entry_unittest.cc revision c7f5f8508d98d5952d42ed7648c2a8f30a4da156
1// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/basictypes.h"
6#include "base/platform_thread.h"
7#include "base/timer.h"
8#include "base/string_util.h"
9#include "net/base/io_buffer.h"
10#include "net/base/net_errors.h"
11#include "net/base/test_completion_callback.h"
12#include "net/disk_cache/disk_cache_test_base.h"
13#include "net/disk_cache/disk_cache_test_util.h"
14#include "net/disk_cache/entry_impl.h"
15#include "net/disk_cache/mem_entry_impl.h"
16#include "testing/gtest/include/gtest/gtest.h"
17
18using base::Time;
19
20extern volatile int g_cache_tests_received;
21extern volatile bool g_cache_tests_error;
22
23// Tests that can run with different types of caches.
24class DiskCacheEntryTest : public DiskCacheTestWithCache {
25 protected:
26  void InternalSyncIO();
27  void InternalAsyncIO();
28  void ExternalSyncIO();
29  void ExternalAsyncIO();
30  void StreamAccess();
31  void GetKey();
32  void GrowData();
33  void TruncateData();
34  void ZeroLengthIO();
35  void ReuseEntry(int size);
36  void InvalidData();
37  void DoomEntry();
38  void DoomedEntry();
39  void BasicSparseIO(bool async);
40  void HugeSparseIO(bool async);
41  void GetAvailableRange();
42  void DoomSparseEntry();
43  void PartialSparseEntry();
44};
45
46void DiskCacheEntryTest::InternalSyncIO() {
47  disk_cache::Entry *entry1 = NULL;
48  ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1));
49  ASSERT_TRUE(NULL != entry1);
50
51  const int kSize1 = 10;
52  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
53  CacheTestFillBuffer(buffer1->data(), kSize1, false);
54  EXPECT_EQ(0, entry1->ReadData(0, 0, buffer1, kSize1, NULL));
55  base::strlcpy(buffer1->data(), "the data", kSize1);
56  EXPECT_EQ(10, entry1->WriteData(0, 0, buffer1, kSize1, NULL, false));
57  memset(buffer1->data(), 0, kSize1);
58  EXPECT_EQ(10, entry1->ReadData(0, 0, buffer1, kSize1, NULL));
59  EXPECT_STREQ("the data", buffer1->data());
60
61  const int kSize2 = 5000;
62  const int kSize3 = 10000;
63  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
64  scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3);
65  memset(buffer3->data(), 0, kSize3);
66  CacheTestFillBuffer(buffer2->data(), kSize2, false);
67  base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
68  EXPECT_EQ(5000, entry1->WriteData(1, 1500, buffer2, kSize2, NULL, false));
69  memset(buffer2->data(), 0, kSize2);
70  EXPECT_EQ(4989, entry1->ReadData(1, 1511, buffer2, kSize2, NULL));
71  EXPECT_STREQ("big data goes here", buffer2->data());
72  EXPECT_EQ(5000, entry1->ReadData(1, 0, buffer2, kSize2, NULL));
73  EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
74  EXPECT_EQ(1500, entry1->ReadData(1, 5000, buffer2, kSize2, NULL));
75
76  EXPECT_EQ(0, entry1->ReadData(1, 6500, buffer2, kSize2, NULL));
77  EXPECT_EQ(6500, entry1->ReadData(1, 0, buffer3, kSize3, NULL));
78  EXPECT_EQ(8192, entry1->WriteData(1, 0, buffer3, 8192, NULL, false));
79  EXPECT_EQ(8192, entry1->ReadData(1, 0, buffer3, kSize3, NULL));
80  EXPECT_EQ(8192, entry1->GetDataSize(1));
81
82  entry1->Doom();
83  entry1->Close();
84  EXPECT_EQ(0, cache_->GetEntryCount());
85}
86
87TEST_F(DiskCacheEntryTest, InternalSyncIO) {
88  InitCache();
89  InternalSyncIO();
90}
91
92TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) {
93  SetMemoryOnlyMode();
94  InitCache();
95  InternalSyncIO();
96}
97
98void DiskCacheEntryTest::InternalAsyncIO() {
99  disk_cache::Entry *entry1 = NULL;
100  ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1));
101  ASSERT_TRUE(NULL != entry1);
102
103  // Avoid using internal buffers for the test. We have to write something to
104  // the entry and close it so that we flush the internal buffer to disk. After
105  // that, IO operations will be really hitting the disk. We don't care about
106  // the content, so just extending the entry is enough (all extensions zero-
107  // fill any holes).
108  EXPECT_EQ(0, entry1->WriteData(0, 15 * 1024, NULL, 0, NULL, false));
109  EXPECT_EQ(0, entry1->WriteData(1, 15 * 1024, NULL, 0, NULL, false));
110  entry1->Close();
111  ASSERT_TRUE(cache_->OpenEntry("the first key", &entry1));
112
113  // Let's verify that each IO goes to the right callback object.
114  CallbackTest callback1(false);
115  CallbackTest callback2(false);
116  CallbackTest callback3(false);
117  CallbackTest callback4(false);
118  CallbackTest callback5(false);
119  CallbackTest callback6(false);
120  CallbackTest callback7(false);
121  CallbackTest callback8(false);
122  CallbackTest callback9(false);
123  CallbackTest callback10(false);
124  CallbackTest callback11(false);
125  CallbackTest callback12(false);
126  CallbackTest callback13(false);
127
128  g_cache_tests_error = false;
129  g_cache_tests_received = 0;
130
131  MessageLoopHelper helper;
132
133  const int kSize1 = 10;
134  const int kSize2 = 5000;
135  const int kSize3 = 10000;
136  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
137  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
138  scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3);
139  CacheTestFillBuffer(buffer1->data(), kSize1, false);
140  CacheTestFillBuffer(buffer2->data(), kSize2, false);
141  CacheTestFillBuffer(buffer3->data(), kSize3, false);
142
143  EXPECT_EQ(0, entry1->ReadData(0, 15 * 1024, buffer1, kSize1, &callback1));
144  base::strlcpy(buffer1->data(), "the data", kSize1);
145  int expected = 0;
146  int ret = entry1->WriteData(0, 0, buffer1, kSize1, &callback2, false);
147  EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
148  if (net::ERR_IO_PENDING == ret)
149    expected++;
150
151  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
152  memset(buffer2->data(), 0, kSize2);
153  ret = entry1->ReadData(0, 0, buffer2, kSize1, &callback3);
154  EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
155  if (net::ERR_IO_PENDING == ret)
156    expected++;
157
158  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
159  EXPECT_STREQ("the data", buffer2->data());
160
161  base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
162  ret = entry1->WriteData(1, 1500, buffer2, kSize2, &callback4, true);
163  EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
164  if (net::ERR_IO_PENDING == ret)
165    expected++;
166
167  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
168  memset(buffer3->data(), 0, kSize3);
169  ret = entry1->ReadData(1, 1511, buffer3, kSize2, &callback5);
170  EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret);
171  if (net::ERR_IO_PENDING == ret)
172    expected++;
173
174  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
175  EXPECT_STREQ("big data goes here", buffer3->data());
176  ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback6);
177  EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
178  if (net::ERR_IO_PENDING == ret)
179    expected++;
180
181  memset(buffer3->data(), 0, kSize3);
182
183  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
