ItaniumMangle.cpp revision 4e4d08403ca5cfd4d558fa2936215d3a4e5a528d
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29#include "llvm/ADT/StringExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Support/ErrorHandling.h"
32
33#define MANGLE_CHECKER 0
34
35#if MANGLE_CHECKER
36#include <cxxabi.h>
37#endif
38
39using namespace clang;
40
41namespace {
42
43/// \brief Retrieve the declaration context that should be used when mangling
44/// the given declaration.
45static const DeclContext *getEffectiveDeclContext(const Decl *D) {
46  // The ABI assumes that lambda closure types that occur within
47  // default arguments live in the context of the function. However, due to
48  // the way in which Clang parses and creates function declarations, this is
49  // not the case: the lambda closure type ends up living in the context
50  // where the function itself resides, because the function declaration itself
51  // had not yet been created. Fix the context here.
52  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
53    if (RD->isLambda())
54      if (ParmVarDecl *ContextParam
55            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
56        return ContextParam->getDeclContext();
57  }
58
59  return D->getDeclContext();
60}
61
62static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
63  return getEffectiveDeclContext(cast<Decl>(DC));
64}
65
66static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
67  const DeclContext *DC = dyn_cast<DeclContext>(ND);
68  if (!DC)
69    DC = getEffectiveDeclContext(ND);
70  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
71    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
72    if (isa<FunctionDecl>(Parent))
73      return dyn_cast<CXXRecordDecl>(DC);
74    DC = Parent;
75  }
76  return 0;
77}
78
79static const FunctionDecl *getStructor(const FunctionDecl *fn) {
80  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
81    return ftd->getTemplatedDecl();
82
83  return fn;
84}
85
86static const NamedDecl *getStructor(const NamedDecl *decl) {
87  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
88  return (fn ? getStructor(fn) : decl);
89}
90
91static const unsigned UnknownArity = ~0U;
92
93class ItaniumMangleContext : public MangleContext {
94  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
95  unsigned Discriminator;
96  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
97
98public:
99  explicit ItaniumMangleContext(ASTContext &Context,
100                                DiagnosticsEngine &Diags)
101    : MangleContext(Context, Diags) { }
102
103  uint64_t getAnonymousStructId(const TagDecl *TD) {
104    std::pair<llvm::DenseMap<const TagDecl *,
105      uint64_t>::iterator, bool> Result =
106      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
107    return Result.first->second;
108  }
109
110  void startNewFunction() {
111    MangleContext::startNewFunction();
112    mangleInitDiscriminator();
113  }
114
115  /// @name Mangler Entry Points
116  /// @{
117
118  bool shouldMangleDeclName(const NamedDecl *D);
119  void mangleName(const NamedDecl *D, raw_ostream &);
120  void mangleThunk(const CXXMethodDecl *MD,
121                   const ThunkInfo &Thunk,
122                   raw_ostream &);
123  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
124                          const ThisAdjustment &ThisAdjustment,
125                          raw_ostream &);
126  void mangleReferenceTemporary(const VarDecl *D,
127                                raw_ostream &);
128  void mangleCXXVTable(const CXXRecordDecl *RD,
129                       raw_ostream &);
130  void mangleCXXVTT(const CXXRecordDecl *RD,
131                    raw_ostream &);
132  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
133                           const CXXRecordDecl *Type,
134                           raw_ostream &);
135  void mangleCXXRTTI(QualType T, raw_ostream &);
136  void mangleCXXRTTIName(QualType T, raw_ostream &);
137  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
138                     raw_ostream &);
139  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
140                     raw_ostream &);
141
142  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
143
144  void mangleInitDiscriminator() {
145    Discriminator = 0;
146  }
147
148  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
149    // Lambda closure types with external linkage (indicated by a
150    // non-zero lambda mangling number) have their own numbering scheme, so
151    // they do not need a discriminator.
152    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
153      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
154        return false;
155
156    unsigned &discriminator = Uniquifier[ND];
157    if (!discriminator)
158      discriminator = ++Discriminator;
159    if (discriminator == 1)
160      return false;
161    disc = discriminator-2;
162    return true;
163  }
164  /// @}
165};
166
167/// CXXNameMangler - Manage the mangling of a single name.
168class CXXNameMangler {
169  ItaniumMangleContext &Context;
170  raw_ostream &Out;
171
172  /// The "structor" is the top-level declaration being mangled, if
173  /// that's not a template specialization; otherwise it's the pattern
174  /// for that specialization.
175  const NamedDecl *Structor;
176  unsigned StructorType;
177
178  /// SeqID - The next subsitution sequence number.
179  unsigned SeqID;
180
181  class FunctionTypeDepthState {
182    unsigned Bits;
183
184    enum { InResultTypeMask = 1 };
185
186  public:
187    FunctionTypeDepthState() : Bits(0) {}
188
189    /// The number of function types we're inside.
190    unsigned getDepth() const {
191      return Bits >> 1;
192    }
193
194    /// True if we're in the return type of the innermost function type.
195    bool isInResultType() const {
196      return Bits & InResultTypeMask;
197    }
198
199    FunctionTypeDepthState push() {
200      FunctionTypeDepthState tmp = *this;
201      Bits = (Bits & ~InResultTypeMask) + 2;
202      return tmp;
203    }
204
205    void enterResultType() {
206      Bits |= InResultTypeMask;
207    }
208
209    void leaveResultType() {
210      Bits &= ~InResultTypeMask;
211    }
212
213    void pop(FunctionTypeDepthState saved) {
214      assert(getDepth() == saved.getDepth() + 1);
215      Bits = saved.Bits;
216    }
217
218  } FunctionTypeDepth;
219
220  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
221
222  ASTContext &getASTContext() const { return Context.getASTContext(); }
223
224public:
225  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
226                 const NamedDecl *D = 0)
227    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
228      SeqID(0) {
229    // These can't be mangled without a ctor type or dtor type.
230    assert(!D || (!isa<CXXDestructorDecl>(D) &&
231                  !isa<CXXConstructorDecl>(D)));
232  }
233  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
234                 const CXXConstructorDecl *D, CXXCtorType Type)
235    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
236      SeqID(0) { }
237  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
238                 const CXXDestructorDecl *D, CXXDtorType Type)
239    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
240      SeqID(0) { }
241
242#if MANGLE_CHECKER
243  ~CXXNameMangler() {
244    if (Out.str()[0] == '\01')
245      return;
246
247    int status = 0;
248    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
249    assert(status == 0 && "Could not demangle mangled name!");
250    free(result);
251  }
252#endif
253  raw_ostream &getStream() { return Out; }
254
255  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
256  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
257  void mangleNumber(const llvm::APSInt &I);
258  void mangleNumber(int64_t Number);
259  void mangleFloat(const llvm::APFloat &F);
260  void mangleFunctionEncoding(const FunctionDecl *FD);
261  void mangleName(const NamedDecl *ND);
262  void mangleType(QualType T);
263  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
264
265private:
266  bool mangleSubstitution(const NamedDecl *ND);
267  bool mangleSubstitution(QualType T);
268  bool mangleSubstitution(TemplateName Template);
269  bool mangleSubstitution(uintptr_t Ptr);
270
271  void mangleExistingSubstitution(QualType type);
272  void mangleExistingSubstitution(TemplateName name);
273
274  bool mangleStandardSubstitution(const NamedDecl *ND);
275
276  void addSubstitution(const NamedDecl *ND) {
277    ND = cast<NamedDecl>(ND->getCanonicalDecl());
278
279    addSubstitution(reinterpret_cast<uintptr_t>(ND));
280  }
281  void addSubstitution(QualType T);
282  void addSubstitution(TemplateName Template);
283  void addSubstitution(uintptr_t Ptr);
284
285  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
286                              NamedDecl *firstQualifierLookup,
287                              bool recursive = false);
288  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
289                            NamedDecl *firstQualifierLookup,
290                            DeclarationName name,
291                            unsigned KnownArity = UnknownArity);
292
293  void mangleName(const TemplateDecl *TD,
294                  const TemplateArgument *TemplateArgs,
295                  unsigned NumTemplateArgs);
296  void mangleUnqualifiedName(const NamedDecl *ND) {
297    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
298  }
299  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
300                             unsigned KnownArity);
301  void mangleUnscopedName(const NamedDecl *ND);
302  void mangleUnscopedTemplateName(const TemplateDecl *ND);
303  void mangleUnscopedTemplateName(TemplateName);
304  void mangleSourceName(const IdentifierInfo *II);
305  void mangleLocalName(const NamedDecl *ND);
306  void mangleLambda(const CXXRecordDecl *Lambda);
307  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
308                        bool NoFunction=false);
309  void mangleNestedName(const TemplateDecl *TD,
310                        const TemplateArgument *TemplateArgs,
311                        unsigned NumTemplateArgs);
312  void manglePrefix(NestedNameSpecifier *qualifier);
313  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
314  void manglePrefix(QualType type);
315  void mangleTemplatePrefix(const TemplateDecl *ND);
316  void mangleTemplatePrefix(TemplateName Template);
317  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
318  void mangleQualifiers(Qualifiers Quals);
319  void mangleRefQualifier(RefQualifierKind RefQualifier);
320
321  void mangleObjCMethodName(const ObjCMethodDecl *MD);
322
323  // Declare manglers for every type class.
324#define ABSTRACT_TYPE(CLASS, PARENT)
325#define NON_CANONICAL_TYPE(CLASS, PARENT)
326#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
327#include "clang/AST/TypeNodes.def"
328
329  void mangleType(const TagType*);
330  void mangleType(TemplateName);
331  void mangleBareFunctionType(const FunctionType *T,
332                              bool MangleReturnType);
333  void mangleNeonVectorType(const VectorType *T);
334
335  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
336  void mangleMemberExpr(const Expr *base, bool isArrow,
337                        NestedNameSpecifier *qualifier,
338                        NamedDecl *firstQualifierLookup,
339                        DeclarationName name,
340                        unsigned knownArity);
341  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
342  void mangleCXXCtorType(CXXCtorType T);
343  void mangleCXXDtorType(CXXDtorType T);
344
345  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
346  void mangleTemplateArgs(TemplateName Template,
347                          const TemplateArgument *TemplateArgs,
348                          unsigned NumTemplateArgs);
349  void mangleTemplateArgs(const TemplateParameterList &PL,
350                          const TemplateArgument *TemplateArgs,
351                          unsigned NumTemplateArgs);
352  void mangleTemplateArgs(const TemplateParameterList &PL,
353                          const TemplateArgumentList &AL);
354  void mangleTemplateArg(const NamedDecl *P, TemplateArgument A);
355  void mangleUnresolvedTemplateArgs(const TemplateArgument *args,
356                                    unsigned numArgs);
357
358  void mangleTemplateParameter(unsigned Index);
359
360  void mangleFunctionParam(const ParmVarDecl *parm);
361};
362
363}
364
365static bool isInCLinkageSpecification(const Decl *D) {
366  D = D->getCanonicalDecl();
367  for (const DeclContext *DC = getEffectiveDeclContext(D);
368       !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
369    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
370      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
371  }
372
373  return false;
374}
375
376bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
377  // In C, functions with no attributes never need to be mangled. Fastpath them.
378  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
379    return false;
380
381  // Any decl can be declared with __asm("foo") on it, and this takes precedence
382  // over all other naming in the .o file.
383  if (D->hasAttr<AsmLabelAttr>())
384    return true;
385
386  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
387  // (always) as does passing a C++ member function and a function
388  // whose name is not a simple identifier.
389  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
390  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
391             !FD->getDeclName().isIdentifier()))
392    return true;
393
394  // Otherwise, no mangling is done outside C++ mode.
395  if (!getASTContext().getLangOpts().CPlusPlus)
396    return false;
397
398  // Variables at global scope with non-internal linkage are not mangled
399  if (!FD) {
400    const DeclContext *DC = getEffectiveDeclContext(D);
401    // Check for extern variable declared locally.
402    if (DC->isFunctionOrMethod() && D->hasLinkage())
403      while (!DC->isNamespace() && !DC->isTranslationUnit())
404        DC = getEffectiveParentContext(DC);
405    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
406      return false;
407  }
408
409  // Class members are always mangled.
410  if (getEffectiveDeclContext(D)->isRecord())
411    return true;
412
413  // C functions and "main" are not mangled.
414  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
415    return false;
416
417  return true;
418}
419
420void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
421  // Any decl can be declared with __asm("foo") on it, and this takes precedence
422  // over all other naming in the .o file.
423  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
424    // If we have an asm name, then we use it as the mangling.
425
426    // Adding the prefix can cause problems when one file has a "foo" and
427    // another has a "\01foo". That is known to happen on ELF with the
428    // tricks normally used for producing aliases (PR9177). Fortunately the
429    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
430    // marker.  We also avoid adding the marker if this is an alias for an
431    // LLVM intrinsic.
432    StringRef UserLabelPrefix =
433      getASTContext().getTargetInfo().getUserLabelPrefix();
434    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
435      Out << '\01';  // LLVM IR Marker for __asm("foo")
436
437    Out << ALA->getLabel();
438    return;
439  }
440
441  // <mangled-name> ::= _Z <encoding>
442  //            ::= <data name>
443  //            ::= <special-name>
444  Out << Prefix;
445  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
446    mangleFunctionEncoding(FD);
447  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
448    mangleName(VD);
449  else
450    mangleName(cast<FieldDecl>(D));
451}
452
453void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
454  // <encoding> ::= <function name> <bare-function-type>
455  mangleName(FD);
456
457  // Don't mangle in the type if this isn't a decl we should typically mangle.
458  if (!Context.shouldMangleDeclName(FD))
459    return;
460
461  // Whether the mangling of a function type includes the return type depends on
462  // the context and the nature of the function. The rules for deciding whether
463  // the return type is included are:
464  //
465  //   1. Template functions (names or types) have return types encoded, with
466  //   the exceptions listed below.
467  //   2. Function types not appearing as part of a function name mangling,
468  //   e.g. parameters, pointer types, etc., have return type encoded, with the
469  //   exceptions listed below.
470  //   3. Non-template function names do not have return types encoded.
471  //
472  // The exceptions mentioned in (1) and (2) above, for which the return type is
473  // never included, are
474  //   1. Constructors.
475  //   2. Destructors.
476  //   3. Conversion operator functions, e.g. operator int.
477  bool MangleReturnType = false;
478  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
479    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
480          isa<CXXConversionDecl>(FD)))
481      MangleReturnType = true;
482
483    // Mangle the type of the primary template.
