SurfaceFlinger.cpp revision 8a7c940effda8651e205eab62334d4e58b1eaeb5
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <stdlib.h>
18#include <stdio.h>
19#include <stdint.h>
20#include <unistd.h>
21#include <fcntl.h>
22#include <errno.h>
23#include <math.h>
24#include <limits.h>
25#include <sys/types.h>
26#include <sys/stat.h>
27#include <sys/ioctl.h>
28
29#include <cutils/log.h>
30#include <cutils/properties.h>
31
32#include <binder/IPCThreadState.h>
33#include <binder/IServiceManager.h>
34#include <binder/MemoryHeapBase.h>
35#include <binder/PermissionCache.h>
36
37#include <utils/String8.h>
38#include <utils/String16.h>
39#include <utils/StopWatch.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/GraphicLog.h>
43#include <ui/PixelFormat.h>
44
45#include <pixelflinger/pixelflinger.h>
46#include <GLES/gl.h>
47
48#include "clz.h"
49#include "GLExtensions.h"
50#include "DdmConnection.h"
51#include "Layer.h"
52#include "LayerDim.h"
53#include "LayerScreenshot.h"
54#include "SurfaceFlinger.h"
55
56#include "DisplayHardware/DisplayHardware.h"
57#include "DisplayHardware/HWComposer.h"
58
59#include <private/surfaceflinger/SharedBufferStack.h>
60
61/* ideally AID_GRAPHICS would be in a semi-public header
62 * or there would be a way to map a user/group name to its id
63 */
64#ifndef AID_GRAPHICS
65#define AID_GRAPHICS 1003
66#endif
67
68#define EGL_VERSION_HW_ANDROID  0x3143
69
70#define DISPLAY_COUNT       1
71
72namespace android {
73// ---------------------------------------------------------------------------
74
75const String16 sHardwareTest("android.permission.HARDWARE_TEST");
76const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
77const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
78const String16 sDump("android.permission.DUMP");
79
80// ---------------------------------------------------------------------------
81
82SurfaceFlinger::SurfaceFlinger()
83    :   BnSurfaceComposer(), Thread(false),
84        mTransactionFlags(0),
85        mTransationPending(false),
86        mLayersRemoved(false),
87        mBootTime(systemTime()),
88        mVisibleRegionsDirty(false),
89        mHwWorkListDirty(false),
90        mElectronBeamAnimationMode(0),
91        mDebugRegion(0),
92        mDebugBackground(0),
93        mDebugDDMS(0),
94        mDebugDisableHWC(0),
95        mDebugDisableTransformHint(0),
96        mDebugInSwapBuffers(0),
97        mLastSwapBufferTime(0),
98        mDebugInTransaction(0),
99        mLastTransactionTime(0),
100        mBootFinished(false),
101        mConsoleSignals(0),
102        mSecureFrameBuffer(0)
103{
104    init();
105}
106
107void SurfaceFlinger::init()
108{
109    LOGI("SurfaceFlinger is starting");
110
111    // debugging stuff...
112    char value[PROPERTY_VALUE_MAX];
113
114    property_get("debug.sf.showupdates", value, "0");
115    mDebugRegion = atoi(value);
116
117    property_get("debug.sf.showbackground", value, "0");
118    mDebugBackground = atoi(value);
119
120    property_get("debug.sf.ddms", value, "0");
121    mDebugDDMS = atoi(value);
122    if (mDebugDDMS) {
123        DdmConnection::start(getServiceName());
124    }
125
126    LOGI_IF(mDebugRegion,       "showupdates enabled");
127    LOGI_IF(mDebugBackground,   "showbackground enabled");
128    LOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
129}
130
131SurfaceFlinger::~SurfaceFlinger()
132{
133    glDeleteTextures(1, &mWormholeTexName);
134}
135
136sp<IMemoryHeap> SurfaceFlinger::getCblk() const
137{
138    return mServerHeap;
139}
140
141sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
142{
143    sp<ISurfaceComposerClient> bclient;
144    sp<Client> client(new Client(this));
145    status_t err = client->initCheck();
146    if (err == NO_ERROR) {
147        bclient = client;
148    }
149    return bclient;
150}
151
152sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
153{
154    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
155    return gba;
156}
157
158const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
159{
160    LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
161    const GraphicPlane& plane(mGraphicPlanes[dpy]);
162    return plane;
163}
164
165GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
166{
167    return const_cast<GraphicPlane&>(
168        const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
169}
170
171void SurfaceFlinger::bootFinished()
172{
173    const nsecs_t now = systemTime();
174    const nsecs_t duration = now - mBootTime;
175    LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
176    mBootFinished = true;
177
178    // wait patiently for the window manager death
179    const String16 name("window");
180    sp<IBinder> window(defaultServiceManager()->getService(name));
181    if (window != 0) {
182        window->linkToDeath(this);
183    }
184
185    // stop boot animation
186    property_set("ctl.stop", "bootanim");
187}
188
189void SurfaceFlinger::binderDied(const wp<IBinder>& who)
190{
191    // the window manager died on us. prepare its eulogy.
192
193    // reset screen orientation
194    setOrientation(0, eOrientationDefault, 0);
195
196    // restart the boot-animation
197    property_set("ctl.start", "bootanim");
198}
199
200void SurfaceFlinger::onFirstRef()
201{
202    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
203
204    // Wait for the main thread to be done with its initialization
205    mReadyToRunBarrier.wait();
206}
207
208static inline uint16_t pack565(int r, int g, int b) {
209    return (r<<11)|(g<<5)|b;
210}
211
212status_t SurfaceFlinger::readyToRun()
213{
214    LOGI(   "SurfaceFlinger's main thread ready to run. "
215            "Initializing graphics H/W...");
216
217    // we only support one display currently
218    int dpy = 0;
219
220    {
221        // initialize the main display
222        GraphicPlane& plane(graphicPlane(dpy));
223        DisplayHardware* const hw = new DisplayHardware(this, dpy);
224        plane.setDisplayHardware(hw);
225    }
226
227    // create the shared control-block
228    mServerHeap = new MemoryHeapBase(4096,
229            MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
230    LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
231
232    mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
233    LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
234
235    new(mServerCblk) surface_flinger_cblk_t;
236
237    // initialize primary screen
238    // (other display should be initialized in the same manner, but
239    // asynchronously, as they could come and go. None of this is supported
240    // yet).
241    const GraphicPlane& plane(graphicPlane(dpy));
242    const DisplayHardware& hw = plane.displayHardware();
243    const uint32_t w = hw.getWidth();
244    const uint32_t h = hw.getHeight();
245    const uint32_t f = hw.getFormat();
246    hw.makeCurrent();
247
248    // initialize the shared control block
249    mServerCblk->connected |= 1<<dpy;
250    display_cblk_t* dcblk = mServerCblk->displays + dpy;
251    memset(dcblk, 0, sizeof(display_cblk_t));
252    dcblk->w            = plane.getWidth();
253    dcblk->h            = plane.getHeight();
254    dcblk->format       = f;
255    dcblk->orientation  = ISurfaceComposer::eOrientationDefault;
256    dcblk->xdpi         = hw.getDpiX();
257    dcblk->ydpi         = hw.getDpiY();
258    dcblk->fps          = hw.getRefreshRate();
259    dcblk->density      = hw.getDensity();
260
261    // Initialize OpenGL|ES
262    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
263    glPixelStorei(GL_PACK_ALIGNMENT, 4);
264    glEnableClientState(GL_VERTEX_ARRAY);
265    glEnable(GL_SCISSOR_TEST);
266    glShadeModel(GL_FLAT);
267    glDisable(GL_DITHER);
268    glDisable(GL_CULL_FACE);
269
270    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
271    const uint16_t g1 = pack565(0x17,0x2f,0x17);
272    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
273    glGenTextures(1, &mWormholeTexName);
274    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
275    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
276    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
277    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
278    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
279    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
280            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
281
282    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
283    glGenTextures(1, &mProtectedTexName);
284    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
285    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
286    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
287    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
288    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
289    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
290            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
291
292    glViewport(0, 0, w, h);
293    glMatrixMode(GL_PROJECTION);
294    glLoadIdentity();
295    // put the origin in the left-bottom corner
296    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
297
298    mReadyToRunBarrier.open();
299
300    /*
301     *  We're now ready to accept clients...
302     */
303
304    // start boot animation
305    property_set("ctl.start", "bootanim");
306
307    return NO_ERROR;
308}
309
310// ----------------------------------------------------------------------------
311#if 0
312#pragma mark -
313#pragma mark Events Handler
314#endif
315
316void SurfaceFlinger::waitForEvent()
317{
318    while (true) {
319        nsecs_t timeout = -1;
320        sp<MessageBase> msg = mEventQueue.waitMessage(timeout);
321        if (msg != 0) {
322            switch (msg->what) {
323                case MessageQueue::INVALIDATE:
324                    // invalidate message, just return to the main loop
325                    return;
326            }
327        }
328    }
329}
330
331void SurfaceFlinger::signalEvent() {
332    mEventQueue.invalidate();
333}
334
335bool SurfaceFlinger::authenticateSurfaceTexture(
336        const sp<ISurfaceTexture>& surfaceTexture) const {
337    Mutex::Autolock _l(mStateLock);
338    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
339
340    // Check the visible layer list for the ISurface
341    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
342    size_t count = currentLayers.size();
343    for (size_t i=0 ; i<count ; i++) {
344        const sp<LayerBase>& layer(currentLayers[i]);
345        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
346        if (lbc != NULL) {
347            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
348            if (lbcBinder == surfaceTextureBinder) {
349                return true;
350            }
351        }
352    }
353
354    // Check the layers in the purgatory.  This check is here so that if a
355    // SurfaceTexture gets destroyed before all the clients are done using it,
356    // the error will not be reported as "surface XYZ is not authenticated", but
357    // will instead fail later on when the client tries to use the surface,
358    // which should be reported as "surface XYZ returned an -ENODEV".  The
359    // purgatorized layers are no less authentic than the visible ones, so this
360    // should not cause any harm.
361    size_t purgatorySize =  mLayerPurgatory.size();
362    for (size_t i=0 ; i<purgatorySize ; i++) {
363        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
364        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
365        if (lbc != NULL) {
366            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
367            if (lbcBinder == surfaceTextureBinder) {
368                return true;
369            }
370        }
371    }
372
373    return false;
374}
375
376status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
377        nsecs_t reltime, uint32_t flags)
378{
379    return mEventQueue.postMessage(msg, reltime, flags);
380}
381
382status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
383        nsecs_t reltime, uint32_t flags)
384{
385    status_t res = mEventQueue.postMessage(msg, reltime, flags);
386    if (res == NO_ERROR) {
387        msg->wait();
388    }
389    return res;
390}
391
392// ----------------------------------------------------------------------------
393#if 0
394#pragma mark -
395#pragma mark Main loop
396#endif
397
398bool SurfaceFlinger::threadLoop()
399{
400    waitForEvent();
401
402    // check for transactions
403    if (UNLIKELY(mConsoleSignals)) {
404        handleConsoleEvents();
405    }
406
407    // if we're in a global transaction, don't do anything.