184  EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500));
185  ret = entry1->ReadData(1, 5000, buffer2, kSize2, &callback7);
186  EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret);
187  if (net::ERR_IO_PENDING == ret)
188    expected++;
189
190  ret = entry1->ReadData(1, 0, buffer3, kSize3, &callback9);
191  EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret);
192  if (net::ERR_IO_PENDING == ret)
193    expected++;
194
195  ret = entry1->WriteData(1, 0, buffer3, 8192, &callback10, true);
196  EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
197  if (net::ERR_IO_PENDING == ret)
198    expected++;
199
200  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
201  ret = entry1->ReadData(1, 0, buffer3, kSize3, &callback11);
202  EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret);
203  if (net::ERR_IO_PENDING == ret)
204    expected++;
205
206  EXPECT_EQ(8192, entry1->GetDataSize(1));
207
208  ret = entry1->ReadData(0, 0, buffer1, kSize1, &callback12);
209  EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret);
210  if (net::ERR_IO_PENDING == ret)
211    expected++;
212
213  ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback13);
214  EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
215  if (net::ERR_IO_PENDING == ret)
216    expected++;
217
218  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
219
220  EXPECT_FALSE(g_cache_tests_error);
221  EXPECT_EQ(expected, g_cache_tests_received);
222
223  entry1->Doom();
224  entry1->Close();
225  EXPECT_EQ(0, cache_->GetEntryCount());
226}
227
228TEST_F(DiskCacheEntryTest, InternalAsyncIO) {
229  InitCache();
230  InternalAsyncIO();
231}
232
233TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) {
234  SetMemoryOnlyMode();
235  InitCache();
236  InternalAsyncIO();
237}
238
239void DiskCacheEntryTest::ExternalSyncIO() {
240  disk_cache::Entry *entry1;
241  ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1));
242
243  const int kSize1 = 17000;
244  const int kSize2 = 25000;
245  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
246  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
247  CacheTestFillBuffer(buffer1->data(), kSize1, false);
248  CacheTestFillBuffer(buffer2->data(), kSize2, false);
249  base::strlcpy(buffer1->data(), "the data", kSize1);
250  EXPECT_EQ(17000, entry1->WriteData(0, 0, buffer1, kSize1, NULL, false));
251  memset(buffer1->data(), 0, kSize1);
252  EXPECT_EQ(17000, entry1->ReadData(0, 0, buffer1, kSize1, NULL));
253  EXPECT_STREQ("the data", buffer1->data());
254
255  base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
256  EXPECT_EQ(25000, entry1->WriteData(1, 10000, buffer2, kSize2, NULL, false));
257  memset(buffer2->data(), 0, kSize2);
258  EXPECT_EQ(24989, entry1->ReadData(1, 10011, buffer2, kSize2, NULL));
259  EXPECT_STREQ("big data goes here", buffer2->data());
260  EXPECT_EQ(25000, entry1->ReadData(1, 0, buffer2, kSize2, NULL));
261  EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000));
262  EXPECT_EQ(5000, entry1->ReadData(1, 30000, buffer2, kSize2, NULL));
263
264  EXPECT_EQ(0, entry1->ReadData(1, 35000, buffer2, kSize2, NULL));
265  EXPECT_EQ(17000, entry1->ReadData(1, 0, buffer1, kSize1, NULL));
266  EXPECT_EQ(17000, entry1->WriteData(1, 20000, buffer1, kSize1, NULL, false));
267  EXPECT_EQ(37000, entry1->GetDataSize(1));
268
269  entry1->Doom();
270  entry1->Close();
271  EXPECT_EQ(0, cache_->GetEntryCount());
272}
273
274TEST_F(DiskCacheEntryTest, ExternalSyncIO) {
275  InitCache();
276  ExternalSyncIO();
277}
278
279TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) {
280  SetMemoryOnlyMode();
281  InitCache();
282  ExternalSyncIO();
283}
284
285void DiskCacheEntryTest::ExternalAsyncIO() {
286  disk_cache::Entry *entry1;
287  ASSERT_TRUE(cache_->CreateEntry("the first key", &entry1));
288
289  // Let's verify that each IO goes to the right callback object.
290  CallbackTest callback1(false);
291  CallbackTest callback2(false);
292  CallbackTest callback3(false);
293  CallbackTest callback4(false);
294  CallbackTest callback5(false);
295  CallbackTest callback6(false);
296  CallbackTest callback7(false);
297  CallbackTest callback8(false);
298  CallbackTest callback9(false);
299
300  g_cache_tests_error = false;
301  g_cache_tests_received = 0;
302  int expected = 0;
303
304  MessageLoopHelper helper;
305
306  const int kSize1 = 17000;
307  const int kSize2 = 25000;
308  const int kSize3 = 25000;
309  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
310  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
311  scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3);
312  CacheTestFillBuffer(buffer1->data(), kSize1, false);
313  CacheTestFillBuffer(buffer2->data(), kSize2, false);
314  CacheTestFillBuffer(buffer3->data(), kSize3, false);
315  base::strlcpy(buffer1->data(), "the data", kSize1);
316  int ret = entry1->WriteData(0, 0, buffer1, kSize1, &callback1, false);
317  EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
318  if (net::ERR_IO_PENDING == ret)
319    expected++;
320
321  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
322
323  memset(buffer2->data(), 0, kSize1);
324  ret = entry1->ReadData(0, 0, buffer2, kSize1, &callback2);
325  EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
326  if (net::ERR_IO_PENDING == ret)
327    expected++;
328
329  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
330  EXPECT_STREQ("the data", buffer1->data());
331
332  base::strlcpy(buffer2->data(), "The really big data goes here", kSize2);
333  ret = entry1->WriteData(1, 10000, buffer2, kSize2, &callback3, false);
334  EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
335  if (net::ERR_IO_PENDING == ret)
336    expected++;
337
338  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
339
340  memset(buffer3->data(), 0, kSize3);
341  ret = entry1->ReadData(1, 10011, buffer3, kSize3, &callback4);
342  EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret);
343  if (net::ERR_IO_PENDING == ret)
344    expected++;
345
346  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
347  EXPECT_STREQ("big data goes here", buffer3->data());
348  ret = entry1->ReadData(1, 0, buffer2, kSize2, &callback5);
349  EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret);
350  if (net::ERR_IO_PENDING == ret)
351    expected++;
352
353  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
354  EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000));
355  ret = entry1->ReadData(1, 30000, buffer2, kSize2, &callback6);
356  EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret);
357  if (net::ERR_IO_PENDING == ret)
358    expected++;
359
360  EXPECT_EQ(0, entry1->ReadData(1, 35000, buffer2, kSize2, &callback7));
361  ret = entry1->ReadData(1, 0, buffer1, kSize1, &callback8);
362  EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
363  if (net::ERR_IO_PENDING == ret)
364    expected++;
365  ret = entry1->WriteData(1, 20000, buffer1, kSize1, &callback9, false);
