ItaniumMangle.cpp revision f0be979bddb8baa28e77693a3dc931e487b2a9f2
1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14//   http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/ABI.h"
25#include "clang/Basic/SourceManager.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/raw_ostream.h"
28#include "llvm/Support/ErrorHandling.h"
29
30#define MANGLE_CHECKER 0
31
32#if MANGLE_CHECKER
33#include <cxxabi.h>
34#endif
35
36using namespace clang;
37
38namespace {
39
40static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
41  const DeclContext *DC = dyn_cast<DeclContext>(ND);
42  if (!DC)
43    DC = ND->getDeclContext();
44  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
45    if (isa<FunctionDecl>(DC->getParent()))
46      return dyn_cast<CXXRecordDecl>(DC);
47    DC = DC->getParent();
48  }
49  return 0;
50}
51
52static const CXXMethodDecl *getStructor(const CXXMethodDecl *MD) {
53  assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
54         "Passed in decl is not a ctor or dtor!");
55
56  if (const TemplateDecl *TD = MD->getPrimaryTemplate()) {
57    MD = cast<CXXMethodDecl>(TD->getTemplatedDecl());
58
59    assert((isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) &&
60           "Templated decl is not a ctor or dtor!");
61  }
62
63  return MD;
64}
65
66static const unsigned UnknownArity = ~0U;
67
68class ItaniumMangleContext : public MangleContext {
69  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
70  unsigned Discriminator;
71  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
72
73public:
74  explicit ItaniumMangleContext(ASTContext &Context,
75                                Diagnostic &Diags)
76    : MangleContext(Context, Diags) { }
77
78  uint64_t getAnonymousStructId(const TagDecl *TD) {
79    std::pair<llvm::DenseMap<const TagDecl *,
80      uint64_t>::iterator, bool> Result =
81      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
82    return Result.first->second;
83  }
84
85  void startNewFunction() {
86    MangleContext::startNewFunction();
87    mangleInitDiscriminator();
88  }
89
90  /// @name Mangler Entry Points
91  /// @{
92
93  bool shouldMangleDeclName(const NamedDecl *D);
94  void mangleName(const NamedDecl *D, llvm::raw_ostream &);
95  void mangleThunk(const CXXMethodDecl *MD,
96                   const ThunkInfo &Thunk,
97                   llvm::raw_ostream &);
98  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
99                          const ThisAdjustment &ThisAdjustment,
100                          llvm::raw_ostream &);
101  void mangleReferenceTemporary(const VarDecl *D,
102                                llvm::raw_ostream &);
103  void mangleCXXVTable(const CXXRecordDecl *RD,
104                       llvm::raw_ostream &);
105  void mangleCXXVTT(const CXXRecordDecl *RD,
106                    llvm::raw_ostream &);
107  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
108                           const CXXRecordDecl *Type,
109                           llvm::raw_ostream &);
110  void mangleCXXRTTI(QualType T, llvm::raw_ostream &);
111  void mangleCXXRTTIName(QualType T, llvm::raw_ostream &);
112  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
113                     llvm::raw_ostream &);
114  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
115                     llvm::raw_ostream &);
116
117  void mangleItaniumGuardVariable(const VarDecl *D, llvm::raw_ostream &);
118
119  void mangleInitDiscriminator() {
120    Discriminator = 0;
121  }
122
123  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
124    unsigned &discriminator = Uniquifier[ND];
125    if (!discriminator)
126      discriminator = ++Discriminator;
127    if (discriminator == 1)
128      return false;
129    disc = discriminator-2;
130    return true;
131  }
132  /// @}
133};
134
135/// CXXNameMangler - Manage the mangling of a single name.
136class CXXNameMangler {
137  ItaniumMangleContext &Context;
138  llvm::raw_ostream &Out;
139
140  const CXXMethodDecl *Structor;
141  unsigned StructorType;
142
143  /// SeqID - The next subsitution sequence number.
144  unsigned SeqID;
145
146  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
147
148  ASTContext &getASTContext() const { return Context.getASTContext(); }
149
150public:
151  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_)
152    : Context(C), Out(Out_), Structor(0), StructorType(0), SeqID(0) { }
153  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
154                 const CXXConstructorDecl *D, CXXCtorType Type)
155    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
156    SeqID(0) { }
157  CXXNameMangler(ItaniumMangleContext &C, llvm::raw_ostream &Out_,
158                 const CXXDestructorDecl *D, CXXDtorType Type)
159    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
160    SeqID(0) { }
161
162#if MANGLE_CHECKER
163  ~CXXNameMangler() {
164    if (Out.str()[0] == '\01')
165      return;
166
167    int status = 0;
168    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
169    assert(status == 0 && "Could not demangle mangled name!");
170    free(result);
171  }
172#endif
173  llvm::raw_ostream &getStream() { return Out; }
174
175  void mangle(const NamedDecl *D, llvm::StringRef Prefix = "_Z");
176  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
177  void mangleNumber(const llvm::APSInt &I);
178  void mangleNumber(int64_t Number);
179  void mangleFloat(const llvm::APFloat &F);
180  void mangleFunctionEncoding(const FunctionDecl *FD);
181  void mangleName(const NamedDecl *ND);
182  void mangleType(QualType T);
183  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
184
185private:
186  bool mangleSubstitution(const NamedDecl *ND);
187  bool mangleSubstitution(QualType T);
188  bool mangleSubstitution(TemplateName Template);
189  bool mangleSubstitution(uintptr_t Ptr);
190
191  bool mangleStandardSubstitution(const NamedDecl *ND);
192
193  void addSubstitution(const NamedDecl *ND) {
194    ND = cast<NamedDecl>(ND->getCanonicalDecl());
195
196    addSubstitution(reinterpret_cast<uintptr_t>(ND));
197  }
198  void addSubstitution(QualType T);
199  void addSubstitution(TemplateName Template);
200  void addSubstitution(uintptr_t Ptr);
201
202  void mangleUnresolvedScope(NestedNameSpecifier *Qualifier);
203  void mangleUnresolvedName(NestedNameSpecifier *Qualifier,
204                            DeclarationName Name,
205                            unsigned KnownArity = UnknownArity);
206
207  void mangleName(const TemplateDecl *TD,
208                  const TemplateArgument *TemplateArgs,
209                  unsigned NumTemplateArgs);
210  void mangleUnqualifiedName(const NamedDecl *ND) {
211    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
212  }
213  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
214                             unsigned KnownArity);
215  void mangleUnscopedName(const NamedDecl *ND);
216  void mangleUnscopedTemplateName(const TemplateDecl *ND);
217  void mangleUnscopedTemplateName(TemplateName);
218  void mangleSourceName(const IdentifierInfo *II);
219  void mangleLocalName(const NamedDecl *ND);
220  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
221                        bool NoFunction=false);
222  void mangleNestedName(const TemplateDecl *TD,
223                        const TemplateArgument *TemplateArgs,
224                        unsigned NumTemplateArgs);
225  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
226  void mangleTemplatePrefix(const TemplateDecl *ND);
227  void mangleTemplatePrefix(TemplateName Template);
228  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
229  void mangleQualifiers(Qualifiers Quals);
230  void mangleRefQualifier(RefQualifierKind RefQualifier);
231
232  void mangleObjCMethodName(const ObjCMethodDecl *MD);
233
234  // Declare manglers for every type class.
235#define ABSTRACT_TYPE(CLASS, PARENT)
236#define NON_CANONICAL_TYPE(CLASS, PARENT)
237#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
238#include "clang/AST/TypeNodes.def"
239
240  void mangleType(const TagType*);
241  void mangleType(TemplateName);
242  void mangleBareFunctionType(const FunctionType *T,
243                              bool MangleReturnType);
244  void mangleNeonVectorType(const VectorType *T);
245
246  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
247  void mangleMemberExpr(const Expr *Base, bool IsArrow,
248                        NestedNameSpecifier *Qualifier,
249                        DeclarationName Name,
250                        unsigned KnownArity);
251  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
252  void mangleCXXCtorType(CXXCtorType T);
253  void mangleCXXDtorType(CXXDtorType T);
254
255  void mangleTemplateArgs(const ExplicitTemplateArgumentList &TemplateArgs);
256  void mangleTemplateArgs(TemplateName Template,
257                          const TemplateArgument *TemplateArgs,
258                          unsigned NumTemplateArgs);
259  void mangleTemplateArgs(const TemplateParameterList &PL,
260                          const TemplateArgument *TemplateArgs,
261                          unsigned NumTemplateArgs);
262  void mangleTemplateArgs(const TemplateParameterList &PL,
263                          const TemplateArgumentList &AL);
264  void mangleTemplateArg(const NamedDecl *P, const TemplateArgument &A);
265
266  void mangleTemplateParameter(unsigned Index);
267};
268
269}
270
271static bool isInCLinkageSpecification(const Decl *D) {
272  D = D->getCanonicalDecl();
273  for (const DeclContext *DC = D->getDeclContext();
274       !DC->isTranslationUnit(); DC = DC->getParent()) {
275    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
276      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
277  }
278
279  return false;
280}
281
282bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
283  // In C, functions with no attributes never need to be mangled. Fastpath them.