484    FD = PrimaryTemplate->getTemplatedDecl();
485  }
486
487  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
488                         MangleReturnType);
489}
490
491static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
492  while (isa<LinkageSpecDecl>(DC)) {
493    DC = getEffectiveParentContext(DC);
494  }
495
496  return DC;
497}
498
499/// isStd - Return whether a given namespace is the 'std' namespace.
500static bool isStd(const NamespaceDecl *NS) {
501  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
502                                ->isTranslationUnit())
503    return false;
504
505  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
506  return II && II->isStr("std");
507}
508
509// isStdNamespace - Return whether a given decl context is a toplevel 'std'
510// namespace.
511static bool isStdNamespace(const DeclContext *DC) {
512  if (!DC->isNamespace())
513    return false;
514
515  return isStd(cast<NamespaceDecl>(DC));
516}
517
518static const TemplateDecl *
519isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
520  // Check if we have a function template.
521  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
522    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
523      TemplateArgs = FD->getTemplateSpecializationArgs();
524      return TD;
525    }
526  }
527
528  // Check if we have a class template.
529  if (const ClassTemplateSpecializationDecl *Spec =
530        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
531    TemplateArgs = &Spec->getTemplateArgs();
532    return Spec->getSpecializedTemplate();
533  }
534
535  return 0;
536}
537
538void CXXNameMangler::mangleName(const NamedDecl *ND) {
539  //  <name> ::= <nested-name>
540  //         ::= <unscoped-name>
541  //         ::= <unscoped-template-name> <template-args>
542  //         ::= <local-name>
543  //
544  const DeclContext *DC = getEffectiveDeclContext(ND);
545
546  // If this is an extern variable declared locally, the relevant DeclContext
547  // is that of the containing namespace, or the translation unit.
548  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
549    while (!DC->isNamespace() && !DC->isTranslationUnit())
550      DC = getEffectiveParentContext(DC);
551  else if (GetLocalClassDecl(ND)) {
552    mangleLocalName(ND);
553    return;
554  }
555
556  DC = IgnoreLinkageSpecDecls(DC);
557
558  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
559    // Check if we have a template.
560    const TemplateArgumentList *TemplateArgs = 0;
561    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
562      mangleUnscopedTemplateName(TD);
563      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
564      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
565      return;
566    }
567
568    mangleUnscopedName(ND);
569    return;
570  }
571
572  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
573    mangleLocalName(ND);
574    return;
575  }
576
577  mangleNestedName(ND, DC);
578}
579void CXXNameMangler::mangleName(const TemplateDecl *TD,
580                                const TemplateArgument *TemplateArgs,
581                                unsigned NumTemplateArgs) {
582  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
583
584  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
585    mangleUnscopedTemplateName(TD);
586    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
587    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
588  } else {
589    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
590  }
591}
592
593void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
594  //  <unscoped-name> ::= <unqualified-name>
595  //                  ::= St <unqualified-name>   # ::std::
596
597  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
598    Out << "St";
599
600  mangleUnqualifiedName(ND);
601}
602
603void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
604  //     <unscoped-template-name> ::= <unscoped-name>
605  //                              ::= <substitution>
606  if (mangleSubstitution(ND))
607    return;
608
609  // <template-template-param> ::= <template-param>
610  if (const TemplateTemplateParmDecl *TTP
611                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
612    mangleTemplateParameter(TTP->getIndex());
613    return;
614  }
615
616  mangleUnscopedName(ND->getTemplatedDecl());
617  addSubstitution(ND);
618}
619
620void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
621  //     <unscoped-template-name> ::= <unscoped-name>
622  //                              ::= <substitution>
623  if (TemplateDecl *TD = Template.getAsTemplateDecl())
624    return mangleUnscopedTemplateName(TD);
625
626  if (mangleSubstitution(Template))
627    return;
628
629  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
630  assert(Dependent && "Not a dependent template name?");
631  if (const IdentifierInfo *Id = Dependent->getIdentifier())
632    mangleSourceName(Id);
633  else
634    mangleOperatorName(Dependent->getOperator(), UnknownArity);
635
636  addSubstitution(Template);
637}
638
639void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
640  // ABI:
641  //   Floating-point literals are encoded using a fixed-length
642  //   lowercase hexadecimal string corresponding to the internal
643  //   representation (IEEE on Itanium), high-order bytes first,
644  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
645  //   on Itanium.
646  // The 'without leading zeroes' thing seems to be an editorial
647  // mistake; see the discussion on cxx-abi-dev beginning on
648  // 2012-01-16.
649
650  // Our requirements here are just barely wierd enough to justify
651  // using a custom algorithm instead of post-processing APInt::toString().
652
653  llvm::APInt valueBits = f.bitcastToAPInt();
654  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
655  assert(numCharacters != 0);
656
657  // Allocate a buffer of the right number of characters.
658  llvm::SmallVector<char, 20> buffer;
659  buffer.set_size(numCharacters);
660
661  // Fill the buffer left-to-right.
662  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
663    // The bit-index of the next hex digit.
664    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
665
666    // Project out 4 bits starting at 'digitIndex'.
667    llvm::integerPart hexDigit
668      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
669    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
670    hexDigit &= 0xF;
671
672    // Map that over to a lowercase hex digit.
673    static const char charForHex[16] = {
674      '0', '1', '2', '3', '4', '5', '6', '7',
675      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
676    };
677    buffer[stringIndex] = charForHex[hexDigit];
678  }
679
680  Out.write(buffer.data(), numCharacters);
681}
682
683void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
684  if (Value.isSigned() && Value.isNegative()) {
685    Out << 'n';
686    Value.abs().print(Out, true);
687  } else
688    Value.print(Out, Value.isSigned());
689}
690
691void CXXNameMangler::mangleNumber(int64_t Number) {
692  //  <number> ::= [n] <non-negative decimal integer>
693  if (Number < 0) {
694    Out << 'n';
695    Number = -Number;
696  }
697
698  Out << Number;
699}
700
701void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
702  //  <call-offset>  ::= h <nv-offset> _
703  //                 ::= v <v-offset> _
704  //  <nv-offset>    ::= <offset number>        # non-virtual base override
705  //  <v-offset>     ::= <offset number> _ <virtual offset number>
706  //                      # virtual base override, with vcall offset
707  if (!Virtual) {
708    Out << 'h';
709    mangleNumber(NonVirtual);
710    Out << '_';
711    return;
712  }
713
714  Out << 'v';
715  mangleNumber(NonVirtual);
716  Out << '_';
717  mangleNumber(Virtual);
718  Out << '_';
719}
720
721void CXXNameMangler::manglePrefix(QualType type) {
722  if (const TemplateSpecializationType *TST =
723        type->getAs<TemplateSpecializationType>()) {
724    if (!mangleSubstitution(QualType(TST, 0))) {
725      mangleTemplatePrefix(TST->getTemplateName());
726
727      // FIXME: GCC does not appear to mangle the template arguments when
728      // the template in question is a dependent template name. Should we
729      // emulate that badness?
730      mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
731                         TST->getNumArgs());
732      addSubstitution(QualType(TST, 0));
733    }
734  } else if (const DependentTemplateSpecializationType *DTST
735               = type->getAs<DependentTemplateSpecializationType>()) {
736    TemplateName Template
737      = getASTContext().getDependentTemplateName(DTST->getQualifier(),
738                                                 DTST->getIdentifier());
739    mangleTemplatePrefix(Template);
740
741    // FIXME: GCC does not appear to mangle the template arguments when
742    // the template in question is a dependent template name. Should we
743    // emulate that badness?
744    mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs());
745  } else {
746    // We use the QualType mangle type variant here because it handles
747    // substitutions.
748    mangleType(type);
749  }
750}
751
752/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
753///
754/// \param firstQualifierLookup - the entity found by unqualified lookup
755///   for the first name in the qualifier, if this is for a member expression
756/// \param recursive - true if this is being called recursively,
757///   i.e. if there is more prefix "to the right".
758void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
759                                            NamedDecl *firstQualifierLookup,
760                                            bool recursive) {
761
762  // x, ::x
763  // <unresolved-name> ::= [gs] <base-unresolved-name>
764
765  // T::x / decltype(p)::x
766  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
767
768  // T::N::x /decltype(p)::N::x
769  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
770  //                       <base-unresolved-name>
771
772  // A::x, N::y, A<T>::z; "gs" means leading "::"
773  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
774  //                       <base-unresolved-name>
775
776  switch (qualifier->getKind()) {
777  case NestedNameSpecifier::Global:
778    Out << "gs";
779
780    // We want an 'sr' unless this is the entire NNS.
781    if (recursive)
782      Out << "sr";
783
784    // We never want an 'E' here.
785    return;
786
787  case NestedNameSpecifier::Namespace:
788    if (qualifier->getPrefix())
789      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
790                             /*recursive*/ true);
791    else
792      Out << "sr";
793    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
794    break;
795  case NestedNameSpecifier::NamespaceAlias:
796    if (qualifier->getPrefix())
797      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
798                             /*recursive*/ true);
799    else
800      Out << "sr";
801    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
802    break;
803
804  case NestedNameSpecifier::TypeSpec:
805  case NestedNameSpecifier::TypeSpecWithTemplate: {
806    const Type *type = qualifier->getAsType();
807
808    // We only want to use an unresolved-type encoding if this is one of:
809    //   - a decltype
810    //   - a template type parameter
811    //   - a template template parameter with arguments
812    // In all of these cases, we should have no prefix.
813    if (qualifier->getPrefix()) {
814      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
815                             /*recursive*/ true);
816    } else {
817      // Otherwise, all the cases want this.
818      Out << "sr";
819    }
820
821    // Only certain other types are valid as prefixes;  enumerate them.
822    switch (type->getTypeClass()) {
823    case Type::Builtin:
824    case Type::Complex:
825    case Type::Pointer:
826    case Type::BlockPointer:
827    case Type::LValueReference:
828    case Type::RValueReference:
829    case Type::MemberPointer:
830    case Type::ConstantArray:
831    case Type::IncompleteArray:
832    case Type::VariableArray:
833    case Type::DependentSizedArray:
834    case Type::DependentSizedExtVector:
835    case Type::Vector:
836    case Type::ExtVector:
837    case Type::FunctionProto:
838    case Type::FunctionNoProto:
839    case Type::Enum:
840    case Type::Paren:
841    case Type::Elaborated:
842    case Type::Attributed:
843    case Type::Auto:
844    case Type::PackExpansion:
845    case Type::ObjCObject:
846    case Type::ObjCInterface:
847    case Type::ObjCObjectPointer:
848    case Type::Atomic:
849      llvm_unreachable("type is illegal as a nested name specifier");
850
851    case Type::SubstTemplateTypeParmPack:
852      // FIXME: not clear how to mangle this!
853      // template <class T...> class A {
854      //   template <class U...> void foo(decltype(T::foo(U())) x...);
855      // };
856      Out << "_SUBSTPACK_";
857      break;
858
859    // <unresolved-type> ::= <template-param>
860    //                   ::= <decltype>
861    //                   ::= <template-template-param> <template-args>
862    // (this last is not official yet)
863    case Type::TypeOfExpr:
864    case Type::TypeOf:
865    case Type::Decltype:
866    case Type::TemplateTypeParm:
867    case Type::UnaryTransform:
868    case Type::SubstTemplateTypeParm:
869    unresolvedType:
870      assert(!qualifier->getPrefix());
871
872      // We only get here recursively if we're followed by identifiers.
873      if (recursive) Out << 'N';
874
875      // This seems to do everything we want.  It's not really
876      // sanctioned for a substituted template parameter, though.
877      mangleType(QualType(type, 0));
878
879      // We never want to print 'E' directly after an unresolved-type,
880      // so we return directly.
881      return;
882
883    case Type::Typedef:
884      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
885      break;
886
887    case Type::UnresolvedUsing:
888      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
889                         ->getIdentifier());
890      break;
891
892    case Type::Record:
893      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
894      break;
895
896    case Type::TemplateSpecialization: {
897      const TemplateSpecializationType *tst
898        = cast<TemplateSpecializationType>(type);
899      TemplateName name = tst->getTemplateName();
900      switch (name.getKind()) {
901      case TemplateName::Template:
902      case TemplateName::QualifiedTemplate: {
903        TemplateDecl *temp = name.getAsTemplateDecl();
904
905        // If the base is a template template parameter, this is an
906        // unresolved type.
907        assert(temp && "no template for template specialization type");
908        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
909
910        mangleSourceName(temp->getIdentifier());
911        break;
912      }
913
914      case TemplateName::OverloadedTemplate:
915      case TemplateName::DependentTemplate:
916        llvm_unreachable("invalid base for a template specialization type");
917
918      case TemplateName::SubstTemplateTemplateParm: {
919        SubstTemplateTemplateParmStorage *subst
920          = name.getAsSubstTemplateTemplateParm();
921        mangleExistingSubstitution(subst->getReplacement());
922        break;
923      }
924
925      case TemplateName::SubstTemplateTemplateParmPack: {
926        // FIXME: not clear how to mangle this!
927        // template <template <class U> class T...> class A {
928        //   template <class U...> void foo(decltype(T<U>::foo) x...);
929        // };
930        Out << "_SUBSTPACK_";
931        break;
932      }
933      }
934
935      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
936      break;
937    }
938
939    case Type::InjectedClassName:
940      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
941                         ->getIdentifier());
942      break;
943
944    case Type::DependentName:
945      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
946      break;
947
948    case Type::DependentTemplateSpecialization: {
949      const DependentTemplateSpecializationType *tst
950        = cast<DependentTemplateSpecializationType>(type);
951      mangleSourceName(tst->getIdentifier());
952      mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs());
953      break;
954    }
955    }
956    break;
957  }
958
959  case NestedNameSpecifier::Identifier:
960    // Member expressions can have these without prefixes.
961    if (qualifier->getPrefix()) {
962      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
963                             /*recursive*/ true);
964    } else if (firstQualifierLookup) {
965
966      // Try to make a proper qualifier out of the lookup result, and
967      // then just recurse on that.
968      NestedNameSpecifier *newQualifier;
969      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
970        QualType type = getASTContext().getTypeDeclType(typeDecl);
971
972        // Pretend we had a different nested name specifier.