366  EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret);
367  if (net::ERR_IO_PENDING == ret)
368    expected++;
369  EXPECT_EQ(37000, entry1->GetDataSize(1));
370
371  EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected));
372
373  EXPECT_FALSE(g_cache_tests_error);
374  EXPECT_EQ(expected, g_cache_tests_received);
375
376  entry1->Doom();
377  entry1->Close();
378  EXPECT_EQ(0, cache_->GetEntryCount());
379}
380
381TEST_F(DiskCacheEntryTest, ExternalAsyncIO) {
382  InitCache();
383  ExternalAsyncIO();
384}
385
386TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) {
387  SetMemoryOnlyMode();
388  InitCache();
389  ExternalAsyncIO();
390}
391
392void DiskCacheEntryTest::StreamAccess() {
393  disk_cache::Entry *entry = NULL;
394  ASSERT_TRUE(cache_->CreateEntry("the first key", &entry));
395  ASSERT_TRUE(NULL != entry);
396
397  const int kBufferSize = 1024;
398  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kBufferSize);
399  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kBufferSize);
400
401  const int kNumStreams = 3;
402  for (int i = 0; i < kNumStreams; i++) {
403    CacheTestFillBuffer(buffer1->data(), kBufferSize, false);
404    EXPECT_EQ(kBufferSize, entry->WriteData(i, 0, buffer1, kBufferSize, NULL,
405                                            false));
406    memset(buffer2->data(), 0, kBufferSize);
407    EXPECT_EQ(kBufferSize, entry->ReadData(i, 0, buffer2, kBufferSize, NULL));
408    EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kBufferSize));
409  }
410
411  EXPECT_EQ(net::ERR_INVALID_ARGUMENT,
412            entry->ReadData(kNumStreams, 0, buffer1, kBufferSize, NULL));
413  entry->Close();
414}
415
416TEST_F(DiskCacheEntryTest, StreamAccess) {
417  InitCache();
418  StreamAccess();
419}
420
421TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) {
422  SetMemoryOnlyMode();
423  InitCache();
424  StreamAccess();
425}
426
427void DiskCacheEntryTest::GetKey() {
428  std::string key1("the first key");
429  disk_cache::Entry *entry1;
430  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
431  EXPECT_EQ(key1, entry1->GetKey()) << "short key";
432  entry1->Close();
433
434  int seed = static_cast<int>(Time::Now().ToInternalValue());
435  srand(seed);
436  char key_buffer[20000];
437
438  CacheTestFillBuffer(key_buffer, 3000, true);
439  key_buffer[1000] = '\0';
440
441  key1 = key_buffer;
442  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
443  EXPECT_TRUE(key1 == entry1->GetKey()) << "1000 bytes key";
444  entry1->Close();
445
446  key_buffer[1000] = 'p';
447  key_buffer[3000] = '\0';
448  key1 = key_buffer;
449  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
450  EXPECT_TRUE(key1 == entry1->GetKey()) << "medium size key";
451  entry1->Close();
452
453  CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true);
454  key_buffer[19999] = '\0';
455
456  key1 = key_buffer;
457  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
458  EXPECT_TRUE(key1 == entry1->GetKey()) << "long key";
459  entry1->Close();
460}
461
462TEST_F(DiskCacheEntryTest, GetKey) {
463  InitCache();
464  GetKey();
465}
466
467TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) {
468  SetMemoryOnlyMode();
469  InitCache();
470  GetKey();
471}
472
473void DiskCacheEntryTest::GrowData() {
474  std::string key1("the first key");
475  disk_cache::Entry *entry1, *entry2;
476  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
477
478  const int kSize = 20000;
479  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize);
480  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize);
481  CacheTestFillBuffer(buffer1->data(), kSize, false);
482  memset(buffer2->data(), 0, kSize);
483
484  base::strlcpy(buffer1->data(), "the data", kSize);
485  EXPECT_EQ(10, entry1->WriteData(0, 0, buffer1, 10, NULL, false));
486  EXPECT_EQ(10, entry1->ReadData(0, 0, buffer2, 10, NULL));
487  EXPECT_STREQ("the data", buffer2->data());
488  EXPECT_EQ(10, entry1->GetDataSize(0));
489
490  EXPECT_EQ(2000, entry1->WriteData(0, 0, buffer1, 2000, NULL, false));
491  EXPECT_EQ(2000, entry1->GetDataSize(0));
492  EXPECT_EQ(2000, entry1->ReadData(0, 0, buffer2, 2000, NULL));
493  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
494
495  EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, kSize, NULL, false));
496  EXPECT_EQ(20000, entry1->GetDataSize(0));
497  EXPECT_EQ(20000, entry1->ReadData(0, 0, buffer2, kSize, NULL));
498  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
499  entry1->Close();
500
501  memset(buffer2->data(), 0, kSize);
502  ASSERT_TRUE(cache_->CreateEntry("Second key", &entry2));
503  EXPECT_EQ(10, entry2->WriteData(0, 0, buffer1, 10, NULL, false));
504  EXPECT_EQ(10, entry2->GetDataSize(0));
505  entry2->Close();
506
507  // Go from an internal address to a bigger block size.
508  ASSERT_TRUE(cache_->OpenEntry("Second key", &entry2));
509  EXPECT_EQ(2000, entry2->WriteData(0, 0, buffer1, 2000, NULL, false));
510  EXPECT_EQ(2000, entry2->GetDataSize(0));
511  EXPECT_EQ(2000, entry2->ReadData(0, 0, buffer2, 2000, NULL));
512  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000));
513  entry2->Close();
514  memset(buffer2->data(), 0, kSize);
515
516  // Go from an internal address to an external one.
517  ASSERT_TRUE(cache_->OpenEntry("Second key", &entry2));
518  EXPECT_EQ(20000, entry2->WriteData(0, 0, buffer1, kSize, NULL, false));
519  EXPECT_EQ(20000, entry2->GetDataSize(0));
520  EXPECT_EQ(20000, entry2->ReadData(0, 0, buffer2, kSize, NULL));
521  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize));
522  entry2->Close();
523}
524
525TEST_F(DiskCacheEntryTest, GrowData) {
526  InitCache();
527  GrowData();
528}
529
530TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) {
531  SetMemoryOnlyMode();
532  InitCache();
533  GrowData();
534}
535
536void DiskCacheEntryTest::TruncateData() {
537  std::string key1("the first key");
538  disk_cache::Entry *entry1;
539  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
540
541  const int kSize1 = 20000;
542  const int kSize2 = 20000;
543  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
544  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
545
546  CacheTestFillBuffer(buffer1->data(), kSize1, false);
547  memset(buffer2->data(), 0, kSize2);
548
549  // Simple truncation:
550  EXPECT_EQ(200, entry1->WriteData(0, 0, buffer1, 200, NULL, false));
551  EXPECT_EQ(200, entry1->GetDataSize(0));
552  EXPECT_EQ(100, entry1->WriteData(0, 0, buffer1, 100, NULL, false));
553  EXPECT_EQ(200, entry1->GetDataSize(0));
554  EXPECT_EQ(100, entry1->WriteData(0, 0, buffer1, 100, NULL, true));
555  EXPECT_EQ(100, entry1->GetDataSize(0));
556  EXPECT_EQ(0, entry1->WriteData(0, 50, buffer1, 0, NULL, true));
557  EXPECT_EQ(50, entry1->GetDataSize(0));
558  EXPECT_EQ(0, entry1->WriteData(0, 0, buffer1, 0, NULL, true));
559  EXPECT_EQ(0, entry1->GetDataSize(0));
560  entry1->Close();
561  ASSERT_TRUE(cache_->OpenEntry(key1, &entry1));
562
563  // Go to an external file.