408    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
409    uint32_t transactionFlags = peekTransactionFlags(mask);
410    if (UNLIKELY(transactionFlags)) {
411        handleTransaction(transactionFlags);
412    }
413
414    // post surfaces (if needed)
415    handlePageFlip();
416
417    if (mDirtyRegion.isEmpty()) {
418        // nothing new to do.
419        return true;
420    }
421
422    if (UNLIKELY(mHwWorkListDirty)) {
423        // build the h/w work list
424        handleWorkList();
425    }
426
427    const DisplayHardware& hw(graphicPlane(0).displayHardware());
428    if (LIKELY(hw.canDraw())) {
429        // repaint the framebuffer (if needed)
430
431        const int index = hw.getCurrentBufferIndex();
432        GraphicLog& logger(GraphicLog::getInstance());
433
434        logger.log(GraphicLog::SF_REPAINT, index);
435        handleRepaint();
436
437        // inform the h/w that we're done compositing
438        logger.log(GraphicLog::SF_COMPOSITION_COMPLETE, index);
439        hw.compositionComplete();
440
441        logger.log(GraphicLog::SF_SWAP_BUFFERS, index);
442        postFramebuffer();
443
444        logger.log(GraphicLog::SF_REPAINT_DONE, index);
445    } else {
446        // pretend we did the post
447        hw.compositionComplete();
448        usleep(16667); // 60 fps period
449    }
450    return true;
451}
452
453void SurfaceFlinger::postFramebuffer()
454{
455    // this should never happen. we do the flip anyways so we don't
456    // risk to cause a deadlock with hwc
457    LOGW_IF(mSwapRegion.isEmpty(), "mSwapRegion is empty");
458    const DisplayHardware& hw(graphicPlane(0).displayHardware());
459    const nsecs_t now = systemTime();
460    mDebugInSwapBuffers = now;
461    hw.flip(mSwapRegion);
462    mLastSwapBufferTime = systemTime() - now;
463    mDebugInSwapBuffers = 0;
464    mSwapRegion.clear();
465}
466
467void SurfaceFlinger::handleConsoleEvents()
468{
469    // something to do with the console
470    const DisplayHardware& hw = graphicPlane(0).displayHardware();
471
472    int what = android_atomic_and(0, &mConsoleSignals);
473    if (what & eConsoleAcquired) {
474        hw.acquireScreen();
475        // this is a temporary work-around, eventually this should be called
476        // by the power-manager
477        SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
478    }
479
480    if (what & eConsoleReleased) {
481        if (hw.isScreenAcquired()) {
482            hw.releaseScreen();
483        }
484    }
485
486    mDirtyRegion.set(hw.bounds());
487}
488
489void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
490{
491    Mutex::Autolock _l(mStateLock);
492    const nsecs_t now = systemTime();
493    mDebugInTransaction = now;
494
495    // Here we're guaranteed that some transaction flags are set
496    // so we can call handleTransactionLocked() unconditionally.
497    // We call getTransactionFlags(), which will also clear the flags,
498    // with mStateLock held to guarantee that mCurrentState won't change
499    // until the transaction is committed.
500
501    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
502    transactionFlags = getTransactionFlags(mask);
503    handleTransactionLocked(transactionFlags);
504
505    mLastTransactionTime = systemTime() - now;
506    mDebugInTransaction = 0;
507    invalidateHwcGeometry();
508    // here the transaction has been committed
509}
510
511void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
512{
513    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
514    const size_t count = currentLayers.size();
515
516    /*
517     * Traversal of the children
518     * (perform the transaction for each of them if needed)
519     */
520
521    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
522    if (layersNeedTransaction) {
523        for (size_t i=0 ; i<count ; i++) {
524            const sp<LayerBase>& layer = currentLayers[i];
525            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
526            if (!trFlags) continue;
527
528            const uint32_t flags = layer->doTransaction(0);
529            if (flags & Layer::eVisibleRegion)
530                mVisibleRegionsDirty = true;
531        }
532    }
533
534    /*
535     * Perform our own transaction if needed
536     */
537
538    if (transactionFlags & eTransactionNeeded) {
539        if (mCurrentState.orientation != mDrawingState.orientation) {
540            // the orientation has changed, recompute all visible regions
541            // and invalidate everything.
542
543            const int dpy = 0;
544            const int orientation = mCurrentState.orientation;
545            // Currently unused: const uint32_t flags = mCurrentState.orientationFlags;
546            GraphicPlane& plane(graphicPlane(dpy));
547            plane.setOrientation(orientation);
548
549            // update the shared control block
550            const DisplayHardware& hw(plane.displayHardware());
551            volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
552            dcblk->orientation = orientation;
553            dcblk->w = plane.getWidth();
554            dcblk->h = plane.getHeight();
555
556            mVisibleRegionsDirty = true;
557            mDirtyRegion.set(hw.bounds());
558        }
559
560        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
561            // layers have been added
562            mVisibleRegionsDirty = true;
563        }
564
565        // some layers might have been removed, so
566        // we need to update the regions they're exposing.
567        if (mLayersRemoved) {
568            mLayersRemoved = false;
569            mVisibleRegionsDirty = true;
570            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
571            const size_t count = previousLayers.size();
572            for (size_t i=0 ; i<count ; i++) {
573                const sp<LayerBase>& layer(previousLayers[i]);
574                if (currentLayers.indexOf( layer ) < 0) {
575                    // this layer is not visible anymore
576                    mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
577                }
578            }
579        }
580    }
581
582    commitTransaction();
583}
584
585void SurfaceFlinger::computeVisibleRegions(
586    const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
587{
588    const GraphicPlane& plane(graphicPlane(0));
589    const Transform& planeTransform(plane.transform());
590    const DisplayHardware& hw(plane.displayHardware());
591    const Region screenRegion(hw.bounds());
592
593    Region aboveOpaqueLayers;
594    Region aboveCoveredLayers;
595    Region dirty;
596
597    bool secureFrameBuffer = false;
598
599    size_t i = currentLayers.size();
600    while (i--) {
601        const sp<LayerBase>& layer = currentLayers[i];
602        layer->validateVisibility(planeTransform);
603
604        // start with the whole surface at its current location
605        const Layer::State& s(layer->drawingState());
606
607        /*
608         * opaqueRegion: area of a surface that is fully opaque.
609         */
610        Region opaqueRegion;
611
612        /*
613         * visibleRegion: area of a surface that is visible on screen
614         * and not fully transparent. This is essentially the layer's
615         * footprint minus the opaque regions above it.
616         * Areas covered by a translucent surface are considered visible.
617         */
618        Region visibleRegion;
619
620        /*
621         * coveredRegion: area of a surface that is covered by all
622         * visible regions above it (which includes the translucent areas).
623         */
624        Region coveredRegion;
625
626
627        // handle hidden surfaces by setting the visible region to empty
628        if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
629            const bool translucent = !layer->isOpaque();
630            const Rect bounds(layer->visibleBounds());
631            visibleRegion.set(bounds);
632            visibleRegion.andSelf(screenRegion);
633            if (!visibleRegion.isEmpty()) {
634                // Remove the transparent area from the visible region
635                if (translucent) {
636                    visibleRegion.subtractSelf(layer->transparentRegionScreen);
637                }
638
639                // compute the opaque region
640                const int32_t layerOrientation = layer->getOrientation();
641                if (s.alpha==255 && !translucent &&
642                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
643                    // the opaque region is the layer's footprint
644                    opaqueRegion = visibleRegion;
645                }
646            }
647        }
648
649        // Clip the covered region to the visible region
650        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
651
652        // Update aboveCoveredLayers for next (lower) layer
653        aboveCoveredLayers.orSelf(visibleRegion);
654
655        // subtract the opaque region covered by the layers above us
656        visibleRegion.subtractSelf(aboveOpaqueLayers);
657
658        // compute this layer's dirty region
659        if (layer->contentDirty) {
660            // we need to invalidate the whole region
661            dirty = visibleRegion;
662            // as well, as the old visible region
663            dirty.orSelf(layer->visibleRegionScreen);
664            layer->contentDirty = false;
665        } else {
666            /* compute the exposed region:
667             *   the exposed region consists of two components:
668             *   1) what's VISIBLE now and was COVERED before
669             *   2) what's EXPOSED now less what was EXPOSED before
670             *
671             * note that (1) is conservative, we start with the whole
672             * visible region but only keep what used to be covered by
673             * something -- which mean it may have been exposed.
674             *
675             * (2) handles areas that were not covered by anything but got
676             * exposed because of a resize.
677             */
678            const Region newExposed = visibleRegion - coveredRegion;
679            const Region oldVisibleRegion = layer->visibleRegionScreen;
680            const Region oldCoveredRegion = layer->coveredRegionScreen;
681            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
682            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
683        }
684        dirty.subtractSelf(aboveOpaqueLayers);
685
686        // accumulate to the screen dirty region
687        dirtyRegion.orSelf(dirty);
688
689        // Update aboveOpaqueLayers for next (lower) layer
690        aboveOpaqueLayers.orSelf(opaqueRegion);
691
692        // Store the visible region is screen space
693        layer->setVisibleRegion(visibleRegion);
694        layer->setCoveredRegion(coveredRegion);
695
696        // If a secure layer is partially visible, lock-down the screen!