973        newQualifier = NestedNameSpecifier::Create(getASTContext(),
974                                                   /*prefix*/ 0,
975                                                   /*template*/ false,
976                                                   type.getTypePtr());
977      } else if (NamespaceDecl *nspace =
978                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
979        newQualifier = NestedNameSpecifier::Create(getASTContext(),
980                                                   /*prefix*/ 0,
981                                                   nspace);
982      } else if (NamespaceAliasDecl *alias =
983                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
984        newQualifier = NestedNameSpecifier::Create(getASTContext(),
985                                                   /*prefix*/ 0,
986                                                   alias);
987      } else {
988        // No sensible mangling to do here.
989        newQualifier = 0;
990      }
991
992      if (newQualifier)
993        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
994
995    } else {
996      Out << "sr";
997    }
998
999    mangleSourceName(qualifier->getAsIdentifier());
1000    break;
1001  }
1002
1003  // If this was the innermost part of the NNS, and we fell out to
1004  // here, append an 'E'.
1005  if (!recursive)
1006    Out << 'E';
1007}
1008
1009/// Mangle an unresolved-name, which is generally used for names which
1010/// weren't resolved to specific entities.
1011void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1012                                          NamedDecl *firstQualifierLookup,
1013                                          DeclarationName name,
1014                                          unsigned knownArity) {
1015  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1016  mangleUnqualifiedName(0, name, knownArity);
1017}
1018
1019static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1020  assert(RD->isAnonymousStructOrUnion() &&
1021         "Expected anonymous struct or union!");
1022
1023  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1024       I != E; ++I) {
1025    const FieldDecl *FD = *I;
1026
1027    if (FD->getIdentifier())
1028      return FD;
1029
1030    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
1031      if (const FieldDecl *NamedDataMember =
1032          FindFirstNamedDataMember(RT->getDecl()))
1033        return NamedDataMember;
1034    }
1035  }
1036
1037  // We didn't find a named data member.
1038  return 0;
1039}
1040
1041void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1042                                           DeclarationName Name,
1043                                           unsigned KnownArity) {
1044  //  <unqualified-name> ::= <operator-name>
1045  //                     ::= <ctor-dtor-name>
1046  //                     ::= <source-name>
1047  switch (Name.getNameKind()) {
1048  case DeclarationName::Identifier: {
1049    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1050      // We must avoid conflicts between internally- and externally-
1051      // linked variable and function declaration names in the same TU:
1052      //   void test() { extern void foo(); }
1053      //   static void foo();
1054      // This naming convention is the same as that followed by GCC,
1055      // though it shouldn't actually matter.
1056      if (ND && ND->getLinkage() == InternalLinkage &&
1057          getEffectiveDeclContext(ND)->isFileContext())
1058        Out << 'L';
1059
1060      mangleSourceName(II);
1061      break;
1062    }
1063
1064    // Otherwise, an anonymous entity.  We must have a declaration.
1065    assert(ND && "mangling empty name without declaration");
1066
1067    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1068      if (NS->isAnonymousNamespace()) {
1069        // This is how gcc mangles these names.
1070        Out << "12_GLOBAL__N_1";
1071        break;
1072      }
1073    }
1074
1075    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1076      // We must have an anonymous union or struct declaration.
1077      const RecordDecl *RD =
1078        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1079
1080      // Itanium C++ ABI 5.1.2:
1081      //
1082      //   For the purposes of mangling, the name of an anonymous union is
1083      //   considered to be the name of the first named data member found by a
1084      //   pre-order, depth-first, declaration-order walk of the data members of
1085      //   the anonymous union. If there is no such data member (i.e., if all of
1086      //   the data members in the union are unnamed), then there is no way for
1087      //   a program to refer to the anonymous union, and there is therefore no
1088      //   need to mangle its name.
1089      const FieldDecl *FD = FindFirstNamedDataMember(RD);
1090
1091      // It's actually possible for various reasons for us to get here
1092      // with an empty anonymous struct / union.  Fortunately, it
1093      // doesn't really matter what name we generate.
1094      if (!FD) break;
1095      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1096
1097      mangleSourceName(FD->getIdentifier());
1098      break;
1099    }
1100
1101    // We must have an anonymous struct.
1102    const TagDecl *TD = cast<TagDecl>(ND);
1103    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1104      assert(TD->getDeclContext() == D->getDeclContext() &&
1105             "Typedef should not be in another decl context!");
1106      assert(D->getDeclName().getAsIdentifierInfo() &&
1107             "Typedef was not named!");
1108      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1109      break;
1110    }
1111
1112    // <unnamed-type-name> ::= <closure-type-name>
1113    //
1114    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1115    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1116    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1117      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1118        mangleLambda(Record);
1119        break;
1120      }
1121    }
1122
1123    // Get a unique id for the anonymous struct.
1124    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1125
1126    // Mangle it as a source name in the form
1127    // [n] $_<id>
1128    // where n is the length of the string.
1129    SmallString<8> Str;
1130    Str += "$_";
1131    Str += llvm::utostr(AnonStructId);
1132
1133    Out << Str.size();
1134    Out << Str.str();
1135    break;
1136  }
1137
1138  case DeclarationName::ObjCZeroArgSelector:
1139  case DeclarationName::ObjCOneArgSelector:
1140  case DeclarationName::ObjCMultiArgSelector:
1141    llvm_unreachable("Can't mangle Objective-C selector names here!");
1142
1143  case DeclarationName::CXXConstructorName:
1144    if (ND == Structor)
1145      // If the named decl is the C++ constructor we're mangling, use the type
1146      // we were given.
1147      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1148    else
1149      // Otherwise, use the complete constructor name. This is relevant if a
1150      // class with a constructor is declared within a constructor.
1151      mangleCXXCtorType(Ctor_Complete);
1152    break;
1153
1154  case DeclarationName::CXXDestructorName:
1155    if (ND == Structor)
1156      // If the named decl is the C++ destructor we're mangling, use the type we
1157      // were given.
1158      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1159    else
1160      // Otherwise, use the complete destructor name. This is relevant if a
1161      // class with a destructor is declared within a destructor.
1162      mangleCXXDtorType(Dtor_Complete);
1163    break;
1164
1165  case DeclarationName::CXXConversionFunctionName:
1166    // <operator-name> ::= cv <type>    # (cast)
1167    Out << "cv";
1168    mangleType(Name.getCXXNameType());
1169    break;
1170
1171  case DeclarationName::CXXOperatorName: {
1172    unsigned Arity;
1173    if (ND) {
1174      Arity = cast<FunctionDecl>(ND)->getNumParams();
1175
1176      // If we have a C++ member function, we need to include the 'this' pointer.
1177      // FIXME: This does not make sense for operators that are static, but their
1178      // names stay the same regardless of the arity (operator new for instance).
1179      if (isa<CXXMethodDecl>(ND))
1180        Arity++;
1181    } else
1182      Arity = KnownArity;
1183
1184    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1185    break;
1186  }
1187
1188  case DeclarationName::CXXLiteralOperatorName:
1189    // FIXME: This mangling is not yet official.
1190    Out << "li";
1191    mangleSourceName(Name.getCXXLiteralIdentifier());
1192    break;
1193
1194  case DeclarationName::CXXUsingDirective:
1195    llvm_unreachable("Can't mangle a using directive name!");
1196  }
1197}
1198
1199void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1200  // <source-name> ::= <positive length number> <identifier>
1201  // <number> ::= [n] <non-negative decimal integer>
1202  // <identifier> ::= <unqualified source code identifier>
1203  Out << II->getLength() << II->getName();
1204}
1205
1206void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1207                                      const DeclContext *DC,
1208                                      bool NoFunction) {
1209  // <nested-name>
1210  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1211  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1212  //       <template-args> E
1213
1214  Out << 'N';
1215  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1216    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1217    mangleRefQualifier(Method->getRefQualifier());
1218  }
1219
1220  // Check if we have a template.
1221  const TemplateArgumentList *TemplateArgs = 0;
1222  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1223    mangleTemplatePrefix(TD);
1224    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1225    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1226  }
1227  else {
1228    manglePrefix(DC, NoFunction);
1229    mangleUnqualifiedName(ND);
1230  }
1231
1232  Out << 'E';
1233}
1234void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1235                                      const TemplateArgument *TemplateArgs,
1236                                      unsigned NumTemplateArgs) {
1237  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1238
1239  Out << 'N';
1240
1241  mangleTemplatePrefix(TD);
1242  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1243  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
1244
1245  Out << 'E';
1246}
1247
1248void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
1249  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1250  //              := Z <function encoding> E s [<discriminator>]
1251  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1252  //                 _ <entity name>
1253  // <discriminator> := _ <non-negative number>
1254  const DeclContext *DC = getEffectiveDeclContext(ND);
1255  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
1256    // Don't add objc method name mangling to locally declared function
1257    mangleUnqualifiedName(ND);
1258    return;
1259  }
1260
1261  Out << 'Z';
1262
1263  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
1264   mangleObjCMethodName(MD);
1265  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
1266    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
1267    Out << 'E';
1268
1269    // The parameter number is omitted for the last parameter, 0 for the
1270    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1271    // <entity name> will of course contain a <closure-type-name>: Its
1272    // numbering will be local to the particular argument in which it appears
1273    // -- other default arguments do not affect its encoding.
1274    bool SkipDiscriminator = false;
1275    if (RD->isLambda()) {
1276      if (const ParmVarDecl *Parm
1277                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
1278        if (const FunctionDecl *Func
1279              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1280          Out << 'd';
1281          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1282          if (Num > 1)
1283            mangleNumber(Num - 2);
1284          Out << '_';
1285          SkipDiscriminator = true;
1286        }
1287      }
1288    }
1289
1290    // Mangle the name relative to the closest enclosing function.
1291    if (ND == RD) // equality ok because RD derived from ND above
1292      mangleUnqualifiedName(ND);
1293    else
1294      mangleNestedName(ND, DC, true /*NoFunction*/);
1295
1296    if (!SkipDiscriminator) {
1297      unsigned disc;
1298      if (Context.getNextDiscriminator(RD, disc)) {
1299        if (disc < 10)
1300          Out << '_' << disc;
1301        else
1302          Out << "__" << disc << '_';
1303      }
1304    }
1305
1306    return;
1307  }
1308  else
1309    mangleFunctionEncoding(cast<FunctionDecl>(DC));
1310
1311  Out << 'E';
1312  mangleUnqualifiedName(ND);
1313}
1314
1315void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1316  // If the context of a closure type is an initializer for a class member
1317  // (static or nonstatic), it is encoded in a qualified name with a final
1318  // <prefix> of the form:
1319  //
1320  //   <data-member-prefix> := <member source-name> M
1321  //
1322  // Technically, the data-member-prefix is part of the <prefix>. However,
1323  // since a closure type will always be mangled with a prefix, it's easier
1324  // to emit that last part of the prefix here.
1325  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1326    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1327        Context->getDeclContext()->isRecord()) {
1328      if (const IdentifierInfo *Name
1329            = cast<NamedDecl>(Context)->getIdentifier()) {
1330        mangleSourceName(Name);
1331        Out << 'M';
1332      }
1333    }
1334  }
1335
1336  Out << "Ul";
1337  DeclarationName Name
1338    = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1339  const FunctionProtoType *Proto
1340    = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()->
1341        getAs<FunctionProtoType>();
1342  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1343  Out << "E";
1344
1345  // The number is omitted for the first closure type with a given
1346  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1347  // (in lexical order) with that same <lambda-sig> and context.
1348  //
1349  // The AST keeps track of the number for us.
1350  unsigned Number = Lambda->getLambdaManglingNumber();
1351  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1352  if (Number > 1)
1353    mangleNumber(Number - 2);
1354  Out << '_';
1355}
1356
1357void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1358  switch (qualifier->getKind()) {
1359  case NestedNameSpecifier::Global:
1360    // nothing
1361    return;
1362
1363  case NestedNameSpecifier::Namespace:
1364    mangleName(qualifier->getAsNamespace());
1365    return;
1366
1367  case NestedNameSpecifier::NamespaceAlias:
1368    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1369    return;
1370
1371  case NestedNameSpecifier::TypeSpec:
1372  case NestedNameSpecifier::TypeSpecWithTemplate:
1373    manglePrefix(QualType(qualifier->getAsType(), 0));
1374    return;
1375
1376  case NestedNameSpecifier::Identifier:
1377    // Member expressions can have these without prefixes, but that
1378    // should end up in mangleUnresolvedPrefix instead.
1379    assert(qualifier->getPrefix());
1380    manglePrefix(qualifier->getPrefix());
1381
1382    mangleSourceName(qualifier->getAsIdentifier());
1383    return;
1384  }
1385
1386  llvm_unreachable("unexpected nested name specifier");
1387}
1388
1389void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1390  //  <prefix> ::= <prefix> <unqualified-name>
1391  //           ::= <template-prefix> <template-args>
1392  //           ::= <template-param>
1393  //           ::= # empty
1394  //           ::= <substitution>
1395
1396  DC = IgnoreLinkageSpecDecls(DC);
1397
1398  if (DC->isTranslationUnit())
1399    return;
1400
1401  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
1402    manglePrefix(getEffectiveParentContext(DC), NoFunction);
1403    SmallString<64> Name;
1404    llvm::raw_svector_ostream NameStream(Name);
1405    Context.mangleBlock(Block, NameStream);
1406    NameStream.flush();
1407    Out << Name.size() << Name;
1408    return;
1409  }
1410
1411  const NamedDecl *ND = cast<NamedDecl>(DC);
1412  if (mangleSubstitution(ND))
1413    return;
1414
1415  // Check if we have a template.
1416  const TemplateArgumentList *TemplateArgs = 0;
1417  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1418    mangleTemplatePrefix(TD);
1419    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
1420    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
1421  }
1422  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
1423    return;
1424  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
1425    mangleObjCMethodName(Method);
1426  else {
1427    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1428    mangleUnqualifiedName(ND);
1429  }
1430
1431  addSubstitution(ND);
1432}
1433
1434void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1435  // <template-prefix> ::= <prefix> <template unqualified-name>
1436  //                   ::= <template-param>
1437  //                   ::= <substitution>
1438  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1439    return mangleTemplatePrefix(TD);
1440
1441  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1442    manglePrefix(Qualified->getQualifier());
1443
1444  if (OverloadedTemplateStorage *Overloaded
1445                                      = Template.getAsOverloadedTemplate()) {
1446    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1447                          UnknownArity);
1448    return;
1449  }
1450
1451  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1452  assert(Dependent && "Unknown template name kind?");
1453  manglePrefix(Dependent->getQualifier());
1454  mangleUnscopedTemplateName(Template);
1455}
1456
1457void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
1458  // <template-prefix> ::= <prefix> <template unqualified-name>
1459  //                   ::= <template-param>
1460  //                   ::= <substitution>
1461  // <template-template-param> ::= <template-param>
1462  //                               <substitution>
1463
1464  if (mangleSubstitution(ND))
1465    return;
1466
1467  // <template-template-param> ::= <template-param>
1468  if (const TemplateTemplateParmDecl *TTP
1469                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1470    mangleTemplateParameter(TTP->getIndex());
1471    return;
1472  }
1473
1474  manglePrefix(getEffectiveDeclContext(ND));
1475  mangleUnqualifiedName(ND->getTemplatedDecl());
1476  addSubstitution(ND);
1477}
1478
1479/// Mangles a template name under the production <type>.  Required for
1480/// template template arguments.