284  if (!getASTContext().getLangOptions().CPlusPlus && !D->hasAttrs())
285    return false;
286
287  // Any decl can be declared with __asm("foo") on it, and this takes precedence
288  // over all other naming in the .o file.
289  if (D->hasAttr<AsmLabelAttr>())
290    return true;
291
292  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
293  // (always) as does passing a C++ member function and a function
294  // whose name is not a simple identifier.
295  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
296  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
297             !FD->getDeclName().isIdentifier()))
298    return true;
299
300  // Otherwise, no mangling is done outside C++ mode.
301  if (!getASTContext().getLangOptions().CPlusPlus)
302    return false;
303
304  // Variables at global scope with non-internal linkage are not mangled
305  if (!FD) {
306    const DeclContext *DC = D->getDeclContext();
307    // Check for extern variable declared locally.
308    if (DC->isFunctionOrMethod() && D->hasLinkage())
309      while (!DC->isNamespace() && !DC->isTranslationUnit())
310        DC = DC->getParent();
311    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
312      return false;
313  }
314
315  // Class members are always mangled.
316  if (D->getDeclContext()->isRecord())
317    return true;
318
319  // C functions and "main" are not mangled.
320  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
321    return false;
322
323  return true;
324}
325
326void CXXNameMangler::mangle(const NamedDecl *D, llvm::StringRef Prefix) {
327  // Any decl can be declared with __asm("foo") on it, and this takes precedence
328  // over all other naming in the .o file.
329  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
330    // If we have an asm name, then we use it as the mangling.
331    Out << '\01';  // LLVM IR Marker for __asm("foo")
332    Out << ALA->getLabel();
333    return;
334  }
335
336  // <mangled-name> ::= _Z <encoding>
337  //            ::= <data name>
338  //            ::= <special-name>
339  Out << Prefix;
340  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
341    mangleFunctionEncoding(FD);
342  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
343    mangleName(VD);
344  else
345    mangleName(cast<FieldDecl>(D));
346}
347
348void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
349  // <encoding> ::= <function name> <bare-function-type>
350  mangleName(FD);
351
352  // Don't mangle in the type if this isn't a decl we should typically mangle.
353  if (!Context.shouldMangleDeclName(FD))
354    return;
355
356  // Whether the mangling of a function type includes the return type depends on
357  // the context and the nature of the function. The rules for deciding whether
358  // the return type is included are:
359  //
360  //   1. Template functions (names or types) have return types encoded, with
361  //   the exceptions listed below.
362  //   2. Function types not appearing as part of a function name mangling,
363  //   e.g. parameters, pointer types, etc., have return type encoded, with the
364  //   exceptions listed below.
365  //   3. Non-template function names do not have return types encoded.
366  //
367  // The exceptions mentioned in (1) and (2) above, for which the return type is
368  // never included, are
369  //   1. Constructors.
370  //   2. Destructors.
371  //   3. Conversion operator functions, e.g. operator int.
372  bool MangleReturnType = false;
373  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
374    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
375          isa<CXXConversionDecl>(FD)))
376      MangleReturnType = true;
377
378    // Mangle the type of the primary template.
379    FD = PrimaryTemplate->getTemplatedDecl();
380  }
381
382  // Do the canonicalization out here because parameter types can
383  // undergo additional canonicalization (e.g. array decay).
384  const FunctionType *FT
385    = cast<FunctionType>(Context.getASTContext()
386                                          .getCanonicalType(FD->getType()));
387
388  mangleBareFunctionType(FT, MangleReturnType);
389}
390
391static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
392  while (isa<LinkageSpecDecl>(DC)) {
393    DC = DC->getParent();
394  }
395
396  return DC;
397}
398
399/// isStd - Return whether a given namespace is the 'std' namespace.
400static bool isStd(const NamespaceDecl *NS) {
401  if (!IgnoreLinkageSpecDecls(NS->getParent())->isTranslationUnit())
402    return false;
403
404  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
405  return II && II->isStr("std");
406}
407
408// isStdNamespace - Return whether a given decl context is a toplevel 'std'
409// namespace.
410static bool isStdNamespace(const DeclContext *DC) {
411  if (!DC->isNamespace())
412    return false;
413
414  return isStd(cast<NamespaceDecl>(DC));
415}
416
417static const TemplateDecl *
418isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
419  // Check if we have a function template.
420  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
421    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
422      TemplateArgs = FD->getTemplateSpecializationArgs();
423      return TD;
424    }
425  }
426
427  // Check if we have a class template.
428  if (const ClassTemplateSpecializationDecl *Spec =
429        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
430    TemplateArgs = &Spec->getTemplateArgs();
431    return Spec->getSpecializedTemplate();
432  }
433
434  return 0;
435}
436
437void CXXNameMangler::mangleName(const NamedDecl *ND) {
438  //  <name> ::= <nested-name>
439  //         ::= <unscoped-name>
440  //         ::= <unscoped-template-name> <template-args>
441  //         ::= <local-name>
442  //
443  const DeclContext *DC = ND->getDeclContext();
444
445  // If this is an extern variable declared locally, the relevant DeclContext
446  // is that of the containing namespace, or the translation unit.
447  if (isa<FunctionDecl>(DC) && ND->hasLinkage())
448    while (!DC->isNamespace() && !DC->isTranslationUnit())
449      DC = DC->getParent();
450  else if (GetLocalClassDecl(ND)) {
451    mangleLocalName(ND);
452    return;
453  }
454
455  while (isa<LinkageSpecDecl>(DC))
456    DC = DC->getParent();
457
458  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
459    // Check if we have a template.
460    const TemplateArgumentList *TemplateArgs = 0;
461    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
462      mangleUnscopedTemplateName(TD);
463      TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
464      mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
465      return;
466    }
467
468    mangleUnscopedName(ND);
469    return;
470  }
471
472  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
473    mangleLocalName(ND);
474    return;
475  }
476
477  mangleNestedName(ND, DC);
478}
479void CXXNameMangler::mangleName(const TemplateDecl *TD,
480                                const TemplateArgument *TemplateArgs,
481                                unsigned NumTemplateArgs) {
482  const DeclContext *DC = IgnoreLinkageSpecDecls(TD->getDeclContext());
483
484  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
485    mangleUnscopedTemplateName(TD);
486    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
487    mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
488  } else {
489    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
490  }
491}
492
493void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
494  //  <unscoped-name> ::= <unqualified-name>
495  //                  ::= St <unqualified-name>   # ::std::
496  if (isStdNamespace(ND->getDeclContext()))
497    Out << "St";
498
499  mangleUnqualifiedName(ND);
500}
501
502void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
503  //     <unscoped-template-name> ::= <unscoped-name>
504  //                              ::= <substitution>
505  if (mangleSubstitution(ND))
506    return;
507
508  // <template-template-param> ::= <template-param>
509  if (const TemplateTemplateParmDecl *TTP
510                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
511    mangleTemplateParameter(TTP->getIndex());
512    return;
513  }
514
515  mangleUnscopedName(ND->getTemplatedDecl());
516  addSubstitution(ND);
517}
518
519void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
520  //     <unscoped-template-name> ::= <unscoped-name>
521  //                              ::= <substitution>
522  if (TemplateDecl *TD = Template.getAsTemplateDecl())
523    return mangleUnscopedTemplateName(TD);
524
525  if (mangleSubstitution(Template))
526    return;
527
528  // FIXME: How to cope with operators here?
529  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
530  assert(Dependent && "Not a dependent template name?");
531  if (!Dependent->isIdentifier()) {
532    // FIXME: We can't possibly know the arity of the operator here!
533    Diagnostic &Diags = Context.getDiags();
534    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
535                                      "cannot mangle dependent operator name");
536    Diags.Report(DiagID);
537    return;
538  }
539
540  mangleSourceName(Dependent->getIdentifier());
541  addSubstitution(Template);
542}
543
544void CXXNameMangler::mangleFloat(const llvm::APFloat &F) {
545  // TODO: avoid this copy with careful stream management.