564  EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, 20000, NULL, true));
565  EXPECT_EQ(20000, entry1->GetDataSize(0));
566  EXPECT_EQ(20000, entry1->ReadData(0, 0, buffer2, 20000, NULL));
567  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000));
568  memset(buffer2->data(), 0, kSize2);
569
570  // External file truncation
571  EXPECT_EQ(18000, entry1->WriteData(0, 0, buffer1, 18000, NULL, false));
572  EXPECT_EQ(20000, entry1->GetDataSize(0));
573  EXPECT_EQ(18000, entry1->WriteData(0, 0, buffer1, 18000, NULL, true));
574  EXPECT_EQ(18000, entry1->GetDataSize(0));
575  EXPECT_EQ(0, entry1->WriteData(0, 17500, buffer1, 0, NULL, true));
576  EXPECT_EQ(17500, entry1->GetDataSize(0));
577
578  // And back to an internal block.
579  EXPECT_EQ(600, entry1->WriteData(0, 1000, buffer1, 600, NULL, true));
580  EXPECT_EQ(1600, entry1->GetDataSize(0));
581  EXPECT_EQ(600, entry1->ReadData(0, 1000, buffer2, 600, NULL));
582  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600));
583  EXPECT_EQ(1000, entry1->ReadData(0, 0, buffer2, 1000, NULL));
584  EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) <<
585      "Preserves previous data";
586
587  // Go from external file to zero length.
588  EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer1, 20000, NULL, true));
589  EXPECT_EQ(20000, entry1->GetDataSize(0));
590  EXPECT_EQ(0, entry1->WriteData(0, 0, buffer1, 0, NULL, true));
591  EXPECT_EQ(0, entry1->GetDataSize(0));
592
593  entry1->Close();
594}
595
596TEST_F(DiskCacheEntryTest, TruncateData) {
597  InitCache();
598  TruncateData();
599
600  // We generate asynchronous IO that is not really tracked until completion
601  // so we just wait here before running the next test.
602  MessageLoopHelper helper;
603  helper.WaitUntilCacheIoFinished(1);
604}
605
606TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) {
607  SetMemoryOnlyMode();
608  InitCache();
609  TruncateData();
610}
611
612void DiskCacheEntryTest::ZeroLengthIO() {
613  std::string key1("the first key");
614  disk_cache::Entry *entry1;
615  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
616
617  EXPECT_EQ(0, entry1->ReadData(0, 0, NULL, 0, NULL));
618  EXPECT_EQ(0, entry1->WriteData(0, 0, NULL, 0, NULL, false));
619
620  // This write should extend the entry.
621  EXPECT_EQ(0, entry1->WriteData(0, 1000, NULL, 0, NULL, false));
622  EXPECT_EQ(0, entry1->ReadData(0, 500, NULL, 0, NULL));
623  EXPECT_EQ(0, entry1->ReadData(0, 2000, NULL, 0, NULL));
624  EXPECT_EQ(1000, entry1->GetDataSize(0));
625  entry1->Close();
626}
627
628TEST_F(DiskCacheEntryTest, ZeroLengthIO) {
629  InitCache();
630  ZeroLengthIO();
631}
632
633TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) {
634  SetMemoryOnlyMode();
635  InitCache();
636  ZeroLengthIO();
637}
638
639// Write more than the total cache capacity but to a single entry. |size| is the
640// amount of bytes to write each time.
641void DiskCacheEntryTest::ReuseEntry(int size) {
642  std::string key1("the first key");
643  disk_cache::Entry *entry;
644  ASSERT_TRUE(cache_->CreateEntry(key1, &entry));
645
646  entry->Close();
647  std::string key2("the second key");
648  ASSERT_TRUE(cache_->CreateEntry(key2, &entry));
649
650  scoped_refptr<net::IOBuffer> buffer = new net::IOBuffer(size);
651  CacheTestFillBuffer(buffer->data(), size, false);
652
653  for (int i = 0; i < 15; i++) {
654    EXPECT_EQ(0, entry->WriteData(0, 0, buffer, 0, NULL, true));
655    EXPECT_EQ(size, entry->WriteData(0, 0, buffer, size, NULL, false));
656    entry->Close();
657    ASSERT_TRUE(cache_->OpenEntry(key2, &entry));
658  }
659
660  entry->Close();
661  ASSERT_TRUE(cache_->OpenEntry(key1, &entry)) << "have not evicted this entry";
662  entry->Close();
663}
664
665TEST_F(DiskCacheEntryTest, ReuseExternalEntry) {
666  SetDirectMode();
667  SetMaxSize(200 * 1024);
668  InitCache();
669  ReuseEntry(20 * 1024);
670}
671
672TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) {
673  SetDirectMode();
674  SetMemoryOnlyMode();
675  SetMaxSize(200 * 1024);
676  InitCache();
677  ReuseEntry(20 * 1024);
678}
679
680TEST_F(DiskCacheEntryTest, ReuseInternalEntry) {
681  SetDirectMode();
682  SetMaxSize(100 * 1024);
683  InitCache();
684  ReuseEntry(10 * 1024);
685}
686
687TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) {
688  SetDirectMode();
689  SetMemoryOnlyMode();
690  SetMaxSize(100 * 1024);
691  InitCache();
692  ReuseEntry(10 * 1024);
693}
694
695// Reading somewhere that was not written should return zeros.
696void DiskCacheEntryTest::InvalidData() {
697  std::string key1("the first key");
698  disk_cache::Entry *entry1;
699  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
700
701  const int kSize1 = 20000;
702  const int kSize2 = 20000;
703  const int kSize3 = 20000;
704  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
705  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
706  scoped_refptr<net::IOBuffer> buffer3 = new net::IOBuffer(kSize3);
707
708  CacheTestFillBuffer(buffer1->data(), kSize1, false);
709  memset(buffer2->data(), 0, kSize2);
710
711  // Simple data grow:
712  EXPECT_EQ(200, entry1->WriteData(0, 400, buffer1, 200, NULL, false));
713  EXPECT_EQ(600, entry1->GetDataSize(0));
714  EXPECT_EQ(100, entry1->ReadData(0, 300, buffer3, 100, NULL));
715  EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
716  entry1->Close();
717  ASSERT_TRUE(cache_->OpenEntry(key1, &entry1));
718
719  // The entry is now on disk. Load it and extend it.
