1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* TO DO:
18 *   1.  Perhaps keep several copies of the encrypted key, in case something
19 *       goes horribly wrong?
20 *
21 */
22
23#include <sys/types.h>
24#include <sys/stat.h>
25#include <fcntl.h>
26#include <unistd.h>
27#include <stdio.h>
28#include <sys/ioctl.h>
29#include <linux/dm-ioctl.h>
30#include <libgen.h>
31#include <stdlib.h>
32#include <sys/param.h>
33#include <string.h>
34#include <sys/mount.h>
35#include <openssl/evp.h>
36#include <openssl/sha.h>
37#include <errno.h>
38#include <cutils/android_reboot.h>
39#include <ext4.h>
40#include <linux/kdev_t.h>
41#include "cryptfs.h"
42#define LOG_TAG "Cryptfs"
43#include "cutils/log.h"
44#include "cutils/properties.h"
45#include "hardware_legacy/power.h"
46#include "VolumeManager.h"
47
48#define DM_CRYPT_BUF_SIZE 4096
49#define DATA_MNT_POINT "/data"
50
51#define HASH_COUNT 2000
52#define KEY_LEN_BYTES 16
53#define IV_LEN_BYTES 16
54
55#define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
56#define KEY_IN_FOOTER  "footer"
57
58#define EXT4_FS 1
59#define FAT_FS 2
60
61char *me = "cryptfs";
62
63static unsigned char saved_master_key[KEY_LEN_BYTES];
64static char *saved_data_blkdev;
65static char *saved_mount_point;
66static int  master_key_saved = 0;
67
68static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
69{
70    memset(io, 0, dataSize);
71    io->data_size = dataSize;
72    io->data_start = sizeof(struct dm_ioctl);
73    io->version[0] = 4;
74    io->version[1] = 0;
75    io->version[2] = 0;
76    io->flags = flags;
77    if (name) {
78        strncpy(io->name, name, sizeof(io->name));
79    }
80}
81
82static unsigned int get_fs_size(char *dev)
83{
84    int fd, block_size;
85    struct ext4_super_block sb;
86    off64_t len;
87
88    if ((fd = open(dev, O_RDONLY)) < 0) {
89        SLOGE("Cannot open device to get filesystem size ");
90        return 0;
91    }
92
93    if (lseek64(fd, 1024, SEEK_SET) < 0) {
94        SLOGE("Cannot seek to superblock");
95        return 0;
96    }
97
98    if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
99        SLOGE("Cannot read superblock");
100        return 0;
101    }
102
103    close(fd);
104
105    block_size = 1024 << sb.s_log_block_size;
106    /* compute length in bytes */
107    len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
108
109    /* return length in sectors */
110    return (unsigned int) (len / 512);
111}
112
113static unsigned int get_blkdev_size(int fd)
114{
115  unsigned int nr_sec;
116
117  if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
118    nr_sec = 0;
119  }
120
121  return nr_sec;
122}
123
124/* key or salt can be NULL, in which case just skip writing that value.  Useful to
125 * update the failed mount count but not change the key.
126 */
127static int put_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
128                                  unsigned char *key, unsigned char *salt)
129{
130  int fd;
131  unsigned int nr_sec, cnt;
132  off64_t off;
133  int rc = -1;
134  char *fname;
135  char key_loc[PROPERTY_VALUE_MAX];
136  struct stat statbuf;
137
138  property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
139
140  if (!strcmp(key_loc, KEY_IN_FOOTER)) {
141    fname = real_blk_name;
142    if ( (fd = open(fname, O_RDWR)) < 0) {
143      SLOGE("Cannot open real block device %s\n", fname);
144      return -1;
145    }
146
147    if ( (nr_sec = get_blkdev_size(fd)) == 0) {
148      SLOGE("Cannot get size of block device %s\n", fname);
149      goto errout;
150    }
151
152    /* If it's an encrypted Android partition, the last 16 Kbytes contain the
153     * encryption info footer and key, and plenty of bytes to spare for future
154     * growth.
155     */
156    off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
157
158    if (lseek64(fd, off, SEEK_SET) == -1) {
159      SLOGE("Cannot seek to real block device footer\n");
160      goto errout;
161    }
162  } else if (key_loc[0] == '/') {
163    fname = key_loc;
164    if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
165      SLOGE("Cannot open footer file %s\n", fname);
166      return -1;
167    }
168  } else {
169    SLOGE("Unexpected value for" KEY_LOC_PROP "\n");
170    return -1;;
171  }
172
173  if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
174    SLOGE("Cannot write real block device footer\n");
175    goto errout;
176  }
177
178  if (key) {
179    if (crypt_ftr->keysize != KEY_LEN_BYTES) {
180      SLOGE("Keysize of %d bits not supported for real block device %s\n",
181            crypt_ftr->keysize*8, fname);
182      goto errout;
183    }
184
185    if ( (cnt = write(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
186      SLOGE("Cannot write key for real block device %s\n", fname);
187      goto errout;
188    }
189  }
190
191  if (salt) {
192    /* Compute the offset from the last write to the salt */
193    off = KEY_TO_SALT_PADDING;
194    if (! key)
195      off += crypt_ftr->keysize;
196
197    if (lseek64(fd, off, SEEK_CUR) == -1) {
198      SLOGE("Cannot seek to real block device salt \n");
199      goto errout;
200    }
201
202    if ( (cnt = write(fd, salt, SALT_LEN)) != SALT_LEN) {
203      SLOGE("Cannot write salt for real block device %s\n", fname);
204      goto errout;
205    }
206  }
207
208  fstat(fd, &statbuf);
209  /* If the keys are kept on a raw block device, do not try to truncate it. */
210  if (S_ISREG(statbuf.st_mode) && (key_loc[0] == '/')) {
211    if (ftruncate(fd, 0x4000)) {
212      SLOGE("Cannot set footer file size\n", fname);
213      goto errout;
214    }
215  }
216
217  /* Success! */
218  rc = 0;
219
220errout:
221  close(fd);
222  return rc;
223
224}
225
226static int get_crypt_ftr_and_key(char *real_blk_name, struct crypt_mnt_ftr *crypt_ftr,
227                                  unsigned char *key, unsigned char *salt)
228{
229  int fd;
230  unsigned int nr_sec, cnt;
231  off64_t off;
232  int rc = -1;
233  char key_loc[PROPERTY_VALUE_MAX];
234  char *fname;
235  struct stat statbuf;
236
237  property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
238
239  if (!strcmp(key_loc, KEY_IN_FOOTER)) {
240    fname = real_blk_name;
241    if ( (fd = open(fname, O_RDONLY)) < 0) {
242      SLOGE("Cannot open real block device %s\n", fname);
243      return -1;
244    }
245
246    if ( (nr_sec = get_blkdev_size(fd)) == 0) {
247      SLOGE("Cannot get size of block device %s\n", fname);
248      goto errout;
249    }
250
251    /* If it's an encrypted Android partition, the last 16 Kbytes contain the
252     * encryption info footer and key, and plenty of bytes to spare for future
253     * growth.