697        if (layer->isSecure() && !visibleRegion.isEmpty()) {
698            secureFrameBuffer = true;
699        }
700    }
701
702    // invalidate the areas where a layer was removed
703    dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
704    mDirtyRegionRemovedLayer.clear();
705
706    mSecureFrameBuffer = secureFrameBuffer;
707    opaqueRegion = aboveOpaqueLayers;
708}
709
710
711void SurfaceFlinger::commitTransaction()
712{
713    if (!mLayersPendingRemoval.isEmpty()) {
714        // Notify removed layers now that they can't be drawn from
715        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
716            mLayersPendingRemoval[i]->onRemoved();
717        }
718        mLayersPendingRemoval.clear();
719    }
720
721    mDrawingState = mCurrentState;
722    mTransationPending = false;
723    mTransactionCV.broadcast();
724}
725
726void SurfaceFlinger::handlePageFlip()
727{
728    bool visibleRegions = mVisibleRegionsDirty;
729    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
730    visibleRegions |= lockPageFlip(currentLayers);
731
732        const DisplayHardware& hw = graphicPlane(0).displayHardware();
733        const Region screenRegion(hw.bounds());
734        if (visibleRegions) {
735            Region opaqueRegion;
736            computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
737
738            /*
739             *  rebuild the visible layer list
740             */
741            const size_t count = currentLayers.size();
742            mVisibleLayersSortedByZ.clear();
743            mVisibleLayersSortedByZ.setCapacity(count);
744            for (size_t i=0 ; i<count ; i++) {
745                if (!currentLayers[i]->visibleRegionScreen.isEmpty())
746                    mVisibleLayersSortedByZ.add(currentLayers[i]);
747            }
748
749            mWormholeRegion = screenRegion.subtract(opaqueRegion);
750            mVisibleRegionsDirty = false;
751            invalidateHwcGeometry();
752        }
753
754    unlockPageFlip(currentLayers);
755
756    mDirtyRegion.orSelf(getAndClearInvalidateRegion());
757    mDirtyRegion.andSelf(screenRegion);
758}
759
760void SurfaceFlinger::invalidateHwcGeometry()
761{
762    mHwWorkListDirty = true;
763}
764
765bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
766{
767    bool recomputeVisibleRegions = false;
768    size_t count = currentLayers.size();
769    sp<LayerBase> const* layers = currentLayers.array();
770    for (size_t i=0 ; i<count ; i++) {
771        const sp<LayerBase>& layer(layers[i]);
772        layer->lockPageFlip(recomputeVisibleRegions);
773    }
774    return recomputeVisibleRegions;
775}
776
777void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
778{
779    const GraphicPlane& plane(graphicPlane(0));
780    const Transform& planeTransform(plane.transform());
781    size_t count = currentLayers.size();
782    sp<LayerBase> const* layers = currentLayers.array();
783    for (size_t i=0 ; i<count ; i++) {
784        const sp<LayerBase>& layer(layers[i]);
785        layer->unlockPageFlip(planeTransform, mDirtyRegion);
786    }
787}
788
789void SurfaceFlinger::handleWorkList()
790{
791    mHwWorkListDirty = false;
792    HWComposer& hwc(graphicPlane(0).displayHardware().getHwComposer());
793    if (hwc.initCheck() == NO_ERROR) {
794        const Vector< sp<LayerBase> >& currentLayers(mVisibleLayersSortedByZ);
795        const size_t count = currentLayers.size();
796        hwc.createWorkList(count);
797        hwc_layer_t* const cur(hwc.getLayers());
798        for (size_t i=0 ; cur && i<count ; i++) {
799            currentLayers[i]->setGeometry(&cur[i]);
800            if (mDebugDisableHWC || mDebugRegion) {
801                cur[i].compositionType = HWC_FRAMEBUFFER;
802                cur[i].flags |= HWC_SKIP_LAYER;
803            }
804        }
805    }
806}
807
808void SurfaceFlinger::handleRepaint()
809{
810    // compute the invalid region
811    mSwapRegion.orSelf(mDirtyRegion);
812
813    if (UNLIKELY(mDebugRegion)) {
814        debugFlashRegions();
815    }
816
817    // set the frame buffer
818    const DisplayHardware& hw(graphicPlane(0).displayHardware());
819    glMatrixMode(GL_MODELVIEW);
820    glLoadIdentity();
821
822    uint32_t flags = hw.getFlags();
823    if ((flags & DisplayHardware::SWAP_RECTANGLE) ||
824        (flags & DisplayHardware::BUFFER_PRESERVED))
825    {
826        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
827        // takes a rectangle, we must make sure to update that whole
828        // rectangle in that case
829        if (flags & DisplayHardware::SWAP_RECTANGLE) {
830            // TODO: we really should be able to pass a region to
831            // SWAP_RECTANGLE so that we don't have to redraw all this.
832            mDirtyRegion.set(mSwapRegion.bounds());
833        } else {
834            // in the BUFFER_PRESERVED case, obviously, we can update only
835            // what's needed and nothing more.
836            // NOTE: this is NOT a common case, as preserving the backbuffer
837            // is costly and usually involves copying the whole update back.
838        }
839    } else {
840        if (flags & DisplayHardware::PARTIAL_UPDATES) {
841            // We need to redraw the rectangle that will be updated
842            // (pushed to the framebuffer).
843            // This is needed because PARTIAL_UPDATES only takes one
844            // rectangle instead of a region (see DisplayHardware::flip())
845            mDirtyRegion.set(mSwapRegion.bounds());
846        } else {
847            // we need to redraw everything (the whole screen)
848            mDirtyRegion.set(hw.bounds());
849            mSwapRegion = mDirtyRegion;
850        }
851    }
852
853    setupHardwareComposer(mDirtyRegion);
854    composeSurfaces(mDirtyRegion);
855
856    // update the swap region and clear the dirty region
857    mSwapRegion.orSelf(mDirtyRegion);
858    mDirtyRegion.clear();
859}
860
861void SurfaceFlinger::setupHardwareComposer(Region& dirtyInOut)
862{
863    const DisplayHardware& hw(graphicPlane(0).displayHardware());
864    HWComposer& hwc(hw.getHwComposer());
865    hwc_layer_t* const cur(hwc.getLayers());
866    if (!cur) {
867        return;
868    }
869
870    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
871    size_t count = layers.size();
872
873    LOGE_IF(hwc.getNumLayers() != count,
874            "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
875            hwc.getNumLayers(), count);
876
877    // just to be extra-safe, use the smallest count
878    if (hwc.initCheck() == NO_ERROR) {
879        count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
880    }
881
882    /*
883     *  update the per-frame h/w composer data for each layer
884     *  and build the transparent region of the FB
885     */
886    for (size_t i=0 ; i<count ; i++) {
887        const sp<LayerBase>& layer(layers[i]);
888        layer->setPerFrameData(&cur[i]);
889    }
890    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
891    status_t err = hwc.prepare();
892    LOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
893
894    if (err == NO_ERROR) {
895        // what's happening here is tricky.
896        // we want to clear all the layers with the CLEAR_FB flags
897        // that are opaque.
898        // however, since some GPU are efficient at preserving
899        // the backbuffer, we want to take advantage of that so we do the
900        // clear only in the dirty region (other areas will be preserved
901        // on those GPUs).
902        //   NOTE: on non backbuffer preserving GPU, the dirty region
903        //   has already been expanded as needed, so the code is correct
904        //   there too.
905        //
906        // However, the content of the framebuffer cannot be trusted when
907        // we switch to/from FB/OVERLAY, in which case we need to
908        // expand the dirty region to those areas too.
909        //
910        // Note also that there is a special case when switching from
911        // "no layers in FB" to "some layers in FB", where we need to redraw
912        // the entire FB, since some areas might contain uninitialized
913        // data.
914        //
915        // Also we want to make sure to not clear areas that belong to
916        // layers above that won't redraw (we would just be erasing them),
917        // that is, we can't erase anything outside the dirty region.
918
919        Region transparent;
920
921        if (!fbLayerCount && hwc.getLayerCount(HWC_FRAMEBUFFER)) {
922            transparent.set(hw.getBounds());
923            dirtyInOut = transparent;
924        } else {
925            for (size_t i=0 ; i<count ; i++) {
926                const sp<LayerBase>& layer(layers[i]);
927                if ((cur[i].hints & HWC_HINT_CLEAR_FB) && layer->isOpaque()) {
928                    transparent.orSelf(layer->visibleRegionScreen);
929                }
930                bool isOverlay = (cur[i].compositionType != HWC_FRAMEBUFFER);
931                if (isOverlay != layer->isOverlay()) {
932                    // we transitioned to/from overlay, so add this layer
933                    // to the dirty region so the framebuffer can be either
934                    // cleared or redrawn.
935                    dirtyInOut.orSelf(layer->visibleRegionScreen);
936                }
937                layer->setOverlay(isOverlay);
938            }
939            // don't erase stuff outside the dirty region
940            transparent.andSelf(dirtyInOut);
941        }
942
943        /*
944         *  clear the area of the FB that need to be transparent
945         */
946        if (!transparent.isEmpty()) {
947            glClearColor(0,0,0,0);
948            Region::const_iterator it = transparent.begin();
949            Region::const_iterator const end = transparent.end();
950            const int32_t height = hw.getHeight();
951            while (it != end) {
952                const Rect& r(*it++);
953                const GLint sy = height - (r.top + r.height());
954                glScissor(r.left, sy, r.width(), r.height());
955                glClear(GL_COLOR_BUFFER_BIT);
956            }
957        }
958    }
959}
960
961void SurfaceFlinger::composeSurfaces(const Region& dirty)
962{
963    const DisplayHardware& hw(graphicPlane(0).displayHardware());
964    HWComposer& hwc(hw.getHwComposer());
965
966    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
967    if (UNLIKELY(fbLayerCount && !mWormholeRegion.isEmpty())) {
968        // should never happen unless the window manager has a bug
969        // draw something...