720  EXPECT_EQ(200, entry1->WriteData(0, 800, buffer1, 200, NULL, false));
721  EXPECT_EQ(1000, entry1->GetDataSize(0));
722  EXPECT_EQ(100, entry1->ReadData(0, 700, buffer3, 100, NULL));
723  EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
724  entry1->Close();
725  ASSERT_TRUE(cache_->OpenEntry(key1, &entry1));
726
727  // This time using truncate.
728  EXPECT_EQ(200, entry1->WriteData(0, 1800, buffer1, 200, NULL, true));
729  EXPECT_EQ(2000, entry1->GetDataSize(0));
730  EXPECT_EQ(100, entry1->ReadData(0, 1500, buffer3, 100, NULL));
731  EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100));
732
733  // Go to an external file.
734  EXPECT_EQ(200, entry1->WriteData(0, 19800, buffer1, 200, NULL, false));
735  EXPECT_EQ(20000, entry1->GetDataSize(0));
736  EXPECT_EQ(4000, entry1->ReadData(0, 14000, buffer3, 4000, NULL));
737  EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000));
738
739  // And back to an internal block.
740  EXPECT_EQ(600, entry1->WriteData(0, 1000, buffer1, 600, NULL, true));
741  EXPECT_EQ(1600, entry1->GetDataSize(0));
742  EXPECT_EQ(600, entry1->ReadData(0, 1000, buffer3, 600, NULL));
743  EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600));
744
745  // Extend it again.
746  EXPECT_EQ(600, entry1->WriteData(0, 2000, buffer1, 600, NULL, false));
747  EXPECT_EQ(2600, entry1->GetDataSize(0));
748  EXPECT_EQ(200, entry1->ReadData(0, 1800, buffer3, 200, NULL));
749  EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
750
751  // And again (with truncation flag).
752  EXPECT_EQ(600, entry1->WriteData(0, 3000, buffer1, 600, NULL, true));
753  EXPECT_EQ(3600, entry1->GetDataSize(0));
754  EXPECT_EQ(200, entry1->ReadData(0, 2800, buffer3, 200, NULL));
755  EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200));
756
757  entry1->Close();
758}
759
760TEST_F(DiskCacheEntryTest, InvalidData) {
761  InitCache();
762  InvalidData();
763}
764
765TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) {
766  SetMemoryOnlyMode();
767  InitCache();
768  InvalidData();
769}
770
771void DiskCacheEntryTest::DoomEntry() {
772  std::string key1("the first key");
773  disk_cache::Entry *entry1;
774  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
775  entry1->Doom();
776  entry1->Close();
777
778  const int kSize = 20000;
779  scoped_refptr<net::IOBuffer> buffer = new net::IOBuffer(kSize);
780  CacheTestFillBuffer(buffer->data(), kSize, true);
781  buffer->data()[19999] = '\0';
782
783  key1 = buffer->data();
784  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
785  EXPECT_EQ(20000, entry1->WriteData(0, 0, buffer, kSize, NULL, false));
786  EXPECT_EQ(20000, entry1->WriteData(1, 0, buffer, kSize, NULL, false));
787  entry1->Doom();
788  entry1->Close();
789
790  EXPECT_EQ(0, cache_->GetEntryCount());
791}
792
793TEST_F(DiskCacheEntryTest, DoomEntry) {
794  InitCache();
795  DoomEntry();
796}
797
798TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) {
799  SetMemoryOnlyMode();
800  InitCache();
801  DoomEntry();
802}
803
804// Verify that basic operations work as expected with doomed entries.
805void DiskCacheEntryTest::DoomedEntry() {
806  std::string key("the first key");
807  disk_cache::Entry *entry;
808  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
809  entry->Doom();
810
811  EXPECT_EQ(0, cache_->GetEntryCount());
812  Time initial = Time::Now();
813  PlatformThread::Sleep(20);
814
815  const int kSize1 = 2000;
816  const int kSize2 = 2000;
817  scoped_refptr<net::IOBuffer> buffer1 = new net::IOBuffer(kSize1);
818  scoped_refptr<net::IOBuffer> buffer2 = new net::IOBuffer(kSize2);
819  CacheTestFillBuffer(buffer1->data(), kSize1, false);
820  memset(buffer2->data(), 0, kSize2);
821
822  EXPECT_EQ(2000, entry->WriteData(0, 0, buffer1, 2000, NULL, false));
823  EXPECT_EQ(2000, entry->ReadData(0, 0, buffer2, 2000, NULL));
824  EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1));
825  EXPECT_EQ(key, entry->GetKey());
826  EXPECT_TRUE(initial < entry->GetLastModified());
827  EXPECT_TRUE(initial < entry->GetLastUsed());
828
829  entry->Close();
830}
831
832TEST_F(DiskCacheEntryTest, DoomedEntry) {
833  InitCache();
834  DoomEntry();
835}
836
837TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
838  SetMemoryOnlyMode();
839  InitCache();
840  DoomEntry();
841}
842
843// Test that child entries in a memory cache backend are not visible from
844// enumerations.
845TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) {
846  SetMemoryOnlyMode();
847  InitCache();
848
849  const int kSize = 4096;
850  scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
851  CacheTestFillBuffer(buf->data(), kSize, false);
852
853  std::string key("the first key");
854  disk_cache::Entry* parent_entry;
855  ASSERT_TRUE(cache_->CreateEntry(key, &parent_entry));
856
857  // Writes to the parent entry.
858  EXPECT_EQ(kSize, parent_entry->WriteSparseData(0, buf, kSize, NULL));
859
860  // This write creates a child entry and writes to it.
861  EXPECT_EQ(kSize, parent_entry->WriteSparseData(8192, buf, kSize, NULL));
862
863  parent_entry->Close();
864
865  // Perform the enumerations.
866  void* iter = NULL;
867  disk_cache::Entry* entry = NULL;
868  int count = 0;
869  while (cache_->OpenNextEntry(&iter, &entry)) {
870    ASSERT_TRUE(entry != NULL);
871    ++count;
872    disk_cache::MemEntryImpl* mem_entry =
873        reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
874    EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type());
875    mem_entry->Close();
876  }
877  EXPECT_EQ(1, count);
878}
879
880// Writes |buf_1| to offset and reads it back as |buf_2|.
881void VerifySparseIO(disk_cache::Entry* entry, int64 offset,
882                    net::IOBuffer* buf_1, int size, bool async,
883                    net::IOBuffer* buf_2) {
884  TestCompletionCallback callback;
885  TestCompletionCallback* cb = async ? &callback : NULL;
886
887  memset(buf_2->data(), 0, size);
888  int ret = entry->ReadSparseData(offset, buf_2, size, cb);
889  ret = callback.GetResult(ret);
890  EXPECT_EQ(0, ret);
891
892  ret = entry->WriteSparseData(offset, buf_1, size, cb);
893  ret = callback.GetResult(ret);
894  EXPECT_EQ(size, ret);
895
896  ret = entry->ReadSparseData(offset, buf_2, size, cb);
897  ret = callback.GetResult(ret);
898  EXPECT_EQ(size, ret);
899
900  EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size));
901}
902
903// Reads |size| bytes from |entry| at |offset| and verifies that they are the
904// same as the content of the provided |buffer|.