254     */
255    off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
256
257    if (lseek64(fd, off, SEEK_SET) == -1) {
258      SLOGE("Cannot seek to real block device footer\n");
259      goto errout;
260    }
261  } else if (key_loc[0] == '/') {
262    fname = key_loc;
263    if ( (fd = open(fname, O_RDONLY)) < 0) {
264      SLOGE("Cannot open footer file %s\n", fname);
265      return -1;
266    }
267
268    /* Make sure it's 16 Kbytes in length */
269    fstat(fd, &statbuf);
270    if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
271      SLOGE("footer file %s is not the expected size!\n", fname);
272      goto errout;
273    }
274  } else {
275    SLOGE("Unexpected value for" KEY_LOC_PROP "\n");
276    return -1;;
277  }
278
279  if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
280    SLOGE("Cannot read real block device footer\n");
281    goto errout;
282  }
283
284  if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
285    SLOGE("Bad magic for real block device %s\n", fname);
286    goto errout;
287  }
288
289  if (crypt_ftr->major_version != 1) {
290    SLOGE("Cannot understand major version %d real block device footer\n",
291          crypt_ftr->major_version);
292    goto errout;
293  }
294
295  if (crypt_ftr->minor_version != 0) {
296    SLOGW("Warning: crypto footer minor version %d, expected 0, continuing...\n",
297          crypt_ftr->minor_version);
298  }
299
300  if (crypt_ftr->ftr_size > sizeof(struct crypt_mnt_ftr)) {
301    /* the footer size is bigger than we expected.
302     * Skip to it's stated end so we can read the key.
303     */
304    if (lseek(fd, crypt_ftr->ftr_size - sizeof(struct crypt_mnt_ftr),  SEEK_CUR) == -1) {
305      SLOGE("Cannot seek to start of key\n");
306      goto errout;
307    }
308  }
309
310  if (crypt_ftr->keysize != KEY_LEN_BYTES) {
311    SLOGE("Keysize of %d bits not supported for real block device %s\n",
312          crypt_ftr->keysize * 8, fname);
313    goto errout;
314  }
315
316  if ( (cnt = read(fd, key, crypt_ftr->keysize)) != crypt_ftr->keysize) {
317    SLOGE("Cannot read key for real block device %s\n", fname);
318    goto errout;
319  }
320
321  if (lseek64(fd, KEY_TO_SALT_PADDING, SEEK_CUR) == -1) {
322    SLOGE("Cannot seek to real block device salt\n");
323    goto errout;
324  }
325
326  if ( (cnt = read(fd, salt, SALT_LEN)) != SALT_LEN) {
327    SLOGE("Cannot read salt for real block device %s\n", fname);
328    goto errout;
329  }
330
331  /* Success! */
332  rc = 0;
333
334errout:
335  close(fd);
336  return rc;
337}
338
339/* Convert a binary key of specified length into an ascii hex string equivalent,
340 * without the leading 0x and with null termination
341 */
342void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
343                              char *master_key_ascii)
344{
345  unsigned int i, a;
346  unsigned char nibble;
347
348  for (i=0, a=0; i<keysize; i++, a+=2) {
349    /* For each byte, write out two ascii hex digits */
350    nibble = (master_key[i] >> 4) & 0xf;
351    master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
352
353    nibble = master_key[i] & 0xf;
354    master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
355  }
356
357  /* Add the null termination */
358  master_key_ascii[a] = '\0';
359
360}
361
362static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
363                                    char *real_blk_name, char *crypto_blk_name, const char *name)
364{
365  char buffer[DM_CRYPT_BUF_SIZE];
366  char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
367  char *crypt_params;
368  struct dm_ioctl *io;
369  struct dm_target_spec *tgt;
370  unsigned int minor;
371  int fd;
372  int retval = -1;
373
374  if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
375    SLOGE("Cannot open device-mapper\n");
376    goto errout;
377  }
378
379  io = (struct dm_ioctl *) buffer;
380
381  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
382  if (ioctl(fd, DM_DEV_CREATE, io)) {
383    SLOGE("Cannot create dm-crypt device\n");
384    goto errout;
385  }
386
387  /* Get the device status, in particular, the name of it's device file */
388  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
389  if (ioctl(fd, DM_DEV_STATUS, io)) {
390    SLOGE("Cannot retrieve dm-crypt device status\n");
391    goto errout;
392  }
393  minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
394  snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
395
396  /* Load the mapping table for this device */
397  tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
398
399  ioctl_init(io, 4096, name, 0);
400  io->target_count = 1;
401  tgt->status = 0;
402  tgt->sector_start = 0;
403  tgt->length = crypt_ftr->fs_size;
404  strcpy(tgt->target_type, "crypt");
405
406  crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
407  convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
408  sprintf(crypt_params, "%s %s 0 %s 0", crypt_ftr->crypto_type_name,
409          master_key_ascii, real_blk_name);
410  crypt_params += strlen(crypt_params) + 1;
411  crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
412  tgt->next = crypt_params - buffer;
413
414  if (ioctl(fd, DM_TABLE_LOAD, io)) {
415      SLOGE("Cannot load dm-crypt mapping table.\n");
416      goto errout;
417  }
418
419  /* Resume this device to activate it */
420  ioctl_init(io, 4096, name, 0);
421
422  if (ioctl(fd, DM_DEV_SUSPEND, io)) {