970        drawWormhole();
971    }
972
973    /*
974     * and then, render the layers targeted at the framebuffer
975     */
976    hwc_layer_t* const cur(hwc.getLayers());
977    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
978    size_t count = layers.size();
979    for (size_t i=0 ; i<count ; i++) {
980        if (cur && (cur[i].compositionType != HWC_FRAMEBUFFER)) {
981            continue;
982        }
983        const sp<LayerBase>& layer(layers[i]);
984        const Region clip(dirty.intersect(layer->visibleRegionScreen));
985        if (!clip.isEmpty()) {
986            layer->draw(clip);
987        }
988    }
989}
990
991void SurfaceFlinger::debugFlashRegions()
992{
993    const DisplayHardware& hw(graphicPlane(0).displayHardware());
994    const uint32_t flags = hw.getFlags();
995    const int32_t height = hw.getHeight();
996    if (mSwapRegion.isEmpty()) {
997        return;
998    }
999
1000    if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
1001            (flags & DisplayHardware::BUFFER_PRESERVED))) {
1002        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1003                mDirtyRegion.bounds() : hw.bounds());
1004        composeSurfaces(repaint);
1005    }
1006
1007    glDisable(GL_TEXTURE_EXTERNAL_OES);
1008    glDisable(GL_TEXTURE_2D);
1009    glDisable(GL_BLEND);
1010    glDisable(GL_SCISSOR_TEST);
1011
1012    static int toggle = 0;
1013    toggle = 1 - toggle;
1014    if (toggle) {
1015        glColor4f(1, 0, 1, 1);
1016    } else {
1017        glColor4f(1, 1, 0, 1);
1018    }
1019
1020    Region::const_iterator it = mDirtyRegion.begin();
1021    Region::const_iterator const end = mDirtyRegion.end();
1022    while (it != end) {
1023        const Rect& r = *it++;
1024        GLfloat vertices[][2] = {
1025                { r.left,  height - r.top },
1026                { r.left,  height - r.bottom },
1027                { r.right, height - r.bottom },
1028                { r.right, height - r.top }
1029        };
1030        glVertexPointer(2, GL_FLOAT, 0, vertices);
1031        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1032    }
1033
1034    hw.flip(mSwapRegion);
1035
1036    if (mDebugRegion > 1)
1037        usleep(mDebugRegion * 1000);
1038
1039    glEnable(GL_SCISSOR_TEST);
1040}
1041
1042void SurfaceFlinger::drawWormhole() const
1043{
1044    const Region region(mWormholeRegion.intersect(mDirtyRegion));
1045    if (region.isEmpty())
1046        return;
1047
1048    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1049    const int32_t width = hw.getWidth();
1050    const int32_t height = hw.getHeight();
1051
1052    if (LIKELY(!mDebugBackground)) {
1053        glClearColor(0,0,0,0);
1054        Region::const_iterator it = region.begin();
1055        Region::const_iterator const end = region.end();
1056        while (it != end) {
1057            const Rect& r = *it++;
1058            const GLint sy = height - (r.top + r.height());
1059            glScissor(r.left, sy, r.width(), r.height());
1060            glClear(GL_COLOR_BUFFER_BIT);
1061        }
1062    } else {
1063        const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
1064                { width, height }, { 0, height }  };
1065        const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 },  { 1, 1 }, { 0, 1 } };
1066
1067        glVertexPointer(2, GL_SHORT, 0, vertices);
1068        glTexCoordPointer(2, GL_SHORT, 0, tcoords);
1069        glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1070
1071        glDisable(GL_TEXTURE_EXTERNAL_OES);
1072        glEnable(GL_TEXTURE_2D);
1073        glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
1074        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1075        glMatrixMode(GL_TEXTURE);
1076        glLoadIdentity();
1077
1078        glDisable(GL_BLEND);
1079
1080        glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
1081        Region::const_iterator it = region.begin();
1082        Region::const_iterator const end = region.end();
1083        while (it != end) {
1084            const Rect& r = *it++;
1085            const GLint sy = height - (r.top + r.height());
1086            glScissor(r.left, sy, r.width(), r.height());
1087            glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1088        }
1089        glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1090        glDisable(GL_TEXTURE_2D);
1091        glLoadIdentity();
1092        glMatrixMode(GL_MODELVIEW);
1093    }
1094}
1095
1096void SurfaceFlinger::debugShowFPS() const
1097{
1098    static int mFrameCount;
1099    static int mLastFrameCount = 0;
1100    static nsecs_t mLastFpsTime = 0;
1101    static float mFps = 0;
1102    mFrameCount++;
1103    nsecs_t now = systemTime();
1104    nsecs_t diff = now - mLastFpsTime;
1105    if (diff > ms2ns(250)) {
1106        mFps =  ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
1107        mLastFpsTime = now;
1108        mLastFrameCount = mFrameCount;
1109    }
1110    // XXX: mFPS has the value we want
1111 }
1112
1113status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
1114{
1115    Mutex::Autolock _l(mStateLock);
1116    addLayer_l(layer);
1117    setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1118    return NO_ERROR;
1119}
1120
1121status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
1122{
1123    ssize_t i = mCurrentState.layersSortedByZ.add(layer);
1124    return (i < 0) ? status_t(i) : status_t(NO_ERROR);
1125}
1126
1127ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1128        const sp<LayerBaseClient>& lbc)
1129{
1130    // attach this layer to the client
1131    size_t name = client->attachLayer(lbc);
1132
1133    Mutex::Autolock _l(mStateLock);
1134
1135    // add this layer to the current state list
1136    addLayer_l(lbc);
1137
1138    return ssize_t(name);
1139}
1140
1141status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1142{
1143    Mutex::Autolock _l(mStateLock);
1144    status_t err = purgatorizeLayer_l(layer);
1145    if (err == NO_ERROR)
1146        setTransactionFlags(eTransactionNeeded);
1147    return err;
1148}
1149
1150status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1151{
1152    sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
1153    if (lbc != 0) {
1154        mLayerMap.removeItem( lbc->getSurfaceBinder() );
1155    }
1156    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1157    if (index >= 0) {
1158        mLayersRemoved = true;
1159        return NO_ERROR;
1160    }
1161    return status_t(index);
1162}
1163
1164status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1165{
1166    // First add the layer to the purgatory list, which makes sure it won't
1167    // go away, then remove it from the main list (through a transaction).
1168    ssize_t err = removeLayer_l(layerBase);
1169    if (err >= 0) {
1170        mLayerPurgatory.add(layerBase);
1171    }
1172
1173    mLayersPendingRemoval.push(layerBase);
1174
1175    // it's possible that we don't find a layer, because it might
1176    // have been destroyed already -- this is not technically an error
1177    // from the user because there is a race between Client::destroySurface(),
1178    // ~Client() and ~ISurface().
1179    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1180}
1181
1182status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
1183{
1184    layer->forceVisibilityTransaction();
1185    setTransactionFlags(eTraversalNeeded);
1186    return NO_ERROR;
1187}
1188
1189uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1190{
1191    return android_atomic_release_load(&mTransactionFlags);
1192}
1193
1194uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1195{
1196    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1197}
1198
1199uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1200{
1201    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1202    if ((old & flags)==0) { // wake the server up
1203        signalEvent();
1204    }
1205    return old;
1206}
1207
1208
1209void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
1210        int orientation, uint32_t flags) {
1211    Mutex::Autolock _l(mStateLock);
1212
1213    uint32_t transactionFlags = 0;
1214    if (mCurrentState.orientation != orientation) {
1215        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1216            mCurrentState.orientation = orientation;
1217            transactionFlags |= eTransactionNeeded;
1218        } else if (orientation != eOrientationUnchanged) {
1219            LOGW("setTransactionState: ignoring unrecognized orientation: %d",
1220                    orientation);
1221        }
1222    }
1223
1224    const size_t count = state.size();
1225    for (size_t i=0 ; i<count ; i++) {
1226        const ComposerState& s(state[i]);
1227        sp<Client> client( static_cast<Client *>(s.client.get()) );
1228        transactionFlags |= setClientStateLocked(client, s.state);
1229    }
1230
1231    if (transactionFlags) {
1232        // this triggers the transaction
1233        setTransactionFlags(transactionFlags);
1234
1235        // if this is a synchronous transaction, wait for it to take effect
1236        // before returning.
1237        if (flags & eSynchronous) {
1238            mTransationPending = true;
1239        }
1240        while (mTransationPending) {
1241            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1242            if (CC_UNLIKELY(err != NO_ERROR)) {
1243                // just in case something goes wrong in SF, return to the
1244                // called after a few seconds.
1245                LOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1246                mTransationPending = false;
1247                break;
1248            }
1249        }
1250    }
1251}
1252
1253int SurfaceFlinger::setOrientation(DisplayID dpy,
1254        int orientation, uint32_t flags)
1255{
1256    if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1257        return BAD_VALUE;
1258
1259    Mutex::Autolock _l(mStateLock);
1260    if (mCurrentState.orientation != orientation) {
1261        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1262            mCurrentState.orientationFlags = flags;
1263            mCurrentState.orientation = orientation;
1264            setTransactionFlags(eTransactionNeeded);
1265            mTransactionCV.wait(mStateLock);
1266        } else {
1267            orientation = BAD_VALUE;
1268        }
1269    }
1270    return orientation;
1271}
1272
1273sp<ISurface> SurfaceFlinger::createSurface(
1274        ISurfaceComposerClient::surface_data_t* params,
1275        const String8& name,
1276        const sp<Client>& client,
1277        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1278        uint32_t flags)
1279{
1280    sp<LayerBaseClient> layer;
1281    sp<ISurface> surfaceHandle;
1282
1283    if (int32_t(w|h) < 0) {
1284        LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
1285                int(w), int(h));
1286        return surfaceHandle;
1287    }
1288
1289    //LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
1290    sp<Layer> normalLayer;
1291    switch (flags & eFXSurfaceMask) {
1292        case eFXSurfaceNormal:
1293            normalLayer = createNormalSurface(client, d, w, h, flags, format);
1294            layer = normalLayer;
1295            break;
1296        case eFXSurfaceBlur:
1297            // for now we treat Blur as Dim, until we can implement it
1298            // efficiently.
1299        case eFXSurfaceDim:
1300            layer = createDimSurface(client, d, w, h, flags);
1301            break;
1302        case eFXSurfaceScreenshot:
1303            layer = createScreenshotSurface(client, d, w, h, flags);
1304            break;
1305    }
1306
1307    if (layer != 0) {
1308        layer->initStates(w, h, flags);
1309        layer->setName(name);
1310        ssize_t token = addClientLayer(client, layer);
1311
1312        surfaceHandle = layer->getSurface();
1313        if (surfaceHandle != 0) {
1314            params->token = token;
1315            params->identity = layer->getIdentity();
1316            if (normalLayer != 0) {
1317                Mutex::Autolock _l(mStateLock);
1318                mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
1319            }
1320        }
1321
1322        setTransactionFlags(eTransactionNeeded);
1323    }
1324
1325    return surfaceHandle;
1326}
1327
1328sp<Layer> SurfaceFlinger::createNormalSurface(
1329        const sp<Client>& client, DisplayID display,
1330        uint32_t w, uint32_t h, uint32_t flags,
1331        PixelFormat& format)
1332{
1333    // initialize the surfaces
1334    switch (format) { // TODO: take h/w into account
1335    case PIXEL_FORMAT_TRANSPARENT:
1336    case PIXEL_FORMAT_TRANSLUCENT:
1337        format = PIXEL_FORMAT_RGBA_8888;
1338        break;
1339    case PIXEL_FORMAT_OPAQUE:
1340#ifdef NO_RGBX_8888
1341        format = PIXEL_FORMAT_RGB_565;
1342#else
1343        format = PIXEL_FORMAT_RGBX_8888;
1344#endif
1345        break;
1346    }
1347
1348#ifdef NO_RGBX_8888
1349    if (format == PIXEL_FORMAT_RGBX_8888)
1350        format = PIXEL_FORMAT_RGBA_8888;
1351#endif
1352
1353    sp<Layer> layer = new Layer(this, display, client);
1354    status_t err = layer->setBuffers(w, h, format, flags);
1355    if (LIKELY(err != NO_ERROR)) {
1356        LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
1357        layer.clear();
1358    }
1359    return layer;
1360}
1361
1362sp<LayerDim> SurfaceFlinger::createDimSurface(
1363        const sp<Client>& client, DisplayID display,
1364        uint32_t w, uint32_t h, uint32_t flags)
1365{
1366    sp<LayerDim> layer = new LayerDim(this, display, client);
1367    return layer;
1368}
1369
1370sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
1371        const sp<Client>& client, DisplayID display,
1372        uint32_t w, uint32_t h, uint32_t flags)
1373{
1374    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1375    return layer;
1376}
1377
1378status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
1379{
1380    /*
1381     * called by the window manager, when a surface should be marked for
1382     * destruction.