1481///   <type> ::= <class-enum-type>
1482///          ::= <template-param>
1483///          ::= <substitution>
1484void CXXNameMangler::mangleType(TemplateName TN) {
1485  if (mangleSubstitution(TN))
1486    return;
1487
1488  TemplateDecl *TD = 0;
1489
1490  switch (TN.getKind()) {
1491  case TemplateName::QualifiedTemplate:
1492    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1493    goto HaveDecl;
1494
1495  case TemplateName::Template:
1496    TD = TN.getAsTemplateDecl();
1497    goto HaveDecl;
1498
1499  HaveDecl:
1500    if (isa<TemplateTemplateParmDecl>(TD))
1501      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1502    else
1503      mangleName(TD);
1504    break;
1505
1506  case TemplateName::OverloadedTemplate:
1507    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1508
1509  case TemplateName::DependentTemplate: {
1510    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1511    assert(Dependent->isIdentifier());
1512
1513    // <class-enum-type> ::= <name>
1514    // <name> ::= <nested-name>
1515    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1516    mangleSourceName(Dependent->getIdentifier());
1517    break;
1518  }
1519
1520  case TemplateName::SubstTemplateTemplateParm: {
1521    // Substituted template parameters are mangled as the substituted
1522    // template.  This will check for the substitution twice, which is
1523    // fine, but we have to return early so that we don't try to *add*
1524    // the substitution twice.
1525    SubstTemplateTemplateParmStorage *subst
1526      = TN.getAsSubstTemplateTemplateParm();
1527    mangleType(subst->getReplacement());
1528    return;
1529  }
1530
1531  case TemplateName::SubstTemplateTemplateParmPack: {
1532    // FIXME: not clear how to mangle this!
1533    // template <template <class> class T...> class A {
1534    //   template <template <class> class U...> void foo(B<T,U> x...);
1535    // };
1536    Out << "_SUBSTPACK_";
1537    break;
1538  }
1539  }
1540
1541  addSubstitution(TN);
1542}
1543
1544void
1545CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1546  switch (OO) {
1547  // <operator-name> ::= nw     # new
1548  case OO_New: Out << "nw"; break;
1549  //              ::= na        # new[]
1550  case OO_Array_New: Out << "na"; break;
1551  //              ::= dl        # delete
1552  case OO_Delete: Out << "dl"; break;
1553  //              ::= da        # delete[]
1554  case OO_Array_Delete: Out << "da"; break;
1555  //              ::= ps        # + (unary)
1556  //              ::= pl        # + (binary or unknown)
1557  case OO_Plus:
1558    Out << (Arity == 1? "ps" : "pl"); break;
1559  //              ::= ng        # - (unary)
1560  //              ::= mi        # - (binary or unknown)
1561  case OO_Minus:
1562    Out << (Arity == 1? "ng" : "mi"); break;
1563  //              ::= ad        # & (unary)
1564  //              ::= an        # & (binary or unknown)
1565  case OO_Amp:
1566    Out << (Arity == 1? "ad" : "an"); break;
1567  //              ::= de        # * (unary)
1568  //              ::= ml        # * (binary or unknown)
1569  case OO_Star:
1570    // Use binary when unknown.
1571    Out << (Arity == 1? "de" : "ml"); break;
1572  //              ::= co        # ~
1573  case OO_Tilde: Out << "co"; break;
1574  //              ::= dv        # /
1575  case OO_Slash: Out << "dv"; break;
1576  //              ::= rm        # %
1577  case OO_Percent: Out << "rm"; break;
1578  //              ::= or        # |
1579  case OO_Pipe: Out << "or"; break;
1580  //              ::= eo        # ^
1581  case OO_Caret: Out << "eo"; break;
1582  //              ::= aS        # =
1583  case OO_Equal: Out << "aS"; break;
1584  //              ::= pL        # +=
1585  case OO_PlusEqual: Out << "pL"; break;
1586  //              ::= mI        # -=
1587  case OO_MinusEqual: Out << "mI"; break;
1588  //              ::= mL        # *=
1589  case OO_StarEqual: Out << "mL"; break;
1590  //              ::= dV        # /=
1591  case OO_SlashEqual: Out << "dV"; break;
1592  //              ::= rM        # %=
1593  case OO_PercentEqual: Out << "rM"; break;
1594  //              ::= aN        # &=
1595  case OO_AmpEqual: Out << "aN"; break;
1596  //              ::= oR        # |=
1597  case OO_PipeEqual: Out << "oR"; break;
1598  //              ::= eO        # ^=
1599  case OO_CaretEqual: Out << "eO"; break;
1600  //              ::= ls        # <<
1601  case OO_LessLess: Out << "ls"; break;
1602  //              ::= rs        # >>
1603  case OO_GreaterGreater: Out << "rs"; break;
1604  //              ::= lS        # <<=
1605  case OO_LessLessEqual: Out << "lS"; break;
1606  //              ::= rS        # >>=
1607  case OO_GreaterGreaterEqual: Out << "rS"; break;
1608  //              ::= eq        # ==
1609  case OO_EqualEqual: Out << "eq"; break;
1610  //              ::= ne        # !=
1611  case OO_ExclaimEqual: Out << "ne"; break;
1612  //              ::= lt        # <
1613  case OO_Less: Out << "lt"; break;
1614  //              ::= gt        # >
1615  case OO_Greater: Out << "gt"; break;
1616  //              ::= le        # <=
1617  case OO_LessEqual: Out << "le"; break;
1618  //              ::= ge        # >=
1619  case OO_GreaterEqual: Out << "ge"; break;
1620  //              ::= nt        # !
1621  case OO_Exclaim: Out << "nt"; break;
1622  //              ::= aa        # &&
1623  case OO_AmpAmp: Out << "aa"; break;
1624  //              ::= oo        # ||
1625  case OO_PipePipe: Out << "oo"; break;
1626  //              ::= pp        # ++
1627  case OO_PlusPlus: Out << "pp"; break;
1628  //              ::= mm        # --
1629  case OO_MinusMinus: Out << "mm"; break;
1630  //              ::= cm        # ,
1631  case OO_Comma: Out << "cm"; break;
1632  //              ::= pm        # ->*
1633  case OO_ArrowStar: Out << "pm"; break;
1634  //              ::= pt        # ->
1635  case OO_Arrow: Out << "pt"; break;
1636  //              ::= cl        # ()
1637  case OO_Call: Out << "cl"; break;
1638  //              ::= ix        # []
1639  case OO_Subscript: Out << "ix"; break;
1640
1641  //              ::= qu        # ?
1642  // The conditional operator can't be overloaded, but we still handle it when
1643  // mangling expressions.
1644  case OO_Conditional: Out << "qu"; break;
1645
1646  case OO_None:
1647  case NUM_OVERLOADED_OPERATORS:
1648    llvm_unreachable("Not an overloaded operator");
1649  }
1650}
1651
1652void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1653  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1654  if (Quals.hasRestrict())
1655    Out << 'r';
1656  if (Quals.hasVolatile())
1657    Out << 'V';
1658  if (Quals.hasConst())
1659    Out << 'K';
1660
1661  if (Quals.hasAddressSpace()) {
1662    // Extension:
1663    //
1664    //   <type> ::= U <address-space-number>
1665    //
1666    // where <address-space-number> is a source name consisting of 'AS'
1667    // followed by the address space <number>.
1668    SmallString<64> ASString;
1669    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1670    Out << 'U' << ASString.size() << ASString;
1671  }
1672
1673  StringRef LifetimeName;
1674  switch (Quals.getObjCLifetime()) {
1675  // Objective-C ARC Extension:
1676  //
1677  //   <type> ::= U "__strong"
1678  //   <type> ::= U "__weak"
1679  //   <type> ::= U "__autoreleasing"
1680  case Qualifiers::OCL_None:
1681    break;
1682
1683  case Qualifiers::OCL_Weak:
1684    LifetimeName = "__weak";
1685    break;
1686
1687  case Qualifiers::OCL_Strong:
1688    LifetimeName = "__strong";
1689    break;
1690
1691  case Qualifiers::OCL_Autoreleasing:
1692    LifetimeName = "__autoreleasing";
1693    break;
1694
1695  case Qualifiers::OCL_ExplicitNone:
1696    // The __unsafe_unretained qualifier is *not* mangled, so that
1697    // __unsafe_unretained types in ARC produce the same manglings as the
1698    // equivalent (but, naturally, unqualified) types in non-ARC, providing
1699    // better ABI compatibility.
1700    //
1701    // It's safe to do this because unqualified 'id' won't show up
1702    // in any type signatures that need to be mangled.
1703    break;
1704  }
1705  if (!LifetimeName.empty())
1706    Out << 'U' << LifetimeName.size() << LifetimeName;
1707}
1708
1709void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1710  // <ref-qualifier> ::= R                # lvalue reference
1711  //                 ::= O                # rvalue-reference
1712  // Proposal to Itanium C++ ABI list on 1/26/11
1713  switch (RefQualifier) {
1714  case RQ_None:
1715    break;
1716
1717  case RQ_LValue:
1718    Out << 'R';
1719    break;
1720
1721  case RQ_RValue:
1722    Out << 'O';
1723    break;
1724  }
1725}
1726
1727void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1728  Context.mangleObjCMethodName(MD, Out);
1729}
1730
1731void CXXNameMangler::mangleType(QualType T) {
1732  // If our type is instantiation-dependent but not dependent, we mangle
1733  // it as it was written in the source, removing any top-level sugar.
1734  // Otherwise, use the canonical type.
1735  //
1736  // FIXME: This is an approximation of the instantiation-dependent name
1737  // mangling rules, since we should really be using the type as written and
1738  // augmented via semantic analysis (i.e., with implicit conversions and
1739  // default template arguments) for any instantiation-dependent type.
1740  // Unfortunately, that requires several changes to our AST:
1741  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
1742  //     uniqued, so that we can handle substitutions properly
1743  //   - Default template arguments will need to be represented in the
1744  //     TemplateSpecializationType, since they need to be mangled even though
1745  //     they aren't written.
1746  //   - Conversions on non-type template arguments need to be expressed, since
1747  //     they can affect the mangling of sizeof/alignof.
1748  if (!T->isInstantiationDependentType() || T->isDependentType())
1749    T = T.getCanonicalType();
1750  else {
1751    // Desugar any types that are purely sugar.
1752    do {
1753      // Don't desugar through template specialization types that aren't
1754      // type aliases. We need to mangle the template arguments as written.
1755      if (const TemplateSpecializationType *TST
1756                                      = dyn_cast<TemplateSpecializationType>(T))
1757        if (!TST->isTypeAlias())
1758          break;
1759
1760      QualType Desugared
1761        = T.getSingleStepDesugaredType(Context.getASTContext());
1762      if (Desugared == T)
1763        break;
1764
1765      T = Desugared;
1766    } while (true);
1767  }
1768  SplitQualType split = T.split();
1769  Qualifiers quals = split.Quals;
1770  const Type *ty = split.Ty;
1771
1772  bool isSubstitutable = quals || !isa<BuiltinType>(T);
1773  if (isSubstitutable && mangleSubstitution(T))
1774    return;
1775
1776  // If we're mangling a qualified array type, push the qualifiers to
1777  // the element type.
1778  if (quals && isa<ArrayType>(T)) {
1779    ty = Context.getASTContext().getAsArrayType(T);
1780    quals = Qualifiers();
1781
1782    // Note that we don't update T: we want to add the
1783    // substitution at the original type.
1784  }
1785
1786  if (quals) {
1787    mangleQualifiers(quals);
1788    // Recurse:  even if the qualified type isn't yet substitutable,
1789    // the unqualified type might be.
1790    mangleType(QualType(ty, 0));
1791  } else {
1792    switch (ty->getTypeClass()) {
1793#define ABSTRACT_TYPE(CLASS, PARENT)
1794#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1795    case Type::CLASS: \
1796      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1797      return;
1798#define TYPE(CLASS, PARENT) \
1799    case Type::CLASS: \
1800      mangleType(static_cast<const CLASS##Type*>(ty)); \
1801      break;
1802#include "clang/AST/TypeNodes.def"
1803    }
1804  }
1805
1806  // Add the substitution.