423    SLOGE("Cannot resume the dm-crypt device\n");
424    goto errout;
425  }
426
427  /* We made it here with no errors.  Woot! */
428  retval = 0;
429
430errout:
431  close(fd);   /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
432
433  return retval;
434}
435
436static int delete_crypto_blk_dev(char *name)
437{
438  int fd;
439  char buffer[DM_CRYPT_BUF_SIZE];
440  struct dm_ioctl *io;
441  int retval = -1;
442
443  if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
444    SLOGE("Cannot open device-mapper\n");
445    goto errout;
446  }
447
448  io = (struct dm_ioctl *) buffer;
449
450  ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
451  if (ioctl(fd, DM_DEV_REMOVE, io)) {
452    SLOGE("Cannot remove dm-crypt device\n");
453    goto errout;
454  }
455
456  /* We made it here with no errors.  Woot! */
457  retval = 0;
458
459errout:
460  close(fd);    /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
461
462  return retval;
463
464}
465
466static void pbkdf2(char *passwd, unsigned char *salt, unsigned char *ikey)
467{
468    /* Turn the password into a key and IV that can decrypt the master key */
469    PKCS5_PBKDF2_HMAC_SHA1(passwd, strlen(passwd), salt, SALT_LEN,
470                           HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
471}
472
473static int encrypt_master_key(char *passwd, unsigned char *salt,
474                              unsigned char *decrypted_master_key,
475                              unsigned char *encrypted_master_key)
476{
477    unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
478    EVP_CIPHER_CTX e_ctx;
479    int encrypted_len, final_len;
480
481    /* Turn the password into a key and IV that can decrypt the master key */
482    pbkdf2(passwd, salt, ikey);
483
484    /* Initialize the decryption engine */
485    if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
486        SLOGE("EVP_EncryptInit failed\n");
487        return -1;
488    }
489    EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
490
491    /* Encrypt the master key */
492    if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
493                              decrypted_master_key, KEY_LEN_BYTES)) {
494        SLOGE("EVP_EncryptUpdate failed\n");
495        return -1;
496    }
497    if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
498        SLOGE("EVP_EncryptFinal failed\n");
499        return -1;
500    }
501
502    if (encrypted_len + final_len != KEY_LEN_BYTES) {
503        SLOGE("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
504        return -1;
505    } else {
506        return 0;
507    }
508}
509
510static int decrypt_master_key(char *passwd, unsigned char *salt,
511                              unsigned char *encrypted_master_key,
512                              unsigned char *decrypted_master_key)
513{
514  unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
515  EVP_CIPHER_CTX d_ctx;
516  int decrypted_len, final_len;
517
518  /* Turn the password into a key and IV that can decrypt the master key */
519  pbkdf2(passwd, salt, ikey);
520
521  /* Initialize the decryption engine */
522  if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
523    return -1;
524  }
525  EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
526  /* Decrypt the master key */
527  if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
528                            encrypted_master_key, KEY_LEN_BYTES)) {
529    return -1;
530  }
531  if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
532    return -1;
533  }
534
535  if (decrypted_len + final_len != KEY_LEN_BYTES) {
536    return -1;
537  } else {
538    return 0;
539  }
540}
541
542static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt)
543{
544    int fd;
545    unsigned char key_buf[KEY_LEN_BYTES];
546    EVP_CIPHER_CTX e_ctx;
547    int encrypted_len, final_len;
548
549    /* Get some random bits for a key */
550    fd = open("/dev/urandom", O_RDONLY);
551    read(fd, key_buf, sizeof(key_buf));
552    read(fd, salt, SALT_LEN);
553    close(fd);
554
555    /* Now encrypt it with the password */
556    return encrypt_master_key(passwd, salt, key_buf, master_key);
557}
558
559static int get_orig_mount_parms(char *mount_point, char *fs_type, char *real_blkdev,
560                                unsigned long *mnt_flags, char *fs_options)
561{
562  char mount_point2[PROPERTY_VALUE_MAX];
563  char fs_flags[PROPERTY_VALUE_MAX];
564
565  property_get("ro.crypto.fs_type", fs_type, "");
566  property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
567  property_get("ro.crypto.fs_mnt_point", mount_point2, "");
568  property_get("ro.crypto.fs_options", fs_options, "");
569  property_get("ro.crypto.fs_flags", fs_flags, "");
570  *mnt_flags = strtol(fs_flags, 0, 0);
571
572  if (strcmp(mount_point, mount_point2)) {
573    /* Consistency check.  These should match. If not, something odd happened. */
574    return -1;
575  }
576
577  return 0;
578}
579
580static int wait_and_unmount(char *mountpoint)
581{
582    int i, rc;
583#define WAIT_UNMOUNT_COUNT 20
584
585    /*  Now umount the tmpfs filesystem */
586    for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
587        if (umount(mountpoint)) {
588            if (errno == EINVAL) {
589                /* EINVAL is returned if the directory is not a mountpoint,
590                 * i.e. there is no filesystem mounted there.  So just get out.
