    /**
120     * A constant describing a proximity sensor See
121     * {@link android.hardware.SensorListener SensorListener} for more details.
122     *
123     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
124     */
125    @Deprecated
126    public static final int SENSOR_PROXIMITY = 1 << 5;
127
128    /**
129     * A constant describing a Tricorder See
130     * {@link android.hardware.SensorListener SensorListener} for more details.
131     *
132     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
133     */
134    @Deprecated
135    public static final int SENSOR_TRICORDER = 1 << 6;
136
137    /**
138     * A constant describing an orientation sensor. See
139     * {@link android.hardware.SensorListener SensorListener} for more details.
140     *
141     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
142     */
143    @Deprecated
144    public static final int SENSOR_ORIENTATION_RAW = 1 << 7;
145
146    /**
147     * A constant that includes all sensors
148     *
149     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
150     */
151    @Deprecated
152    public static final int SENSOR_ALL = 0x7F;
153
154    /**
155     * Smallest sensor ID
156     *
157     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
158     */
159    @Deprecated
160    public static final int SENSOR_MIN = SENSOR_ORIENTATION;
161
162    /**
163     * Largest sensor ID
164     *
165     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
166     */
167    @Deprecated
168    public static final int SENSOR_MAX = ((SENSOR_ALL + 1)>>1);
169
170
171    /**
172     * Index of the X value in the array returned by
173     * {@link android.hardware.SensorListener#onSensorChanged}
174     *
175     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
176     */
177    @Deprecated
178    public static final int DATA_X = 0;
179
180    /**
181     * Index of the Y value in the array returned by
182     * {@link android.hardware.SensorListener#onSensorChanged}
183     *
184     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
185     */
186    @Deprecated
187    public static final int DATA_Y = 1;
188
189    /**
190     * Index of the Z value in the array returned by
191     * {@link android.hardware.SensorListener#onSensorChanged}
192     *
193     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
194     */
195    @Deprecated
196    public static final int DATA_Z = 2;
197
198    /**
199     * Offset to the untransformed values in the array returned by
200     * {@link android.hardware.SensorListener#onSensorChanged}
201     *
202     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
203     */
204    @Deprecated
205    public static final int RAW_DATA_INDEX = 3;
206
207    /**
208     * Index of the untransformed X value in the array returned by
209     * {@link android.hardware.SensorListener#onSensorChanged}
210     *
211     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
212     */
213    @Deprecated
214    public static final int RAW_DATA_X = 3;
215
216    /**
217     * Index of the untransformed Y value in the array returned by
218     * {@link android.hardware.SensorListener#onSensorChanged}
219     *
220     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
221     */
222    @Deprecated
223    public static final int RAW_DATA_Y = 4;
224
225    /**
226     * Index of the untransformed Z value in the array returned by
227     * {@link android.hardware.SensorListener#onSensorChanged}
228     *
229     * @deprecated use {@link android.hardware.Sensor Sensor} instead.
230     */
231    @Deprecated
232    public static final int RAW_DATA_Z = 5;
233
234    /** Standard gravity (g) on Earth. This value is equivalent to 1G */
235    public static final float STANDARD_GRAVITY = 9.80665f;
236
237    /** Sun's gravity in SI units (m/s^2) */
238    public static final float GRAVITY_SUN             = 275.0f;
239    /** Mercury's gravity in SI units (m/s^2) */
240    public static final float GRAVITY_MERCURY         = 3.70f;
241    /** Venus' gravity in SI units (m/s^2) */
242    public static final float GRAVITY_VENUS           = 8.87f;
243    /** Earth's gravity in SI units (m/s^2) */
244    public static final float GRAVITY_EARTH           = 9.80665f;
245    /** The Moon's gravity in SI units (m/s^2) */
246    public static final float GRAVITY_MOON            = 1.6f;
247    /** Mars' gravity in SI units (m/s^2) */
248    public static final float GRAVITY_MARS            = 3.71f;
249    /** Jupiter's gravity in SI units (m/s^2) */
250    public static final float GRAVITY_JUPITER         = 23.12f;
251    /** Saturn's gravity in SI units (m/s^2) */
252    public static final float GRAVITY_SATURN          = 8.96f;
253    /** Uranus' gravity in SI units (m/s^2) */
254    public static final float GRAVITY_URANUS          = 8.69f;
255    /** Neptune's gravity in SI units (m/s^2) */
256    public static final float GRAVITY_NEPTUNE         = 11.0f;
257    /** Pluto's gravity in SI units (m/s^2) */
258    public static final float GRAVITY_PLUTO           = 0.6f;
259    /** Gravity (estimate) on the first Death Star in Empire units (m/s^2) */
260    public static final float GRAVITY_DEATH_STAR_I    = 0.000000353036145f;
261    /** Gravity on the island */
262    public static final float GRAVITY_THE_ISLAND      = 4.815162342f;
263
264
265    /** Maximum magnetic field on Earth's surface */
266    public static final float MAGNETIC_FIELD_EARTH_MAX = 60.0f;
267    /** Minimum magnetic field on Earth's surface */
268    public static final float MAGNETIC_FIELD_EARTH_MIN = 30.0f;
269
270
271    /** Standard atmosphere, or average sea-level pressure in hPa (millibar) */
272    public static final float PRESSURE_STANDARD_ATMOSPHERE = 1013.25f;
273
274
275    /** Maximum luminance of sunlight in lux */
276    public static final float LIGHT_SUNLIGHT_MAX = 120000.0f;
277    /** luminance of sunlight in lux */
278    public static final float LIGHT_SUNLIGHT     = 110000.0f;
279    /** luminance in shade in lux */
280    public static final float LIGHT_SHADE        = 20000.0f;
281    /** luminance under an overcast sky in lux */
282    public static final float LIGHT_OVERCAST     = 10000.0f;
283    /** luminance at sunrise in lux */
284    public static final float LIGHT_SUNRISE      = 400.0f;
285    /** luminance under a cloudy sky in lux */
286    public static final float LIGHT_CLOUDY       = 100.0f;
287    /** luminance at night with full moon in lux */
288    public static final float LIGHT_FULLMOON     = 0.25f;
289    /** luminance at night with no moon in lux*/
290    public static final float LIGHT_NO_MOON      = 0.001f;
291
292
293    /** get sensor data as fast as possible */
294    public static final int SENSOR_DELAY_FASTEST = 0;
295    /** rate suitable for games */
296    public static final int SENSOR_DELAY_GAME = 1;
297    /** rate suitable for the user interface  */
298    public static final int SENSOR_DELAY_UI = 2;
299    /** rate (default) suitable for screen orientation changes */
300    public static final int SENSOR_DELAY_NORMAL = 3;
301
302
303    /**
304     * The values returned by this sensor cannot be trusted, calibration is
305     * needed or the environment doesn't allow readings
306     */
307    public static final int SENSOR_STATUS_UNRELIABLE = 0;
308
309    /**
310     * This sensor is reporting data with low accuracy, calibration with the
311     * environment is needed
312     */
313    public static final int SENSOR_STATUS_ACCURACY_LOW = 1;