1807  if (isSubstitutable)
1808    addSubstitution(T);
1809}
1810
1811void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1812  if (!mangleStandardSubstitution(ND))
1813    mangleName(ND);
1814}
1815
1816void CXXNameMangler::mangleType(const BuiltinType *T) {
1817  //  <type>         ::= <builtin-type>
1818  //  <builtin-type> ::= v  # void
1819  //                 ::= w  # wchar_t
1820  //                 ::= b  # bool
1821  //                 ::= c  # char
1822  //                 ::= a  # signed char
1823  //                 ::= h  # unsigned char
1824  //                 ::= s  # short
1825  //                 ::= t  # unsigned short
1826  //                 ::= i  # int
1827  //                 ::= j  # unsigned int
1828  //                 ::= l  # long
1829  //                 ::= m  # unsigned long
1830  //                 ::= x  # long long, __int64
1831  //                 ::= y  # unsigned long long, __int64
1832  //                 ::= n  # __int128
1833  // UNSUPPORTED:    ::= o  # unsigned __int128
1834  //                 ::= f  # float
1835  //                 ::= d  # double
1836  //                 ::= e  # long double, __float80
1837  // UNSUPPORTED:    ::= g  # __float128
1838  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1839  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1840  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1841  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1842  //                 ::= Di # char32_t
1843  //                 ::= Ds # char16_t
1844  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1845  //                 ::= u <source-name>    # vendor extended type
1846  switch (T->getKind()) {
1847  case BuiltinType::Void: Out << 'v'; break;
1848  case BuiltinType::Bool: Out << 'b'; break;
1849  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1850  case BuiltinType::UChar: Out << 'h'; break;
1851  case BuiltinType::UShort: Out << 't'; break;
1852  case BuiltinType::UInt: Out << 'j'; break;
1853  case BuiltinType::ULong: Out << 'm'; break;
1854  case BuiltinType::ULongLong: Out << 'y'; break;
1855  case BuiltinType::UInt128: Out << 'o'; break;
1856  case BuiltinType::SChar: Out << 'a'; break;
1857  case BuiltinType::WChar_S:
1858  case BuiltinType::WChar_U: Out << 'w'; break;
1859  case BuiltinType::Char16: Out << "Ds"; break;
1860  case BuiltinType::Char32: Out << "Di"; break;
1861  case BuiltinType::Short: Out << 's'; break;
1862  case BuiltinType::Int: Out << 'i'; break;
1863  case BuiltinType::Long: Out << 'l'; break;
1864  case BuiltinType::LongLong: Out << 'x'; break;
1865  case BuiltinType::Int128: Out << 'n'; break;
1866  case BuiltinType::Half: Out << "Dh"; break;
1867  case BuiltinType::Float: Out << 'f'; break;
1868  case BuiltinType::Double: Out << 'd'; break;
1869  case BuiltinType::LongDouble: Out << 'e'; break;
1870  case BuiltinType::NullPtr: Out << "Dn"; break;
1871
1872#define BUILTIN_TYPE(Id, SingletonId)
1873#define PLACEHOLDER_TYPE(Id, SingletonId) \
1874  case BuiltinType::Id:
1875#include "clang/AST/BuiltinTypes.def"
1876  case BuiltinType::Dependent:
1877    llvm_unreachable("mangling a placeholder type");
1878  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1879  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1880  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1881  }
1882}
1883
1884// <type>          ::= <function-type>
1885// <function-type> ::= F [Y] <bare-function-type> E
1886void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1887  Out << 'F';
1888  // FIXME: We don't have enough information in the AST to produce the 'Y'
1889  // encoding for extern "C" function types.
1890  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1891  Out << 'E';
1892}
1893void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1894  llvm_unreachable("Can't mangle K&R function prototypes");
1895}
1896void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1897                                            bool MangleReturnType) {
1898  // We should never be mangling something without a prototype.
1899  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1900
1901  // Record that we're in a function type.  See mangleFunctionParam
1902  // for details on what we're trying to achieve here.
1903  FunctionTypeDepthState saved = FunctionTypeDepth.push();
1904
1905  // <bare-function-type> ::= <signature type>+
1906  if (MangleReturnType) {
1907    FunctionTypeDepth.enterResultType();
1908    mangleType(Proto->getResultType());
1909    FunctionTypeDepth.leaveResultType();
1910  }
1911
1912  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1913    //   <builtin-type> ::= v   # void
1914    Out << 'v';
1915
1916    FunctionTypeDepth.pop(saved);
1917    return;
1918  }
1919
1920  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1921                                         ArgEnd = Proto->arg_type_end();
1922       Arg != ArgEnd; ++Arg)
1923    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
1924
1925  FunctionTypeDepth.pop(saved);
1926
1927  // <builtin-type>      ::= z  # ellipsis
1928  if (Proto->isVariadic())
1929    Out << 'z';
1930}
1931
1932// <type>            ::= <class-enum-type>
1933// <class-enum-type> ::= <name>
1934void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1935  mangleName(T->getDecl());
1936}
1937
1938// <type>            ::= <class-enum-type>
1939// <class-enum-type> ::= <name>
1940void CXXNameMangler::mangleType(const EnumType *T) {
1941  mangleType(static_cast<const TagType*>(T));
1942}
1943void CXXNameMangler::mangleType(const RecordType *T) {
1944  mangleType(static_cast<const TagType*>(T));
1945}
1946void CXXNameMangler::mangleType(const TagType *T) {
1947  mangleName(T->getDecl());
1948}
1949
1950// <type>       ::= <array-type>
1951// <array-type> ::= A <positive dimension number> _ <element type>
1952//              ::= A [<dimension expression>] _ <element type>
1953void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1954  Out << 'A' << T->getSize() << '_';
1955  mangleType(T->getElementType());
1956}
1957void CXXNameMangler::mangleType(const VariableArrayType *T) {
1958  Out << 'A';
1959  // decayed vla types (size 0) will just be skipped.
1960  if (T->getSizeExpr())
1961    mangleExpression(T->getSizeExpr());
1962  Out << '_';
1963  mangleType(T->getElementType());
1964}
1965void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1966  Out << 'A';
1967  mangleExpression(T->getSizeExpr());
1968  Out << '_';
1969  mangleType(T->getElementType());
1970}
1971void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1972  Out << "A_";
1973  mangleType(T->getElementType());
1974}
1975
1976// <type>                   ::= <pointer-to-member-type>
1977// <pointer-to-member-type> ::= M <class type> <member type>
1978void CXXNameMangler::mangleType(const MemberPointerType *T) {
1979  Out << 'M';
1980  mangleType(QualType(T->getClass(), 0));
1981  QualType PointeeType = T->getPointeeType();
1982  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1983    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1984    mangleRefQualifier(FPT->getRefQualifier());
1985    mangleType(FPT);
1986
1987    // Itanium C++ ABI 5.1.8:
1988    //
1989    //   The type of a non-static member function is considered to be different,
1990    //   for the purposes of substitution, from the type of a namespace-scope or
1991    //   static member function whose type appears similar. The types of two
1992    //   non-static member functions are considered to be different, for the
1993    //   purposes of substitution, if the functions are members of different
1994    //   classes. In other words, for the purposes of substitution, the class of
1995    //   which the function is a member is considered part of the type of
1996    //   function.
1997
1998    // We increment the SeqID here to emulate adding an entry to the
1999    // substitution table. We can't actually add it because we don't want this
2000    // particular function type to be substituted.
2001    ++SeqID;
2002  } else
2003    mangleType(PointeeType);
2004}
2005
2006// <type>           ::= <template-param>
2007void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2008  mangleTemplateParameter(T->getIndex());
2009}
2010
2011// <type>           ::= <template-param>
2012void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2013  // FIXME: not clear how to mangle this!
2014  // template <class T...> class A {
2015  //   template <class U...> void foo(T(*)(U) x...);
2016  // };
2017  Out << "_SUBSTPACK_";
2018}
2019
2020// <type> ::= P <type>   # pointer-to
2021void CXXNameMangler::mangleType(const PointerType *T) {
2022  Out << 'P';
2023  mangleType(T->getPointeeType());
2024}
2025void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2026  Out << 'P';
2027  mangleType(T->getPointeeType());
2028}
2029
2030// <type> ::= R <type>   # reference-to
2031void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2032  Out << 'R';
2033  mangleType(T->getPointeeType());
2034}
2035
2036// <type> ::= O <type>   # rvalue reference-to (C++0x)
2037void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2038  Out << 'O';
2039  mangleType(T->getPointeeType());
2040}
2041
2042// <type> ::= C <type>   # complex pair (C 2000)
2043void CXXNameMangler::mangleType(const ComplexType *T) {
2044  Out << 'C';
2045  mangleType(T->getElementType());
2046}
2047
2048// ARM's ABI for Neon vector types specifies that they should be mangled as
2049// if they are structs (to match ARM's initial implementation).  The
2050// vector type must be one of the special types predefined by ARM.
2051void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2052  QualType EltType = T->getElementType();
2053  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2054  const char *EltName = 0;
2055  if (T->getVectorKind() == VectorType::NeonPolyVector) {
2056    switch (cast<BuiltinType>(EltType)->getKind()) {
2057    case BuiltinType::SChar:     EltName = "poly8_t"; break;
2058    case BuiltinType::Short:     EltName = "poly16_t"; break;
2059    default: llvm_unreachable("unexpected Neon polynomial vector element type");
2060    }
2061  } else {
2062    switch (cast<BuiltinType>(EltType)->getKind()) {
2063    case BuiltinType::SChar:     EltName = "int8_t"; break;
2064    case BuiltinType::UChar:     EltName = "uint8_t"; break;
2065    case BuiltinType::Short:     EltName = "int16_t"; break;
2066    case BuiltinType::UShort:    EltName = "uint16_t"; break;
2067    case BuiltinType::Int:       EltName = "int32_t"; break;
2068    case BuiltinType::UInt:      EltName = "uint32_t"; break;
2069    case BuiltinType::LongLong:  EltName = "int64_t"; break;
2070    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2071    case BuiltinType::Float:     EltName = "float32_t"; break;
2072    default: llvm_unreachable("unexpected Neon vector element type");
2073    }
2074  }
2075  const char *BaseName = 0;
2076  unsigned BitSize = (T->getNumElements() *
2077                      getASTContext().getTypeSize(EltType));
2078  if (BitSize == 64)
2079    BaseName = "__simd64_";
2080  else {
2081    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2082    BaseName = "__simd128_";
2083  }
2084  Out << strlen(BaseName) + strlen(EltName);
2085  Out << BaseName << EltName;
2086}
2087
2088// GNU extension: vector types
2089// <type>                  ::= <vector-type>
2090// <vector-type>           ::= Dv <positive dimension number> _
2091//                                    <extended element type>
2092//                         ::= Dv [<dimension expression>] _ <element type>
2093// <extended element type> ::= <element type>
2094//                         ::= p # AltiVec vector pixel
2095void CXXNameMangler::mangleType(const VectorType *T) {
2096  if ((T->getVectorKind() == VectorType::NeonVector ||
2097       T->getVectorKind() == VectorType::NeonPolyVector)) {
2098    mangleNeonVectorType(T);
2099    return;
2100  }
2101  Out << "Dv" << T->getNumElements() << '_';
2102  if (T->getVectorKind() == VectorType::AltiVecPixel)
2103    Out << 'p';
2104  else if (T->getVectorKind() == VectorType::AltiVecBool)
2105    Out << 'b';
2106  else
2107    mangleType(T->getElementType());
2108}
2109void CXXNameMangler::mangleType(const ExtVectorType *T) {
2110  mangleType(static_cast<const VectorType*>(T));
2111}
2112void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2113  Out << "Dv";
2114  mangleExpression(T->getSizeExpr());
2115  Out << '_';
2116  mangleType(T->getElementType());
2117}
2118
2119void CXXNameMangler::mangleType(const PackExpansionType *T) {
2120  // <type>  ::= Dp <type>          # pack expansion (C++0x)
2121  Out << "Dp";
2122  mangleType(T->getPattern());
2123}
2124
2125void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2126  mangleSourceName(T->getDecl()->getIdentifier());
2127}
2128
2129void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2130  // We don't allow overloading by different protocol qualification,
2131  // so mangling them isn't necessary.
2132  mangleType(T->getBaseType());
2133}
2134
2135void CXXNameMangler::mangleType(const BlockPointerType *T) {
2136  Out << "U13block_pointer";
2137  mangleType(T->getPointeeType());
2138}
2139
2140void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2141  // Mangle injected class name types as if the user had written the
2142  // specialization out fully.  It may not actually be possible to see
2143  // this mangling, though.
2144  mangleType(T->getInjectedSpecializationType());
2145}
2146
2147void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2148  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2149    mangleName(TD, T->getArgs(), T->getNumArgs());
2150  } else {
2151    if (mangleSubstitution(QualType(T, 0)))
2152      return;
2153
2154    mangleTemplatePrefix(T->getTemplateName());
2155
2156    // FIXME: GCC does not appear to mangle the template arguments when
2157    // the template in question is a dependent template name. Should we
2158    // emulate that badness?
2159    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
2160    addSubstitution(QualType(T, 0));
2161  }
2162}
2163
2164void CXXNameMangler::mangleType(const DependentNameType *T) {
2165  // Typename types are always nested
2166  Out << 'N';
2167  manglePrefix(T->getQualifier());
2168  mangleSourceName(T->getIdentifier());
2169  Out << 'E';
2170}
2171
2172void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2173  // Dependently-scoped template types are nested if they have a prefix.
2174  Out << 'N';
2175
2176  // TODO: avoid making this TemplateName.
2177  TemplateName Prefix =
2178    getASTContext().getDependentTemplateName(T->getQualifier(),
2179                                             T->getIdentifier());
2180  mangleTemplatePrefix(Prefix);
2181
2182  // FIXME: GCC does not appear to mangle the template arguments when
2183  // the template in question is a dependent template name. Should we
2184  // emulate that badness?
2185  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
2186  Out << 'E';
2187}
2188
2189void CXXNameMangler::mangleType(const TypeOfType *T) {
2190  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2191  // "extension with parameters" mangling.
2192  Out << "u6typeof";
2193}
2194
2195void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2196  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2197  // "extension with parameters" mangling.
2198  Out << "u6typeof";
2199}
2200
2201void CXXNameMangler::mangleType(const DecltypeType *T) {
2202  Expr *E = T->getUnderlyingExpr();
2203
2204  // type ::= Dt <expression> E  # decltype of an id-expression
2205  //                             #   or class member access
2206  //      ::= DT <expression> E  # decltype of an expression
2207
2208  // This purports to be an exhaustive list of id-expressions and
2209  // class member accesses.  Note that we do not ignore parentheses;
2210  // parentheses change the semantics of decltype for these
2211  // expressions (and cause the mangler to use the other form).
2212  if (isa<DeclRefExpr>(E) ||
2213      isa<MemberExpr>(E) ||
2214      isa<UnresolvedLookupExpr>(E) ||
2215      isa<DependentScopeDeclRefExpr>(E) ||
2216      isa<CXXDependentScopeMemberExpr>(E) ||
2217      isa<UnresolvedMemberExpr>(E))
2218    Out << "Dt";
2219  else
2220    Out << "DT";
2221  mangleExpression(E);
2222  Out << 'E';
2223}
2224
2225void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2226  // If this is dependent, we need to record that. If not, we simply
2227  // mangle it as the underlying type since they are equivalent.
2228  if (T->isDependentType()) {
2229    Out << 'U';
2230
2231    switch (T->getUTTKind()) {
2232      case UnaryTransformType::EnumUnderlyingType:
2233        Out << "3eut";
2234        break;
2235    }
2236  }
2237
2238  mangleType(T->getUnderlyingType());
2239}
2240
2241void CXXNameMangler::mangleType(const AutoType *T) {
2242  QualType D = T->getDeducedType();
2243  // <builtin-type> ::= Da  # dependent auto
2244  if (D.isNull())
2245    Out << "Da";
2246  else
2247    mangleType(D);
2248}
2249
2250void CXXNameMangler::mangleType(const AtomicType *T) {
2251  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
2252  // (Until there's a standardized mangling...)