591                 */
592                break;
593            }
594            sleep(1);
595            i++;
596        } else {
597          break;
598        }
599    }
600
601    if (i < WAIT_UNMOUNT_COUNT) {
602      SLOGD("unmounting %s succeeded\n", mountpoint);
603      rc = 0;
604    } else {
605      SLOGE("unmounting %s failed\n", mountpoint);
606      rc = -1;
607    }
608
609    return rc;
610}
611
612#define DATA_PREP_TIMEOUT 100
613static int prep_data_fs(void)
614{
615    int i;
616
617    /* Do the prep of the /data filesystem */
618    property_set("vold.post_fs_data_done", "0");
619    property_set("vold.decrypt", "trigger_post_fs_data");
620    SLOGD("Just triggered post_fs_data\n");
621
622    /* Wait a max of 25 seconds, hopefully it takes much less */
623    for (i=0; i<DATA_PREP_TIMEOUT; i++) {
624        char p[PROPERTY_VALUE_MAX];
625
626        property_get("vold.post_fs_data_done", p, "0");
627        if (*p == '1') {
628            break;
629        } else {
630            usleep(250000);
631        }
632    }
633    if (i == DATA_PREP_TIMEOUT) {
634        /* Ugh, we failed to prep /data in time.  Bail. */
635        return -1;
636    } else {
637        SLOGD("post_fs_data done\n");
638        return 0;
639    }
640}
641
642int cryptfs_restart(void)
643{
644    char fs_type[32];
645    char real_blkdev[MAXPATHLEN];
646    char crypto_blkdev[MAXPATHLEN];
647    char fs_options[256];
648    unsigned long mnt_flags;
649    struct stat statbuf;
650    int rc = -1, i;
651    static int restart_successful = 0;
652
653    /* Validate that it's OK to call this routine */
654    if (! master_key_saved) {
655        SLOGE("Encrypted filesystem not validated, aborting");
656        return -1;
657    }
658
659    if (restart_successful) {
660        SLOGE("System already restarted with encrypted disk, aborting");
661        return -1;
662    }
663
664    /* Here is where we shut down the framework.  The init scripts
665     * start all services in one of three classes: core, main or late_start.
666     * On boot, we start core and main.  Now, we stop main, but not core,
667     * as core includes vold and a few other really important things that
668     * we need to keep running.  Once main has stopped, we should be able
669     * to umount the tmpfs /data, then mount the encrypted /data.
670     * We then restart the class main, and also the class late_start.
671     * At the moment, I've only put a few things in late_start that I know
672     * are not needed to bring up the framework, and that also cause problems
673     * with unmounting the tmpfs /data, but I hope to add add more services
674     * to the late_start class as we optimize this to decrease the delay
675     * till the user is asked for the password to the filesystem.
676     */
677
678    /* The init files are setup to stop the class main when vold.decrypt is
679     * set to trigger_reset_main.
680     */
681    property_set("vold.decrypt", "trigger_reset_main");
682    SLOGD("Just asked init to shut down class main\n");
683
684    /* Now that the framework is shutdown, we should be able to umount()
685     * the tmpfs filesystem, and mount the real one.
686     */
687
688    property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
689    if (strlen(crypto_blkdev) == 0) {
690        SLOGE("fs_crypto_blkdev not set\n");
691        return -1;
692    }
693
694    if (! get_orig_mount_parms(DATA_MNT_POINT, fs_type, real_blkdev, &mnt_flags, fs_options)) {
695        SLOGD("Just got orig mount parms\n");
696
697        if (! (rc = wait_and_unmount(DATA_MNT_POINT)) ) {
698            /* If that succeeded, then mount the decrypted filesystem */
699            mount(crypto_blkdev, DATA_MNT_POINT, fs_type, mnt_flags, fs_options);
700
701            property_set("vold.decrypt", "trigger_load_persist_props");
702            /* Create necessary paths on /data */
703            if (prep_data_fs()) {
704                return -1;
705            }
706
707            /* startup service classes main and late_start */
708            property_set("vold.decrypt", "trigger_restart_framework");
709            SLOGD("Just triggered restart_framework\n");
710
711            /* Give it a few moments to get started */
712            sleep(1);
713        }
714    }
715
716    if (rc == 0) {
717        restart_successful = 1;
718    }
719
720    return rc;
721}
722
723static int do_crypto_complete(char *mount_point)
724{
725  struct crypt_mnt_ftr crypt_ftr;
726  unsigned char encrypted_master_key[32];
727  unsigned char salt[SALT_LEN];
728  char real_blkdev[MAXPATHLEN];
729  char fs_type[PROPERTY_VALUE_MAX];
730  char fs_options[PROPERTY_VALUE_MAX];
731  unsigned long mnt_flags;
732  char encrypted_state[PROPERTY_VALUE_MAX];
733
734  property_get("ro.crypto.state", encrypted_state, "");
735  if (strcmp(encrypted_state, "encrypted") ) {
736    SLOGE("not running with encryption, aborting");
737    return 1;
738  }
739
740  if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
741    SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
742    return -1;
743  }
744
745  if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
746    SLOGE("Error getting crypt footer and key\n");
747    return -1;
748  }
749
750  if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS) {
751    SLOGE("Encryption process didn't finish successfully\n");
752    return -2;  /* -2 is the clue to the UI that there is no usable data on the disk,
753                 * and give the user an option to wipe the disk */
754  }
755
756  /* We passed the test! We shall diminish, and return to the west */
757  return 0;
758}
759
760static int test_mount_encrypted_fs(char *passwd, char *mount_point, char *label)
761{
762  struct crypt_mnt_ftr crypt_ftr;
763  /* Allocate enough space for a 256 bit key, but we may use less */
764  unsigned char encrypted_master_key[32], decrypted_master_key[32];
765  unsigned char salt[SALT_LEN];
766  char crypto_blkdev[MAXPATHLEN];
767  char real_blkdev[MAXPATHLEN];
768  char fs_type[PROPERTY_VALUE_MAX];
769  char fs_options[PROPERTY_VALUE_MAX];
770  char tmp_mount_point[64];
771  unsigned long mnt_flags;
772  unsigned int orig_failed_decrypt_count;
773  char encrypted_state[PROPERTY_VALUE_MAX];
774  int rc;
775
776  property_get("ro.crypto.state", encrypted_state, "");
777  if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
778    SLOGE("encrypted fs already validated or not running with encryption, aborting");
779    return -1;
780  }
781
782  if (get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
783    SLOGE("Error reading original mount parms for mount point %s\n", mount_point);
784    return -1;
785  }
786
787  if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
788    SLOGE("Error getting crypt footer and key\n");
789    return -1;
790  }
791
792  SLOGD("crypt_ftr->fs_size = %lld\n", crypt_ftr.fs_size);
793  orig_failed_decrypt_count = crypt_ftr.failed_decrypt_count;
794
795  if (! (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
796    decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
797  }
798
799  if (create_crypto_blk_dev(&crypt_ftr, decrypted_master_key,
800                               real_blkdev, crypto_blkdev, label)) {
801    SLOGE("Error creating decrypted block device\n");
802    return -1;
803  }
804
805  /* If init detects an encrypted filesystme, it writes a file for each such
806   * encrypted fs into the tmpfs /data filesystem, and then the framework finds those
807   * files and passes that data to me */
808  /* Create a tmp mount point to try mounting the decryptd fs
809   * Since we're here, the mount_point should be a tmpfs filesystem, so make
810   * a directory in it to test mount the decrypted filesystem.