905void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer,
906                           int size, bool async) {
907  TestCompletionCallback callback;
908  TestCompletionCallback* cb = async ? &callback : NULL;
909
910  scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(size);
911  memset(buf_1->data(), 0, size);
912  int ret = entry->ReadSparseData(offset, buf_1, size, cb);
913  ret = callback.GetResult(ret);
914  EXPECT_EQ(size, ret);
915
916  EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size));
917}
918
919void DiskCacheEntryTest::BasicSparseIO(bool async) {
920  std::string key("the first key");
921  disk_cache::Entry* entry;
922  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
923
924  const int kSize = 2048;
925  scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize);
926  scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize);
927  CacheTestFillBuffer(buf_1->data(), kSize, false);
928
929  // Write at offset 0.
930  VerifySparseIO(entry, 0, buf_1, kSize, async, buf_2);
931
932  // Write at offset 0x400000 (4 MB).
933  VerifySparseIO(entry, 0x400000, buf_1, kSize, async, buf_2);
934
935  // Write at offset 0x800000000 (32 GB).
936  VerifySparseIO(entry, 0x800000000LL, buf_1, kSize, async, buf_2);
937
938  entry->Close();
939
940  // Check everything again.
941  ASSERT_TRUE(cache_->OpenEntry(key, &entry));
942  VerifyContentSparseIO(entry, 0, buf_1->data(), kSize, async);
943  VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize, async);
944  VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize, async);
945  entry->Close();
946}
947
948TEST_F(DiskCacheEntryTest, BasicSparseSyncIO) {
949  InitCache();
950  BasicSparseIO(false);
951}
952
953TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseSyncIO) {
954  SetMemoryOnlyMode();
955  InitCache();
956  BasicSparseIO(false);
957}
958
959TEST_F(DiskCacheEntryTest, BasicSparseAsyncIO) {
960  InitCache();
961  BasicSparseIO(true);
962}
963
964TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseAsyncIO) {
965  SetMemoryOnlyMode();
966  InitCache();
967  BasicSparseIO(true);
968}
969
970void DiskCacheEntryTest::HugeSparseIO(bool async) {
971  std::string key("the first key");
972  disk_cache::Entry* entry;
973  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
974
975  // Write 1.2 MB so that we cover multiple entries.
976  const int kSize = 1200 * 1024;
977  scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize);
978  scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize);
979  CacheTestFillBuffer(buf_1->data(), kSize, false);
980
981  // Write at offset 0x20F0000 (33 MB - 64 KB).
982  VerifySparseIO(entry, 0x20F0000, buf_1, kSize, async, buf_2);
983  entry->Close();
984
985  // Check it again.
986  ASSERT_TRUE(cache_->OpenEntry(key, &entry));
987  VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize, async);
988  entry->Close();
989}
990
991TEST_F(DiskCacheEntryTest, HugeSparseSyncIO) {
992  InitCache();
993  HugeSparseIO(false);
994}
995
996TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseSyncIO) {
997  SetMemoryOnlyMode();
998  InitCache();
999  HugeSparseIO(false);
1000}
1001
1002TEST_F(DiskCacheEntryTest, HugeSparseAsyncIO) {
1003  InitCache();
1004  HugeSparseIO(true);
1005}
1006
1007TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseAsyncIO) {
1008  SetMemoryOnlyMode();
1009  InitCache();
1010  HugeSparseIO(true);
1011}
1012
1013void DiskCacheEntryTest::GetAvailableRange() {
1014  std::string key("the first key");
1015  disk_cache::Entry* entry;
1016  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
1017
1018  const int kSize = 16 * 1024;
1019  scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
1020  CacheTestFillBuffer(buf->data(), kSize, false);
1021
1022  // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1023  EXPECT_EQ(kSize, entry->WriteSparseData(0x20F0000, buf, kSize, NULL));
1024  EXPECT_EQ(kSize, entry->WriteSparseData(0x20F4400, buf, kSize, NULL));
1025
1026  // We stop at the first empty block.
1027  int64 start;
1028  EXPECT_EQ(kSize, entry->GetAvailableRange(0x20F0000, kSize * 2, &start));
1029  EXPECT_EQ(0x20F0000, start);
1030
1031  start = 0;
1032  EXPECT_EQ(0, entry->GetAvailableRange(0, kSize, &start));
1033  EXPECT_EQ(0, entry->GetAvailableRange(0x20F0000 - kSize, kSize, &start));
1034  EXPECT_EQ(kSize, entry->GetAvailableRange(0, 0x2100000, &start));
1035  EXPECT_EQ(0x20F0000, start);
1036
1037  // We should be able to Read based on the results of GetAvailableRange.
1038  start = -1;
1039  EXPECT_EQ(0, entry->GetAvailableRange(0x2100000, kSize, &start));
1040  EXPECT_EQ(0, entry->ReadSparseData(start, buf, kSize, NULL));
1041
1042  start = 0;
1043  EXPECT_EQ(0x2000, entry->GetAvailableRange(0x20F2000, kSize, &start));
1044  EXPECT_EQ(0x20F2000, start);
1045  EXPECT_EQ(0x2000, entry->ReadSparseData(start, buf, kSize, NULL));
1046
1047  // Make sure that we respect the |len| argument.
1048  start = 0;
1049  EXPECT_EQ(1, entry->GetAvailableRange(0x20F0001 - kSize, kSize, &start));
1050  EXPECT_EQ(0x20F0000, start);
1051
1052  entry->Close();
1053}
1054
1055TEST_F(DiskCacheEntryTest, GetAvailableRange) {
1056  InitCache();
1057  GetAvailableRange();
1058}
1059
1060TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
1061  SetMemoryOnlyMode();
1062  InitCache();
1063  GetAvailableRange();
1064}
1065
1066TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
1067  SetMemoryOnlyMode();
1068  InitCache();
1069
1070  const int kSize = 8192;
1071  scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize);
1072  scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize);
1073  CacheTestFillBuffer(buf_1->data(), kSize, false);
1074
1075  std::string key("the first key");
1076  disk_cache::Entry* entry;
1077  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
1078
1079  // This loop writes back to back starting from offset 0 and 9000.
1080  for (int i = 0; i < kSize; i += 1024) {
1081    scoped_refptr<net::WrappedIOBuffer> buf_3 =
1082      new net::WrappedIOBuffer(buf_1->data() + i);
1083    VerifySparseIO(entry, i, buf_3, 1024, false, buf_2);
1084    VerifySparseIO(entry, 9000 + i, buf_3, 1024, false, buf_2);
1085  }
1086
1087  // Make sure we have data written.
1088  VerifyContentSparseIO(entry, 0, buf_1->data(), kSize, false);
1089  VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize, false);
1090
1091  // This tests a large write that spans 3 entries from a misaligned offset.