1383     *
1384     * The surface is removed from the current and drawing lists, but placed
1385     * in the purgatory queue, so it's not destroyed right-away (we need
1386     * to wait for all client's references to go away first).
1387     */
1388
1389    status_t err = NAME_NOT_FOUND;
1390    Mutex::Autolock _l(mStateLock);
1391    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1392    if (layer != 0) {
1393        err = purgatorizeLayer_l(layer);
1394        if (err == NO_ERROR) {
1395            setTransactionFlags(eTransactionNeeded);
1396        }
1397    }
1398    return err;
1399}
1400
1401status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
1402{
1403    // called by ~ISurface() when all references are gone
1404    status_t err = NO_ERROR;
1405    sp<LayerBaseClient> l(layer.promote());
1406    if (l != NULL) {
1407        Mutex::Autolock _l(mStateLock);
1408        err = removeLayer_l(l);
1409        if (err == NAME_NOT_FOUND) {
1410            // The surface wasn't in the current list, which means it was
1411            // removed already, which means it is in the purgatory,
1412            // and need to be removed from there.
1413            ssize_t idx = mLayerPurgatory.remove(l);
1414            LOGE_IF(idx < 0,
1415                    "layer=%p is not in the purgatory list", l.get());
1416        }
1417        LOGE_IF(err<0 && err != NAME_NOT_FOUND,
1418                "error removing layer=%p (%s)", l.get(), strerror(-err));
1419    }
1420    return err;
1421}
1422
1423uint32_t SurfaceFlinger::setClientStateLocked(
1424        const sp<Client>& client,
1425        const layer_state_t& s)
1426{
1427    uint32_t flags = 0;
1428    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1429    if (layer != 0) {
1430        const uint32_t what = s.what;
1431        if (what & ePositionChanged) {
1432            if (layer->setPosition(s.x, s.y))
1433                flags |= eTraversalNeeded;
1434        }
1435        if (what & eLayerChanged) {
1436            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1437            if (layer->setLayer(s.z)) {
1438                mCurrentState.layersSortedByZ.removeAt(idx);
1439                mCurrentState.layersSortedByZ.add(layer);
1440                // we need traversal (state changed)
1441                // AND transaction (list changed)
1442                flags |= eTransactionNeeded|eTraversalNeeded;
1443            }
1444        }
1445        if (what & eSizeChanged) {
1446            if (layer->setSize(s.w, s.h)) {
1447                flags |= eTraversalNeeded;
1448            }
1449        }
1450        if (what & eAlphaChanged) {
1451            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1452                flags |= eTraversalNeeded;
1453        }
1454        if (what & eMatrixChanged) {
1455            if (layer->setMatrix(s.matrix))
1456                flags |= eTraversalNeeded;
1457        }
1458        if (what & eTransparentRegionChanged) {
1459            if (layer->setTransparentRegionHint(s.transparentRegion))
1460                flags |= eTraversalNeeded;
1461        }
1462        if (what & eVisibilityChanged) {
1463            if (layer->setFlags(s.flags, s.mask))
1464                flags |= eTraversalNeeded;
1465        }
1466    }
1467    return flags;
1468}
1469
1470void SurfaceFlinger::screenReleased(int dpy)
1471{
1472    // this may be called by a signal handler, we can't do too much in here
1473    android_atomic_or(eConsoleReleased, &mConsoleSignals);
1474    signalEvent();
1475}
1476
1477void SurfaceFlinger::screenAcquired(int dpy)
1478{
1479    // this may be called by a signal handler, we can't do too much in here
1480    android_atomic_or(eConsoleAcquired, &mConsoleSignals);
1481    signalEvent();
1482}
1483
1484status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1485{
1486    const size_t SIZE = 4096;
1487    char buffer[SIZE];
1488    String8 result;
1489
1490    if (!PermissionCache::checkCallingPermission(sDump)) {
1491        snprintf(buffer, SIZE, "Permission Denial: "
1492                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1493                IPCThreadState::self()->getCallingPid(),
1494                IPCThreadState::self()->getCallingUid());
1495        result.append(buffer);
1496    } else {
1497
1498        // figure out if we're stuck somewhere
1499        const nsecs_t now = systemTime();
1500        const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1501        const nsecs_t inTransaction(mDebugInTransaction);
1502        nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1503        nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1504
1505        // Try to get the main lock, but don't insist if we can't
1506        // (this would indicate SF is stuck, but we want to be able to
1507        // print something in dumpsys).
1508        int retry = 3;
1509        while (mStateLock.tryLock()<0 && --retry>=0) {
1510            usleep(1000000);
1511        }
1512        const bool locked(retry >= 0);
1513        if (!locked) {
1514            snprintf(buffer, SIZE,
1515                    "SurfaceFlinger appears to be unresponsive, "
1516                    "dumping anyways (no locks held)\n");
1517            result.append(buffer);
1518        }
1519
1520        /*
1521         * Dump the visible layer list
1522         */
1523        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1524        const size_t count = currentLayers.size();
1525        snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1526        result.append(buffer);
1527        for (size_t i=0 ; i<count ; i++) {
1528            const sp<LayerBase>& layer(currentLayers[i]);
1529            layer->dump(result, buffer, SIZE);
1530            const Layer::State& s(layer->drawingState());
1531            s.transparentRegion.dump(result, "transparentRegion");
1532            layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
1533            layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
1534        }
1535
1536        /*
1537         * Dump the layers in the purgatory
1538         */
1539
1540        const size_t purgatorySize = mLayerPurgatory.size();
1541        snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1542        result.append(buffer);
1543        for (size_t i=0 ; i<purgatorySize ; i++) {
1544            const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1545            layer->shortDump(result, buffer, SIZE);
1546        }
1547
1548        /*
1549         * Dump SurfaceFlinger global state
1550         */
1551
1552        snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1553        result.append(buffer);
1554
1555        const GLExtensions& extensions(GLExtensions::getInstance());
1556        snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1557                extensions.getVendor(),
1558                extensions.getRenderer(),
1559                extensions.getVersion());
1560        result.append(buffer);
1561
1562        snprintf(buffer, SIZE, "EGL : %s\n",
1563                eglQueryString(graphicPlane(0).getEGLDisplay(),
1564                        EGL_VERSION_HW_ANDROID));
1565        result.append(buffer);
1566
1567        snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1568        result.append(buffer);
1569
1570        mWormholeRegion.dump(result, "WormholeRegion");
1571        const DisplayHardware& hw(graphicPlane(0).displayHardware());
1572        snprintf(buffer, SIZE,
1573                "  orientation=%d, canDraw=%d\n",
1574                mCurrentState.orientation, hw.canDraw());
1575        result.append(buffer);
1576        snprintf(buffer, SIZE,
1577                "  last eglSwapBuffers() time: %f us\n"
1578                "  last transaction time     : %f us\n"
1579                "  refresh-rate              : %f fps\n"
1580                "  x-dpi                     : %f\n"
1581                "  y-dpi                     : %f\n",
1582                mLastSwapBufferTime/1000.0,
1583                mLastTransactionTime/1000.0,
1584                hw.getRefreshRate(),
1585                hw.getDpiX(),
1586                hw.getDpiY());
1587        result.append(buffer);
1588
1589        if (inSwapBuffersDuration || !locked) {
1590            snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1591                    inSwapBuffersDuration/1000.0);
1592            result.append(buffer);
1593        }
1594
1595        if (inTransactionDuration || !locked) {
1596            snprintf(buffer, SIZE, "  transaction time: %f us\n",
1597                    inTransactionDuration/1000.0);
1598            result.append(buffer);
1599        }
1600
1601        /*
1602         * Dump HWComposer state
1603         */
1604        HWComposer& hwc(hw.getHwComposer());
1605        snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1606                hwc.initCheck()==NO_ERROR ? "present" : "not present",
1607                (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1608        result.append(buffer);
1609        hwc.dump(result, buffer, SIZE, mVisibleLayersSortedByZ);
1610
1611        /*
1612         * Dump gralloc state
1613         */
1614        const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1615        alloc.dump(result);
1616        hw.dump(result);
1617
1618        if (locked) {
1619            mStateLock.unlock();
1620        }
1621    }
1622    write(fd, result.string(), result.size());
1623    return NO_ERROR;
1624}
1625
1626status_t SurfaceFlinger::onTransact(
1627    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1628{
1629    switch (code) {
1630        case CREATE_CONNECTION:
1631        case SET_TRANSACTION_STATE:
1632        case SET_ORIENTATION:
1633        case BOOT_FINISHED:
1634        case TURN_ELECTRON_BEAM_OFF:
1635        case TURN_ELECTRON_BEAM_ON:
1636        {
1637            // codes that require permission check
1638            IPCThreadState* ipc = IPCThreadState::self();
1639            const int pid = ipc->getCallingPid();
1640            const int uid = ipc->getCallingUid();
1641            if ((uid != AID_GRAPHICS) &&
1642                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1643                LOGE("Permission Denial: "
1644                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1645                return PERMISSION_DENIED;
1646            }
1647            break;
1648        }
1649        case CAPTURE_SCREEN:
1650        {
1651            // codes that require permission check
1652            IPCThreadState* ipc = IPCThreadState::self();
1653            const int pid = ipc->getCallingPid();
1654            const int uid = ipc->getCallingUid();
1655            if ((uid != AID_GRAPHICS) &&
1656                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1657                LOGE("Permission Denial: "
1658                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1659                return PERMISSION_DENIED;
1660            }
1661            break;
1662        }
1663    }
1664
1665    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1666    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1667        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1668        if (UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1669            IPCThreadState* ipc = IPCThreadState::self();
1670            const int pid = ipc->getCallingPid();
1671            const int uid = ipc->getCallingUid();
1672            LOGE("Permission Denial: "
1673                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1674            return PERMISSION_DENIED;
1675        }
1676        int n;
1677        switch (code) {
1678            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1679            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1680                return NO_ERROR;
1681            case 1002:  // SHOW_UPDATES
1682                n = data.readInt32();
1683                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1684                invalidateHwcGeometry();
1685                repaintEverything();
1686                return NO_ERROR;
1687            case 1003:  // SHOW_BACKGROUND
1688                n = data.readInt32();
1689                mDebugBackground = n ? 1 : 0;
1690                return NO_ERROR;
1691            case 1004:{ // repaint everything
1692                repaintEverything();
1693                return NO_ERROR;
1694            }
1695            case 1005:{ // force transaction
1696                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1697                return NO_ERROR;
1698            }
1699            case 1006:{ // enable/disable GraphicLog
1700                int enabled = data.readInt32();
1701                GraphicLog::getInstance().setEnabled(enabled);
1702                return NO_ERROR;
1703            }
1704            case 1008:  // toggle use of hw composer
1705                n = data.readInt32();
1706                mDebugDisableHWC = n ? 1 : 0;
1707                invalidateHwcGeometry();
1708                repaintEverything();
1709                return NO_ERROR;
1710            case 1009:  // toggle use of transform hint
1711                n = data.readInt32();
1712                mDebugDisableTransformHint = n ? 1 : 0;
1713                invalidateHwcGeometry();
1714                repaintEverything();
1715                return NO_ERROR;
1716            case 1010:  // interrogate.