811   */
812  sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
813  mkdir(tmp_mount_point, 0755);
814  if ( mount(crypto_blkdev, tmp_mount_point, "ext4", MS_RDONLY, "") ) {
815    SLOGE("Error temp mounting decrypted block device\n");
816    delete_crypto_blk_dev(label);
817    crypt_ftr.failed_decrypt_count++;
818  } else {
819    /* Success, so just umount and we'll mount it properly when we restart
820     * the framework.
821     */
822    umount(tmp_mount_point);
823    crypt_ftr.failed_decrypt_count  = 0;
824  }
825
826  if (orig_failed_decrypt_count != crypt_ftr.failed_decrypt_count) {
827    put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
828  }
829
830  if (crypt_ftr.failed_decrypt_count) {
831    /* We failed to mount the device, so return an error */
832    rc = crypt_ftr.failed_decrypt_count;
833
834  } else {
835    /* Woot!  Success!  Save the name of the crypto block device
836     * so we can mount it when restarting the framework.
837     */
838    property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
839
840    /* Also save a the master key so we can reencrypted the key
841     * the key when we want to change the password on it.
842     */
843    memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
844    saved_data_blkdev = strdup(real_blkdev);
845    saved_mount_point = strdup(mount_point);
846    master_key_saved = 1;
847    rc = 0;
848  }
849
850  return rc;
851}
852
853/* Called by vold when it wants to undo the crypto mapping of a volume it
854 * manages.  This is usually in response to a factory reset, when we want
855 * to undo the crypto mapping so the volume is formatted in the clear.
856 */
857int cryptfs_revert_volume(const char *label)
858{
859    return delete_crypto_blk_dev((char *)label);
860}
861
862/*
863 * Called by vold when it's asked to mount an encrypted, nonremovable volume.
864 * Setup a dm-crypt mapping, use the saved master key from
865 * setting up the /data mapping, and return the new device path.
866 */
867int cryptfs_setup_volume(const char *label, int major, int minor,
868                         char *crypto_sys_path, unsigned int max_path,
869                         int *new_major, int *new_minor)
870{
871    char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
872    struct crypt_mnt_ftr sd_crypt_ftr;
873    unsigned char key[32], salt[32];
874    struct stat statbuf;
875    int nr_sec, fd;
876
877    sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
878
879    /* Just want the footer, but gotta get it all */
880    get_crypt_ftr_and_key(saved_data_blkdev, &sd_crypt_ftr, key, salt);
881
882    /* Update the fs_size field to be the size of the volume */
883    fd = open(real_blkdev, O_RDONLY);
884    nr_sec = get_blkdev_size(fd);
885    close(fd);
886    if (nr_sec == 0) {
887        SLOGE("Cannot get size of volume %s\n", real_blkdev);
888        return -1;
889    }
890
891    sd_crypt_ftr.fs_size = nr_sec;
892    create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
893                          crypto_blkdev, label);
894
895    stat(crypto_blkdev, &statbuf);
896    *new_major = MAJOR(statbuf.st_rdev);
897    *new_minor = MINOR(statbuf.st_rdev);
898
899    /* Create path to sys entry for this block device */
900    snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
901
902    return 0;
903}
904
905int cryptfs_crypto_complete(void)
906{
907  return do_crypto_complete("/data");
908}
909
910int cryptfs_check_passwd(char *passwd)
911{
912    int rc = -1;
913
914    rc = test_mount_encrypted_fs(passwd, DATA_MNT_POINT, "userdata");
915
916    return rc;
917}
918
919int cryptfs_verify_passwd(char *passwd)
920{
921    struct crypt_mnt_ftr crypt_ftr;
922    /* Allocate enough space for a 256 bit key, but we may use less */
923    unsigned char encrypted_master_key[32], decrypted_master_key[32];
924    unsigned char salt[SALT_LEN];
925    char real_blkdev[MAXPATHLEN];
926    char fs_type[PROPERTY_VALUE_MAX];
927    char fs_options[PROPERTY_VALUE_MAX];
928    unsigned long mnt_flags;
929    char encrypted_state[PROPERTY_VALUE_MAX];
930    int rc;
931
932    property_get("ro.crypto.state", encrypted_state, "");
933    if (strcmp(encrypted_state, "encrypted") ) {
934        SLOGE("device not encrypted, aborting");
935        return -2;
936    }
937
938    if (!master_key_saved) {
939        SLOGE("encrypted fs not yet mounted, aborting");
940        return -1;
941    }
942
943    if (!saved_mount_point) {
944        SLOGE("encrypted fs failed to save mount point, aborting");
945        return -1;
946    }
947
948    if (get_orig_mount_parms(saved_mount_point, fs_type, real_blkdev, &mnt_flags, fs_options)) {
949        SLOGE("Error reading original mount parms for mount point %s\n", saved_mount_point);
950        return -1;
951    }
952
953    if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
954        SLOGE("Error getting crypt footer and key\n");
955        return -1;
956    }
957
958    if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
959        /* If the device has no password, then just say the password is valid */
960        rc = 0;
961    } else {
962        decrypt_master_key(passwd, salt, encrypted_master_key, decrypted_master_key);
963        if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
964            /* They match, the password is correct */
965            rc = 0;
966        } else {
967            /* If incorrect, sleep for a bit to prevent dictionary attacks */
968            sleep(1);
969            rc = 1;
970        }
971    }
972
973    return rc;
974}
975
976/* Initialize a crypt_mnt_ftr structure.  The keysize is
977 * defaulted to 16 bytes, and the filesystem size to 0.