314
315    /**
316     * This sensor is reporting data with an average level of accuracy,
317     * calibration with the environment may improve the readings
318     */
319    public static final int SENSOR_STATUS_ACCURACY_MEDIUM = 2;
320
321    /** This sensor is reporting data with maximum accuracy */
322    public static final int SENSOR_STATUS_ACCURACY_HIGH = 3;
323
324    /** see {@link #remapCoordinateSystem} */
325    public static final int AXIS_X = 1;
326    /** see {@link #remapCoordinateSystem} */
327    public static final int AXIS_Y = 2;
328    /** see {@link #remapCoordinateSystem} */
329    public static final int AXIS_Z = 3;
330    /** see {@link #remapCoordinateSystem} */
331    public static final int AXIS_MINUS_X = AXIS_X | 0x80;
332    /** see {@link #remapCoordinateSystem} */
333    public static final int AXIS_MINUS_Y = AXIS_Y | 0x80;
334    /** see {@link #remapCoordinateSystem} */
335    public static final int AXIS_MINUS_Z = AXIS_Z | 0x80;
336
337    /*-----------------------------------------------------------------------*/
338
339    Looper mMainLooper;
340    @SuppressWarnings("deprecation")
341    private HashMap<SensorListener, LegacyListener> mLegacyListenersMap =
342        new HashMap<SensorListener, LegacyListener>();
343
344    /*-----------------------------------------------------------------------*/
345
346    private static final int SENSOR_DISABLE = -1;
347    private static boolean sSensorModuleInitialized = false;
348    private static ArrayList<Sensor> sFullSensorsList = new ArrayList<Sensor>();
349    private static SparseArray<List<Sensor>> sSensorListByType = new SparseArray<List<Sensor>>();
350    private static IWindowManager sWindowManager;
351    private static int sRotation = Surface.ROTATION_0;
352    /* The thread and the sensor list are global to the process
353     * but the actual thread is spawned on demand */
354    private static SensorThread sSensorThread;
355    private static int sQueue;
356
357    // Used within this module from outside SensorManager, don't make private
358    static SparseArray<Sensor> sHandleToSensor = new SparseArray<Sensor>();
359    static final ArrayList<ListenerDelegate> sListeners =
360        new ArrayList<ListenerDelegate>();
361
362    /*-----------------------------------------------------------------------*/
363
364    static private class SensorThread {
365
366        Thread mThread;
367        boolean mSensorsReady;
368
369        SensorThread() {
370        }
371
372        @Override
373        protected void finalize() {
374        }
375
376        // must be called with sListeners lock
377        boolean startLocked() {
378            try {
379                if (mThread == null) {
380                    mSensorsReady = false;
381                    SensorThreadRunnable runnable = new SensorThreadRunnable();
382                    Thread thread = new Thread(runnable, SensorThread.class.getName());
383                    thread.start();
384                    synchronized (runnable) {
385                        while (mSensorsReady == false) {
386                            runnable.wait();
387                        }
388                    }
389                    mThread = thread;
390                }
391            } catch (InterruptedException e) {
392            }
393            return mThread == null ? false : true;
394        }
395
396        private class SensorThreadRunnable implements Runnable {
397            SensorThreadRunnable() {
398            }
399
400            private boolean open() {
401                // NOTE: this cannot synchronize on sListeners, since
402                // it's held in the main thread at least until we
403                // return from here.
404                sQueue = sensors_create_queue();
405                return true;
406            }
407
408            public void run() {
409                //Log.d(TAG, "entering main sensor thread");
410                final float[] values = new float[3];
411                final int[] status = new int[1];
412                final long timestamp[] = new long[1];
413                Process.setThreadPriority(Process.THREAD_PRIORITY_URGENT_DISPLAY);
414
415                if (!open()) {
416                    return;
417                }
418
419                synchronized (this) {
420                    // we've open the driver, we're ready to open the sensors
421                    mSensorsReady = true;
422                    this.notify();
423                }
424
425                while (true) {
426                    // wait for an event
427                    final int sensor = sensors_data_poll(sQueue, values, status, timestamp);
428
429                    int accuracy = status[0];
430                    synchronized (sListeners) {
431                        if (sensor == -1 || sListeners.isEmpty()) {
432                            if (sensor == -1) {
433                                // we lost the connection to the event stream. this happens
434                                // when the last listener is removed.
435                                Log.d(TAG, "_sensors_data_poll() failed, we bail out.");
436                            }
437
438                            // we have no more listeners or polling failed, terminate the thread
439                            sensors_destroy_queue(sQueue);
440                            sQueue = 0;
441                            mThread = null;
442                            break;
443                        }
444                        final Sensor sensorObject = sHandleToSensor.get(sensor);
445                        if (sensorObject != null) {
446                            // report the sensor event to all listeners that
447                            // care about it.
448                            final int size = sListeners.size();
449                            for (int i=0 ; i<size ; i++) {
450                                ListenerDelegate listener = sListeners.get(i);
451                                if (listener.hasSensor(sensorObject)) {
452                                    // this is asynchronous (okay to call
453                                    // with sListeners lock held).
454                                    listener.onSensorChangedLocked(sensorObject,
455                                            values, timestamp, accuracy);
456                                }
457                            }
458                        }
459                    }
460                }
461                //Log.d(TAG, "exiting main sensor thread");
462            }
463        }
464    }
465
466    /*-----------------------------------------------------------------------*/
467
468    private class ListenerDelegate {
469        final SensorEventListener mSensorEventListener;
470        private final ArrayList<Sensor> mSensorList = new ArrayList<Sensor>();
471        private final Handler mHandler;
472        private SensorEvent mValuesPool;
473        public int mSensors;
474
475        ListenerDelegate(SensorEventListener listener, Sensor sensor, Handler handler) {
476            mSensorEventListener = listener;
477            Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
478            // currently we create one Handler instance per listener, but we could
479            // have one per looper (we'd need to pass the ListenerDelegate
480            // instance to handleMessage and keep track of them separately).