546  llvm::SmallString<20> Buffer;
547  F.bitcastToAPInt().toString(Buffer, 16, false);
548  Out.write(Buffer.data(), Buffer.size());
549}
550
551void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
552  if (Value.isSigned() && Value.isNegative()) {
553    Out << 'n';
554    Value.abs().print(Out, true);
555  } else
556    Value.print(Out, Value.isSigned());
557}
558
559void CXXNameMangler::mangleNumber(int64_t Number) {
560  //  <number> ::= [n] <non-negative decimal integer>
561  if (Number < 0) {
562    Out << 'n';
563    Number = -Number;
564  }
565
566  Out << Number;
567}
568
569void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
570  //  <call-offset>  ::= h <nv-offset> _
571  //                 ::= v <v-offset> _
572  //  <nv-offset>    ::= <offset number>        # non-virtual base override
573  //  <v-offset>     ::= <offset number> _ <virtual offset number>
574  //                      # virtual base override, with vcall offset
575  if (!Virtual) {
576    Out << 'h';
577    mangleNumber(NonVirtual);
578    Out << '_';
579    return;
580  }
581
582  Out << 'v';
583  mangleNumber(NonVirtual);
584  Out << '_';
585  mangleNumber(Virtual);
586  Out << '_';
587}
588
589void CXXNameMangler::mangleUnresolvedScope(NestedNameSpecifier *Qualifier) {
590  Qualifier = getASTContext().getCanonicalNestedNameSpecifier(Qualifier);
591  switch (Qualifier->getKind()) {
592  case NestedNameSpecifier::Global:
593    // nothing
594    break;
595  case NestedNameSpecifier::Namespace:
596    mangleName(Qualifier->getAsNamespace());
597    break;
598  case NestedNameSpecifier::TypeSpec:
599  case NestedNameSpecifier::TypeSpecWithTemplate: {
600    const Type *QTy = Qualifier->getAsType();
601
602    if (const TemplateSpecializationType *TST =
603        dyn_cast<TemplateSpecializationType>(QTy)) {
604      if (!mangleSubstitution(QualType(TST, 0))) {
605        mangleTemplatePrefix(TST->getTemplateName());
606
607        // FIXME: GCC does not appear to mangle the template arguments when
608        // the template in question is a dependent template name. Should we
609        // emulate that badness?
610        mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(),
611                           TST->getNumArgs());
612        addSubstitution(QualType(TST, 0));
613      }
614    } else {
615      // We use the QualType mangle type variant here because it handles
616      // substitutions.
617      mangleType(QualType(QTy, 0));
618    }
619  }
620    break;
621  case NestedNameSpecifier::Identifier:
622    // Member expressions can have these without prefixes.
623    if (Qualifier->getPrefix())
624      mangleUnresolvedScope(Qualifier->getPrefix());
625    mangleSourceName(Qualifier->getAsIdentifier());
626    break;
627  }
628}
629
630/// Mangles a name which was not resolved to a specific entity.
631void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *Qualifier,
632                                          DeclarationName Name,
633                                          unsigned KnownArity) {
634  if (Qualifier)
635    mangleUnresolvedScope(Qualifier);
636  // FIXME: ambiguity of unqualified lookup with ::
637
638  mangleUnqualifiedName(0, Name, KnownArity);
639}
640
641static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
642  assert(RD->isAnonymousStructOrUnion() &&
643         "Expected anonymous struct or union!");
644
645  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
646       I != E; ++I) {
647    const FieldDecl *FD = *I;
648
649    if (FD->getIdentifier())
650      return FD;
651
652    if (const RecordType *RT = FD->getType()->getAs<RecordType>()) {
653      if (const FieldDecl *NamedDataMember =
654          FindFirstNamedDataMember(RT->getDecl()))
655        return NamedDataMember;
656    }
657  }
658
659  // We didn't find a named data member.
660  return 0;
661}
662
663void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
664                                           DeclarationName Name,
665                                           unsigned KnownArity) {
666  //  <unqualified-name> ::= <operator-name>
667  //                     ::= <ctor-dtor-name>
668  //                     ::= <source-name>
669  switch (Name.getNameKind()) {
670  case DeclarationName::Identifier: {
671    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
672      // We must avoid conflicts between internally- and externally-
673      // linked variable declaration names in the same TU.
674      // This naming convention is the same as that followed by GCC, though it
675      // shouldn't actually matter.
676      if (ND && isa<VarDecl>(ND) && ND->getLinkage() == InternalLinkage &&
677          ND->getDeclContext()->isFileContext())
678        Out << 'L';
679
680      mangleSourceName(II);
681      break;
682    }
683
684    // Otherwise, an anonymous entity.  We must have a declaration.
685    assert(ND && "mangling empty name without declaration");
686
687    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
688      if (NS->isAnonymousNamespace()) {
689        // This is how gcc mangles these names.
690        Out << "12_GLOBAL__N_1";
691        break;
692      }
693    }
694
695    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
696      // We must have an anonymous union or struct declaration.
697      const RecordDecl *RD =
698        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
699
700      // Itanium C++ ABI 5.1.2:
701      //
702      //   For the purposes of mangling, the name of an anonymous union is
703      //   considered to be the name of the first named data member found by a
704      //   pre-order, depth-first, declaration-order walk of the data members of
705      //   the anonymous union. If there is no such data member (i.e., if all of
706      //   the data members in the union are unnamed), then there is no way for
707      //   a program to refer to the anonymous union, and there is therefore no
708      //   need to mangle its name.
709      const FieldDecl *FD = FindFirstNamedDataMember(RD);
710
711      // It's actually possible for various reasons for us to get here
712      // with an empty anonymous struct / union.  Fortunately, it
713      // doesn't really matter what name we generate.
714      if (!FD) break;
715      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
716
717      mangleSourceName(FD->getIdentifier());
718      break;
719    }
720
721    // We must have an anonymous struct.
722    const TagDecl *TD = cast<TagDecl>(ND);
723    if (const TypedefDecl *D = TD->getTypedefForAnonDecl()) {
724      assert(TD->getDeclContext() == D->getDeclContext() &&
725             "Typedef should not be in another decl context!");
726      assert(D->getDeclName().getAsIdentifierInfo() &&
727             "Typedef was not named!");
728      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
729      break;
730    }
731
732    // Get a unique id for the anonymous struct.
733    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
734
735    // Mangle it as a source name in the form
736    // [n] $_<id>
737    // where n is the length of the string.
738    llvm::SmallString<8> Str;
739    Str += "$_";
740    Str += llvm::utostr(AnonStructId);
741
742    Out << Str.size();
743    Out << Str.str();
744    break;
745  }
746
747  case DeclarationName::ObjCZeroArgSelector:
748  case DeclarationName::ObjCOneArgSelector:
749  case DeclarationName::ObjCMultiArgSelector:
750    assert(false && "Can't mangle Objective-C selector names here!");
751    break;
752
753  case DeclarationName::CXXConstructorName:
754    if (ND == Structor)
755      // If the named decl is the C++ constructor we're mangling, use the type
756      // we were given.
757      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
758    else
759      // Otherwise, use the complete constructor name. This is relevant if a
760      // class with a constructor is declared within a constructor.
761      mangleCXXCtorType(Ctor_Complete);
762    break;
763
764  case DeclarationName::CXXDestructorName:
765    if (ND == Structor)
766      // If the named decl is the C++ destructor we're mangling, use the type we
767      // were given.
768      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
769    else
770      // Otherwise, use the complete destructor name. This is relevant if a
771      // class with a destructor is declared within a destructor.
772      mangleCXXDtorType(Dtor_Complete);
773    break;
774
775  case DeclarationName::CXXConversionFunctionName:
776    // <operator-name> ::= cv <type>    # (cast)
777    Out << "cv";
778    mangleType(Context.getASTContext().getCanonicalType(Name.getCXXNameType()));
779    break;
780
781  case DeclarationName::CXXOperatorName: {
782    unsigned Arity;
783    if (ND) {
784      Arity = cast<FunctionDecl>(ND)->getNumParams();
785
786      // If we have a C++ member function, we need to include the 'this' pointer.
787      // FIXME: This does not make sense for operators that are static, but their
788      // names stay the same regardless of the arity (operator new for instance).
789      if (isa<CXXMethodDecl>(ND))
790        Arity++;
791    } else
792      Arity = KnownArity;
793
794    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
795    break;
796  }
797
798  case DeclarationName::CXXLiteralOperatorName:
799    // FIXME: This mangling is not yet official.
800    Out << "li";
801    mangleSourceName(Name.getCXXLiteralIdentifier());
802    break;
803
804  case DeclarationName::CXXUsingDirective:
805    assert(false && "Can't mangle a using directive name!");
806    break;
807  }
808}
809
810void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
811  // <source-name> ::= <positive length number> <identifier>
812  // <number> ::= [n] <non-negative decimal integer>
813  // <identifier> ::= <unqualified source code identifier>
814  Out << II->getLength() << II->getName();
815}
816
817void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
818                                      const DeclContext *DC,
819                                      bool NoFunction) {
820  // <nested-name>
821  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
822  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
823  //       <template-args> E
824
825  Out << 'N';
826  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
827    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
828    mangleRefQualifier(Method->getRefQualifier());
829  }
830
831  // Check if we have a template.