2253  Out << "U7_Atomic";
2254  mangleType(T->getValueType());
2255}
2256
2257void CXXNameMangler::mangleIntegerLiteral(QualType T,
2258                                          const llvm::APSInt &Value) {
2259  //  <expr-primary> ::= L <type> <value number> E # integer literal
2260  Out << 'L';
2261
2262  mangleType(T);
2263  if (T->isBooleanType()) {
2264    // Boolean values are encoded as 0/1.
2265    Out << (Value.getBoolValue() ? '1' : '0');
2266  } else {
2267    mangleNumber(Value);
2268  }
2269  Out << 'E';
2270
2271}
2272
2273/// Mangles a member expression.  Implicit accesses are not handled,
2274/// but that should be okay, because you shouldn't be able to
2275/// make an implicit access in a function template declaration.
2276void CXXNameMangler::mangleMemberExpr(const Expr *base,
2277                                      bool isArrow,
2278                                      NestedNameSpecifier *qualifier,
2279                                      NamedDecl *firstQualifierLookup,
2280                                      DeclarationName member,
2281                                      unsigned arity) {
2282  // <expression> ::= dt <expression> <unresolved-name>
2283  //              ::= pt <expression> <unresolved-name>
2284  Out << (isArrow ? "pt" : "dt");
2285  mangleExpression(base);
2286  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2287}
2288
2289/// Look at the callee of the given call expression and determine if
2290/// it's a parenthesized id-expression which would have triggered ADL
2291/// otherwise.
2292static bool isParenthesizedADLCallee(const CallExpr *call) {
2293  const Expr *callee = call->getCallee();
2294  const Expr *fn = callee->IgnoreParens();
2295
2296  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2297  // too, but for those to appear in the callee, it would have to be
2298  // parenthesized.
2299  if (callee == fn) return false;
2300
2301  // Must be an unresolved lookup.
2302  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2303  if (!lookup) return false;
2304
2305  assert(!lookup->requiresADL());
2306
2307  // Must be an unqualified lookup.
2308  if (lookup->getQualifier()) return false;
2309
2310  // Must not have found a class member.  Note that if one is a class
2311  // member, they're all class members.
2312  if (lookup->getNumDecls() > 0 &&
2313      (*lookup->decls_begin())->isCXXClassMember())
2314    return false;
2315
2316  // Otherwise, ADL would have been triggered.
2317  return true;
2318}
2319
2320void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2321  // <expression> ::= <unary operator-name> <expression>
2322  //              ::= <binary operator-name> <expression> <expression>
2323  //              ::= <trinary operator-name> <expression> <expression> <expression>
2324  //              ::= cv <type> expression           # conversion with one argument
2325  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2326  //              ::= st <type>                      # sizeof (a type)
2327  //              ::= at <type>                      # alignof (a type)
2328  //              ::= <template-param>
2329  //              ::= <function-param>
2330  //              ::= sr <type> <unqualified-name>                   # dependent name
2331  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2332  //              ::= ds <expression> <expression>                   # expr.*expr
2333  //              ::= sZ <template-param>                            # size of a parameter pack
2334  //              ::= sZ <function-param>    # size of a function parameter pack
2335  //              ::= <expr-primary>
2336  // <expr-primary> ::= L <type> <value number> E    # integer literal
2337  //                ::= L <type <value float> E      # floating literal
2338  //                ::= L <mangled-name> E           # external name
2339  QualType ImplicitlyConvertedToType;
2340
2341recurse:
2342  switch (E->getStmtClass()) {
2343  case Expr::NoStmtClass:
2344#define ABSTRACT_STMT(Type)
2345#define EXPR(Type, Base)
2346#define STMT(Type, Base) \
2347  case Expr::Type##Class:
2348#include "clang/AST/StmtNodes.inc"
2349    // fallthrough
2350
2351  // These all can only appear in local or variable-initialization
2352  // contexts and so should never appear in a mangling.
2353  case Expr::AddrLabelExprClass:
2354  case Expr::CXXThisExprClass:
2355  case Expr::DesignatedInitExprClass:
2356  case Expr::ImplicitValueInitExprClass:
2357  case Expr::ParenListExprClass:
2358  case Expr::LambdaExprClass:
2359    llvm_unreachable("unexpected statement kind");
2360
2361  // FIXME: invent manglings for all these.
2362  case Expr::BlockExprClass:
2363  case Expr::CXXPseudoDestructorExprClass:
2364  case Expr::ChooseExprClass:
2365  case Expr::CompoundLiteralExprClass:
2366  case Expr::ExtVectorElementExprClass:
2367  case Expr::GenericSelectionExprClass:
2368  case Expr::ObjCEncodeExprClass:
2369  case Expr::ObjCIsaExprClass:
2370  case Expr::ObjCIvarRefExprClass:
2371  case Expr::ObjCMessageExprClass:
2372  case Expr::ObjCPropertyRefExprClass:
2373  case Expr::ObjCProtocolExprClass:
2374  case Expr::ObjCSelectorExprClass:
2375  case Expr::ObjCStringLiteralClass:
2376  case Expr::ObjCNumericLiteralClass:
2377  case Expr::ObjCArrayLiteralClass:
2378  case Expr::ObjCDictionaryLiteralClass:
2379  case Expr::ObjCSubscriptRefExprClass:
2380  case Expr::ObjCIndirectCopyRestoreExprClass:
2381  case Expr::OffsetOfExprClass:
2382  case Expr::PredefinedExprClass:
2383  case Expr::ShuffleVectorExprClass:
2384  case Expr::StmtExprClass:
2385  case Expr::UnaryTypeTraitExprClass:
2386  case Expr::BinaryTypeTraitExprClass:
2387  case Expr::TypeTraitExprClass:
2388  case Expr::ArrayTypeTraitExprClass:
2389  case Expr::ExpressionTraitExprClass:
2390  case Expr::VAArgExprClass:
2391  case Expr::CXXUuidofExprClass:
2392  case Expr::CXXNoexceptExprClass:
2393  case Expr::CUDAKernelCallExprClass:
2394  case Expr::AsTypeExprClass:
2395  case Expr::PseudoObjectExprClass:
2396  case Expr::AtomicExprClass:
2397  {
2398    // As bad as this diagnostic is, it's better than crashing.
2399    DiagnosticsEngine &Diags = Context.getDiags();
2400    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2401                                     "cannot yet mangle expression type %0");
2402    Diags.Report(E->getExprLoc(), DiagID)
2403      << E->getStmtClassName() << E->getSourceRange();
2404    break;
2405  }
2406
2407  // Even gcc-4.5 doesn't mangle this.
2408  case Expr::BinaryConditionalOperatorClass: {
2409    DiagnosticsEngine &Diags = Context.getDiags();
2410    unsigned DiagID =
2411      Diags.getCustomDiagID(DiagnosticsEngine::Error,
2412                "?: operator with omitted middle operand cannot be mangled");
2413    Diags.Report(E->getExprLoc(), DiagID)
2414      << E->getStmtClassName() << E->getSourceRange();
2415    break;
2416  }
2417
2418  // These are used for internal purposes and cannot be meaningfully mangled.
2419  case Expr::OpaqueValueExprClass:
2420    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2421
2422  case Expr::InitListExprClass: {
2423    // Proposal by Jason Merrill, 2012-01-03
2424    Out << "il";
2425    const InitListExpr *InitList = cast<InitListExpr>(E);
2426    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2427      mangleExpression(InitList->getInit(i));
2428    Out << "E";
2429    break;
2430  }
2431
2432  case Expr::CXXDefaultArgExprClass:
2433    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2434    break;
2435
2436  case Expr::SubstNonTypeTemplateParmExprClass:
2437    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2438                     Arity);
2439    break;
2440
2441  case Expr::UserDefinedLiteralClass:
2442    // We follow g++'s approach of mangling a UDL as a call to the literal
2443    // operator.
2444  case Expr::CXXMemberCallExprClass: // fallthrough
2445  case Expr::CallExprClass: {
2446    const CallExpr *CE = cast<CallExpr>(E);
2447
2448    // <expression> ::= cp <simple-id> <expression>* E
2449    // We use this mangling only when the call would use ADL except
2450    // for being parenthesized.  Per discussion with David
2451    // Vandervoorde, 2011.04.25.
2452    if (isParenthesizedADLCallee(CE)) {
2453      Out << "cp";
2454      // The callee here is a parenthesized UnresolvedLookupExpr with
2455      // no qualifier and should always get mangled as a <simple-id>
2456      // anyway.
2457
2458    // <expression> ::= cl <expression>* E
2459    } else {
2460      Out << "cl";
2461    }
2462
2463    mangleExpression(CE->getCallee(), CE->getNumArgs());
2464    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2465      mangleExpression(CE->getArg(I));
2466    Out << 'E';
2467    break;
2468  }
2469
2470  case Expr::CXXNewExprClass: {
2471    const CXXNewExpr *New = cast<CXXNewExpr>(E);
2472    if (New->isGlobalNew()) Out << "gs";
2473    Out << (New->isArray() ? "na" : "nw");
2474    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2475           E = New->placement_arg_end(); I != E; ++I)
2476      mangleExpression(*I);
2477    Out << '_';
2478    mangleType(New->getAllocatedType());
2479    if (New->hasInitializer()) {
2480      // Proposal by Jason Merrill, 2012-01-03
2481      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2482        Out << "il";
2483      else
2484        Out << "pi";
2485      const Expr *Init = New->getInitializer();
2486      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2487        // Directly inline the initializers.
2488        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2489                                                  E = CCE->arg_end();
2490             I != E; ++I)
2491          mangleExpression(*I);
2492      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2493        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2494          mangleExpression(PLE->getExpr(i));
2495      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2496                 isa<InitListExpr>(Init)) {
2497        // Only take InitListExprs apart for list-initialization.
2498        const InitListExpr *InitList = cast<InitListExpr>(Init);
2499        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2500          mangleExpression(InitList->getInit(i));
2501      } else
2502        mangleExpression(Init);
2503    }
2504    Out << 'E';
2505    break;
2506  }
2507
2508  case Expr::MemberExprClass: {
2509    const MemberExpr *ME = cast<MemberExpr>(E);
2510    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2511                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2512                     Arity);
2513    break;
2514  }
2515
2516  case Expr::UnresolvedMemberExprClass: {
2517    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2518    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2519                     ME->getQualifier(), 0, ME->getMemberName(),
2520                     Arity);
2521    if (ME->hasExplicitTemplateArgs())
2522      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2523    break;
2524  }
2525
2526  case Expr::CXXDependentScopeMemberExprClass: {
2527    const CXXDependentScopeMemberExpr *ME
2528      = cast<CXXDependentScopeMemberExpr>(E);
2529    mangleMemberExpr(ME->getBase(), ME->isArrow(),
2530                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2531                     ME->getMember(), Arity);
2532    if (ME->hasExplicitTemplateArgs())
2533      mangleTemplateArgs(ME->getExplicitTemplateArgs());
2534    break;
2535  }
2536
2537  case Expr::UnresolvedLookupExprClass: {
2538    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2539    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2540
2541    // All the <unresolved-name> productions end in a
2542    // base-unresolved-name, where <template-args> are just tacked
2543    // onto the end.
2544    if (ULE->hasExplicitTemplateArgs())
2545      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2546    break;
2547  }
2548
2549  case Expr::CXXUnresolvedConstructExprClass: {
2550    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2551    unsigned N = CE->arg_size();
2552
2553    Out << "cv";
2554    mangleType(CE->getType());
2555    if (N != 1) Out << '_';
2556    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2557    if (N != 1) Out << 'E';
2558    break;
2559  }
2560
2561  case Expr::CXXTemporaryObjectExprClass:
2562  case Expr::CXXConstructExprClass: {
2563    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2564    unsigned N = CE->getNumArgs();
2565
2566    // Proposal by Jason Merrill, 2012-01-03
2567    if (CE->isListInitialization())
2568      Out << "tl";
2569    else
2570      Out << "cv";
2571    mangleType(CE->getType());
2572    if (N != 1) Out << '_';
2573    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2574    if (N != 1) Out << 'E';
2575    break;
2576  }
2577
2578  case Expr::CXXScalarValueInitExprClass:
2579    Out <<"cv";
2580    mangleType(E->getType());
2581    Out <<"_E";
2582    break;
2583
2584  case Expr::UnaryExprOrTypeTraitExprClass: {
2585    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2586
2587    if (!SAE->isInstantiationDependent()) {
2588      // Itanium C++ ABI:
2589      //   If the operand of a sizeof or alignof operator is not
2590      //   instantiation-dependent it is encoded as an integer literal
2591      //   reflecting the result of the operator.
2592      //
2593      //   If the result of the operator is implicitly converted to a known
2594      //   integer type, that type is used for the literal; otherwise, the type
2595      //   of std::size_t or std::ptrdiff_t is used.
2596      QualType T = (ImplicitlyConvertedToType.isNull() ||
2597                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2598                                                    : ImplicitlyConvertedToType;
2599      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2600      mangleIntegerLiteral(T, V);
2601      break;
2602    }
2603
2604    switch(SAE->getKind()) {
2605    case UETT_SizeOf:
2606      Out << 's';
2607      break;
2608    case UETT_AlignOf:
2609      Out << 'a';
2610      break;
2611    case UETT_VecStep:
2612      DiagnosticsEngine &Diags = Context.getDiags();
2613      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2614                                     "cannot yet mangle vec_step expression");
2615      Diags.Report(DiagID);
2616      return;
2617    }
2618    if (SAE->isArgumentType()) {
2619      Out << 't';
2620      mangleType(SAE->getArgumentType());
2621    } else {
2622      Out << 'z';
2623      mangleExpression(SAE->getArgumentExpr());
2624    }
2625    break;
2626  }
2627
2628  case Expr::CXXThrowExprClass: {
2629    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2630
2631    // Proposal from David Vandervoorde, 2010.06.30
2632    if (TE->getSubExpr()) {
2633      Out << "tw";
2634      mangleExpression(TE->getSubExpr());
2635    } else {
2636      Out << "tr";
2637    }
2638    break;
2639  }
2640
2641  case Expr::CXXTypeidExprClass: {
2642    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2643
2644    // Proposal from David Vandervoorde, 2010.06.30
2645    if (TIE->isTypeOperand()) {
2646      Out << "ti";
2647      mangleType(TIE->getTypeOperand());
2648    } else {
2649      Out << "te";
2650      mangleExpression(TIE->getExprOperand());
2651    }
2652    break;
2653  }
2654
2655  case Expr::CXXDeleteExprClass: {
2656    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2657
2658    // Proposal from David Vandervoorde, 2010.06.30
2659    if (DE->isGlobalDelete()) Out << "gs";
2660    Out << (DE->isArrayForm() ? "da" : "dl");
2661    mangleExpression(DE->getArgument());
2662    break;
2663  }
2664
2665  case Expr::UnaryOperatorClass: {
2666    const UnaryOperator *UO = cast<UnaryOperator>(E);
2667    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2668                       /*Arity=*/1);
2669    mangleExpression(UO->getSubExpr());
2670    break;
2671  }
2672
2673  case Expr::ArraySubscriptExprClass: {
2674    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2675
2676    // Array subscript is treated as a syntactically weird form of
2677    // binary operator.