481            mHandler = new Handler(looper) {
482                @Override
483                public void handleMessage(Message msg) {
484                    SensorEvent t = (SensorEvent)msg.obj;
485                    if (t.accuracy >= 0) {
486                        mSensorEventListener.onAccuracyChanged(t.sensor, t.accuracy);
487                    }
488                    mSensorEventListener.onSensorChanged(t);
489                    returnToPool(t);
490                }
491            };
492            addSensor(sensor);
493        }
494
495        protected SensorEvent createSensorEvent() {
496            // maximal size for all legacy events is 3
497            return new SensorEvent(3);
498        }
499
500        protected SensorEvent getFromPool() {
501            SensorEvent t = null;
502            synchronized (this) {
503                // remove the array from the pool
504                t = mValuesPool;
505                mValuesPool = null;
506            }
507            if (t == null) {
508                // the pool was empty, we need a new one
509                t = createSensorEvent();
510            }
511            return t;
512        }
513
514        protected void returnToPool(SensorEvent t) {
515            synchronized (this) {
516                // put back the array into the pool
517                if (mValuesPool == null) {
518                    mValuesPool = t;
519                }
520            }
521        }
522
523        Object getListener() {
524            return mSensorEventListener;
525        }
526
527        int addSensor(Sensor sensor) {
528            mSensors |= 1<<sensor.getHandle();
529            mSensorList.add(sensor);
530            return mSensors;
531        }
532        int removeSensor(Sensor sensor) {
533            mSensors &= ~(1<<sensor.getHandle());
534            mSensorList.remove(sensor);
535            return mSensors;
536        }
537        boolean hasSensor(Sensor sensor) {
538            return ((mSensors & (1<<sensor.getHandle())) != 0);
539        }
540        List<Sensor> getSensors() {
541            return mSensorList;
542        }
543
544        void onSensorChangedLocked(Sensor sensor, float[] values, long[] timestamp, int accuracy) {
545            SensorEvent t = getFromPool();
546            final float[] v = t.values;
547            v[0] = values[0];
548            v[1] = values[1];
549            v[2] = values[2];
550            t.timestamp = timestamp[0];
551            t.accuracy = accuracy;
552            t.sensor = sensor;
553            Message msg = Message.obtain();
554            msg.what = 0;
555            msg.obj = t;
556            mHandler.sendMessage(msg);
557        }
558    }
559
560    /**
561     * {@hide}
562     */
563    public SensorManager(Looper mainLooper) {
564        mMainLooper = mainLooper;
565
566
567        synchronized(sListeners) {
568            if (!sSensorModuleInitialized) {
569                sSensorModuleInitialized = true;
570
571                nativeClassInit();
572
573                sWindowManager = IWindowManager.Stub.asInterface(
574                        ServiceManager.getService("window"));
575                if (sWindowManager != null) {
576                    // if it's null we're running in the system process
577                    // which won't get the rotated values
578                    try {
579                        sRotation = sWindowManager.watchRotation(
580                                new IRotationWatcher.Stub() {
581                                    public void onRotationChanged(int rotation) {
582                                        SensorManager.this.onRotationChanged(rotation);
583                                    }
584                                }
585                        );
586                    } catch (RemoteException e) {
587                    }
588                }
589
590                // initialize the sensor list
591                sensors_module_init();
592                final ArrayList<Sensor> fullList = sFullSensorsList;
593                int i = 0;
594                do {
595                    Sensor sensor = new Sensor();
596                    i = sensors_module_get_next_sensor(sensor, i);
597
598                    if (i>=0) {
599                        //Log.d(TAG, "found sensor: " + sensor.getName() +
600                        //        ", handle=" + sensor.getHandle());
601                        sensor.setLegacyType(getLegacySensorType(sensor.getType()));
602                        fullList.add(sensor);
603                        sHandleToSensor.append(sensor.getHandle(), sensor);
604                    }
605                } while (i>0);
606
607                sSensorThread = new SensorThread();
608            }
609        }
610    }
611
612    private int getLegacySensorType(int type) {
613        switch (type) {
614            case Sensor.TYPE_ACCELEROMETER:
615                return SENSOR_ACCELEROMETER;
616            case Sensor.TYPE_MAGNETIC_FIELD:
617                return SENSOR_MAGNETIC_FIELD;
618            case Sensor.TYPE_ORIENTATION:
619                return SENSOR_ORIENTATION_RAW;
620            case Sensor.TYPE_TEMPERATURE:
621                return SENSOR_TEMPERATURE;
622        }
623        return 0;
624    }
625
626    /**
627     * @return available sensors.
628     * @deprecated This method is deprecated, use
629     *             {@link SensorManager#getSensorList(int)} instead
630     */
631    @Deprecated
632    public int getSensors() {
633        int result = 0;
634        final ArrayList<Sensor> fullList = sFullSensorsList;
635        for (Sensor i : fullList) {
636            switch (i.getType()) {
637                case Sensor.TYPE_ACCELEROMETER:
638                    result |= SensorManager.SENSOR_ACCELEROMETER;
639                    break;
640                case Sensor.TYPE_MAGNETIC_FIELD:
641                    result |= SensorManager.SENSOR_MAGNETIC_FIELD;
642                    break;
643                case Sensor.TYPE_ORIENTATION:
644                    result |= SensorManager.SENSOR_ORIENTATION |
645                    SensorManager.SENSOR_ORIENTATION_RAW;
646                    break;
647            }
648        }
649        return result;
650    }
651
652    /**
653     * Use this method to get the list of available sensors of a certain type.
654     * Make multiple calls to get sensors of different types or use
655     * {@link android.hardware.Sensor#TYPE_ALL Sensor.TYPE_ALL} to get all the
656     * sensors.
657     *
658     * @param type
659     *        of sensors requested
660     *
661     * @return a list of sensors matching the asked type.
662     *
663     * @see #getDefaultSensor(int)
664     * @see Sensor
665     */
666    public List<Sensor> getSensorList(int type) {
667        // cache the returned lists the first time
668        List<Sensor> list;
669        final ArrayList<Sensor> fullList = sFullSensorsList;
670        synchronized(fullList) {
671            list = sSensorListByType.get(type);
672            if (list == null) {
673                if (type == Sensor.TYPE_ALL) {
674                    list = fullList;
675                } else {
676                    list = new ArrayList<Sensor>();
677                    for (Sensor i : fullList) {
678                        if (i.getType() == type)
679                            list.add(i);
680                    }
681                }
682                list = Collections.unmodifiableList(list);
683                sSensorListByType.append(type, list);
684            }
685        }
686        return list;
687    }
688
689    /**
690     * Use this method to get the default sensor for a given type. Note that the
691     * returned sensor could be a composite sensor, and its data could be
692     * averaged or filtered. If you need to access the raw sensors use
693     * {@link SensorManager#getSensorList(int) getSensorList}.
694     *
695     * @param type
696     *        of sensors requested
697     *
698     * @return the default sensors matching the asked type.
699     *
700     * @see #getSensorList(int)
701     * @see Sensor
702     */
703    public Sensor getDefaultSensor(int type) {
704        // TODO: need to be smarter, for now, just return the 1st sensor
705        List<Sensor> l = getSensorList(type);
706        return l.isEmpty() ? null : l.get(0);
707    }
708
709    /**
710     * Registers a listener for given sensors.
711     *
712     * @deprecated This method is deprecated, use
713     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
714     *             instead.
715     *
716     * @param listener
717     *        sensor listener object
718     *
719     * @param sensors
720     *        a bit masks of the sensors to register to
721     *
722     * @return <code>true</code> if the sensor is supported and successfully
723     *         enabled
724     */
725    @Deprecated
726    public boolean registerListener(SensorListener listener, int sensors) {
727        return registerListener(listener, sensors, SENSOR_DELAY_NORMAL);
728    }
729
730    /**
731     * Registers a SensorListener for given sensors.
732     *
733     * @deprecated This method is deprecated, use
734     *             {@link SensorManager#registerListener(SensorEventListener, Sensor, int)}
735     *             instead.
736     *
737     * @param listener
738     *        sensor listener object
739     *
740     * @param sensors
741     *        a bit masks of the sensors to register to
742     *
743     * @param rate
744     *        rate of events. This is only a hint to the system. events may be
745     *        received faster or slower than the specified rate. Usually events
746     *        are received faster. The value must be one of
747     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
748     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
749     *
750     * @return <code>true</code> if the sensor is supported and successfully
751     *         enabled
752     */
753    @Deprecated
754    public boolean registerListener(SensorListener listener, int sensors, int rate) {
755        if (listener == null) {
756            return false;
757        }
758        boolean result = false;
759        result = registerLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
760                listener, sensors, rate) || result;
761        result = registerLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
762                listener, sensors, rate) || result;
763        result = registerLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
764                listener, sensors, rate) || result;
765        result = registerLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
766                listener, sensors, rate) || result;
767        result = registerLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
768                listener, sensors, rate) || result;
769        return result;
770    }
771
772    @SuppressWarnings("deprecation")
773    private boolean registerLegacyListener(int legacyType, int type,
774            SensorListener listener, int sensors, int rate)
775    {
776        if (listener == null) {
777            return false;
778        }
779        boolean result = false;
780        // Are we activating this legacy sensor?