832  const TemplateArgumentList *TemplateArgs = 0;
833  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
834    mangleTemplatePrefix(TD);
835    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
836    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
837  }
838  else {
839    manglePrefix(DC, NoFunction);
840    mangleUnqualifiedName(ND);
841  }
842
843  Out << 'E';
844}
845void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
846                                      const TemplateArgument *TemplateArgs,
847                                      unsigned NumTemplateArgs) {
848  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
849
850  Out << 'N';
851
852  mangleTemplatePrefix(TD);
853  TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
854  mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs);
855
856  Out << 'E';
857}
858
859void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
860  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
861  //              := Z <function encoding> E s [<discriminator>]
862  // <discriminator> := _ <non-negative number>
863  const DeclContext *DC = ND->getDeclContext();
864  Out << 'Z';
865
866  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
867   mangleObjCMethodName(MD);
868  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
869    mangleFunctionEncoding(cast<FunctionDecl>(RD->getDeclContext()));
870    Out << 'E';
871
872    // Mangle the name relative to the closest enclosing function.
873    if (ND == RD) // equality ok because RD derived from ND above
874      mangleUnqualifiedName(ND);
875    else
876      mangleNestedName(ND, DC, true /*NoFunction*/);
877
878    unsigned disc;
879    if (Context.getNextDiscriminator(RD, disc)) {
880      if (disc < 10)
881        Out << '_' << disc;
882      else
883        Out << "__" << disc << '_';
884    }
885
886    return;
887  }
888  else
889    mangleFunctionEncoding(cast<FunctionDecl>(DC));
890
891  Out << 'E';
892  mangleUnqualifiedName(ND);
893}
894
895void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
896  //  <prefix> ::= <prefix> <unqualified-name>
897  //           ::= <template-prefix> <template-args>
898  //           ::= <template-param>
899  //           ::= # empty
900  //           ::= <substitution>
901
902  while (isa<LinkageSpecDecl>(DC))
903    DC = DC->getParent();
904
905  if (DC->isTranslationUnit())
906    return;
907
908  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
909    manglePrefix(DC->getParent(), NoFunction);
910    llvm::SmallString<64> Name;
911    llvm::raw_svector_ostream NameStream(Name);
912    Context.mangleBlock(Block, NameStream);
913    NameStream.flush();
914    Out << Name.size() << Name;
915    return;
916  }
917
918  if (mangleSubstitution(cast<NamedDecl>(DC)))
919    return;
920
921  // Check if we have a template.
922  const TemplateArgumentList *TemplateArgs = 0;
923  if (const TemplateDecl *TD = isTemplate(cast<NamedDecl>(DC), TemplateArgs)) {
924    mangleTemplatePrefix(TD);
925    TemplateParameterList *TemplateParameters = TD->getTemplateParameters();
926    mangleTemplateArgs(*TemplateParameters, *TemplateArgs);
927  }
928  else if(NoFunction && (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)))
929    return;
930  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC))
931    mangleObjCMethodName(Method);
932  else {
933    manglePrefix(DC->getParent(), NoFunction);
934    mangleUnqualifiedName(cast<NamedDecl>(DC));
935  }
936
937  addSubstitution(cast<NamedDecl>(DC));
938}
939
940void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
941  // <template-prefix> ::= <prefix> <template unqualified-name>
942  //                   ::= <template-param>
943  //                   ::= <substitution>
944  if (TemplateDecl *TD = Template.getAsTemplateDecl())
945    return mangleTemplatePrefix(TD);
946
947  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
948    mangleUnresolvedScope(Qualified->getQualifier());
949
950  if (OverloadedTemplateStorage *Overloaded
951                                      = Template.getAsOverloadedTemplate()) {
952    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
953                          UnknownArity);
954    return;
955  }
956
957  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
958  assert(Dependent && "Unknown template name kind?");
959  mangleUnresolvedScope(Dependent->getQualifier());
960  mangleUnscopedTemplateName(Template);
961}
962
963void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
964  // <template-prefix> ::= <prefix> <template unqualified-name>
965  //                   ::= <template-param>
966  //                   ::= <substitution>
967  // <template-template-param> ::= <template-param>
968  //                               <substitution>
969
970  if (mangleSubstitution(ND))
971    return;
972
973  // <template-template-param> ::= <template-param>
974  if (const TemplateTemplateParmDecl *TTP
975                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
976    mangleTemplateParameter(TTP->getIndex());
977    return;
978  }
979
980  manglePrefix(ND->getDeclContext());
981  mangleUnqualifiedName(ND->getTemplatedDecl());
982  addSubstitution(ND);
983}
984
985/// Mangles a template name under the production <type>.  Required for
986/// template template arguments.
987///   <type> ::= <class-enum-type>
988///          ::= <template-param>
989///          ::= <substitution>
990void CXXNameMangler::mangleType(TemplateName TN) {
991  if (mangleSubstitution(TN))
992    return;
993
994  TemplateDecl *TD = 0;
995
996  switch (TN.getKind()) {
997  case TemplateName::QualifiedTemplate:
998    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
999    goto HaveDecl;
1000
1001  case TemplateName::Template:
1002    TD = TN.getAsTemplateDecl();
1003    goto HaveDecl;
1004
1005  HaveDecl:
1006    if (isa<TemplateTemplateParmDecl>(TD))
1007      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1008    else
1009      mangleName(TD);
1010    break;
1011
1012  case TemplateName::OverloadedTemplate:
1013    llvm_unreachable("can't mangle an overloaded template name as a <type>");
1014    break;
1015
1016  case TemplateName::DependentTemplate: {
1017    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1018    assert(Dependent->isIdentifier());
1019
1020    // <class-enum-type> ::= <name>
1021    // <name> ::= <nested-name>
1022    mangleUnresolvedScope(Dependent->getQualifier());
1023    mangleSourceName(Dependent->getIdentifier());
1024    break;
1025  }
1026
1027  case TemplateName::SubstTemplateTemplateParmPack: {
1028    SubstTemplateTemplateParmPackStorage *SubstPack
1029      = TN.getAsSubstTemplateTemplateParmPack();
1030    mangleTemplateParameter(SubstPack->getParameterPack()->getIndex());
1031    break;
1032  }
1033  }
1034
1035  addSubstitution(TN);
1036}
1037
1038void
1039CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1040  switch (OO) {
1041  // <operator-name> ::= nw     # new
1042  case OO_New: Out << "nw"; break;
1043  //              ::= na        # new[]
1044  case OO_Array_New: Out << "na"; break;
1045  //              ::= dl        # delete
1046  case OO_Delete: Out << "dl"; break;
1047  //              ::= da        # delete[]
1048  case OO_Array_Delete: Out << "da"; break;
1049  //              ::= ps        # + (unary)
1050  //              ::= pl        # + (binary or unknown)
1051  case OO_Plus:
1052    Out << (Arity == 1? "ps" : "pl"); break;
1053  //              ::= ng        # - (unary)
1054  //              ::= mi        # - (binary or unknown)
1055  case OO_Minus:
1056    Out << (Arity == 1? "ng" : "mi"); break;
1057  //              ::= ad        # & (unary)
1058  //              ::= an        # & (binary or unknown)
1059  case OO_Amp:
1060    Out << (Arity == 1? "ad" : "an"); break;
1061  //              ::= de        # * (unary)
1062  //              ::= ml        # * (binary or unknown)
1063  case OO_Star:
1064    // Use binary when unknown.
1065    Out << (Arity == 1? "de" : "ml"); break;
1066  //              ::= co        # ~
1067  case OO_Tilde: Out << "co"; break;
1068  //              ::= dv        # /
1069  case OO_Slash: Out << "dv"; break;
1070  //              ::= rm        # %
1071  case OO_Percent: Out << "rm"; break;
1072  //              ::= or        # |
1073  case OO_Pipe: Out << "or"; break;
1074  //              ::= eo        # ^
1075  case OO_Caret: Out << "eo"; break;
1076  //              ::= aS        # =
1077  case OO_Equal: Out << "aS"; break;
1078  //              ::= pL        # +=
1079  case OO_PlusEqual: Out << "pL"; break;
1080  //              ::= mI        # -=
1081  case OO_MinusEqual: Out << "mI"; break;
1082  //              ::= mL        # *=
1083  case OO_StarEqual: Out << "mL"; break;
1084  //              ::= dV        # /=
1085  case OO_SlashEqual: Out << "dV"; break;
1086  //              ::= rM        # %=
1087  case OO_PercentEqual: Out << "rM"; break;
1088  //              ::= aN        # &=
1089  case OO_AmpEqual: Out << "aN"; break;
1090  //              ::= oR        # |=
1091  case OO_PipeEqual: Out << "oR"; break;
1092  //              ::= eO        # ^=
1093  case OO_CaretEqual: Out << "eO"; break;
1094  //              ::= ls        # <<
1095  case OO_LessLess: Out << "ls"; break;
1096  //              ::= rs        # >>
1097  case OO_GreaterGreater: Out << "rs"; break;
1098  //              ::= lS        # <<=
1099  case OO_LessLessEqual: Out << "lS"; break;
1100  //              ::= rS        # >>=
1101  case OO_GreaterGreaterEqual: Out << "rS"; break;
1102  //              ::= eq        # ==
1103  case OO_EqualEqual: Out << "eq"; break;
1104  //              ::= ne        # !=
1105  case OO_ExclaimEqual: Out << "ne"; break;
1106  //              ::= lt        # <
1107  case OO_Less: Out << "lt"; break;
1108  //              ::= gt        # >
1109  case OO_Greater: Out << "gt"; break;
1110  //              ::= le        # <=
1111  case OO_LessEqual: Out << "le"; break;
1112  //              ::= ge        # >=
1113  case OO_GreaterEqual: Out << "ge"; break;
1114  //              ::= nt        # !