1717                reply->writeInt32(0);
1718                reply->writeInt32(0);
1719                reply->writeInt32(mDebugRegion);
1720                reply->writeInt32(mDebugBackground);
1721                return NO_ERROR;
1722            case 1013: {
1723                Mutex::Autolock _l(mStateLock);
1724                const DisplayHardware& hw(graphicPlane(0).displayHardware());
1725                reply->writeInt32(hw.getPageFlipCount());
1726            }
1727            return NO_ERROR;
1728        }
1729    }
1730    return err;
1731}
1732
1733void SurfaceFlinger::repaintEverything() {
1734    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1735    const Rect bounds(hw.getBounds());
1736    setInvalidateRegion(Region(bounds));
1737    signalEvent();
1738}
1739
1740void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1741    Mutex::Autolock _l(mInvalidateLock);
1742    mInvalidateRegion = reg;
1743}
1744
1745Region SurfaceFlinger::getAndClearInvalidateRegion() {
1746    Mutex::Autolock _l(mInvalidateLock);
1747    Region reg(mInvalidateRegion);
1748    mInvalidateRegion.clear();
1749    return reg;
1750}
1751
1752// ---------------------------------------------------------------------------
1753
1754status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1755        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1756{
1757    Mutex::Autolock _l(mStateLock);
1758    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1759}
1760
1761status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1762        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1763{
1764    if (!GLExtensions::getInstance().haveFramebufferObject())
1765        return INVALID_OPERATION;
1766
1767    // get screen geometry
1768    const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
1769    const uint32_t hw_w = hw.getWidth();
1770    const uint32_t hw_h = hw.getHeight();
1771    GLfloat u = 1;
1772    GLfloat v = 1;
1773
1774    // make sure to clear all GL error flags
1775    while ( glGetError() != GL_NO_ERROR ) ;
1776
1777    // create a FBO
1778    GLuint name, tname;
1779    glGenTextures(1, &tname);
1780    glBindTexture(GL_TEXTURE_2D, tname);
1781    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1782            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1783    if (glGetError() != GL_NO_ERROR) {
1784        while ( glGetError() != GL_NO_ERROR ) ;
1785        GLint tw = (2 << (31 - clz(hw_w)));
1786        GLint th = (2 << (31 - clz(hw_h)));
1787        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1788                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1789        u = GLfloat(hw_w) / tw;
1790        v = GLfloat(hw_h) / th;
1791    }
1792    glGenFramebuffersOES(1, &name);
1793    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
1794    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
1795            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
1796
1797    // redraw the screen entirely...
1798    glDisable(GL_TEXTURE_EXTERNAL_OES);
1799    glDisable(GL_TEXTURE_2D);
1800    glDisable(GL_SCISSOR_TEST);
1801    glClearColor(0,0,0,1);
1802    glClear(GL_COLOR_BUFFER_BIT);
1803    glEnable(GL_SCISSOR_TEST);
1804    glMatrixMode(GL_MODELVIEW);
1805    glLoadIdentity();
1806    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1807    const size_t count = layers.size();
1808    for (size_t i=0 ; i<count ; ++i) {
1809        const sp<LayerBase>& layer(layers[i]);
1810        layer->drawForSreenShot();
1811    }
1812
1813    hw.compositionComplete();
1814
1815    // back to main framebuffer
1816    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
1817    glDisable(GL_SCISSOR_TEST);
1818    glDeleteFramebuffersOES(1, &name);
1819
1820    *textureName = tname;
1821    *uOut = u;
1822    *vOut = v;
1823    return NO_ERROR;
1824}
1825
1826// ---------------------------------------------------------------------------
1827
1828status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
1829{
1830    // get screen geometry
1831    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1832    const uint32_t hw_w = hw.getWidth();
1833    const uint32_t hw_h = hw.getHeight();
1834    const Region screenBounds(hw.getBounds());
1835
1836    GLfloat u, v;
1837    GLuint tname;
1838    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
1839    if (result != NO_ERROR) {
1840        return result;
1841    }
1842
1843    GLfloat vtx[8];
1844    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
1845    glBindTexture(GL_TEXTURE_2D, tname);
1846    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1847    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1848    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1849    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
1850    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1851    glVertexPointer(2, GL_FLOAT, 0, vtx);
1852
1853    /*
1854     * Texture coordinate mapping
1855     *
1856     *                 u
1857     *    1 +----------+---+
1858     *      |     |    |   |  image is inverted
1859     *      |     V    |   |  w.r.t. the texture
1860     *  1-v +----------+   |  coordinates
1861     *      |              |
1862     *      |              |
1863     *      |              |
1864     *    0 +--------------+
1865     *      0              1
1866     *
1867     */
1868
1869    class s_curve_interpolator {
1870        const float nbFrames, s, v;
1871    public:
1872        s_curve_interpolator(int nbFrames, float s)
1873        : nbFrames(1.0f / (nbFrames-1)), s(s),
1874          v(1.0f + expf(-s + 0.5f*s)) {
1875        }
1876        float operator()(int f) {
1877            const float x = f * nbFrames;
1878            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
1879        }
1880    };
1881
1882    class v_stretch {
1883        const GLfloat hw_w, hw_h;
1884    public:
1885        v_stretch(uint32_t hw_w, uint32_t hw_h)
1886        : hw_w(hw_w), hw_h(hw_h) {
1887        }
1888        void operator()(GLfloat* vtx, float v) {
1889            const GLfloat w = hw_w + (hw_w * v);
1890            const GLfloat h = hw_h - (hw_h * v);
1891            const GLfloat x = (hw_w - w) * 0.5f;
1892            const GLfloat y = (hw_h - h) * 0.5f;
1893            vtx[0] = x;         vtx[1] = y;
1894            vtx[2] = x;         vtx[3] = y + h;
1895            vtx[4] = x + w;     vtx[5] = y + h;
1896            vtx[6] = x + w;     vtx[7] = y;
1897        }
1898    };
1899
1900    class h_stretch {
1901        const GLfloat hw_w, hw_h;
1902    public:
1903        h_stretch(uint32_t hw_w, uint32_t hw_h)
1904        : hw_w(hw_w), hw_h(hw_h) {
1905        }
1906        void operator()(GLfloat* vtx, float v) {
1907            const GLfloat w = hw_w - (hw_w * v);
1908            const GLfloat h = 1.0f;
1909            const GLfloat x = (hw_w - w) * 0.5f;
1910            const GLfloat y = (hw_h - h) * 0.5f;
1911            vtx[0] = x;         vtx[1] = y;
1912            vtx[2] = x;         vtx[3] = y + h;
1913            vtx[4] = x + w;     vtx[5] = y + h;
1914            vtx[6] = x + w;     vtx[7] = y;
1915        }
1916    };
1917
1918    // the full animation is 24 frames
1919    char value[PROPERTY_VALUE_MAX];
1920    property_get("debug.sf.electron_frames", value, "24");
1921    int nbFrames = (atoi(value) + 1) >> 1;
1922    if (nbFrames <= 0) // just in case
1923        nbFrames = 24;
1924
1925    s_curve_interpolator itr(nbFrames, 7.5f);
1926    s_curve_interpolator itg(nbFrames, 8.0f);
1927    s_curve_interpolator itb(nbFrames, 8.5f);
1928
1929    v_stretch vverts(hw_w, hw_h);
1930
1931    glMatrixMode(GL_TEXTURE);
1932    glLoadIdentity();
1933    glMatrixMode(GL_MODELVIEW);
1934    glLoadIdentity();
1935
1936    glEnable(GL_BLEND);
1937    glBlendFunc(GL_ONE, GL_ONE);
1938    for (int i=0 ; i<nbFrames ; i++) {
1939        float x, y, w, h;
1940        const float vr = itr(i);
1941        const float vg = itg(i);
1942        const float vb = itb(i);
1943
1944        // clear screen
1945        glColorMask(1,1,1,1);
1946        glClear(GL_COLOR_BUFFER_BIT);
1947        glEnable(GL_TEXTURE_2D);
1948
1949        // draw the red plane
1950        vverts(vtx, vr);
1951        glColorMask(1,0,0,1);
1952        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1953
1954        // draw the green plane
1955        vverts(vtx, vg);
1956        glColorMask(0,1,0,1);
1957        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1958
1959        // draw the blue plane
1960        vverts(vtx, vb);
1961        glColorMask(0,0,1,1);
1962        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1963
1964        // draw the white highlight (we use the last vertices)
1965        glDisable(GL_TEXTURE_2D);
1966        glColorMask(1,1,1,1);
1967        glColor4f(vg, vg, vg, 1);
1968        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1969        hw.flip(screenBounds);
1970    }
1971
1972    h_stretch hverts(hw_w, hw_h);
1973    glDisable(GL_BLEND);
1974    glDisable(GL_TEXTURE_2D);
1975    glColorMask(1,1,1,1);
1976    for (int i=0 ; i<nbFrames ; i++) {
1977        const float v = itg(i);
1978        hverts(vtx, v);
1979        glClear(GL_COLOR_BUFFER_BIT);
1980        glColor4f(1-v, 1-v, 1-v, 1);
1981        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1982        hw.flip(screenBounds);
1983    }
1984
1985    glColorMask(1,1,1,1);
1986    glEnable(GL_SCISSOR_TEST);
1987    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1988    glDeleteTextures(1, &tname);
1989    glDisable(GL_TEXTURE_2D);
1990    glDisable(GL_BLEND);
1991    return NO_ERROR;
1992}
1993
1994status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
1995{
1996    status_t result = PERMISSION_DENIED;
1997
1998    if (!GLExtensions::getInstance().haveFramebufferObject())
1999        return INVALID_OPERATION;
2000
2001
2002    // get screen geometry
2003    const DisplayHardware& hw(graphicPlane(0).displayHardware());
2004    const uint32_t hw_w = hw.getWidth();
2005    const uint32_t hw_h = hw.getHeight();
2006    const Region screenBounds(hw.bounds());
2007
2008    GLfloat u, v;