1092  VerifySparseIO(entry, 20481, buf_1, 8192, false, buf_2);
1093
1094  entry->Close();
1095}
1096
1097TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
1098  SetMemoryOnlyMode();
1099  InitCache();
1100
1101  const int kSize = 8192;
1102  scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
1103  CacheTestFillBuffer(buf->data(), kSize, false);
1104
1105  disk_cache::Entry* entry;
1106  std::string key("the first key");
1107  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
1108
1109  // Writes in the middle of an entry.
1110  EXPECT_EQ(1024, entry->WriteSparseData(0, buf, 1024, NULL));
1111  EXPECT_EQ(1024, entry->WriteSparseData(5120, buf, 1024, NULL));
1112  EXPECT_EQ(1024, entry->WriteSparseData(10000, buf, 1024, NULL));
1113
1114  // Writes in the middle of an entry and spans 2 child entries.
1115  EXPECT_EQ(8192, entry->WriteSparseData(50000, buf, 8192, NULL));
1116
1117  int64 start;
1118  // Test that we stop at a discontinuous child at the second block.
1119  EXPECT_EQ(1024, entry->GetAvailableRange(0, 10000, &start));
1120  EXPECT_EQ(0, start);
1121
1122  // Test that number of bytes is reported correctly when we start from the
1123  // middle of a filled region.
1124  EXPECT_EQ(512, entry->GetAvailableRange(512, 10000, &start));
1125  EXPECT_EQ(512, start);
1126
1127  // Test that we found bytes in the child of next block.
1128  EXPECT_EQ(1024, entry->GetAvailableRange(1024, 10000, &start));
1129  EXPECT_EQ(5120, start);
1130
1131  // Test that the desired length is respected. It starts within a filled
1132  // region.
1133  EXPECT_EQ(512, entry->GetAvailableRange(5500, 512, &start));
1134  EXPECT_EQ(5500, start);
1135
1136  // Test that the desired length is respected. It starts before a filled
1137  // region.
1138  EXPECT_EQ(500, entry->GetAvailableRange(5000, 620, &start));
1139  EXPECT_EQ(5120, start);
1140
1141  // Test that multiple blocks are scanned.
1142  EXPECT_EQ(8192, entry->GetAvailableRange(40000, 20000, &start));
1143  EXPECT_EQ(50000, start);
1144
1145  entry->Close();
1146}
1147
1148void DiskCacheEntryTest::DoomSparseEntry() {
1149  std::string key1("the first key");
1150  std::string key2("the second key");
1151  disk_cache::Entry *entry1, *entry2;
1152  ASSERT_TRUE(cache_->CreateEntry(key1, &entry1));
1153  ASSERT_TRUE(cache_->CreateEntry(key2, &entry2));
1154
1155  const int kSize = 4 * 1024;
1156  scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
1157  CacheTestFillBuffer(buf->data(), kSize, false);
1158
1159  int64 offset = 1024;
1160  // Write to a bunch of ranges.
1161  for (int i = 0; i < 12; i++) {
1162    EXPECT_EQ(kSize, entry1->WriteSparseData(offset, buf, kSize, NULL));
1163    // Keep the second map under the default size.
1164    if (i < 9)
1165      EXPECT_EQ(kSize, entry2->WriteSparseData(offset, buf, kSize, NULL));
1166    offset *= 4;
1167  }
1168
1169  if (memory_only_)
1170    EXPECT_EQ(2, cache_->GetEntryCount());
1171  else
1172    EXPECT_EQ(15, cache_->GetEntryCount());
1173
1174  // Doom the first entry while it's still open.
1175  entry1->Doom();
1176  entry1->Close();
1177  entry2->Close();
1178
1179  // Doom the second entry after it's fully saved.
1180  EXPECT_TRUE(cache_->DoomEntry(key2));
1181
1182  // Make sure we do all needed work. This may fail for entry2 if between Close
1183  // and DoomEntry the system decides to remove all traces of the file from the
1184  // system cache so we don't see that there is pending IO.
1185  MessageLoop::current()->RunAllPending();
1186
1187  if (memory_only_) {
1188    EXPECT_EQ(0, cache_->GetEntryCount());
1189  } else {
1190    if (5 == cache_->GetEntryCount()) {
1191      // Most likely we are waiting for the result of reading the sparse info
1192      // (it's always async on Posix so it is easy to miss). Unfortunately we
1193      // don't have any signal to watch for so we can only wait.
1194      PlatformThread::Sleep(500);
1195      MessageLoop::current()->RunAllPending();
1196    }
1197    EXPECT_EQ(0, cache_->GetEntryCount());
1198  }
1199}
1200
1201TEST_F(DiskCacheEntryTest, DoomSparseEntry) {
1202  InitCache();
1203  DoomSparseEntry();
1204}
1205
1206TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) {
1207  SetMemoryOnlyMode();
1208  InitCache();
1209  DoomSparseEntry();
1210}
1211
1212void DiskCacheEntryTest::PartialSparseEntry() {
1213  std::string key("the first key");
1214  disk_cache::Entry* entry;
1215  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
1216
1217  // We should be able to deal with IO that is not aligned to the block size
1218  // of a sparse entry, at least to write a big range without leaving holes.
1219  const int kSize = 4 * 1024;
1220  const int kSmallSize = 128;
1221  scoped_refptr<net::IOBuffer> buf1 = new net::IOBuffer(kSize);
1222  CacheTestFillBuffer(buf1->data(), kSize, false);
1223
1224  // The first write is just to extend the entry. The third write occupies
1225  // a 1KB block partially, it may not be written internally depending on the
1226  // implementation.
1227  EXPECT_EQ(kSize, entry->WriteSparseData(20000, buf1, kSize, NULL));
1228  EXPECT_EQ(kSize, entry->WriteSparseData(500, buf1, kSize, NULL));
1229  EXPECT_EQ(kSmallSize,
1230            entry->WriteSparseData(1080321, buf1, kSmallSize, NULL));
1231  entry->Close();
1232  ASSERT_TRUE(cache_->OpenEntry(key, &entry));
1233
1234  scoped_refptr<net::IOBuffer> buf2 = new net::IOBuffer(kSize);
1235  memset(buf2->data(), 0, kSize);
1236  EXPECT_EQ(0, entry->ReadSparseData(8000, buf2, kSize, NULL));
1237
1238  EXPECT_EQ(500, entry->ReadSparseData(kSize, buf2, kSize, NULL));
1239  EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
1240  EXPECT_EQ(0, entry->ReadSparseData(0, buf2, kSize, NULL));
1241
1242  // This read should not change anything.
1243  EXPECT_EQ(96, entry->ReadSparseData(24000, buf2, kSize, NULL));
1244  EXPECT_EQ(500, entry->ReadSparseData(kSize, buf2, kSize, NULL));
1245  EXPECT_EQ(0, entry->ReadSparseData(499, buf2, kSize, NULL));
1246
1247  int64 start;
1248  if (memory_only_) {
1249    EXPECT_EQ(100, entry->GetAvailableRange(0, 600, &start));
1250    EXPECT_EQ(500, start);
1251  } else {
1252    EXPECT_EQ(1024, entry->GetAvailableRange(0, 2048, &start));
1253    EXPECT_EQ(1024, start);
1254  }
1255  EXPECT_EQ(500, entry->GetAvailableRange(kSize, kSize, &start));
1256  EXPECT_EQ(kSize, start);
1257  EXPECT_EQ(3616, entry->GetAvailableRange(20 * 1024, 10000, &start));
1258  EXPECT_EQ(20 * 1024, start);
1259
1260  // 1. Query before a filled 1KB block.