1115  case OO_Exclaim: Out << "nt"; break;
1116  //              ::= aa        # &&
1117  case OO_AmpAmp: Out << "aa"; break;
1118  //              ::= oo        # ||
1119  case OO_PipePipe: Out << "oo"; break;
1120  //              ::= pp        # ++
1121  case OO_PlusPlus: Out << "pp"; break;
1122  //              ::= mm        # --
1123  case OO_MinusMinus: Out << "mm"; break;
1124  //              ::= cm        # ,
1125  case OO_Comma: Out << "cm"; break;
1126  //              ::= pm        # ->*
1127  case OO_ArrowStar: Out << "pm"; break;
1128  //              ::= pt        # ->
1129  case OO_Arrow: Out << "pt"; break;
1130  //              ::= cl        # ()
1131  case OO_Call: Out << "cl"; break;
1132  //              ::= ix        # []
1133  case OO_Subscript: Out << "ix"; break;
1134
1135  //              ::= qu        # ?
1136  // The conditional operator can't be overloaded, but we still handle it when
1137  // mangling expressions.
1138  case OO_Conditional: Out << "qu"; break;
1139
1140  case OO_None:
1141  case NUM_OVERLOADED_OPERATORS:
1142    assert(false && "Not an overloaded operator");
1143    break;
1144  }
1145}
1146
1147void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1148  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1149  if (Quals.hasRestrict())
1150    Out << 'r';
1151  if (Quals.hasVolatile())
1152    Out << 'V';
1153  if (Quals.hasConst())
1154    Out << 'K';
1155
1156  if (Quals.hasAddressSpace()) {
1157    // Extension:
1158    //
1159    //   <type> ::= U <address-space-number>
1160    //
1161    // where <address-space-number> is a source name consisting of 'AS'
1162    // followed by the address space <number>.
1163    llvm::SmallString<64> ASString;
1164    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
1165    Out << 'U' << ASString.size() << ASString;
1166  }
1167
1168  // FIXME: For now, just drop all extension qualifiers on the floor.
1169}
1170
1171void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1172  // <ref-qualifier> ::= R                # lvalue reference
1173  //                 ::= O                # rvalue-reference
1174  // Proposal to Itanium C++ ABI list on 1/26/11
1175  switch (RefQualifier) {
1176  case RQ_None:
1177    break;
1178
1179  case RQ_LValue:
1180    Out << 'R';
1181    break;
1182
1183  case RQ_RValue:
1184    Out << 'O';
1185    break;
1186  }
1187}
1188
1189void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1190  Context.mangleObjCMethodName(MD, Out);
1191}
1192
1193void CXXNameMangler::mangleType(QualType nonCanon) {
1194  // Only operate on the canonical type!
1195  QualType canon = nonCanon.getCanonicalType();
1196
1197  SplitQualType split = canon.split();
1198  Qualifiers quals = split.second;
1199  const Type *ty = split.first;
1200
1201  bool isSubstitutable = quals || !isa<BuiltinType>(ty);
1202  if (isSubstitutable && mangleSubstitution(canon))
1203    return;
1204
1205  // If we're mangling a qualified array type, push the qualifiers to
1206  // the element type.
1207  if (quals && isa<ArrayType>(ty)) {
1208    ty = Context.getASTContext().getAsArrayType(canon);
1209    quals = Qualifiers();
1210
1211    // Note that we don't update canon: we want to add the
1212    // substitution at the canonical type.
1213  }
1214
1215  if (quals) {
1216    mangleQualifiers(quals);
1217    // Recurse:  even if the qualified type isn't yet substitutable,
1218    // the unqualified type might be.
1219    mangleType(QualType(ty, 0));
1220  } else {
1221    switch (ty->getTypeClass()) {
1222#define ABSTRACT_TYPE(CLASS, PARENT)
1223#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1224    case Type::CLASS: \
1225      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1226      return;
1227#define TYPE(CLASS, PARENT) \
1228    case Type::CLASS: \
1229      mangleType(static_cast<const CLASS##Type*>(ty)); \
1230      break;
1231#include "clang/AST/TypeNodes.def"
1232    }
1233  }
1234
1235  // Add the substitution.
1236  if (isSubstitutable)
1237    addSubstitution(canon);
1238}
1239
1240void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1241  if (!mangleStandardSubstitution(ND))
1242    mangleName(ND);
1243}
1244
1245void CXXNameMangler::mangleType(const BuiltinType *T) {
1246  //  <type>         ::= <builtin-type>
1247  //  <builtin-type> ::= v  # void
1248  //                 ::= w  # wchar_t
1249  //                 ::= b  # bool
1250  //                 ::= c  # char
1251  //                 ::= a  # signed char
1252  //                 ::= h  # unsigned char
1253  //                 ::= s  # short
1254  //                 ::= t  # unsigned short
1255  //                 ::= i  # int
1256  //                 ::= j  # unsigned int
1257  //                 ::= l  # long
1258  //                 ::= m  # unsigned long
1259  //                 ::= x  # long long, __int64
1260  //                 ::= y  # unsigned long long, __int64
1261  //                 ::= n  # __int128
1262  // UNSUPPORTED:    ::= o  # unsigned __int128
1263  //                 ::= f  # float
1264  //                 ::= d  # double
1265  //                 ::= e  # long double, __float80
1266  // UNSUPPORTED:    ::= g  # __float128
1267  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1268  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1269  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1270  // UNSUPPORTED:    ::= Dh # IEEE 754r half-precision floating point (16 bits)
1271  //                 ::= Di # char32_t
1272  //                 ::= Ds # char16_t
1273  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1274  //                 ::= u <source-name>    # vendor extended type
1275  switch (T->getKind()) {
1276  case BuiltinType::Void: Out << 'v'; break;
1277  case BuiltinType::Bool: Out << 'b'; break;
1278  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1279  case BuiltinType::UChar: Out << 'h'; break;
1280  case BuiltinType::UShort: Out << 't'; break;
1281  case BuiltinType::UInt: Out << 'j'; break;
1282  case BuiltinType::ULong: Out << 'm'; break;
1283  case BuiltinType::ULongLong: Out << 'y'; break;
1284  case BuiltinType::UInt128: Out << 'o'; break;
1285  case BuiltinType::SChar: Out << 'a'; break;
1286  case BuiltinType::WChar_S:
1287  case BuiltinType::WChar_U: Out << 'w'; break;
1288  case BuiltinType::Char16: Out << "Ds"; break;
1289  case BuiltinType::Char32: Out << "Di"; break;
1290  case BuiltinType::Short: Out << 's'; break;
1291  case BuiltinType::Int: Out << 'i'; break;
1292  case BuiltinType::Long: Out << 'l'; break;
1293  case BuiltinType::LongLong: Out << 'x'; break;
1294  case BuiltinType::Int128: Out << 'n'; break;
1295  case BuiltinType::Float: Out << 'f'; break;
1296  case BuiltinType::Double: Out << 'd'; break;
1297  case BuiltinType::LongDouble: Out << 'e'; break;
1298  case BuiltinType::NullPtr: Out << "Dn"; break;
1299
1300  case BuiltinType::Overload:
1301  case BuiltinType::Dependent:
1302    assert(false &&
1303           "Overloaded and dependent types shouldn't get to name mangling");
1304    break;
1305  case BuiltinType::UndeducedAuto:
1306    assert(0 && "Should not see undeduced auto here");
1307    break;
1308  case BuiltinType::ObjCId: Out << "11objc_object"; break;
1309  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1310  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1311  }
1312}
1313
1314// <type>          ::= <function-type>
1315// <function-type> ::= F [Y] <bare-function-type> E
1316void CXXNameMangler::mangleType(const FunctionProtoType *T) {
1317  Out << 'F';
1318  // FIXME: We don't have enough information in the AST to produce the 'Y'
1319  // encoding for extern "C" function types.
1320  mangleBareFunctionType(T, /*MangleReturnType=*/true);
1321  Out << 'E';
1322}
1323void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
1324  llvm_unreachable("Can't mangle K&R function prototypes");
1325}
1326void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
1327                                            bool MangleReturnType) {
1328  // We should never be mangling something without a prototype.