781        if ((sensors & legacyType) != 0) {
782            // if so, find a suitable Sensor
783            Sensor sensor = getDefaultSensor(type);
784            if (sensor != null) {
785                // If we don't already have one, create a LegacyListener
786                // to wrap this listener and process the events as
787                // they are expected by legacy apps.
788                LegacyListener legacyListener = null;
789                synchronized (mLegacyListenersMap) {
790                    legacyListener = mLegacyListenersMap.get(listener);
791                    if (legacyListener == null) {
792                        // we didn't find a LegacyListener for this client,
793                        // create one, and put it in our list.
794                        legacyListener = new LegacyListener(listener);
795                        mLegacyListenersMap.put(listener, legacyListener);
796                    }
797                }
798                // register this legacy sensor with this legacy listener
799                legacyListener.registerSensor(legacyType);
800                // and finally, register the legacy listener with the new apis
801                result = registerListener(legacyListener, sensor, rate);
802            }
803        }
804        return result;
805    }
806
807    /**
808     * Unregisters a listener for the sensors with which it is registered.
809     *
810     * @deprecated This method is deprecated, use
811     *             {@link SensorManager#unregisterListener(SensorEventListener, Sensor)}
812     *             instead.
813     *
814     * @param listener
815     *        a SensorListener object
816     *
817     * @param sensors
818     *        a bit masks of the sensors to unregister from
819     */
820    @Deprecated
821    public void unregisterListener(SensorListener listener, int sensors) {
822        unregisterLegacyListener(SENSOR_ACCELEROMETER, Sensor.TYPE_ACCELEROMETER,
823                listener, sensors);
824        unregisterLegacyListener(SENSOR_MAGNETIC_FIELD, Sensor.TYPE_MAGNETIC_FIELD,
825                listener, sensors);
826        unregisterLegacyListener(SENSOR_ORIENTATION_RAW, Sensor.TYPE_ORIENTATION,
827                listener, sensors);
828        unregisterLegacyListener(SENSOR_ORIENTATION, Sensor.TYPE_ORIENTATION,
829                listener, sensors);
830        unregisterLegacyListener(SENSOR_TEMPERATURE, Sensor.TYPE_TEMPERATURE,
831                listener, sensors);
832    }
833
834    @SuppressWarnings("deprecation")
835    private void unregisterLegacyListener(int legacyType, int type,
836            SensorListener listener, int sensors)
837    {
838        if (listener == null) {
839            return;
840        }
841        // do we know about this listener?
842        LegacyListener legacyListener = null;
843        synchronized (mLegacyListenersMap) {
844            legacyListener = mLegacyListenersMap.get(listener);
845        }
846        if (legacyListener != null) {
847            // Are we deactivating this legacy sensor?
848            if ((sensors & legacyType) != 0) {
849                // if so, find the corresponding Sensor
850                Sensor sensor = getDefaultSensor(type);
851                if (sensor != null) {
852                    // unregister this legacy sensor and if we don't
853                    // need the corresponding Sensor, unregister it too
854                    if (legacyListener.unregisterSensor(legacyType)) {
855                        // corresponding sensor not needed, unregister
856                        unregisterListener(legacyListener, sensor);
857                        // finally check if we still need the legacyListener
858                        // in our mapping, if not, get rid of it too.
859                        synchronized(sListeners) {
860                            boolean found = false;
861                            for (ListenerDelegate i : sListeners) {
862                                if (i.getListener() == legacyListener) {
863                                    found = true;
864                                    break;
865                                }
866                            }
867                            if (!found) {
868                                synchronized (mLegacyListenersMap) {
869                                    mLegacyListenersMap.remove(listener);
870                                }
871                            }
872                        }
873                    }
874                }
875            }
876        }
877    }
878
879    /**
880     * Unregisters a listener for all sensors.
881     *
882     * @deprecated This method is deprecated, use
883     *             {@link SensorManager#unregisterListener(SensorEventListener)}
884     *             instead.
885     *
886     * @param listener
887     *        a SensorListener object
888     */
889    @Deprecated
890    public void unregisterListener(SensorListener listener) {
891        unregisterListener(listener, SENSOR_ALL | SENSOR_ORIENTATION_RAW);
892    }
893
894    /**
895     * Unregisters a listener for the sensors with which it is registered.
896     *
897     * @param listener
898     *        a SensorEventListener object
899     *
900     * @param sensor
901     *        the sensor to unregister from
902     *
903     * @see #unregisterListener(SensorEventListener)
904     * @see #registerListener(SensorEventListener, Sensor, int)
905     *
906     */
907    public void unregisterListener(SensorEventListener listener, Sensor sensor) {
908        unregisterListener((Object)listener, sensor);
909    }
910
911    /**
912     * Unregisters a listener for all sensors.
913     *
914     * @param listener
915     *        a SensorListener object
916     *
917     * @see #unregisterListener(SensorEventListener, Sensor)
918     * @see #registerListener(SensorEventListener, Sensor, int)
919     *
920     */
921    public void unregisterListener(SensorEventListener listener) {
922        unregisterListener((Object)listener);
923    }
924
925    /**
926     * Registers a {@link android.hardware.SensorEventListener
927     * SensorEventListener} for the given sensor.
928     *
929     * @param listener
930     *        A {@link android.hardware.SensorEventListener SensorEventListener}
931     *        object.
932     *
933     * @param sensor
934     *        The {@link android.hardware.Sensor Sensor} to register to.
935     *
936     * @param rate
937     *        The rate {@link android.hardware.SensorEvent sensor events} are
938     *        delivered at. This is only a hint to the system. Events may be
939     *        received faster or slower than the specified rate. Usually events
940     *        are received faster. The value must be one of
941     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
942     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}
943     *        or, the desired delay between events in microsecond.
944     *
945     * @return <code>true</code> if the sensor is supported and successfully
946     *         enabled.
947     *
948     * @see #registerListener(SensorEventListener, Sensor, int, Handler)
949     * @see #unregisterListener(SensorEventListener)
950     * @see #unregisterListener(SensorEventListener, Sensor)
951     *
952     */
953    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate) {
954        return registerListener(listener, sensor, rate, null);
955    }
956
957    /**
958     * Registers a {@link android.hardware.SensorEventListener
959     * SensorEventListener} for the given sensor.
960     *
961     * @param listener
962     *        A {@link android.hardware.SensorEventListener SensorEventListener}
963     *        object.
964     *
965     * @param sensor
966     *        The {@link android.hardware.Sensor Sensor} to register to.
967     *
968     * @param rate
969     *        The rate {@link android.hardware.SensorEvent sensor events} are
970     *        delivered at. This is only a hint to the system. Events may be
971     *        received faster or slower than the specified rate. Usually events
972     *        are received faster. The value must be one of
973     *        {@link #SENSOR_DELAY_NORMAL}, {@link #SENSOR_DELAY_UI},
974     *        {@link #SENSOR_DELAY_GAME}, or {@link #SENSOR_DELAY_FASTEST}.
975     *        or, the desired delay between events in microsecond.
976     *
977     * @param handler
978     *        The {@link android.os.Handler Handler} the
979     *        {@link android.hardware.SensorEvent sensor events} will be
980     *        delivered to.
981     *
982     * @return true if the sensor is supported and successfully enabled.