1261  // 2. Query within a filled 1KB block.
1262  // 3. Query beyond a filled 1KB block.
1263  if (memory_only_) {
1264    EXPECT_EQ(3496, entry->GetAvailableRange(19400, kSize, &start));
1265    EXPECT_EQ(20000, start);
1266  } else {
1267    EXPECT_EQ(3016, entry->GetAvailableRange(19400, kSize, &start));
1268    EXPECT_EQ(20480, start);
1269  }
1270  EXPECT_EQ(1523, entry->GetAvailableRange(3073, kSize, &start));
1271  EXPECT_EQ(3073, start);
1272  EXPECT_EQ(0, entry->GetAvailableRange(4600, kSize, &start));
1273  EXPECT_EQ(4600, start);
1274
1275  // Now make another write and verify that there is no hole in between.
1276  EXPECT_EQ(kSize, entry->WriteSparseData(500 + kSize, buf1, kSize, NULL));
1277  EXPECT_EQ(7 * 1024 + 500, entry->GetAvailableRange(1024, 10000, &start));
1278  EXPECT_EQ(1024, start);
1279  EXPECT_EQ(kSize, entry->ReadSparseData(kSize, buf2, kSize, NULL));
1280  EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500));
1281  EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500));
1282
1283  entry->Close();
1284}
1285
1286TEST_F(DiskCacheEntryTest, PartialSparseEntry) {
1287  InitCache();
1288  PartialSparseEntry();
1289}
1290
1291TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) {
1292  SetMemoryOnlyMode();
1293  InitCache();
1294  PartialSparseEntry();
1295}
1296
1297TEST_F(DiskCacheEntryTest, CleanupSparseEntry) {
1298  InitCache();
1299  std::string key("the first key");
1300  disk_cache::Entry* entry;
1301  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
1302
1303  // Corrupt sparse children should be removed automatically.
1304  const int kSize = 4 * 1024;
1305  scoped_refptr<net::IOBuffer> buf1 = new net::IOBuffer(kSize);
1306  CacheTestFillBuffer(buf1->data(), kSize, false);
1307
1308  const int k1Meg = 1024 * 1024;
1309  EXPECT_EQ(kSize, entry->WriteSparseData(8192, buf1, kSize, NULL));
1310  EXPECT_EQ(kSize, entry->WriteSparseData(k1Meg + 8192, buf1, kSize, NULL));
1311  EXPECT_EQ(kSize, entry->WriteSparseData(2 * k1Meg + 8192, buf1, kSize, NULL));
1312  entry->Close();
1313  EXPECT_EQ(4, cache_->GetEntryCount());
1314
1315  void* iter = NULL;
1316  int count = 0;
1317  std::string child_key[2];
1318  while (cache_->OpenNextEntry(&iter, &entry)) {
1319    ASSERT_TRUE(entry != NULL);
1320    // Writing to an entry will alter the LRU list and invalidate the iterator.
1321    if (entry->GetKey() != key && count < 2)
1322      child_key[count++] = entry->GetKey();
1323    entry->Close();
1324  }
1325  for (int i = 0; i < 2; i++) {
1326    ASSERT_TRUE(cache_->OpenEntry(child_key[i], &entry));
1327    // Overwrite the header's magic and signature.
1328    EXPECT_EQ(12, entry->WriteData(2, 0, buf1, 12, NULL, false));
1329    entry->Close();
1330  }
1331
1332  EXPECT_EQ(4, cache_->GetEntryCount());
1333  ASSERT_TRUE(cache_->OpenEntry(key, &entry));
1334
1335  // Two children should be gone. One while reading and one while writing.
1336  EXPECT_EQ(0, entry->ReadSparseData(2 * k1Meg + 8192, buf1, kSize, NULL));
1337  EXPECT_EQ(kSize, entry->WriteSparseData(k1Meg + 16384, buf1, kSize, NULL));
1338  EXPECT_EQ(0, entry->ReadSparseData(k1Meg + 8192, buf1, kSize, NULL));
1339
1340  // We never touched this one.
1341  EXPECT_EQ(kSize, entry->ReadSparseData(8192, buf1, kSize, NULL));
1342  entry->Close();
1343
1344  // We re-created one of the corrupt children.
1345  EXPECT_EQ(3, cache_->GetEntryCount());
1346}
1347
1348TEST_F(DiskCacheEntryTest, CancelSparseIO) {
1349  InitCache();
1350  std::string key("the first key");
1351  disk_cache::Entry* entry;
1352  ASSERT_TRUE(cache_->CreateEntry(key, &entry));
1353
1354  const int kSize = 40 * 1024;
1355  scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
1356  CacheTestFillBuffer(buf->data(), kSize, false);
1357
1358  TestCompletionCallback cb1, cb2, cb3, cb4;
1359  int64 offset = 0;
1360  int tries = 0;
1361  const int maxtries = 100;   // Avoid hang on infinitely fast disks
1362  for (int ret = 0; ret != net::ERR_IO_PENDING; offset += kSize * 4) {
1363    ret = entry->WriteSparseData(offset, buf, kSize, &cb1);
1364    if (++tries > maxtries) {
1365       LOG(ERROR) << "Data writes never come back PENDING; skipping test";
1366       entry->Close();
1367       return;
1368    }
1369  }
1370
1371  // Cannot use the entry at this point.
1372  offset = 0;
1373  EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
1374            entry->GetAvailableRange(offset, kSize, &offset));
1375  EXPECT_EQ(net::OK, entry->ReadyForSparseIO(&cb2));
1376
1377  // We cancel the pending operation, and register multiple notifications.
1378  entry->CancelSparseIO();
1379  EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb2));
1380  EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb3));
1381  entry->CancelSparseIO();  // Should be a no op at this point.
1382  EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(&cb4));
1383
1384  offset = 0;
1385  EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
1386            entry->GetAvailableRange(offset, kSize, &offset));
1387  EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
1388            entry->ReadSparseData(offset, buf, kSize, NULL));
1389  EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED,
1390            entry->WriteSparseData(offset, buf, kSize, NULL));
1391
1392  // Now see if we receive all notifications.
1393  EXPECT_EQ(kSize, cb1.GetResult(net::ERR_IO_PENDING));
1394  EXPECT_EQ(net::OK, cb2.GetResult(net::ERR_IO_PENDING));
1395  EXPECT_EQ(net::OK, cb3.GetResult(net::ERR_IO_PENDING));
1396  EXPECT_EQ(net::OK, cb4.GetResult(net::ERR_IO_PENDING));
1397
1398  EXPECT_EQ(kSize, entry->GetAvailableRange(offset, kSize, &offset));
1399  EXPECT_EQ(net::OK, entry->ReadyForSparseIO(&cb2));
1400  entry->Close();
1401}
1402