978 * Presumably, at a minimum, the caller will update the
979 * filesystem size and crypto_type_name after calling this function.
980 */
981static void cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
982{
983    ftr->magic = CRYPT_MNT_MAGIC;
984    ftr->major_version = 1;
985    ftr->minor_version = 0;
986    ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
987    ftr->flags = 0;
988    ftr->keysize = KEY_LEN_BYTES;
989    ftr->spare1 = 0;
990    ftr->fs_size = 0;
991    ftr->failed_decrypt_count = 0;
992    ftr->crypto_type_name[0] = '\0';
993}
994
995static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
996{
997    char cmdline[256];
998    int rc = -1;
999
1000    if (type == EXT4_FS) {
1001        snprintf(cmdline, sizeof(cmdline), "/system/bin/make_ext4fs -a /data -l %lld %s",
1002                 size * 512, crypto_blkdev);
1003        SLOGI("Making empty filesystem with command %s\n", cmdline);
1004    } else if (type== FAT_FS) {
1005        snprintf(cmdline, sizeof(cmdline), "/system/bin/newfs_msdos -F 32 -O android -c 8 -s %lld %s",
1006                 size, crypto_blkdev);
1007        SLOGI("Making empty filesystem with command %s\n", cmdline);
1008    } else {
1009        SLOGE("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
1010        return -1;
1011    }
1012
1013    if (system(cmdline)) {
1014      SLOGE("Error creating empty filesystem on %s\n", crypto_blkdev);
1015    } else {
1016      SLOGD("Successfully created empty filesystem on %s\n", crypto_blkdev);
1017      rc = 0;
1018    }
1019
1020    return rc;
1021}
1022
1023static inline int unix_read(int  fd, void*  buff, int  len)
1024{
1025    int  ret;
1026    do { ret = read(fd, buff, len); } while (ret < 0 && errno == EINTR);
1027    return ret;
1028}
1029
1030static inline int unix_write(int  fd, const void*  buff, int  len)
1031{
1032    int  ret;
1033    do { ret = write(fd, buff, len); } while (ret < 0 && errno == EINTR);
1034    return ret;
1035}
1036
1037#define CRYPT_INPLACE_BUFSIZE 4096
1038#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / 512)
1039static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev, off64_t size,
1040                                  off64_t *size_already_done, off64_t tot_size)
1041{
1042    int realfd, cryptofd;
1043    char *buf[CRYPT_INPLACE_BUFSIZE];
1044    int rc = -1;
1045    off64_t numblocks, i, remainder;
1046    off64_t one_pct, cur_pct, new_pct;
1047    off64_t blocks_already_done, tot_numblocks;
1048
1049    if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
1050        SLOGE("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
1051        return -1;
1052    }
1053
1054    if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
1055        SLOGE("Error opening crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1056        close(realfd);
1057        return -1;
1058    }
1059
1060    /* This is pretty much a simple loop of reading 4K, and writing 4K.
1061     * The size passed in is the number of 512 byte sectors in the filesystem.
1062     * So compute the number of whole 4K blocks we should read/write,
1063     * and the remainder.
1064     */
1065    numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
1066    remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
1067    tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
1068    blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
1069
1070    SLOGE("Encrypting filesystem in place...");
1071
1072    one_pct = tot_numblocks / 100;
1073    cur_pct = 0;
1074    /* process the majority of the filesystem in blocks */
1075    for (i=0; i<numblocks; i++) {
1076        new_pct = (i + blocks_already_done) / one_pct;
1077        if (new_pct > cur_pct) {
1078            char buf[8];
1079
1080            cur_pct = new_pct;
1081            snprintf(buf, sizeof(buf), "%lld", cur_pct);
1082            property_set("vold.encrypt_progress", buf);
1083        }
1084        if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1085            SLOGE("Error reading real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1086            goto errout;
1087        }
1088        if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
1089            SLOGE("Error writing crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1090            goto errout;
1091        }
1092    }
1093
1094    /* Do any remaining sectors */
1095    for (i=0; i<remainder; i++) {
1096        if (unix_read(realfd, buf, 512) <= 0) {
1097            SLOGE("Error reading rival sectors from real_blkdev %s for inplace encrypt\n", crypto_blkdev);
1098            goto errout;
1099        }
1100        if (unix_write(cryptofd, buf, 512) <= 0) {
1101            SLOGE("Error writing final sectors to crypto_blkdev %s for inplace encrypt\n", crypto_blkdev);
1102            goto errout;
1103        }
1104    }
1105
1106    *size_already_done += size;
1107    rc = 0;
1108
1109errout:
1110    close(realfd);
1111    close(cryptofd);
1112
1113    return rc;
1114}
1115
1116#define CRYPTO_ENABLE_WIPE 1
1117#define CRYPTO_ENABLE_INPLACE 2
1118
1119#define FRAMEWORK_BOOT_WAIT 60
1120
1121static inline int should_encrypt(struct volume_info *volume)
1122{
1123    return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
1124            (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
1125}
1126
1127int cryptfs_enable(char *howarg, char *passwd)
1128{
1129    int how = 0;
1130    char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN], sd_crypto_blkdev[MAXPATHLEN];
1131    char fs_type[PROPERTY_VALUE_MAX], fs_options[PROPERTY_VALUE_MAX],
1132         mount_point[PROPERTY_VALUE_MAX];
1133    unsigned long mnt_flags, nr_sec;
1134    unsigned char master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1135    unsigned char salt[SALT_LEN];
1136    int rc=-1, fd, i, ret;
1137    struct crypt_mnt_ftr crypt_ftr, sd_crypt_ftr;;
1138    char tmpfs_options[PROPERTY_VALUE_MAX];