983     *
984     * @see #registerListener(SensorEventListener, Sensor, int)
985     * @see #unregisterListener(SensorEventListener)
986     * @see #unregisterListener(SensorEventListener, Sensor)
987     *
988     */
989    public boolean registerListener(SensorEventListener listener, Sensor sensor, int rate,
990            Handler handler) {
991        if (listener == null || sensor == null) {
992            return false;
993        }
994        boolean result;
995        int delay = -1;
996        switch (rate) {
997            case SENSOR_DELAY_FASTEST:
998                delay = 0;
999                break;
1000            case SENSOR_DELAY_GAME:
1001                delay = 20000;
1002                break;
1003            case SENSOR_DELAY_UI:
1004                delay = 60000;
1005                break;
1006            case SENSOR_DELAY_NORMAL:
1007                delay = 200000;
1008                break;
1009            default:
1010                delay = rate;
1011                break;
1012        }
1013
1014        synchronized (sListeners) {
1015            ListenerDelegate l = null;
1016            for (ListenerDelegate i : sListeners) {
1017                if (i.getListener() == listener) {
1018                    l = i;
1019                    break;
1020                }
1021            }
1022
1023            String name = sensor.getName();
1024            int handle = sensor.getHandle();
1025            if (l == null) {
1026                result = false;
1027                l = new ListenerDelegate(listener, sensor, handler);
1028                sListeners.add(l);
1029                if (!sListeners.isEmpty()) {
1030                    result = sSensorThread.startLocked();
1031                    if (result) {
1032                        result = sensors_enable_sensor(sQueue, name, handle, delay);
1033                        if (!result) {
1034                            // there was an error, remove the listeners
1035                            sListeners.remove(l);
1036                        }
1037                    }
1038                }
1039            } else {
1040                result = sensors_enable_sensor(sQueue, name, handle, delay);
1041                if (result) {
1042                    l.addSensor(sensor);
1043                }
1044            }
1045        }
1046        return result;
1047    }
1048
1049    private void unregisterListener(Object listener, Sensor sensor) {
1050        if (listener == null || sensor == null) {
1051            return;
1052        }
1053        synchronized (sListeners) {
1054            final int size = sListeners.size();
1055            for (int i=0 ; i<size ; i++) {
1056                ListenerDelegate l = sListeners.get(i);
1057                if (l.getListener() == listener) {
1058                    // disable these sensors
1059                    String name = sensor.getName();
1060                    int handle = sensor.getHandle();
1061                    sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE);
1062                    // if we have no more sensors enabled on this listener,
1063                    // take it off the list.
1064                    if (l.removeSensor(sensor) == 0) {
1065                        sListeners.remove(i);
1066                    }
1067                    break;
1068                }
1069            }
1070        }
1071    }
1072
1073    private void unregisterListener(Object listener) {
1074        if (listener == null) {
1075            return;
1076        }
1077        synchronized (sListeners) {
1078            final int size = sListeners.size();
1079            for (int i=0 ; i<size ; i++) {
1080                ListenerDelegate l = sListeners.get(i);
1081                if (l.getListener() == listener) {
1082                    // disable all sensors for this listener
1083                    for (Sensor sensor : l.getSensors()) {
1084                        String name = sensor.getName();
1085                        int handle = sensor.getHandle();
1086                        sensors_enable_sensor(sQueue, name, handle, SENSOR_DISABLE);
1087                    }
1088                    sListeners.remove(i);
1089                    break;
1090                }
1091            }
1092        }
1093    }
1094
1095    /**
1096     * <p>
1097     * Computes the inclination matrix <b>I</b> as well as the rotation matrix
1098     * <b>R</b> transforming a vector from the device coordinate system to the
1099     * world's coordinate system which is defined as a direct orthonormal basis,
1100     * where:
1101     * </p>
1102     *
1103     * <ul>
1104     * <li>X is defined as the vector product <b>Y.Z</b> (It is tangential to
1105     * the ground at the device's current location and roughly points East).</li>
1106     * <li>Y is tangential to the ground at the device's current location and
1107     * points towards the magnetic North Pole.</li>
1108     * <li>Z points towards the sky and is perpendicular to the ground.</li>
1109     * </ul>
1110     *
1111     * <p>
1112     * <center><img src="../../../images/axis_globe.png"
1113     * alt="Sensors coordinate-system diagram." border="0" /></center>
1114     * </p>
1115     *
1116     * <p>
1117     * <hr>
1118     * <p>
1119     * By definition:
1120     * <p>
1121     * [0 0 g] = <b>R</b> * <b>gravity</b> (g = magnitude of gravity)
1122     * <p>
1123     * [0 m 0] = <b>I</b> * <b>R</b> * <b>geomagnetic</b> (m = magnitude of
1124     * geomagnetic field)
1125     * <p>
1126     * <b>R</b> is the identity matrix when the device is aligned with the
1127     * world's coordinate system, that is, when the device's X axis points
1128     * toward East, the Y axis points to the North Pole and the device is facing
1129     * the sky.
1130     *
1131     * <p>
1132     * <b>I</b> is a rotation matrix transforming the geomagnetic vector into
1133     * the same coordinate space as gravity (the world's coordinate space).
1134     * <b>I</b> is a simple rotation around the X axis. The inclination angle in
1135     * radians can be computed with {@link #getInclination}.
1136     * <hr>
1137     *
1138     * <p>
1139     * Each matrix is returned either as a 3x3 or 4x4 row-major matrix depending
1140     * on the length of the passed array:
1141     * <p>
1142     * <u>If the array length is 16:</u>
1143     *
1144     * <pre>
1145     *   /  M[ 0]   M[ 1]   M[ 2]   M[ 3]  \
1146     *   |  M[ 4]   M[ 5]   M[ 6]   M[ 7]  |
1147     *   |  M[ 8]   M[ 9]   M[10]   M[11]  |
1148     *   \  M[12]   M[13]   M[14]   M[15]  /
1149     *</pre>
1150     *
1151     * This matrix is ready to be used by OpenGL ES's
1152     * {@link javax.microedition.khronos.opengles.GL10#glLoadMatrixf(float[], int)
1153     * glLoadMatrixf(float[], int)}.
1154     * <p>
1155     * Note that because OpenGL matrices are column-major matrices you must
1156     * transpose the matrix before using it. However, since the matrix is a
1157     * rotation matrix, its transpose is also its inverse, conveniently, it is
1158     * often the inverse of the rotation that is needed for rendering; it can
1159     * therefore be used with OpenGL ES directly.
1160     * <p>
1161     * Also note that the returned matrices always have this form:
1162     *
1163     * <pre>
1164     *   /  M[ 0]   M[ 1]   M[ 2]   0  \
1165     *   |  M[ 4]   M[ 5]   M[ 6]   0  |
1166     *   |  M[ 8]   M[ 9]   M[10]   0  |
1167     *   \      0       0       0   1  /
1168     *</pre>
1169     *
1170     * <p>
1171     * <u>If the array length is 9:</u>
1172     *
1173     * <pre>
1174     *   /  M[ 0]   M[ 1]   M[ 2]  \
1175     *   |  M[ 3]   M[ 4]   M[ 5]  |
1176     *   \  M[ 6]   M[ 7]   M[ 8]  /
1177     *</pre>
1178     *
1179     * <hr>
1180     * <p>
1181     * The inverse of each matrix can be computed easily by taking its
1182     * transpose.
1183     *
1184     * <p>
1185     * The matrices returned by this function are meaningful only when the
1186     * device is not free-falling and it is not close to the magnetic north. If
1187     * the device is accelerating, or placed into a strong magnetic field, the
1188     * returned matrices may be inaccurate.
1189     *
1190     * @param R
1191     *        is an array of 9 floats holding the rotation matrix <b>R</b> when
1192     *        this function returns. R can be null.