1329  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1330
1331  // <bare-function-type> ::= <signature type>+
1332  if (MangleReturnType)
1333    mangleType(Proto->getResultType());
1334
1335  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
1336    //   <builtin-type> ::= v   # void
1337    Out << 'v';
1338    return;
1339  }
1340
1341  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1342                                         ArgEnd = Proto->arg_type_end();
1343       Arg != ArgEnd; ++Arg)
1344    mangleType(*Arg);
1345
1346  // <builtin-type>      ::= z  # ellipsis
1347  if (Proto->isVariadic())
1348    Out << 'z';
1349}
1350
1351// <type>            ::= <class-enum-type>
1352// <class-enum-type> ::= <name>
1353void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
1354  mangleName(T->getDecl());
1355}
1356
1357// <type>            ::= <class-enum-type>
1358// <class-enum-type> ::= <name>
1359void CXXNameMangler::mangleType(const EnumType *T) {
1360  mangleType(static_cast<const TagType*>(T));
1361}
1362void CXXNameMangler::mangleType(const RecordType *T) {
1363  mangleType(static_cast<const TagType*>(T));
1364}
1365void CXXNameMangler::mangleType(const TagType *T) {
1366  mangleName(T->getDecl());
1367}
1368
1369// <type>       ::= <array-type>
1370// <array-type> ::= A <positive dimension number> _ <element type>
1371//              ::= A [<dimension expression>] _ <element type>
1372void CXXNameMangler::mangleType(const ConstantArrayType *T) {
1373  Out << 'A' << T->getSize() << '_';
1374  mangleType(T->getElementType());
1375}
1376void CXXNameMangler::mangleType(const VariableArrayType *T) {
1377  Out << 'A';
1378  // decayed vla types (size 0) will just be skipped.
1379  if (T->getSizeExpr())
1380    mangleExpression(T->getSizeExpr());
1381  Out << '_';
1382  mangleType(T->getElementType());
1383}
1384void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
1385  Out << 'A';
1386  mangleExpression(T->getSizeExpr());
1387  Out << '_';
1388  mangleType(T->getElementType());
1389}
1390void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
1391  Out << "A_";
1392  mangleType(T->getElementType());
1393}
1394
1395// <type>                   ::= <pointer-to-member-type>
1396// <pointer-to-member-type> ::= M <class type> <member type>
1397void CXXNameMangler::mangleType(const MemberPointerType *T) {
1398  Out << 'M';
1399  mangleType(QualType(T->getClass(), 0));
1400  QualType PointeeType = T->getPointeeType();
1401  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
1402    mangleQualifiers(Qualifiers::fromCVRMask(FPT->getTypeQuals()));
1403    mangleRefQualifier(FPT->getRefQualifier());
1404    mangleType(FPT);
1405
1406    // Itanium C++ ABI 5.1.8:
1407    //
1408    //   The type of a non-static member function is considered to be different,
1409    //   for the purposes of substitution, from the type of a namespace-scope or
1410    //   static member function whose type appears similar. The types of two
1411    //   non-static member functions are considered to be different, for the
1412    //   purposes of substitution, if the functions are members of different
1413    //   classes. In other words, for the purposes of substitution, the class of
1414    //   which the function is a member is considered part of the type of
1415    //   function.
1416
1417    // We increment the SeqID here to emulate adding an entry to the
1418    // substitution table. We can't actually add it because we don't want this
1419    // particular function type to be substituted.
1420    ++SeqID;
1421  } else
1422    mangleType(PointeeType);
1423}
1424
1425// <type>           ::= <template-param>
1426void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
1427  mangleTemplateParameter(T->getIndex());
1428}
1429
1430// <type>           ::= <template-param>
1431void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
1432  mangleTemplateParameter(T->getReplacedParameter()->getIndex());
1433}
1434
1435// <type> ::= P <type>   # pointer-to
1436void CXXNameMangler::mangleType(const PointerType *T) {
1437  Out << 'P';
1438  mangleType(T->getPointeeType());
1439}
1440void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
1441  Out << 'P';
1442  mangleType(T->getPointeeType());
1443}
1444
1445// <type> ::= R <type>   # reference-to
1446void CXXNameMangler::mangleType(const LValueReferenceType *T) {
1447  Out << 'R';
1448  mangleType(T->getPointeeType());
1449}
1450
1451// <type> ::= O <type>   # rvalue reference-to (C++0x)
1452void CXXNameMangler::mangleType(const RValueReferenceType *T) {
1453  Out << 'O';
1454  mangleType(T->getPointeeType());
1455}
1456
1457// <type> ::= C <type>   # complex pair (C 2000)
1458void CXXNameMangler::mangleType(const ComplexType *T) {
1459  Out << 'C';
1460  mangleType(T->getElementType());
1461}
1462
1463// ARM's ABI for Neon vector types specifies that they should be mangled as
1464// if they are structs (to match ARM's initial implementation).  The
1465// vector type must be one of the special types predefined by ARM.
1466void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
1467  QualType EltType = T->getElementType();
1468  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
1469  const char *EltName = 0;
1470  if (T->getVectorKind() == VectorType::NeonPolyVector) {
1471    switch (cast<BuiltinType>(EltType)->getKind()) {
1472    case BuiltinType::SChar:     EltName = "poly8_t"; break;
1473    case BuiltinType::Short:     EltName = "poly16_t"; break;
1474    default: llvm_unreachable("unexpected Neon polynomial vector element type");
1475    }
1476  } else {
1477    switch (cast<BuiltinType>(EltType)->getKind()) {
1478    case BuiltinType::SChar:     EltName = "int8_t"; break;
1479    case BuiltinType::UChar:     EltName = "uint8_t"; break;
1480    case BuiltinType::Short:     EltName = "int16_t"; break;
1481    case BuiltinType::UShort:    EltName = "uint16_t"; break;
1482    case BuiltinType::Int:       EltName = "int32_t"; break;
1483    case BuiltinType::UInt:      EltName = "uint32_t"; break;
1484    case BuiltinType::LongLong:  EltName = "int64_t"; break;
1485    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
1486    case BuiltinType::Float:     EltName = "float32_t"; break;
1487    default: llvm_unreachable("unexpected Neon vector element type");
1488    }
1489  }
1490  const char *BaseName = 0;
1491  unsigned BitSize = (T->getNumElements() *
1492                      getASTContext().getTypeSize(EltType));
1493  if (BitSize == 64)
1494    BaseName = "__simd64_";
1495  else {
1496    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
1497    BaseName = "__simd128_";
1498  }
1499  Out << strlen(BaseName) + strlen(EltName);
1500  Out << BaseName << EltName;
1501}
1502
1503// GNU extension: vector types
1504// <type>                  ::= <vector-type>
1505// <vector-type>           ::= Dv <positive dimension number> _
1506//                                    <extended element type>
1507//                         ::= Dv [<dimension expression>] _ <element type>
1508// <extended element type> ::= <element type>
1509//                         ::= p # AltiVec vector pixel
1510void CXXNameMangler::mangleType(const VectorType *T) {
1511  if ((T->getVectorKind() == VectorType::NeonVector ||
1512       T->getVectorKind() == VectorType::NeonPolyVector)) {
1513    mangleNeonVectorType(T);
1514    return;
1515  }
1516  Out << "Dv" << T->getNumElements() << '_';
1517  if (T->getVectorKind() == VectorType::AltiVecPixel)
1518    Out << 'p';
1519  else if (T->getVectorKind() == VectorType::AltiVecBool)
1520    Out << 'b';
1521  else
1522    mangleType(T->getElementType());
1523}
1524void CXXNameMangler::mangleType(const ExtVectorType *T) {
1525  mangleType(static_cast<const VectorType*>(T));
1526}
1527void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
1528  Out << "Dv";
1529  mangleExpression(T->getSizeExpr());
1530  Out << '_';
1531  mangleType(T->getElementType());
1532}
1533
1534void CXXNameMangler::mangleType(const PackExpansionType *T) {
1535  // <type>  ::= Dp <type>          # pack expansion (C++0x)
1536  Out << "Dp";
1537  mangleType(T->getPattern());
1538}
1539
1540void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
1541  mangleSourceName(T->getDecl()->getIdentifier());
1542}
1543
1544void CXXNameMangler::mangleType(const ObjCObjectType *T) {
1545  // We don't allow overloading by different protocol qualification,
1546  // so mangling them isn't necessary.
1547  mangleType(T->getBaseType());
1548}
1549
1550void CXXNameMangler::mangleType(const BlockPointerType *T) {
1551  Out << "U13block_pointer";
1552  mangleType(T->getPointeeType());
1553}
1554
1555void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
1556  // Mangle injected class name types as if the user had written the
1557  // specialization out fully.  It may not actually be possible to see
1558  // this mangling, though.