1139    char encrypted_state[PROPERTY_VALUE_MAX];
1140    char lockid[32] = { 0 };
1141    char key_loc[PROPERTY_VALUE_MAX];
1142    char fuse_sdcard[PROPERTY_VALUE_MAX];
1143    char *sd_mnt_point;
1144    char sd_blk_dev[256] = { 0 };
1145    int num_vols;
1146    struct volume_info *vol_list = 0;
1147    off64_t cur_encryption_done=0, tot_encryption_size=0;
1148
1149    property_get("ro.crypto.state", encrypted_state, "");
1150    if (strcmp(encrypted_state, "unencrypted")) {
1151        SLOGE("Device is already running encrypted, aborting");
1152        goto error_unencrypted;
1153    }
1154
1155    property_get(KEY_LOC_PROP, key_loc, KEY_IN_FOOTER);
1156
1157    if (!strcmp(howarg, "wipe")) {
1158      how = CRYPTO_ENABLE_WIPE;
1159    } else if (! strcmp(howarg, "inplace")) {
1160      how = CRYPTO_ENABLE_INPLACE;
1161    } else {
1162      /* Shouldn't happen, as CommandListener vets the args */
1163      goto error_unencrypted;
1164    }
1165
1166    get_orig_mount_parms(mount_point, fs_type, real_blkdev, &mnt_flags, fs_options);
1167
1168    /* Get the size of the real block device */
1169    fd = open(real_blkdev, O_RDONLY);
1170    if ( (nr_sec = get_blkdev_size(fd)) == 0) {
1171        SLOGE("Cannot get size of block device %s\n", real_blkdev);
1172        goto error_unencrypted;
1173    }
1174    close(fd);
1175
1176    /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
1177    if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
1178        unsigned int fs_size_sec, max_fs_size_sec;
1179
1180        fs_size_sec = get_fs_size(real_blkdev);
1181        max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1182
1183        if (fs_size_sec > max_fs_size_sec) {
1184            SLOGE("Orig filesystem overlaps crypto footer region.  Cannot encrypt in place.");
1185            goto error_unencrypted;
1186        }
1187    }
1188
1189    /* Get a wakelock as this may take a while, and we don't want the
1190     * device to sleep on us.  We'll grab a partial wakelock, and if the UI
1191     * wants to keep the screen on, it can grab a full wakelock.
1192     */
1193    snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
1194    acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
1195
1196     /* Get the sdcard mount point */
1197     sd_mnt_point = getenv("EXTERNAL_STORAGE");
1198     if (! sd_mnt_point) {
1199         sd_mnt_point = "/mnt/sdcard";
1200     }
1201
1202    num_vols=vold_getNumDirectVolumes();
1203    vol_list = malloc(sizeof(struct volume_info) * num_vols);
1204    vold_getDirectVolumeList(vol_list);
1205
1206    for (i=0; i<num_vols; i++) {
1207        if (should_encrypt(&vol_list[i])) {
1208            fd = open(vol_list[i].blk_dev, O_RDONLY);
1209            if ( (vol_list[i].size = get_blkdev_size(fd)) == 0) {
1210                SLOGE("Cannot get size of block device %s\n", vol_list[i].blk_dev);
1211                goto error_unencrypted;
1212            }
1213            close(fd);
1214
1215            ret=vold_disableVol(vol_list[i].label);
1216            if ((ret < 0) && (ret != UNMOUNT_NOT_MOUNTED_ERR)) {
1217                /* -2 is returned when the device exists but is not currently mounted.
1218                 * ignore the error and continue. */
1219                SLOGE("Failed to unmount volume %s\n", vol_list[i].label);
1220                goto error_unencrypted;
1221            }
1222        }
1223    }
1224
1225    /* The init files are setup to stop the class main and late start when
1226     * vold sets trigger_shutdown_framework.
1227     */
1228    property_set("vold.decrypt", "trigger_shutdown_framework");
1229    SLOGD("Just asked init to shut down class main\n");
1230
1231    property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
1232    if (!strcmp(fuse_sdcard, "true")) {
1233        /* This is a device using the fuse layer to emulate the sdcard semantics
1234         * on top of the userdata partition.  vold does not manage it, it is managed
1235         * by the sdcard service.  The sdcard service was killed by the property trigger
1236         * above, so just unmount it now.  We must do this _AFTER_ killing the framework,
1237         * unlike the case for vold managed devices above.
1238         */
1239        if (wait_and_unmount(sd_mnt_point)) {
1240            goto error_shutting_down;
1241        }
1242    }
1243
1244    /* Now unmount the /data partition. */
1245    if (wait_and_unmount(DATA_MNT_POINT)) {
1246        goto error_shutting_down;
1247    }
1248
1249    /* Do extra work for a better UX when doing the long inplace encryption */
1250    if (how == CRYPTO_ENABLE_INPLACE) {
1251        /* Now that /data is unmounted, we need to mount a tmpfs
1252         * /data, set a property saying we're doing inplace encryption,
1253         * and restart the framework.
1254         */
1255        property_get("ro.crypto.tmpfs_options", tmpfs_options, "");
1256        if (mount("tmpfs", DATA_MNT_POINT, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV,
1257            tmpfs_options) < 0) {
1258            goto error_shutting_down;
1259        }
1260        /* Tells the framework that inplace encryption is starting */
1261        property_set("vold.encrypt_progress", "0");
1262
1263        /* restart the framework. */
1264        /* Create necessary paths on /data */
1265        if (prep_data_fs()) {
1266            goto error_shutting_down;
1267        }
1268
1269        /* startup service classes main and late_start */
1270        property_set("vold.decrypt", "trigger_restart_min_framework");
1271        SLOGD("Just triggered restart_min_framework\n");
1272
1273        /* OK, the framework is restarted and will soon be showing a
1274         * progress bar.  Time to setup an encrypted mapping, and
1275         * either write a new filesystem, or encrypt in place updating
1276         * the progress bar as we work.