1193     *        <p>
1194     *
1195     * @param I
1196     *        is an array of 9 floats holding the rotation matrix <b>I</b> when
1197     *        this function returns. I can be null.
1198     *        <p>
1199     *
1200     * @param gravity
1201     *        is an array of 3 floats containing the gravity vector expressed in
1202     *        the device's coordinate. You can simply use the
1203     *        {@link android.hardware.SensorEvent#values values} returned by a
1204     *        {@link android.hardware.SensorEvent SensorEvent} of a
1205     *        {@link android.hardware.Sensor Sensor} of type
1206     *        {@link android.hardware.Sensor#TYPE_ACCELEROMETER
1207     *        TYPE_ACCELEROMETER}.
1208     *        <p>
1209     *
1210     * @param geomagnetic
1211     *        is an array of 3 floats containing the geomagnetic vector
1212     *        expressed in the device's coordinate. You can simply use the
1213     *        {@link android.hardware.SensorEvent#values values} returned by a
1214     *        {@link android.hardware.SensorEvent SensorEvent} of a
1215     *        {@link android.hardware.Sensor Sensor} of type
1216     *        {@link android.hardware.Sensor#TYPE_MAGNETIC_FIELD
1217     *        TYPE_MAGNETIC_FIELD}.
1218     *
1219     * @return <code>true</code> on success, <code>false</code> on failure (for
1220     *         instance, if the device is in free fall). On failure the output
1221     *         matrices are not modified.
1222     *
1223     * @see #getInclination(float[])
1224     * @see #getOrientation(float[], float[])
1225     * @see #remapCoordinateSystem(float[], int, int, float[])
1226     */
1227
1228    public static boolean getRotationMatrix(float[] R, float[] I,
1229            float[] gravity, float[] geomagnetic) {
1230        // TODO: move this to native code for efficiency
1231        float Ax = gravity[0];
1232        float Ay = gravity[1];
1233        float Az = gravity[2];
1234        final float Ex = geomagnetic[0];
1235        final float Ey = geomagnetic[1];
1236        final float Ez = geomagnetic[2];
1237        float Hx = Ey*Az - Ez*Ay;
1238        float Hy = Ez*Ax - Ex*Az;
1239        float Hz = Ex*Ay - Ey*Ax;
1240        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
1241        if (normH < 0.1f) {
1242            // device is close to free fall (or in space?), or close to
1243            // magnetic north pole. Typical values are  > 100.
1244            return false;
1245        }
1246        final float invH = 1.0f / normH;
1247        Hx *= invH;
1248        Hy *= invH;
1249        Hz *= invH;
1250        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
1251        Ax *= invA;
1252        Ay *= invA;
1253        Az *= invA;
1254        final float Mx = Ay*Hz - Az*Hy;
1255        final float My = Az*Hx - Ax*Hz;
1256        final float Mz = Ax*Hy - Ay*Hx;
1257        if (R != null) {
1258            if (R.length == 9) {
1259                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
1260                R[3] = Mx;     R[4] = My;     R[5] = Mz;
1261                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
1262            } else if (R.length == 16) {
1263                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
1264                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
1265                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
1266                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
1267            }
1268        }
1269        if (I != null) {
1270            // compute the inclination matrix by projecting the geomagnetic
1271            // vector onto the Z (gravity) and X (horizontal component
1272            // of geomagnetic vector) axes.
1273            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
1274            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
1275            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
1276            if (I.length == 9) {
1277                I[0] = 1;     I[1] = 0;     I[2] = 0;
1278                I[3] = 0;     I[4] = c;     I[5] = s;
1279                I[6] = 0;     I[7] =-s;     I[8] = c;
1280            } else if (I.length == 16) {
1281                I[0] = 1;     I[1] = 0;     I[2] = 0;
1282                I[4] = 0;     I[5] = c;     I[6] = s;
1283                I[8] = 0;     I[9] =-s;     I[10]= c;
1284                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
1285                I[15] = 1;
1286            }
1287        }
1288        return true;
1289    }
1290
1291    /**
1292     * Computes the geomagnetic inclination angle in radians from the
1293     * inclination matrix <b>I</b> returned by {@link #getRotationMatrix}.
1294     *
1295     * @param I
1296     *        inclination matrix see {@link #getRotationMatrix}.
1297     *
1298     * @return The geomagnetic inclination angle in radians.
1299     *
1300     * @see #getRotationMatrix(float[], float[], float[], float[])
1301     * @see #getOrientation(float[], float[])
1302     * @see GeomagneticField
1303     *
1304     */
1305    public static float getInclination(float[] I) {
1306        if (I.length == 9) {
1307            return (float)Math.atan2(I[5], I[4]);
1308        } else {
1309            return (float)Math.atan2(I[6], I[5]);
1310        }
1311    }
1312
1313    /**
1314     * <p>
1315     * Rotates the supplied rotation matrix so it is expressed in a different
1316     * coordinate system. This is typically used when an application needs to
1317     * compute the three orientation angles of the device (see
1318     * {@link #getOrientation}) in a different coordinate system.
1319     * </p>
1320     *
1321     * <p>
1322     * When the rotation matrix is used for drawing (for instance with OpenGL
1323     * ES), it usually <b>doesn't need</b> to be transformed by this function,
1324     * unless the screen is physically rotated, in which case you can use
1325     * {@link android.view.Display#getRotation() Display.getRotation()} to
1326     * retrieve the current rotation of the screen. Note that because the user
1327     * is generally free to rotate their screen, you often should consider the
1328     * rotation in deciding the parameters to use here.
1329     * </p>
1330     *
1331     * <p>
1332     * <u>Examples:</u>
1333     * <p>
1334     *
1335     * <ul>
1336     * <li>Using the camera (Y axis along the camera's axis) for an augmented
1337     * reality application where the rotation angles are needed:</li>
1338     *
1339     * <p>
1340     * <ul>
1341     * <code>remapCoordinateSystem(inR, AXIS_X, AXIS_Z, outR);</code>
1342     * </ul>
1343     * </p>
1344     *
1345     * <li>Using the device as a mechanical compass when rotation is
1346     * {@link android.view.Surface#ROTATION_90 Surface.ROTATION_90}:</li>
1347     *
1348     * <p>
1349     * <ul>
1350     * <code>remapCoordinateSystem(inR, AXIS_Y, AXIS_MINUS_X, outR);</code>
1351     * </ul>
1352     * </p>
1353     *
1354     * Beware of the above example. This call is needed only to account for a
1355     * rotation from its natural orientation when calculating the rotation
1356     * angles (see {@link #getOrientation}). If the rotation matrix is also used
1357     * for rendering, it may not need to be transformed, for instance if your
1358     * {@link android.app.Activity Activity} is running in landscape mode.
1359     * </ul>
1360     *
1361     * <p>
1362     * Since the resulting coordinate system is orthonormal, only two axes need
1363     * to be specified.
1364     *
1365     * @param inR
1366     *        the rotation matrix to be transformed. Usually it is the matrix
1367     *        returned by {@link #getRotationMatrix}.
1368     *
1369     * @param X
1370     *        defines on which world axis and direction the X axis of the device
1371     *        is mapped.
1372     *
1373     * @param Y
1374     *        defines on which world axis and direction the Y axis of the device
1375     *        is mapped.
1376     *
1377     * @param outR
1378     *        the transformed rotation matrix. inR and outR can be the same
1379     *        array, but it is not recommended for performance reason.