1559  mangleType(T->getInjectedSpecializationType());
1560}
1561
1562void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
1563  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
1564    mangleName(TD, T->getArgs(), T->getNumArgs());
1565  } else {
1566    if (mangleSubstitution(QualType(T, 0)))
1567      return;
1568
1569    mangleTemplatePrefix(T->getTemplateName());
1570
1571    // FIXME: GCC does not appear to mangle the template arguments when
1572    // the template in question is a dependent template name. Should we
1573    // emulate that badness?
1574    mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs());
1575    addSubstitution(QualType(T, 0));
1576  }
1577}
1578
1579void CXXNameMangler::mangleType(const DependentNameType *T) {
1580  // Typename types are always nested
1581  Out << 'N';
1582  mangleUnresolvedScope(T->getQualifier());
1583  mangleSourceName(T->getIdentifier());
1584  Out << 'E';
1585}
1586
1587void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
1588  // Dependently-scoped template types are always nested
1589  Out << 'N';
1590
1591  // TODO: avoid making this TemplateName.
1592  TemplateName Prefix =
1593    getASTContext().getDependentTemplateName(T->getQualifier(),
1594                                             T->getIdentifier());
1595  mangleTemplatePrefix(Prefix);
1596
1597  // FIXME: GCC does not appear to mangle the template arguments when
1598  // the template in question is a dependent template name. Should we
1599  // emulate that badness?
1600  mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs());
1601  Out << 'E';
1602}
1603
1604void CXXNameMangler::mangleType(const TypeOfType *T) {
1605  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1606  // "extension with parameters" mangling.
1607  Out << "u6typeof";
1608}
1609
1610void CXXNameMangler::mangleType(const TypeOfExprType *T) {
1611  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
1612  // "extension with parameters" mangling.
1613  Out << "u6typeof";
1614}
1615
1616void CXXNameMangler::mangleType(const DecltypeType *T) {
1617  Expr *E = T->getUnderlyingExpr();
1618
1619  // type ::= Dt <expression> E  # decltype of an id-expression
1620  //                             #   or class member access
1621  //      ::= DT <expression> E  # decltype of an expression
1622
1623  // This purports to be an exhaustive list of id-expressions and
1624  // class member accesses.  Note that we do not ignore parentheses;
1625  // parentheses change the semantics of decltype for these
1626  // expressions (and cause the mangler to use the other form).
1627  if (isa<DeclRefExpr>(E) ||
1628      isa<MemberExpr>(E) ||
1629      isa<UnresolvedLookupExpr>(E) ||
1630      isa<DependentScopeDeclRefExpr>(E) ||
1631      isa<CXXDependentScopeMemberExpr>(E) ||
1632      isa<UnresolvedMemberExpr>(E))
1633    Out << "Dt";
1634  else
1635    Out << "DT";
1636  mangleExpression(E);
1637  Out << 'E';
1638}
1639
1640void CXXNameMangler::mangleIntegerLiteral(QualType T,
1641                                          const llvm::APSInt &Value) {
1642  //  <expr-primary> ::= L <type> <value number> E # integer literal
1643  Out << 'L';
1644
1645  mangleType(T);
1646  if (T->isBooleanType()) {
1647    // Boolean values are encoded as 0/1.
1648    Out << (Value.getBoolValue() ? '1' : '0');
1649  } else {
1650    mangleNumber(Value);
1651  }
1652  Out << 'E';
1653
1654}
1655
1656/// Mangles a member expression.  Implicit accesses are not handled,
1657/// but that should be okay, because you shouldn't be able to
1658/// make an implicit access in a function template declaration.
1659void CXXNameMangler::mangleMemberExpr(const Expr *Base,
1660                                      bool IsArrow,
1661                                      NestedNameSpecifier *Qualifier,
1662                                      DeclarationName Member,
1663                                      unsigned Arity) {
1664  // gcc-4.4 uses 'dt' for dot expressions, which is reasonable.
1665  // OTOH, gcc also mangles the name as an expression.
1666  Out << (IsArrow ? "pt" : "dt");
1667  mangleExpression(Base);
1668  mangleUnresolvedName(Qualifier, Member, Arity);
1669}
1670
1671void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
1672  // <expression> ::= <unary operator-name> <expression>
1673  //              ::= <binary operator-name> <expression> <expression>
1674  //              ::= <trinary operator-name> <expression> <expression> <expression>
1675  //              ::= cl <expression>* E             # call
1676  //              ::= cv <type> expression           # conversion with one argument
1677  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
1678  //              ::= st <type>                      # sizeof (a type)
1679  //              ::= at <type>                      # alignof (a type)
1680  //              ::= <template-param>
1681  //              ::= <function-param>
1682  //              ::= sr <type> <unqualified-name>                   # dependent name
1683  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
1684  //              ::= sZ <template-param>                            # size of a parameter pack
1685  //              ::= sZ <function-param>    # size of a function parameter pack
1686  //              ::= <expr-primary>
1687  // <expr-primary> ::= L <type> <value number> E    # integer literal
1688  //                ::= L <type <value float> E      # floating literal
1689  //                ::= L <mangled-name> E           # external name
1690  switch (E->getStmtClass()) {
1691  case Expr::NoStmtClass:
1692#define ABSTRACT_STMT(Type)
1693#define EXPR(Type, Base)
1694#define STMT(Type, Base) \
1695  case Expr::Type##Class:
1696#include "clang/AST/StmtNodes.inc"
1697    // fallthrough
1698
1699  // These all can only appear in local or variable-initialization
1700  // contexts and so should never appear in a mangling.
1701  case Expr::AddrLabelExprClass:
1702  case Expr::BlockDeclRefExprClass:
1703  case Expr::CXXThisExprClass:
1704  case Expr::DesignatedInitExprClass:
1705  case Expr::ImplicitValueInitExprClass:
1706  case Expr::InitListExprClass:
1707  case Expr::ParenListExprClass:
1708  case Expr::CXXScalarValueInitExprClass:
1709    llvm_unreachable("unexpected statement kind");
1710    break;
1711
1712  // FIXME: invent manglings for all these.
1713  case Expr::BlockExprClass:
1714  case Expr::CXXPseudoDestructorExprClass:
1715  case Expr::ChooseExprClass:
1716  case Expr::CompoundLiteralExprClass:
1717  case Expr::ExtVectorElementExprClass:
1718  case Expr::ObjCEncodeExprClass:
1719  case Expr::ObjCIsaExprClass:
1720  case Expr::ObjCIvarRefExprClass:
1721  case Expr::ObjCMessageExprClass:
1722  case Expr::ObjCPropertyRefExprClass:
1723  case Expr::ObjCProtocolExprClass:
1724  case Expr::ObjCSelectorExprClass:
1725  case Expr::ObjCStringLiteralClass:
1726  case Expr::OffsetOfExprClass:
1727  case Expr::PredefinedExprClass:
1728  case Expr::ShuffleVectorExprClass:
1729  case Expr::StmtExprClass:
1730  case Expr::UnaryTypeTraitExprClass:
1731  case Expr::BinaryTypeTraitExprClass:
1732  case Expr::VAArgExprClass:
1733  case Expr::CXXUuidofExprClass:
1734  case Expr::CXXNoexceptExprClass:
1735  case Expr::CUDAKernelCallExprClass: {
1736    // As bad as this diagnostic is, it's better than crashing.
1737    Diagnostic &Diags = Context.getDiags();
1738    unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
1739                                     "cannot yet mangle expression type %0");
1740    Diags.Report(E->getExprLoc(), DiagID)
1741      << E->getStmtClassName() << E->getSourceRange();
1742    break;
1743  }
1744
1745  case Expr::OpaqueValueExprClass:
1746    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
1747
1748  case Expr::CXXDefaultArgExprClass:
1749    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
1750    break;
1751
1752  case Expr::CXXMemberCallExprClass: // fallthrough
1753  case Expr::CallExprClass: {
1754    const CallExpr *CE = cast<CallExpr>(E);
1755    Out << "cl";
1756    mangleExpression(CE->getCallee(), CE->getNumArgs());
1757    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
1758      mangleExpression(CE->getArg(I));
1759    Out << 'E';
1760    break;
1761  }
1762
1763  case Expr::CXXNewExprClass: {
1764    // Proposal from David Vandervoorde, 2010.06.30
1765    const CXXNewExpr *New = cast<CXXNewExpr>(E);
1766    if (New->isGlobalNew()) Out << "gs";
1767    Out << (New->isArray() ? "na" : "nw");
1768    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
1769           E = New->placement_arg_end(); I != E; ++I)
1770      mangleExpression(*I);
1771    Out << '_';
1772    mangleType(New->getAllocatedType());
1773    if (New->hasInitializer()) {
1774      Out << "pi";
1775      for (CXXNewExpr::const_arg_iterator I = New->constructor_arg_begin(),
1776             E = New->constructor_arg_end(); I != E; ++I)
1777        mangleExpression(*I);
1778    }
1779    Out << 'E';
1780    break;
1781  }
1782
1783  case Expr::MemberExprClass: {
1784    const MemberExpr *ME = cast<MemberExpr>(E);
1785    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1786                     ME->getQualifier(), ME->getMemberDecl()->getDeclName(),
1787                     Arity);
1788    break;
1789  }
1790
1791  case Expr::UnresolvedMemberExprClass: {
1792    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
1793    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1794                     ME->getQualifier(), ME->getMemberName(),
1795                     Arity);
1796    if (ME->hasExplicitTemplateArgs())
1797      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1798    break;
1799  }
1800
1801  case Expr::CXXDependentScopeMemberExprClass: {
1802    const CXXDependentScopeMemberExpr *ME
1803      = cast<CXXDependentScopeMemberExpr>(E);
1804    mangleMemberExpr(ME->getBase(), ME->isArrow(),
1805                     ME->getQualifier(), ME->getMember(),
1806                     Arity);
1807    if (ME->hasExplicitTemplateArgs())
1808      mangleTemplateArgs(ME->getExplicitTemplateArgs());
1809    break;
1810  }
1811
1812  case Expr::UnresolvedLookupExprClass: {
1813    // The ABI doesn't cover how to mangle overload sets, so we mangle
1814    // using something as close as possible to the original lookup
1815    // expression.