1277         */
1278    }
1279
1280    /* Start the actual work of making an encrypted filesystem */
1281    /* Initialize a crypt_mnt_ftr for the partition */
1282    cryptfs_init_crypt_mnt_ftr(&crypt_ftr);
1283    if (!strcmp(key_loc, KEY_IN_FOOTER)) {
1284        crypt_ftr.fs_size = nr_sec - (CRYPT_FOOTER_OFFSET / 512);
1285    } else {
1286        crypt_ftr.fs_size = nr_sec;
1287    }
1288    crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
1289    strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
1290
1291    /* Make an encrypted master key */
1292    if (create_encrypted_random_key(passwd, master_key, salt)) {
1293        SLOGE("Cannot create encrypted master key\n");
1294        goto error_unencrypted;
1295    }
1296
1297    /* Write the key to the end of the partition */
1298    put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, master_key, salt);
1299
1300    decrypt_master_key(passwd, salt, master_key, decrypted_master_key);
1301    create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
1302                          "userdata");
1303
1304    /* The size of the userdata partition, and add in the vold volumes below */
1305    tot_encryption_size = crypt_ftr.fs_size;
1306
1307    /* setup crypto mapping for all encryptable volumes handled by vold */
1308    for (i=0; i<num_vols; i++) {
1309        if (should_encrypt(&vol_list[i])) {
1310            vol_list[i].crypt_ftr = crypt_ftr; /* gotta love struct assign */
1311            vol_list[i].crypt_ftr.fs_size = vol_list[i].size;
1312            create_crypto_blk_dev(&vol_list[i].crypt_ftr, decrypted_master_key,
1313                                  vol_list[i].blk_dev, vol_list[i].crypto_blkdev,
1314                                  vol_list[i].label);
1315            tot_encryption_size += vol_list[i].size;
1316        }
1317    }
1318
1319    if (how == CRYPTO_ENABLE_WIPE) {
1320        rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr.fs_size, EXT4_FS);
1321        /* Encrypt all encryptable volumes handled by vold */
1322        if (!rc) {
1323            for (i=0; i<num_vols; i++) {
1324                if (should_encrypt(&vol_list[i])) {
1325                    rc = cryptfs_enable_wipe(vol_list[i].crypto_blkdev,
1326                                             vol_list[i].crypt_ftr.fs_size, FAT_FS);
1327                }
1328            }
1329        }
1330    } else if (how == CRYPTO_ENABLE_INPLACE) {
1331        rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev, crypt_ftr.fs_size,
1332                                    &cur_encryption_done, tot_encryption_size);
1333        /* Encrypt all encryptable volumes handled by vold */
1334        if (!rc) {
1335            for (i=0; i<num_vols; i++) {
1336                if (should_encrypt(&vol_list[i])) {
1337                    rc = cryptfs_enable_inplace(vol_list[i].crypto_blkdev,
1338                                                vol_list[i].blk_dev,
1339                                                vol_list[i].crypt_ftr.fs_size,
1340                                                &cur_encryption_done, tot_encryption_size);
1341                }
1342            }
1343        }
1344        if (!rc) {
1345            /* The inplace routine never actually sets the progress to 100%
1346             * due to the round down nature of integer division, so set it here */
1347            property_set("vold.encrypt_progress", "100");
1348        }
1349    } else {
1350        /* Shouldn't happen */
1351        SLOGE("cryptfs_enable: internal error, unknown option\n");
1352        goto error_unencrypted;
1353    }
1354
1355    /* Undo the dm-crypt mapping whether we succeed or not */
1356    delete_crypto_blk_dev("userdata");
1357    for (i=0; i<num_vols; i++) {
1358        if (should_encrypt(&vol_list[i])) {
1359            delete_crypto_blk_dev(vol_list[i].label);
1360        }
1361    }
1362
1363    free(vol_list);
1364
1365    if (! rc) {
1366        /* Success */
1367
1368        /* Clear the encryption in progres flag in the footer */
1369        crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
1370        put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, 0, 0);
1371
1372        sleep(2); /* Give the UI a chance to show 100% progress */
1373        android_reboot(ANDROID_RB_RESTART, 0, 0);
1374    } else {
1375        property_set("vold.encrypt_progress", "error_partially_encrypted");
1376        release_wake_lock(lockid);
1377        return -1;
1378    }
1379
1380    /* hrm, the encrypt step claims success, but the reboot failed.
1381     * This should not happen.
1382     * Set the property and return.  Hope the framework can deal with it.
1383     */
1384    property_set("vold.encrypt_progress", "error_reboot_failed");
1385    release_wake_lock(lockid);
1386    return rc;
1387
1388error_unencrypted:
1389    free(vol_list);
1390    property_set("vold.encrypt_progress", "error_not_encrypted");
1391    if (lockid[0]) {
1392        release_wake_lock(lockid);
1393    }
1394    return -1;
1395
1396error_shutting_down:
1397    /* we failed, and have not encrypted anthing, so the users's data is still intact,
1398     * but the framework is stopped and not restarted to show the error, so it's up to
1399     * vold to restart the system.
1400     */
1401    SLOGE("Error enabling encryption after framework is shutdown, no data changed, restarting system");
1402    android_reboot(ANDROID_RB_RESTART, 0, 0);
1403
1404    /* shouldn't get here */
1405    property_set("vold.encrypt_progress", "error_shutting_down");
1406    free(vol_list);
1407    if (lockid[0]) {
1408        release_wake_lock(lockid);
1409    }
1410    return -1;
1411}
1412
1413int cryptfs_changepw(char *newpw)
1414{
1415    struct crypt_mnt_ftr crypt_ftr;
1416    unsigned char encrypted_master_key[KEY_LEN_BYTES], decrypted_master_key[KEY_LEN_BYTES];
1417    unsigned char salt[SALT_LEN];
1418    char real_blkdev[MAXPATHLEN];
1419
1420    /* This is only allowed after we've successfully decrypted the master key */
1421    if (! master_key_saved) {
1422        SLOGE("Key not saved, aborting");
1423        return -1;
1424    }
1425
1426    property_get("ro.crypto.fs_real_blkdev", real_blkdev, "");
1427    if (strlen(real_blkdev) == 0) {
1428        SLOGE("Can't find real blkdev");
1429        return -1;
1430    }
1431
1432    /* get key */
1433    if (get_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt)) {
1434      SLOGE("Error getting crypt footer and key");
1435      return -1;
1436    }
1437
1438    encrypt_master_key(newpw, salt, saved_master_key, encrypted_master_key);
1439
1440    /* save the key */
1441    put_crypt_ftr_and_key(real_blkdev, &crypt_ftr, encrypted_master_key, salt);
1442
1443    return 0;
1444}
1445