2009    GLuint tname;
2010    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2011    if (result != NO_ERROR) {
2012        return result;
2013    }
2014
2015    GLfloat vtx[8];
2016    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2017    glBindTexture(GL_TEXTURE_2D, tname);
2018    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2019    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2020    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2021    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2022    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2023    glVertexPointer(2, GL_FLOAT, 0, vtx);
2024
2025    class s_curve_interpolator {
2026        const float nbFrames, s, v;
2027    public:
2028        s_curve_interpolator(int nbFrames, float s)
2029        : nbFrames(1.0f / (nbFrames-1)), s(s),
2030          v(1.0f + expf(-s + 0.5f*s)) {
2031        }
2032        float operator()(int f) {
2033            const float x = f * nbFrames;
2034            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2035        }
2036    };
2037
2038    class v_stretch {
2039        const GLfloat hw_w, hw_h;
2040    public:
2041        v_stretch(uint32_t hw_w, uint32_t hw_h)
2042        : hw_w(hw_w), hw_h(hw_h) {
2043        }
2044        void operator()(GLfloat* vtx, float v) {
2045            const GLfloat w = hw_w + (hw_w * v);
2046            const GLfloat h = hw_h - (hw_h * v);
2047            const GLfloat x = (hw_w - w) * 0.5f;
2048            const GLfloat y = (hw_h - h) * 0.5f;
2049            vtx[0] = x;         vtx[1] = y;
2050            vtx[2] = x;         vtx[3] = y + h;
2051            vtx[4] = x + w;     vtx[5] = y + h;
2052            vtx[6] = x + w;     vtx[7] = y;
2053        }
2054    };
2055
2056    class h_stretch {
2057        const GLfloat hw_w, hw_h;
2058    public:
2059        h_stretch(uint32_t hw_w, uint32_t hw_h)
2060        : hw_w(hw_w), hw_h(hw_h) {
2061        }
2062        void operator()(GLfloat* vtx, float v) {
2063            const GLfloat w = hw_w - (hw_w * v);
2064            const GLfloat h = 1.0f;
2065            const GLfloat x = (hw_w - w) * 0.5f;
2066            const GLfloat y = (hw_h - h) * 0.5f;
2067            vtx[0] = x;         vtx[1] = y;
2068            vtx[2] = x;         vtx[3] = y + h;
2069            vtx[4] = x + w;     vtx[5] = y + h;
2070            vtx[6] = x + w;     vtx[7] = y;
2071        }
2072    };
2073
2074    // the full animation is 12 frames
2075    int nbFrames = 8;
2076    s_curve_interpolator itr(nbFrames, 7.5f);
2077    s_curve_interpolator itg(nbFrames, 8.0f);
2078    s_curve_interpolator itb(nbFrames, 8.5f);
2079
2080    h_stretch hverts(hw_w, hw_h);
2081    glDisable(GL_BLEND);
2082    glDisable(GL_TEXTURE_2D);
2083    glColorMask(1,1,1,1);
2084    for (int i=nbFrames-1 ; i>=0 ; i--) {
2085        const float v = itg(i);
2086        hverts(vtx, v);
2087        glClear(GL_COLOR_BUFFER_BIT);
2088        glColor4f(1-v, 1-v, 1-v, 1);
2089        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2090        hw.flip(screenBounds);
2091    }
2092
2093    nbFrames = 4;
2094    v_stretch vverts(hw_w, hw_h);
2095    glEnable(GL_BLEND);
2096    glBlendFunc(GL_ONE, GL_ONE);
2097    for (int i=nbFrames-1 ; i>=0 ; i--) {
2098        float x, y, w, h;
2099        const float vr = itr(i);
2100        const float vg = itg(i);
2101        const float vb = itb(i);
2102
2103        // clear screen
2104        glColorMask(1,1,1,1);
2105        glClear(GL_COLOR_BUFFER_BIT);
2106        glEnable(GL_TEXTURE_2D);
2107
2108        // draw the red plane
2109        vverts(vtx, vr);
2110        glColorMask(1,0,0,1);
2111        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2112
2113        // draw the green plane
2114        vverts(vtx, vg);
2115        glColorMask(0,1,0,1);
2116        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2117
2118        // draw the blue plane
2119        vverts(vtx, vb);
2120        glColorMask(0,0,1,1);
2121        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2122
2123        hw.flip(screenBounds);
2124    }
2125
2126    glColorMask(1,1,1,1);
2127    glEnable(GL_SCISSOR_TEST);
2128    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2129    glDeleteTextures(1, &tname);
2130    glDisable(GL_TEXTURE_2D);
2131    glDisable(GL_BLEND);
2132
2133    return NO_ERROR;
2134}
2135
2136// ---------------------------------------------------------------------------
2137
2138status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2139{
2140    DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2141    if (!hw.canDraw()) {
2142        // we're already off
2143        return NO_ERROR;
2144    }
2145
2146    // turn off hwc while we're doing the animation
2147    hw.getHwComposer().disable();
2148    // and make sure to turn it back on (if needed) next time we compose
2149    invalidateHwcGeometry();
2150
2151    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2152        electronBeamOffAnimationImplLocked();
2153    }
2154
2155    // always clear the whole screen at the end of the animation
2156    glClearColor(0,0,0,1);
2157    glDisable(GL_SCISSOR_TEST);
2158    glClear(GL_COLOR_BUFFER_BIT);
2159    glEnable(GL_SCISSOR_TEST);
2160    hw.flip( Region(hw.bounds()) );
2161
2162    return NO_ERROR;
2163}
2164
2165status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2166{
2167    class MessageTurnElectronBeamOff : public MessageBase {
2168        SurfaceFlinger* flinger;
2169        int32_t mode;
2170        status_t result;
2171    public:
2172        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2173            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2174        }
2175        status_t getResult() const {
2176            return result;
2177        }
2178        virtual bool handler() {
2179            Mutex::Autolock _l(flinger->mStateLock);
2180            result = flinger->turnElectronBeamOffImplLocked(mode);
2181            return true;
2182        }
2183    };
2184
2185    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2186    status_t res = postMessageSync(msg);
2187    if (res == NO_ERROR) {
2188        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2189
2190        // work-around: when the power-manager calls us we activate the
2191        // animation. eventually, the "on" animation will be called
2192        // by the power-manager itself
2193        mElectronBeamAnimationMode = mode;
2194    }
2195    return res;
2196}
2197
2198// ---------------------------------------------------------------------------
2199
2200status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2201{
2202    DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2203    if (hw.canDraw()) {
2204        // we're already on
2205        return NO_ERROR;
2206    }
2207    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2208        electronBeamOnAnimationImplLocked();
2209    }
2210
2211    // make sure to redraw the whole screen when the animation is done
2212    mDirtyRegion.set(hw.bounds());
2213    signalEvent();
2214
2215    return NO_ERROR;
2216}
2217
2218status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2219{
2220    class MessageTurnElectronBeamOn : public MessageBase {
2221        SurfaceFlinger* flinger;
2222        int32_t mode;
2223        status_t result;
2224    public:
2225        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2226            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2227        }
2228        status_t getResult() const {
2229            return result;
2230        }
2231        virtual bool handler() {
2232            Mutex::Autolock _l(flinger->mStateLock);
2233            result = flinger->turnElectronBeamOnImplLocked(mode);
2234            return true;
2235        }
2236    };
2237
2238    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2239    return NO_ERROR;
2240}
2241
2242// ---------------------------------------------------------------------------
2243
2244status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2245        sp<IMemoryHeap>* heap,
2246        uint32_t* w, uint32_t* h, PixelFormat* f,
2247        uint32_t sw, uint32_t sh,
2248        uint32_t minLayerZ, uint32_t maxLayerZ)
2249{
2250    status_t result = PERMISSION_DENIED;
2251
2252    // only one display supported for now
2253    if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2254        return BAD_VALUE;
2255
2256    if (!GLExtensions::getInstance().haveFramebufferObject())
2257        return INVALID_OPERATION;
2258
2259    // get screen geometry
2260    const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
2261    const uint32_t hw_w = hw.getWidth();
2262    const uint32_t hw_h = hw.getHeight();
2263
2264    if ((sw > hw_w) || (sh > hw_h))
2265        return BAD_VALUE;
2266
2267    sw = (!sw) ? hw_w : sw;
2268    sh = (!sh) ? hw_h : sh;
2269    const size_t size = sw * sh * 4;
2270
2271    //LOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2272    //        sw, sh, minLayerZ, maxLayerZ);
2273
2274    // make sure to clear all GL error flags
2275    while ( glGetError() != GL_NO_ERROR ) ;
2276
2277    // create a FBO
2278    GLuint name, tname;
2279    glGenRenderbuffersOES(1, &tname);
2280    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2281    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2282    glGenFramebuffersOES(1, &name);
2283    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2284    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2285            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2286
2287    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2288
2289    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2290
2291        // invert everything, b/c glReadPixel() below will invert the FB
2292        glViewport(0, 0, sw, sh);
2293        glScissor(0, 0, sw, sh);
2294        glEnable(GL_SCISSOR_TEST);
2295        glMatrixMode(GL_PROJECTION);
2296        glPushMatrix();
2297        glLoadIdentity();
2298        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2299        glMatrixMode(GL_MODELVIEW);
2300
2301        // redraw the screen entirely...