2678    Out << "ix";
2679    mangleExpression(AE->getLHS());
2680    mangleExpression(AE->getRHS());
2681    break;
2682  }
2683
2684  case Expr::CompoundAssignOperatorClass: // fallthrough
2685  case Expr::BinaryOperatorClass: {
2686    const BinaryOperator *BO = cast<BinaryOperator>(E);
2687    if (BO->getOpcode() == BO_PtrMemD)
2688      Out << "ds";
2689    else
2690      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2691                         /*Arity=*/2);
2692    mangleExpression(BO->getLHS());
2693    mangleExpression(BO->getRHS());
2694    break;
2695  }
2696
2697  case Expr::ConditionalOperatorClass: {
2698    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2699    mangleOperatorName(OO_Conditional, /*Arity=*/3);
2700    mangleExpression(CO->getCond());
2701    mangleExpression(CO->getLHS(), Arity);
2702    mangleExpression(CO->getRHS(), Arity);
2703    break;
2704  }
2705
2706  case Expr::ImplicitCastExprClass: {
2707    ImplicitlyConvertedToType = E->getType();
2708    E = cast<ImplicitCastExpr>(E)->getSubExpr();
2709    goto recurse;
2710  }
2711
2712  case Expr::ObjCBridgedCastExprClass: {
2713    // Mangle ownership casts as a vendor extended operator __bridge,
2714    // __bridge_transfer, or __bridge_retain.
2715    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2716    Out << "v1U" << Kind.size() << Kind;
2717  }
2718  // Fall through to mangle the cast itself.
2719
2720  case Expr::CStyleCastExprClass:
2721  case Expr::CXXStaticCastExprClass:
2722  case Expr::CXXDynamicCastExprClass:
2723  case Expr::CXXReinterpretCastExprClass:
2724  case Expr::CXXConstCastExprClass:
2725  case Expr::CXXFunctionalCastExprClass: {
2726    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2727    Out << "cv";
2728    mangleType(ECE->getType());
2729    mangleExpression(ECE->getSubExpr());
2730    break;
2731  }
2732
2733  case Expr::CXXOperatorCallExprClass: {
2734    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2735    unsigned NumArgs = CE->getNumArgs();
2736    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2737    // Mangle the arguments.
2738    for (unsigned i = 0; i != NumArgs; ++i)
2739      mangleExpression(CE->getArg(i));
2740    break;
2741  }
2742
2743  case Expr::ParenExprClass:
2744    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2745    break;
2746
2747  case Expr::DeclRefExprClass: {
2748    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2749
2750    switch (D->getKind()) {
2751    default:
2752      //  <expr-primary> ::= L <mangled-name> E # external name
2753      Out << 'L';
2754      mangle(D, "_Z");
2755      Out << 'E';
2756      break;
2757
2758    case Decl::ParmVar:
2759      mangleFunctionParam(cast<ParmVarDecl>(D));
2760      break;
2761
2762    case Decl::EnumConstant: {
2763      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2764      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2765      break;
2766    }
2767
2768    case Decl::NonTypeTemplateParm: {
2769      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
2770      mangleTemplateParameter(PD->getIndex());
2771      break;
2772    }
2773
2774    }
2775
2776    break;
2777  }
2778
2779  case Expr::SubstNonTypeTemplateParmPackExprClass:
2780    // FIXME: not clear how to mangle this!
2781    // template <unsigned N...> class A {
2782    //   template <class U...> void foo(U (&x)[N]...);
2783    // };
2784    Out << "_SUBSTPACK_";
2785    break;
2786
2787  case Expr::DependentScopeDeclRefExprClass: {
2788    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2789    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
2790
2791    // All the <unresolved-name> productions end in a
2792    // base-unresolved-name, where <template-args> are just tacked
2793    // onto the end.
2794    if (DRE->hasExplicitTemplateArgs())
2795      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2796    break;
2797  }
2798
2799  case Expr::CXXBindTemporaryExprClass:
2800    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2801    break;
2802
2803  case Expr::ExprWithCleanupsClass:
2804    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2805    break;
2806
2807  case Expr::FloatingLiteralClass: {
2808    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2809    Out << 'L';
2810    mangleType(FL->getType());
2811    mangleFloat(FL->getValue());
2812    Out << 'E';
2813    break;
2814  }
2815
2816  case Expr::CharacterLiteralClass:
2817    Out << 'L';
2818    mangleType(E->getType());
2819    Out << cast<CharacterLiteral>(E)->getValue();
2820    Out << 'E';
2821    break;
2822
2823  // FIXME. __objc_yes/__objc_no are mangled same as true/false
2824  case Expr::ObjCBoolLiteralExprClass:
2825    Out << "Lb";
2826    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2827    Out << 'E';
2828    break;
2829
2830  case Expr::CXXBoolLiteralExprClass:
2831    Out << "Lb";
2832    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2833    Out << 'E';
2834    break;
2835
2836  case Expr::IntegerLiteralClass: {
2837    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2838    if (E->getType()->isSignedIntegerType())
2839      Value.setIsSigned(true);
2840    mangleIntegerLiteral(E->getType(), Value);
2841    break;
2842  }
2843
2844  case Expr::ImaginaryLiteralClass: {
2845    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2846    // Mangle as if a complex literal.
2847    // Proposal from David Vandevoorde, 2010.06.30.
2848    Out << 'L';
2849    mangleType(E->getType());
2850    if (const FloatingLiteral *Imag =
2851          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2852      // Mangle a floating-point zero of the appropriate type.
2853      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2854      Out << '_';
2855      mangleFloat(Imag->getValue());
2856    } else {
2857      Out << "0_";
2858      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2859      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2860        Value.setIsSigned(true);
2861      mangleNumber(Value);
2862    }
2863    Out << 'E';
2864    break;
2865  }
2866
2867  case Expr::StringLiteralClass: {
2868    // Revised proposal from David Vandervoorde, 2010.07.15.
2869    Out << 'L';
2870    assert(isa<ConstantArrayType>(E->getType()));
2871    mangleType(E->getType());
2872    Out << 'E';
2873    break;
2874  }
2875
2876  case Expr::GNUNullExprClass:
2877    // FIXME: should this really be mangled the same as nullptr?
2878    // fallthrough
2879
2880  case Expr::CXXNullPtrLiteralExprClass: {
2881    // Proposal from David Vandervoorde, 2010.06.30, as
2882    // modified by ABI list discussion.
2883    Out << "LDnE";
2884    break;
2885  }
2886
2887  case Expr::PackExpansionExprClass:
2888    Out << "sp";
2889    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2890    break;
2891
2892  case Expr::SizeOfPackExprClass: {
2893    Out << "sZ";
2894    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2895    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2896      mangleTemplateParameter(TTP->getIndex());
2897    else if (const NonTypeTemplateParmDecl *NTTP
2898                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2899      mangleTemplateParameter(NTTP->getIndex());
2900    else if (const TemplateTemplateParmDecl *TempTP
2901                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2902      mangleTemplateParameter(TempTP->getIndex());
2903    else
2904      mangleFunctionParam(cast<ParmVarDecl>(Pack));
2905    break;
2906  }
2907
2908  case Expr::MaterializeTemporaryExprClass: {
2909    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
2910    break;
2911  }
2912  }
2913}
2914
2915/// Mangle an expression which refers to a parameter variable.
2916///
2917/// <expression>     ::= <function-param>
2918/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
2919/// <function-param> ::= fp <top-level CV-qualifiers>
2920///                      <parameter-2 non-negative number> _ # L == 0, I > 0
2921/// <function-param> ::= fL <L-1 non-negative number>
2922///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
2923/// <function-param> ::= fL <L-1 non-negative number>
2924///                      p <top-level CV-qualifiers>
2925///                      <I-1 non-negative number> _         # L > 0, I > 0
2926///
2927/// L is the nesting depth of the parameter, defined as 1 if the
2928/// parameter comes from the innermost function prototype scope
2929/// enclosing the current context, 2 if from the next enclosing
2930/// function prototype scope, and so on, with one special case: if
2931/// we've processed the full parameter clause for the innermost
2932/// function type, then L is one less.  This definition conveniently
2933/// makes it irrelevant whether a function's result type was written
2934/// trailing or leading, but is otherwise overly complicated; the
2935/// numbering was first designed without considering references to
2936/// parameter in locations other than return types, and then the
2937/// mangling had to be generalized without changing the existing
2938/// manglings.
2939///
2940/// I is the zero-based index of the parameter within its parameter
2941/// declaration clause.  Note that the original ABI document describes
2942/// this using 1-based ordinals.
2943void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
2944  unsigned parmDepth = parm->getFunctionScopeDepth();
2945  unsigned parmIndex = parm->getFunctionScopeIndex();
2946
2947  // Compute 'L'.
2948  // parmDepth does not include the declaring function prototype.
2949  // FunctionTypeDepth does account for that.
2950  assert(parmDepth < FunctionTypeDepth.getDepth());
2951  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
2952  if (FunctionTypeDepth.isInResultType())
2953    nestingDepth--;
2954
2955  if (nestingDepth == 0) {
2956    Out << "fp";
2957  } else {
2958    Out << "fL" << (nestingDepth - 1) << 'p';
2959  }
2960
2961  // Top-level qualifiers.  We don't have to worry about arrays here,
2962  // because parameters declared as arrays should already have been
2963  // tranformed to have pointer type. FIXME: apparently these don't
2964  // get mangled if used as an rvalue of a known non-class type?
2965  assert(!parm->getType()->isArrayType()
2966         && "parameter's type is still an array type?");
2967  mangleQualifiers(parm->getType().getQualifiers());
2968
2969  // Parameter index.
2970  if (parmIndex != 0) {
2971    Out << (parmIndex - 1);
2972  }
2973  Out << '_';
2974}
2975
2976void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2977  // <ctor-dtor-name> ::= C1  # complete object constructor
2978  //                  ::= C2  # base object constructor
2979  //                  ::= C3  # complete object allocating constructor
2980  //
2981  switch (T) {
2982  case Ctor_Complete:
2983    Out << "C1";
2984    break;
2985  case Ctor_Base:
2986    Out << "C2";
2987    break;
2988  case Ctor_CompleteAllocating:
2989    Out << "C3";
2990    break;
2991  }
2992}
2993
2994void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2995  // <ctor-dtor-name> ::= D0  # deleting destructor
2996  //                  ::= D1  # complete object destructor
2997  //                  ::= D2  # base object destructor
2998  //
2999  switch (T) {
3000  case Dtor_Deleting:
3001    Out << "D0";
3002    break;
3003  case Dtor_Complete:
3004    Out << "D1";
3005    break;
3006  case Dtor_Base:
3007    Out << "D2";
3008    break;
3009  }
3010}
3011
3012void CXXNameMangler::mangleTemplateArgs(
3013                          const ASTTemplateArgumentListInfo &TemplateArgs) {
3014  // <template-args> ::= I <template-arg>+ E
3015  Out << 'I';
3016  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3017    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument());
3018  Out << 'E';
3019}
3020
3021void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
3022                                        const TemplateArgument *TemplateArgs,
3023                                        unsigned NumTemplateArgs) {
3024  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3025    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
3026                              NumTemplateArgs);
3027
3028  mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs);
3029}
3030
3031void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args,
3032                                                  unsigned numArgs) {
3033  // <template-args> ::= I <template-arg>+ E
3034  Out << 'I';
3035  for (unsigned i = 0; i != numArgs; ++i)
3036    mangleTemplateArg(0, args[i]);
3037  Out << 'E';
3038}
3039
3040void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3041                                        const TemplateArgumentList &AL) {
3042  // <template-args> ::= I <template-arg>+ E
3043  Out << 'I';
3044  for (unsigned i = 0, e = AL.size(); i != e; ++i)
3045    mangleTemplateArg(PL.getParam(i), AL[i]);
3046  Out << 'E';
3047}
3048
3049void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
3050                                        const TemplateArgument *TemplateArgs,
3051                                        unsigned NumTemplateArgs) {
3052  // <template-args> ::= I <template-arg>+ E
3053  Out << 'I';
3054  for (unsigned i = 0; i != NumTemplateArgs; ++i)
3055    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
3056  Out << 'E';
3057}
3058
3059void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
3060                                       TemplateArgument A) {
3061  // <template-arg> ::= <type>              # type or template
3062  //                ::= X <expression> E    # expression
3063  //                ::= <expr-primary>      # simple expressions
3064  //                ::= J <template-arg>* E # argument pack
3065  //                ::= sp <expression>     # pack expansion of (C++0x)
3066  if (!A.isInstantiationDependent() || A.isDependent())
3067    A = Context.getASTContext().getCanonicalTemplateArgument(A);
3068
3069  switch (A.getKind()) {
3070  case TemplateArgument::Null:
3071    llvm_unreachable("Cannot mangle NULL template argument");
3072
3073  case TemplateArgument::Type:
3074    mangleType(A.getAsType());
3075    break;
3076  case TemplateArgument::Template:
3077    // This is mangled as <type>.
3078    mangleType(A.getAsTemplate());
3079    break;
3080  case TemplateArgument::TemplateExpansion:
3081    // <type>  ::= Dp <type>          # pack expansion (C++0x)
3082    Out << "Dp";
3083    mangleType(A.getAsTemplateOrTemplatePattern());
3084    break;
3085  case TemplateArgument::Expression: {
3086    // It's possible to end up with a DeclRefExpr here in certain
3087    // dependent cases, in which case we should mangle as a
3088    // declaration.