1380     *
1381     * @return <code>true</code> on success. <code>false</code> if the input
1382     *         parameters are incorrect, for instance if X and Y define the same
1383     *         axis. Or if inR and outR don't have the same length.
1384     *
1385     * @see #getRotationMatrix(float[], float[], float[], float[])
1386     */
1387
1388    public static boolean remapCoordinateSystem(float[] inR, int X, int Y,
1389            float[] outR)
1390    {
1391        if (inR == outR) {
1392            final float[] temp = mTempMatrix;
1393            synchronized(temp) {
1394                // we don't expect to have a lot of contention
1395                if (remapCoordinateSystemImpl(inR, X, Y, temp)) {
1396                    final int size = outR.length;
1397                    for (int i=0 ; i<size ; i++)
1398                        outR[i] = temp[i];
1399                    return true;
1400                }
1401            }
1402        }
1403        return remapCoordinateSystemImpl(inR, X, Y, outR);
1404    }
1405
1406    private static boolean remapCoordinateSystemImpl(float[] inR, int X, int Y,
1407            float[] outR)
1408    {
1409        /*
1410         * X and Y define a rotation matrix 'r':
1411         *
1412         *  (X==1)?((X&0x80)?-1:1):0    (X==2)?((X&0x80)?-1:1):0    (X==3)?((X&0x80)?-1:1):0
1413         *  (Y==1)?((Y&0x80)?-1:1):0    (Y==2)?((Y&0x80)?-1:1):0    (Y==3)?((X&0x80)?-1:1):0
1414         *                              r[0] ^ r[1]
1415         *
1416         * where the 3rd line is the vector product of the first 2 lines
1417         *
1418         */
1419
1420        final int length = outR.length;
1421        if (inR.length != length)
1422            return false;   // invalid parameter
1423        if ((X & 0x7C)!=0 || (Y & 0x7C)!=0)
1424            return false;   // invalid parameter
1425        if (((X & 0x3)==0) || ((Y & 0x3)==0))
1426            return false;   // no axis specified
1427        if ((X & 0x3) == (Y & 0x3))
1428            return false;   // same axis specified
1429
1430        // Z is "the other" axis, its sign is either +/- sign(X)*sign(Y)
1431        // this can be calculated by exclusive-or'ing X and Y; except for
1432        // the sign inversion (+/-) which is calculated below.
1433        int Z = X ^ Y;
1434
1435        // extract the axis (remove the sign), offset in the range 0 to 2.
1436        final int x = (X & 0x3)-1;
1437        final int y = (Y & 0x3)-1;
1438        final int z = (Z & 0x3)-1;
1439
1440        // compute the sign of Z (whether it needs to be inverted)
1441        final int axis_y = (z+1)%3;
1442        final int axis_z = (z+2)%3;
1443        if (((x^axis_y)|(y^axis_z)) != 0)
1444            Z ^= 0x80;
1445
1446        final boolean sx = (X>=0x80);
1447        final boolean sy = (Y>=0x80);
1448        final boolean sz = (Z>=0x80);
1449
1450        // Perform R * r, in avoiding actual muls and adds.
1451        final int rowLength = ((length==16)?4:3);
1452        for (int j=0 ; j<3 ; j++) {
1453            final int offset = j*rowLength;
1454            for (int i=0 ; i<3 ; i++) {
1455                if (x==i)   outR[offset+i] = sx ? -inR[offset+0] : inR[offset+0];
1456                if (y==i)   outR[offset+i] = sy ? -inR[offset+1] : inR[offset+1];
1457                if (z==i)   outR[offset+i] = sz ? -inR[offset+2] : inR[offset+2];
1458            }
1459        }
1460        if (length == 16) {
1461            outR[3] = outR[7] = outR[11] = outR[12] = outR[13] = outR[14] = 0;
1462            outR[15] = 1;
1463        }
1464        return true;
1465    }
1466
1467    /**
1468     * Computes the device's orientation based on the rotation matrix.
1469     * <p>
1470     * When it returns, the array values is filled with the result:
1471     * <ul>
1472     * <li>values[0]: <i>azimuth</i>, rotation around the Z axis.</li>
1473     * <li>values[1]: <i>pitch</i>, rotation around the X axis.</li>
1474     * <li>values[2]: <i>roll</i>, rotation around the Y axis.</li>
1475     * </ul>
1476     * <p>
1477     * <center><img src="../../../images/axis_device.png"
1478     * alt="Sensors coordinate-system diagram." border="0" /></center>
1479     * </p>
1480     * <p>
1481     * All three angles above are in <b>radians</b> and <b>positive</b> in the
1482     * <b>counter-clockwise</b> direction.
1483     *
1484     * @param R
1485     *        rotation matrix see {@link #getRotationMatrix}.
1486     *
1487     * @param values
1488     *        an array of 3 floats to hold the result.
1489     *
1490     * @return The array values passed as argument.
1491     *
1492     * @see #getRotationMatrix(float[], float[], float[], float[])
1493     * @see GeomagneticField
1494     */
1495    public static float[] getOrientation(float[] R, float values[]) {
1496        /*
1497         * 4x4 (length=16) case:
1498         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
1499         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
1500         *   |  R[ 8]   R[ 9]   R[10]   0  |
1501         *   \      0       0       0   1  /
1502         *
1503         * 3x3 (length=9) case:
1504         *   /  R[ 0]   R[ 1]   R[ 2]  \
1505         *   |  R[ 3]   R[ 4]   R[ 5]  |
1506         *   \  R[ 6]   R[ 7]   R[ 8]  /
1507         *
1508         */
1509        if (R.length == 9) {
1510            values[0] = (float)Math.atan2(R[1], R[4]);
1511            values[1] = (float)Math.asin(-R[7]);
1512            values[2] = (float)Math.atan2(-R[6], R[8]);
1513        } else {
1514            values[0] = (float)Math.atan2(R[1], R[5]);
1515            values[1] = (float)Math.asin(-R[9]);
1516            values[2] = (float)Math.atan2(-R[8], R[10]);
1517        }
1518        return values;
1519    }
1520
1521    /**
1522     * Computes the Altitude in meters from the atmospheric pressure and the
1523     * pressure at sea level.
1524     * <p>
1525     * Typically the atmospheric pressure is read from a
1526     * {@link Sensor#TYPE_PRESSURE} sensor. The pressure at sea level must be
1527     * known, usually it can be retrieved from airport databases in the
1528     * vicinity.
1529     * </p>
1530     *
1531     * @param p0 pressure at sea level
1532     * @param p atmospheric pressure
1533     * @return Altitude in meters
1534     */
1535   public static float getAltitude(float p0, float p) {
1536        final float coef = 1.0f / 5.255f;
1537        return 44330.0f * (1.0f - (float)Math.pow(p/p0, coef));
1538    }
1539
1540
1541   /**
1542     * {@hide}
1543     */
1544    public void onRotationChanged(int rotation) {
1545        synchronized(sListeners) {
1546            sRotation  = rotation;
1547        }
1548    }
1549
1550    static int getRotation() {
1551        synchronized(sListeners) {
1552            return sRotation;
1553        }
1554    }
1555
1556    private class LegacyListener implements SensorEventListener {
1557        private float mValues[] = new float[6];
1558        @SuppressWarnings("deprecation")
1559        private SensorListener mTarget;
1560        private int mSensors;
1561        private final LmsFilter mYawfilter = new LmsFilter();
1562
1563        @SuppressWarnings("deprecation")
1564        LegacyListener(SensorListener target) {
1565            mTarget = target;
1566            mSensors = 0;
1567        }
1568
1569        void registerSensor(int legacyType) {
1570            mSensors |= legacyType;
1571        }
1572
1573        boolean unregisterSensor(int legacyType) {
1574            mSensors &= ~legacyType;
1575            int mask = SENSOR_ORIENTATION|SENSOR_ORIENTATION_RAW;
1576            if (((legacyType&mask)!=0) && ((mSensors&mask)!=0)) {
1577                return false;
1578            }
1579            return true;
1580        }
1581
1582        @SuppressWarnings("deprecation")
1583        public void onAccuracyChanged(Sensor sensor, int accuracy) {
1584            try {
1585                mTarget.onAccuracyChanged(sensor.getLegacyType(), accuracy);
1586            } catch (AbstractMethodError e) {
1587                // old app that doesn't implement this method
1588                // just ignore it.