2302        glClearColor(0,0,0,1);
2303        glClear(GL_COLOR_BUFFER_BIT);
2304
2305        const LayerVector& layers(mDrawingState.layersSortedByZ);
2306        const size_t count = layers.size();
2307        for (size_t i=0 ; i<count ; ++i) {
2308            const sp<LayerBase>& layer(layers[i]);
2309            const uint32_t flags = layer->drawingState().flags;
2310            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2311                const uint32_t z = layer->drawingState().z;
2312                if (z >= minLayerZ && z <= maxLayerZ) {
2313                    layer->drawForSreenShot();
2314                }
2315            }
2316        }
2317
2318        // XXX: this is needed on tegra
2319        glEnable(GL_SCISSOR_TEST);
2320        glScissor(0, 0, sw, sh);
2321
2322        // check for errors and return screen capture
2323        if (glGetError() != GL_NO_ERROR) {
2324            // error while rendering
2325            result = INVALID_OPERATION;
2326        } else {
2327            // allocate shared memory large enough to hold the
2328            // screen capture
2329            sp<MemoryHeapBase> base(
2330                    new MemoryHeapBase(size, 0, "screen-capture") );
2331            void* const ptr = base->getBase();
2332            if (ptr) {
2333                // capture the screen with glReadPixels()
2334                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2335                if (glGetError() == GL_NO_ERROR) {
2336                    *heap = base;
2337                    *w = sw;
2338                    *h = sh;
2339                    *f = PIXEL_FORMAT_RGBA_8888;
2340                    result = NO_ERROR;
2341                }
2342            } else {
2343                result = NO_MEMORY;
2344            }
2345        }
2346        glEnable(GL_SCISSOR_TEST);
2347        glViewport(0, 0, hw_w, hw_h);
2348        glMatrixMode(GL_PROJECTION);
2349        glPopMatrix();
2350        glMatrixMode(GL_MODELVIEW);
2351    } else {
2352        result = BAD_VALUE;
2353    }
2354
2355    // release FBO resources
2356    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2357    glDeleteRenderbuffersOES(1, &tname);
2358    glDeleteFramebuffersOES(1, &name);
2359
2360    hw.compositionComplete();
2361
2362    // LOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2363
2364    return result;
2365}
2366
2367
2368status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2369        sp<IMemoryHeap>* heap,
2370        uint32_t* width, uint32_t* height, PixelFormat* format,
2371        uint32_t sw, uint32_t sh,
2372        uint32_t minLayerZ, uint32_t maxLayerZ)
2373{
2374    // only one display supported for now
2375    if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2376        return BAD_VALUE;
2377
2378    if (!GLExtensions::getInstance().haveFramebufferObject())
2379        return INVALID_OPERATION;
2380
2381    class MessageCaptureScreen : public MessageBase {
2382        SurfaceFlinger* flinger;
2383        DisplayID dpy;
2384        sp<IMemoryHeap>* heap;
2385        uint32_t* w;
2386        uint32_t* h;
2387        PixelFormat* f;
2388        uint32_t sw;
2389        uint32_t sh;
2390        uint32_t minLayerZ;
2391        uint32_t maxLayerZ;
2392        status_t result;
2393    public:
2394        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2395                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2396                uint32_t sw, uint32_t sh,
2397                uint32_t minLayerZ, uint32_t maxLayerZ)
2398            : flinger(flinger), dpy(dpy),
2399              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2400              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2401              result(PERMISSION_DENIED)
2402        {
2403        }
2404        status_t getResult() const {
2405            return result;
2406        }
2407        virtual bool handler() {
2408            Mutex::Autolock _l(flinger->mStateLock);
2409
2410            // if we have secure windows, never allow the screen capture
2411            if (flinger->mSecureFrameBuffer)
2412                return true;
2413
2414            result = flinger->captureScreenImplLocked(dpy,
2415                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2416
2417            return true;
2418        }
2419    };
2420
2421    sp<MessageBase> msg = new MessageCaptureScreen(this,
2422            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2423    status_t res = postMessageSync(msg);
2424    if (res == NO_ERROR) {
2425        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2426    }
2427    return res;
2428}
2429
2430// ---------------------------------------------------------------------------
2431
2432sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
2433{
2434    sp<Layer> result;
2435    Mutex::Autolock _l(mStateLock);
2436    result = mLayerMap.valueFor( sur->asBinder() ).promote();
2437    return result;
2438}
2439
2440// ---------------------------------------------------------------------------
2441
2442Client::Client(const sp<SurfaceFlinger>& flinger)
2443    : mFlinger(flinger), mNameGenerator(1)
2444{
2445}
2446
2447Client::~Client()
2448{
2449    const size_t count = mLayers.size();
2450    for (size_t i=0 ; i<count ; i++) {
2451        sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
2452        if (layer != 0) {
2453            mFlinger->removeLayer(layer);
2454        }
2455    }
2456}
2457
2458status_t Client::initCheck() const {
2459    return NO_ERROR;
2460}
2461
2462size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
2463{
2464    Mutex::Autolock _l(mLock);
2465    size_t name = mNameGenerator++;
2466    mLayers.add(name, layer);
2467    return name;
2468}
2469
2470void Client::detachLayer(const LayerBaseClient* layer)
2471{
2472    Mutex::Autolock _l(mLock);
2473    // we do a linear search here, because this doesn't happen often
2474    const size_t count = mLayers.size();
2475    for (size_t i=0 ; i<count ; i++) {
2476        if (mLayers.valueAt(i) == layer) {
2477            mLayers.removeItemsAt(i, 1);
2478            break;
2479        }
2480    }
2481}
2482sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
2483{
2484    Mutex::Autolock _l(mLock);
2485    sp<LayerBaseClient> lbc;
2486    wp<LayerBaseClient> layer(mLayers.valueFor(i));
2487    if (layer != 0) {
2488        lbc = layer.promote();
2489        LOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
2490    }
2491    return lbc;
2492}
2493
2494
2495status_t Client::onTransact(
2496    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2497{
2498    // these must be checked
2499     IPCThreadState* ipc = IPCThreadState::self();
2500     const int pid = ipc->getCallingPid();
2501     const int uid = ipc->getCallingUid();
2502     const int self_pid = getpid();
2503     if (UNLIKELY(pid != self_pid && uid != AID_GRAPHICS && uid != 0)) {
2504         // we're called from a different process, do the real check
2505         if (!PermissionCache::checkCallingPermission(sAccessSurfaceFlinger))
2506         {
2507             LOGE("Permission Denial: "
2508                     "can't openGlobalTransaction pid=%d, uid=%d", pid, uid);
2509             return PERMISSION_DENIED;
2510         }
2511     }
2512     return BnSurfaceComposerClient::onTransact(code, data, reply, flags);
2513}
2514
2515
2516sp<ISurface> Client::createSurface(
2517        ISurfaceComposerClient::surface_data_t* params,
2518        const String8& name,
2519        DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2520        uint32_t flags)
2521{
2522    /*
2523     * createSurface must be called from the GL thread so that it can
2524     * have access to the GL context.
2525     */
2526
2527    class MessageCreateSurface : public MessageBase {
2528        sp<ISurface> result;
2529        SurfaceFlinger* flinger;
2530        ISurfaceComposerClient::surface_data_t* params;
2531        Client* client;
2532        const String8& name;
2533        DisplayID display;
2534        uint32_t w, h;
2535        PixelFormat format;
2536        uint32_t flags;
2537    public:
2538        MessageCreateSurface(SurfaceFlinger* flinger,
2539                ISurfaceComposerClient::surface_data_t* params,
2540                const String8& name, Client* client,
2541                DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2542                uint32_t flags)
2543            : flinger(flinger), params(params), client(client), name(name),
2544              display(display), w(w), h(h), format(format), flags(flags)
2545        {
2546        }
2547        sp<ISurface> getResult() const { return result; }
2548        virtual bool handler() {
2549            result = flinger->createSurface(params, name, client,
2550                    display, w, h, format, flags);
2551            return true;
2552        }
2553    };
2554
2555    sp<MessageBase> msg = new MessageCreateSurface(mFlinger.get(),
2556            params, name, this, display, w, h, format, flags);
2557    mFlinger->postMessageSync(msg);
2558    return static_cast<MessageCreateSurface*>( msg.get() )->getResult();
2559}
2560status_t Client::destroySurface(SurfaceID sid) {
2561    return mFlinger->removeSurface(this, sid);
2562}
2563
2564// ---------------------------------------------------------------------------
2565
2566GraphicBufferAlloc::GraphicBufferAlloc() {}
2567
2568GraphicBufferAlloc::~GraphicBufferAlloc() {}
2569
2570sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2571        PixelFormat format, uint32_t usage, status_t* error) {
2572    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2573    status_t err = graphicBuffer->initCheck();
2574    *error = err;
2575    if (err != 0 || graphicBuffer->handle == 0) {
2576        if (err == NO_MEMORY) {
2577            GraphicBuffer::dumpAllocationsToSystemLog();
2578        }
2579        LOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2580             "failed (%s), handle=%p",
2581                w, h, strerror(-err), graphicBuffer->handle);
2582        return 0;
2583    }
2584    return graphicBuffer;
2585}
2586
2587// ---------------------------------------------------------------------------
2588
2589GraphicPlane::GraphicPlane()
2590    : mHw(0)
2591{
2592}
2593
2594GraphicPlane::~GraphicPlane() {
2595    delete mHw;
2596}
2597
2598bool GraphicPlane::initialized() const {
2599    return mHw ? true : false;
2600}
2601
2602int GraphicPlane::getWidth() const {
2603    return mWidth;
2604}
2605
2606int GraphicPlane::getHeight() const {
2607    return mHeight;
2608}
2609
2610void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
2611{
2612    mHw = hw;
2613
2614    // initialize the display orientation transform.
2615    // it's a constant that should come from the display driver.
2616    int displayOrientation = ISurfaceComposer::eOrientationDefault;
2617    char property[PROPERTY_VALUE_MAX];
2618    if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
2619        //displayOrientation
2620        switch (atoi(property)) {
2621        case 90:
2622            displayOrientation = ISurfaceComposer::eOrientation90;
2623            break;
2624        case 270:
2625            displayOrientation = ISurfaceComposer::eOrientation270;
2626            break;
2627        }
2628    }
2629
2630    const float w = hw->getWidth();
2631    const float h = hw->getHeight();
2632    GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
2633            &mDisplayTransform);
2634    if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
2635        mDisplayWidth = h;
2636        mDisplayHeight = w;
2637    } else {
2638        mDisplayWidth = w;
2639        mDisplayHeight = h;
2640    }
2641
2642    setOrientation(ISurfaceComposer::eOrientationDefault);
2643}
2644
2645status_t GraphicPlane::orientationToTransfrom(
2646        int orientation, int w, int h, Transform* tr)
2647{
2648    uint32_t flags = 0;
2649    switch (orientation) {
2650    case ISurfaceComposer::eOrientationDefault:
2651        flags = Transform::ROT_0;
2652        break;
2653    case ISurfaceComposer::eOrientation90:
2654        flags = Transform::ROT_90;
2655        break;
2656    case ISurfaceComposer::eOrientation180:
2657        flags = Transform::ROT_180;
2658        break;
2659    case ISurfaceComposer::eOrientation270:
2660        flags = Transform::ROT_270;
2661        break;
2662    default:
2663        return BAD_VALUE;
2664    }
2665    tr->set(flags, w, h);
2666    return NO_ERROR;
2667}
2668
2669status_t GraphicPlane::setOrientation(int orientation)
2670{
2671    // If the rotation can be handled in hardware, this is where
2672    // the magic should happen.
2673
2674    const DisplayHardware& hw(displayHardware());
2675    const float w = mDisplayWidth;
2676    const float h = mDisplayHeight;
2677    mWidth = int(w);
2678    mHeight = int(h);
2679
2680    Transform orientationTransform;
2681    GraphicPlane::orientationToTransfrom(orientation, w, h,
2682            &orientationTransform);
2683    if (orientation & ISurfaceComposer::eOrientationSwapMask) {
2684        mWidth = int(h);
2685        mHeight = int(w);
2686    }
2687
2688    mOrientation = orientation;
2689    mGlobalTransform = mDisplayTransform * orientationTransform;
2690    return NO_ERROR;
2691}
2692
2693const DisplayHardware& GraphicPlane::displayHardware() const {
2694    return *mHw;
2695}
2696
2697DisplayHardware& GraphicPlane::editDisplayHardware() {
2698    return *mHw;
2699}
2700
2701const Transform& GraphicPlane::transform() const {
2702    return mGlobalTransform;
2703}
2704
2705EGLDisplay GraphicPlane::getEGLDisplay() const {
2706    return mHw->getEGLDisplay();
2707}
2708
2709// ---------------------------------------------------------------------------
2710
2711}; // namespace android
2712