3089    const Expr *E = A.getAsExpr()->IgnoreParens();
3090    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3091      const ValueDecl *D = DRE->getDecl();
3092      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3093        Out << "L";
3094        mangle(D, "_Z");
3095        Out << 'E';
3096        break;
3097      }
3098    }
3099
3100    Out << 'X';
3101    mangleExpression(E);
3102    Out << 'E';
3103    break;
3104  }
3105  case TemplateArgument::Integral:
3106    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
3107    break;
3108  case TemplateArgument::Declaration: {
3109    assert(P && "Missing template parameter for declaration argument");
3110    //  <expr-primary> ::= L <mangled-name> E # external name
3111
3112    // Clang produces AST's where pointer-to-member-function expressions
3113    // and pointer-to-function expressions are represented as a declaration not
3114    // an expression. We compensate for it here to produce the correct mangling.
3115    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
3116    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
3117    bool compensateMangling = !Parameter->getType()->isReferenceType();
3118    if (compensateMangling) {
3119      Out << 'X';
3120      mangleOperatorName(OO_Amp, 1);
3121    }
3122
3123    Out << 'L';
3124    // References to external entities use the mangled name; if the name would
3125    // not normally be manged then mangle it as unqualified.
3126    //
3127    // FIXME: The ABI specifies that external names here should have _Z, but
3128    // gcc leaves this off.
3129    if (compensateMangling)
3130      mangle(D, "_Z");
3131    else
3132      mangle(D, "Z");
3133    Out << 'E';
3134
3135    if (compensateMangling)
3136      Out << 'E';
3137
3138    break;
3139  }
3140
3141  case TemplateArgument::Pack: {
3142    // Note: proposal by Mike Herrick on 12/20/10
3143    Out << 'J';
3144    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
3145                                      PAEnd = A.pack_end();
3146         PA != PAEnd; ++PA)
3147      mangleTemplateArg(P, *PA);
3148    Out << 'E';
3149  }
3150  }
3151}
3152
3153void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3154  // <template-param> ::= T_    # first template parameter
3155  //                  ::= T <parameter-2 non-negative number> _
3156  if (Index == 0)
3157    Out << "T_";
3158  else
3159    Out << 'T' << (Index - 1) << '_';
3160}
3161
3162void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3163  bool result = mangleSubstitution(type);
3164  assert(result && "no existing substitution for type");
3165  (void) result;
3166}
3167
3168void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3169  bool result = mangleSubstitution(tname);
3170  assert(result && "no existing substitution for template name");
3171  (void) result;
3172}
3173
3174// <substitution> ::= S <seq-id> _
3175//                ::= S_
3176bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3177  // Try one of the standard substitutions first.
3178  if (mangleStandardSubstitution(ND))
3179    return true;
3180
3181  ND = cast<NamedDecl>(ND->getCanonicalDecl());
3182  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3183}
3184
3185/// \brief Determine whether the given type has any qualifiers that are
3186/// relevant for substitutions.
3187static bool hasMangledSubstitutionQualifiers(QualType T) {
3188  Qualifiers Qs = T.getQualifiers();
3189  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3190}
3191
3192bool CXXNameMangler::mangleSubstitution(QualType T) {
3193  if (!hasMangledSubstitutionQualifiers(T)) {
3194    if (const RecordType *RT = T->getAs<RecordType>())
3195      return mangleSubstitution(RT->getDecl());
3196  }
3197
3198  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3199
3200  return mangleSubstitution(TypePtr);
3201}
3202
3203bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3204  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3205    return mangleSubstitution(TD);
3206
3207  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3208  return mangleSubstitution(
3209                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3210}
3211
3212bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3213  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3214  if (I == Substitutions.end())
3215    return false;
3216
3217  unsigned SeqID = I->second;
3218  if (SeqID == 0)
3219    Out << "S_";
3220  else {
3221    SeqID--;
3222
3223    // <seq-id> is encoded in base-36, using digits and upper case letters.
3224    char Buffer[10];
3225    char *BufferPtr = llvm::array_endof(Buffer);
3226
3227    if (SeqID == 0) *--BufferPtr = '0';
3228
3229    while (SeqID) {
3230      assert(BufferPtr > Buffer && "Buffer overflow!");
3231
3232      char c = static_cast<char>(SeqID % 36);
3233
3234      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
3235      SeqID /= 36;
3236    }
3237
3238    Out << 'S'
3239        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3240        << '_';
3241  }
3242
3243  return true;
3244}
3245
3246static bool isCharType(QualType T) {
3247  if (T.isNull())
3248    return false;
3249
3250  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3251    T->isSpecificBuiltinType(BuiltinType::Char_U);
3252}
3253
3254/// isCharSpecialization - Returns whether a given type is a template
3255/// specialization of a given name with a single argument of type char.
3256static bool isCharSpecialization(QualType T, const char *Name) {
3257  if (T.isNull())
3258    return false;
3259
3260  const RecordType *RT = T->getAs<RecordType>();
3261  if (!RT)
3262    return false;
3263
3264  const ClassTemplateSpecializationDecl *SD =
3265    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3266  if (!SD)
3267    return false;
3268
3269  if (!isStdNamespace(getEffectiveDeclContext(SD)))
3270    return false;
3271
3272  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3273  if (TemplateArgs.size() != 1)
3274    return false;
3275
3276  if (!isCharType(TemplateArgs[0].getAsType()))
3277    return false;
3278
3279  return SD->getIdentifier()->getName() == Name;
3280}
3281
3282template <std::size_t StrLen>
3283static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3284                                       const char (&Str)[StrLen]) {
3285  if (!SD->getIdentifier()->isStr(Str))
3286    return false;
3287
3288  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3289  if (TemplateArgs.size() != 2)
3290    return false;
3291
3292  if (!isCharType(TemplateArgs[0].getAsType()))
3293    return false;
3294
3295  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3296    return false;
3297
3298  return true;
3299}
3300
3301bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3302  // <substitution> ::= St # ::std::
3303  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3304    if (isStd(NS)) {
3305      Out << "St";
3306      return true;
3307    }
3308  }
3309
3310  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3311    if (!isStdNamespace(getEffectiveDeclContext(TD)))
3312      return false;
3313
3314    // <substitution> ::= Sa # ::std::allocator
3315    if (TD->getIdentifier()->isStr("allocator")) {
3316      Out << "Sa";
3317      return true;
3318    }
3319
3320    // <<substitution> ::= Sb # ::std::basic_string
3321    if (TD->getIdentifier()->isStr("basic_string")) {
3322      Out << "Sb";
3323      return true;
3324    }
3325  }
3326
3327  if (const ClassTemplateSpecializationDecl *SD =
3328        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3329    if (!isStdNamespace(getEffectiveDeclContext(SD)))
3330      return false;
3331
3332    //    <substitution> ::= Ss # ::std::basic_string<char,
3333    //                            ::std::char_traits<char>,
3334    //                            ::std::allocator<char> >
3335    if (SD->getIdentifier()->isStr("basic_string")) {
3336      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3337
3338      if (TemplateArgs.size() != 3)
3339        return false;
3340
3341      if (!isCharType(TemplateArgs[0].getAsType()))
3342        return false;
3343
3344      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3345        return false;
3346
3347      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3348        return false;
3349
3350      Out << "Ss";
3351      return true;
3352    }
3353
3354    //    <substitution> ::= Si # ::std::basic_istream<char,
3355    //                            ::std::char_traits<char> >
3356    if (isStreamCharSpecialization(SD, "basic_istream")) {
3357      Out << "Si";
3358      return true;
3359    }
3360
3361    //    <substitution> ::= So # ::std::basic_ostream<char,
3362    //                            ::std::char_traits<char> >
3363    if (isStreamCharSpecialization(SD, "basic_ostream")) {
3364      Out << "So";
3365      return true;
3366    }
3367
3368    //    <substitution> ::= Sd # ::std::basic_iostream<char,
3369    //                            ::std::char_traits<char> >
3370    if (isStreamCharSpecialization(SD, "basic_iostream")) {
3371      Out << "Sd";
3372      return true;
3373    }
3374  }
3375  return false;
3376}
3377
3378void CXXNameMangler::addSubstitution(QualType T) {
3379  if (!hasMangledSubstitutionQualifiers(T)) {
3380    if (const RecordType *RT = T->getAs<RecordType>()) {
3381      addSubstitution(RT->getDecl());
3382      return;
3383    }
3384  }
3385
3386  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3387  addSubstitution(TypePtr);
3388}
3389
3390void CXXNameMangler::addSubstitution(TemplateName Template) {
3391  if (TemplateDecl *TD = Template.getAsTemplateDecl())
3392    return addSubstitution(TD);
3393
3394  Template = Context.getASTContext().getCanonicalTemplateName(Template);
3395  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3396}
3397
3398void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3399  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3400  Substitutions[Ptr] = SeqID++;
3401}
3402
3403//
3404
3405/// \brief Mangles the name of the declaration D and emits that name to the
3406/// given output stream.
3407///
3408/// If the declaration D requires a mangled name, this routine will emit that
3409/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3410/// and this routine will return false. In this case, the caller should just
3411/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3412/// name.
3413void ItaniumMangleContext::mangleName(const NamedDecl *D,
3414                                      raw_ostream &Out) {
3415  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3416          "Invalid mangleName() call, argument is not a variable or function!");
3417  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3418         "Invalid mangleName() call on 'structor decl!");
3419
3420  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3421                                 getASTContext().getSourceManager(),
3422                                 "Mangling declaration");
3423
3424  CXXNameMangler Mangler(*this, Out, D);
3425  return Mangler.mangle(D);
3426}
3427
3428void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
3429                                         CXXCtorType Type,
3430                                         raw_ostream &Out) {
3431  CXXNameMangler Mangler(*this, Out, D, Type);
3432  Mangler.mangle(D);
3433}
3434
3435void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
3436                                         CXXDtorType Type,
3437                                         raw_ostream &Out) {
3438  CXXNameMangler Mangler(*this, Out, D, Type);
3439  Mangler.mangle(D);
3440}
3441
3442void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
3443                                       const ThunkInfo &Thunk,
3444                                       raw_ostream &Out) {
3445  //  <special-name> ::= T <call-offset> <base encoding>
3446  //                      # base is the nominal target function of thunk
3447  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3448  //                      # base is the nominal target function of thunk
3449  //                      # first call-offset is 'this' adjustment
3450  //                      # second call-offset is result adjustment
3451
3452  assert(!isa<CXXDestructorDecl>(MD) &&
3453         "Use mangleCXXDtor for destructor decls!");
3454  CXXNameMangler Mangler(*this, Out);
3455  Mangler.getStream() << "_ZT";
3456  if (!Thunk.Return.isEmpty())
3457    Mangler.getStream() << 'c';
3458
3459  // Mangle the 'this' pointer adjustment.
3460  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3461
3462  // Mangle the return pointer adjustment if there is one.
3463  if (!Thunk.Return.isEmpty())
3464    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3465                             Thunk.Return.VBaseOffsetOffset);
3466
3467  Mangler.mangleFunctionEncoding(MD);
3468}
3469
3470void
3471ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
3472                                         CXXDtorType Type,
3473                                         const ThisAdjustment &ThisAdjustment,
3474                                         raw_ostream &Out) {
3475  //  <special-name> ::= T <call-offset> <base encoding>
3476  //                      # base is the nominal target function of thunk
3477  CXXNameMangler Mangler(*this, Out, DD, Type);
3478  Mangler.getStream() << "_ZT";
3479
3480  // Mangle the 'this' pointer adjustment.
3481  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3482                           ThisAdjustment.VCallOffsetOffset);
3483
3484  Mangler.mangleFunctionEncoding(DD);
3485}
3486
3487/// mangleGuardVariable - Returns the mangled name for a guard variable
3488/// for the passed in VarDecl.
3489void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
3490                                                      raw_ostream &Out) {
3491  //  <special-name> ::= GV <object name>       # Guard variable for one-time
3492  //                                            # initialization
3493  CXXNameMangler Mangler(*this, Out);
3494  Mangler.getStream() << "_ZGV";
3495  Mangler.mangleName(D);
3496}
3497
3498void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
3499                                                    raw_ostream &Out) {
3500  // We match the GCC mangling here.
3501  //  <special-name> ::= GR <object name>
3502  CXXNameMangler Mangler(*this, Out);
3503  Mangler.getStream() << "_ZGR";
3504  Mangler.mangleName(D);
3505}
3506
3507void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
3508                                           raw_ostream &Out) {
3509  // <special-name> ::= TV <type>  # virtual table
3510  CXXNameMangler Mangler(*this, Out);
3511  Mangler.getStream() << "_ZTV";
3512  Mangler.mangleNameOrStandardSubstitution(RD);
3513}
3514
3515void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
3516                                        raw_ostream &Out) {
3517  // <special-name> ::= TT <type>  # VTT structure
3518  CXXNameMangler Mangler(*this, Out);
3519  Mangler.getStream() << "_ZTT";
3520  Mangler.mangleNameOrStandardSubstitution(RD);
3521}
3522
3523void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3524                                               int64_t Offset,
3525                                               const CXXRecordDecl *Type,
3526                                               raw_ostream &Out) {
3527  // <special-name> ::= TC <type> <offset number> _ <base type>
3528  CXXNameMangler Mangler(*this, Out);
3529  Mangler.getStream() << "_ZTC";
3530  Mangler.mangleNameOrStandardSubstitution(RD);
3531  Mangler.getStream() << Offset;
3532  Mangler.getStream() << '_';
3533  Mangler.mangleNameOrStandardSubstitution(Type);
3534}
3535
3536void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
3537                                         raw_ostream &Out) {
3538  // <special-name> ::= TI <type>  # typeinfo structure
3539  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3540  CXXNameMangler Mangler(*this, Out);
3541  Mangler.getStream() << "_ZTI";
3542  Mangler.mangleType(Ty);
3543}
3544
3545void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
3546                                             raw_ostream &Out) {
3547  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3548  CXXNameMangler Mangler(*this, Out);
3549  Mangler.getStream() << "_ZTS";
3550  Mangler.mangleType(Ty);
3551}
3552
3553MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
3554                                                 DiagnosticsEngine &Diags) {
3555  return new ItaniumMangleContext(Context, Diags);
3556}
3557