1589            }
1590        }
1591
1592        @SuppressWarnings("deprecation")
1593        public void onSensorChanged(SensorEvent event) {
1594            final float v[] = mValues;
1595            v[0] = event.values[0];
1596            v[1] = event.values[1];
1597            v[2] = event.values[2];
1598            int legacyType = event.sensor.getLegacyType();
1599            mapSensorDataToWindow(legacyType, v, SensorManager.getRotation());
1600            if (event.sensor.getType() == Sensor.TYPE_ORIENTATION) {
1601                if ((mSensors & SENSOR_ORIENTATION_RAW)!=0) {
1602                    mTarget.onSensorChanged(SENSOR_ORIENTATION_RAW, v);
1603                }
1604                if ((mSensors & SENSOR_ORIENTATION)!=0) {
1605                    v[0] = mYawfilter.filter(event.timestamp, v[0]);
1606                    mTarget.onSensorChanged(SENSOR_ORIENTATION, v);
1607                }
1608            } else {
1609                mTarget.onSensorChanged(legacyType, v);
1610            }
1611        }
1612
1613        /*
1614         * Helper function to convert the specified sensor's data to the windows's
1615         * coordinate space from the device's coordinate space.
1616         *
1617         * output: 3,4,5: values in the old API format
1618         *         0,1,2: transformed values in the old API format
1619         *
1620         */
1621        private void mapSensorDataToWindow(int sensor,
1622                float[] values, int orientation) {
1623            float x = values[0];
1624            float y = values[1];
1625            float z = values[2];
1626
1627            switch (sensor) {
1628                case SensorManager.SENSOR_ORIENTATION:
1629                case SensorManager.SENSOR_ORIENTATION_RAW:
1630                    z = -z;
1631                    break;
1632                case SensorManager.SENSOR_ACCELEROMETER:
1633                    x = -x;
1634                    y = -y;
1635                    z = -z;
1636                    break;
1637                case SensorManager.SENSOR_MAGNETIC_FIELD:
1638                    x = -x;
1639                    y = -y;
1640                    break;
1641            }
1642            values[0] = x;
1643            values[1] = y;
1644            values[2] = z;
1645            values[3] = x;
1646            values[4] = y;
1647            values[5] = z;
1648
1649            if ((orientation & Surface.ROTATION_90) != 0) {
1650                // handles 90 and 270 rotation
1651                switch (sensor) {
1652                    case SENSOR_ACCELEROMETER:
1653                    case SENSOR_MAGNETIC_FIELD:
1654                        values[0] =-y;
1655                        values[1] = x;
1656                        values[2] = z;
1657                        break;
1658                    case SENSOR_ORIENTATION:
1659                    case SENSOR_ORIENTATION_RAW:
1660                        values[0] = x + ((x < 270) ? 90 : -270);
1661                        values[1] = z;
1662                        values[2] = y;
1663                        break;
1664                }
1665            }
1666            if ((orientation & Surface.ROTATION_180) != 0) {
1667                x = values[0];
1668                y = values[1];
1669                z = values[2];
1670                // handles 180 (flip) and 270 (flip + 90) rotation
1671                switch (sensor) {
1672                    case SENSOR_ACCELEROMETER:
1673                    case SENSOR_MAGNETIC_FIELD:
1674                        values[0] =-x;
1675                        values[1] =-y;
1676                        values[2] = z;
1677                        break;
1678                    case SENSOR_ORIENTATION:
1679                    case SENSOR_ORIENTATION_RAW:
1680                        values[0] = (x >= 180) ? (x - 180) : (x + 180);
1681                        values[1] =-y;
1682                        values[2] =-z;
1683                        break;
1684                }
1685            }
1686        }
1687    }
1688
1689    class LmsFilter {
1690        private static final int SENSORS_RATE_MS = 20;
1691        private static final int COUNT = 12;
1692        private static final float PREDICTION_RATIO = 1.0f/3.0f;
1693        private static final float PREDICTION_TIME = (SENSORS_RATE_MS*COUNT/1000.0f)*PREDICTION_RATIO;
1694        private float mV[] = new float[COUNT*2];
1695        private float mT[] = new float[COUNT*2];
1696        private int mIndex;
1697
1698        public LmsFilter() {
1699            mIndex = COUNT;
1700        }
1701
1702        public float filter(long time, float in) {
1703            float v = in;
1704            final float ns = 1.0f / 1000000000.0f;
1705            final float t = time*ns;
1706            float v1 = mV[mIndex];
1707            if ((v-v1) > 180) {
1708                v -= 360;
1709            } else if ((v1-v) > 180) {
1710                v += 360;
1711            }
1712            /* Manage the circular buffer, we write the data twice spaced
1713             * by COUNT values, so that we don't have to copy the array
1714             * when it's full
1715             */
1716            mIndex++;
1717            if (mIndex >= COUNT*2)
1718                mIndex = COUNT;
1719            mV[mIndex] = v;
1720            mT[mIndex] = t;
1721            mV[mIndex-COUNT] = v;
1722            mT[mIndex-COUNT] = t;
1723
1724            float A, B, C, D, E;
1725            float a, b;
1726            int i;
1727
1728            A = B = C = D = E = 0;
1729            for (i=0 ; i<COUNT-1 ; i++) {
1730                final int j = mIndex - 1 - i;
1731                final float Z = mV[j];
1732                final float T = 0.5f*(mT[j] + mT[j+1]) - t;
1733                float dT = mT[j] - mT[j+1];
1734                dT *= dT;
1735                A += Z*dT;
1736                B += T*(T*dT);
1737                C +=   (T*dT);
1738                D += Z*(T*dT);
1739                E += dT;
1740            }
1741            b = (A*B + C*D) / (E*B + C*C);
1742            a = (E*b - A) / C;
1743            float f = b + PREDICTION_TIME*a;
1744
1745            // Normalize
1746            f *= (1.0f / 360.0f);
1747            if (((f>=0)?f:-f) >= 0.5f)
1748                f = f - (float)Math.ceil(f + 0.5f) + 1.0f;
1749            if (f < 0)
1750                f += 1.0f;
1751            f *= 360.0f;
1752            return f;
1753        }
1754    }
1755
1756
1757    private static native void nativeClassInit();
1758
1759    private static native int sensors_module_init();
1760    private static native int sensors_module_get_next_sensor(Sensor sensor, int next);
1761
1762    // Used within this module from outside SensorManager, don't make private
1763    static native int sensors_create_queue();
1764    static native void sensors_destroy_queue(int queue);
1765    static native boolean sensors_enable_sensor(int queue, String name, int sensor, int enable);
1766    static native int sensors_data_poll(int queue, float[] values, int[] status, long[] timestamp);
1767}
1768