1816    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
1817    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
1818    if (ULE->hasExplicitTemplateArgs())
1819      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
1820    break;
1821  }
1822
1823  case Expr::CXXUnresolvedConstructExprClass: {
1824    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
1825    unsigned N = CE->arg_size();
1826
1827    Out << "cv";
1828    mangleType(CE->getType());
1829    if (N != 1) Out << '_';
1830    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1831    if (N != 1) Out << 'E';
1832    break;
1833  }
1834
1835  case Expr::CXXTemporaryObjectExprClass:
1836  case Expr::CXXConstructExprClass: {
1837    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
1838    unsigned N = CE->getNumArgs();
1839
1840    Out << "cv";
1841    mangleType(CE->getType());
1842    if (N != 1) Out << '_';
1843    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
1844    if (N != 1) Out << 'E';
1845    break;
1846  }
1847
1848  case Expr::SizeOfAlignOfExprClass: {
1849    const SizeOfAlignOfExpr *SAE = cast<SizeOfAlignOfExpr>(E);
1850    if (SAE->isSizeOf()) Out << 's';
1851    else Out << 'a';
1852    if (SAE->isArgumentType()) {
1853      Out << 't';
1854      mangleType(SAE->getArgumentType());
1855    } else {
1856      Out << 'z';
1857      mangleExpression(SAE->getArgumentExpr());
1858    }
1859    break;
1860  }
1861
1862  case Expr::CXXThrowExprClass: {
1863    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
1864
1865    // Proposal from David Vandervoorde, 2010.06.30
1866    if (TE->getSubExpr()) {
1867      Out << "tw";
1868      mangleExpression(TE->getSubExpr());
1869    } else {
1870      Out << "tr";
1871    }
1872    break;
1873  }
1874
1875  case Expr::CXXTypeidExprClass: {
1876    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
1877
1878    // Proposal from David Vandervoorde, 2010.06.30
1879    if (TIE->isTypeOperand()) {
1880      Out << "ti";
1881      mangleType(TIE->getTypeOperand());
1882    } else {
1883      Out << "te";
1884      mangleExpression(TIE->getExprOperand());
1885    }
1886    break;
1887  }
1888
1889  case Expr::CXXDeleteExprClass: {
1890    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
1891
1892    // Proposal from David Vandervoorde, 2010.06.30
1893    if (DE->isGlobalDelete()) Out << "gs";
1894    Out << (DE->isArrayForm() ? "da" : "dl");
1895    mangleExpression(DE->getArgument());
1896    break;
1897  }
1898
1899  case Expr::UnaryOperatorClass: {
1900    const UnaryOperator *UO = cast<UnaryOperator>(E);
1901    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
1902                       /*Arity=*/1);
1903    mangleExpression(UO->getSubExpr());
1904    break;
1905  }
1906
1907  case Expr::ArraySubscriptExprClass: {
1908    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
1909
1910    // Array subscript is treated as a syntactically wierd form of
1911    // binary operator.
1912    Out << "ix";
1913    mangleExpression(AE->getLHS());
1914    mangleExpression(AE->getRHS());
1915    break;
1916  }
1917
1918  case Expr::CompoundAssignOperatorClass: // fallthrough
1919  case Expr::BinaryOperatorClass: {
1920    const BinaryOperator *BO = cast<BinaryOperator>(E);
1921    mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
1922                       /*Arity=*/2);
1923    mangleExpression(BO->getLHS());
1924    mangleExpression(BO->getRHS());
1925    break;
1926  }
1927
1928  case Expr::ConditionalOperatorClass: {
1929    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
1930    mangleOperatorName(OO_Conditional, /*Arity=*/3);
1931    mangleExpression(CO->getCond());
1932    mangleExpression(CO->getLHS(), Arity);
1933    mangleExpression(CO->getRHS(), Arity);
1934    break;
1935  }
1936
1937  case Expr::ImplicitCastExprClass: {
1938    mangleExpression(cast<ImplicitCastExpr>(E)->getSubExpr(), Arity);
1939    break;
1940  }
1941
1942  case Expr::CStyleCastExprClass:
1943  case Expr::CXXStaticCastExprClass:
1944  case Expr::CXXDynamicCastExprClass:
1945  case Expr::CXXReinterpretCastExprClass:
1946  case Expr::CXXConstCastExprClass:
1947  case Expr::CXXFunctionalCastExprClass: {
1948    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
1949    Out << "cv";
1950    mangleType(ECE->getType());
1951    mangleExpression(ECE->getSubExpr());
1952    break;
1953  }
1954
1955  case Expr::CXXOperatorCallExprClass: {
1956    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
1957    unsigned NumArgs = CE->getNumArgs();
1958    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
1959    // Mangle the arguments.
1960    for (unsigned i = 0; i != NumArgs; ++i)
1961      mangleExpression(CE->getArg(i));
1962    break;
1963  }
1964
1965  case Expr::ParenExprClass:
1966    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
1967    break;
1968
1969  case Expr::DeclRefExprClass: {
1970    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
1971
1972    switch (D->getKind()) {
1973    default:
1974      //  <expr-primary> ::= L <mangled-name> E # external name
1975      Out << 'L';
1976      mangle(D, "_Z");
1977      Out << 'E';
1978      break;
1979
1980    case Decl::EnumConstant: {
1981      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
1982      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
1983      break;
1984    }
1985
1986    case Decl::NonTypeTemplateParm: {
1987      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
1988      mangleTemplateParameter(PD->getIndex());
1989      break;
1990    }
1991
1992    }
1993
1994    break;
1995  }
1996
1997  case Expr::SubstNonTypeTemplateParmPackExprClass:
1998    mangleTemplateParameter(
1999     cast<SubstNonTypeTemplateParmPackExpr>(E)->getParameterPack()->getIndex());
2000    break;
2001
2002  case Expr::DependentScopeDeclRefExprClass: {
2003    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
2004    NestedNameSpecifier *NNS = DRE->getQualifier();
2005    const Type *QTy = NNS->getAsType();
2006
2007    // When we're dealing with a nested-name-specifier that has just a
2008    // dependent identifier in it, mangle that as a typename.  FIXME:
2009    // It isn't clear that we ever actually want to have such a
2010    // nested-name-specifier; why not just represent it as a typename type?
2011    if (!QTy && NNS->getAsIdentifier() && NNS->getPrefix()) {
2012      QTy = getASTContext().getDependentNameType(ETK_Typename,
2013                                                 NNS->getPrefix(),
2014                                                 NNS->getAsIdentifier())
2015              .getTypePtr();
2016    }
2017    assert(QTy && "Qualifier was not type!");
2018
2019    // ::= sr <type> <unqualified-name>                  # dependent name
2020    // ::= sr <type> <unqualified-name> <template-args>  # dependent template-id
2021    Out << "sr";
2022    mangleType(QualType(QTy, 0));
2023    mangleUnqualifiedName(0, DRE->getDeclName(), Arity);
2024    if (DRE->hasExplicitTemplateArgs())
2025      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
2026
2027    break;
2028  }
2029
2030  case Expr::CXXBindTemporaryExprClass:
2031    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
2032    break;
2033
2034  case Expr::ExprWithCleanupsClass:
2035    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
2036    break;
2037
2038  case Expr::FloatingLiteralClass: {
2039    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
2040    Out << 'L';
2041    mangleType(FL->getType());
2042    mangleFloat(FL->getValue());
2043    Out << 'E';
2044    break;
2045  }
2046
2047  case Expr::CharacterLiteralClass:
2048    Out << 'L';
2049    mangleType(E->getType());
2050    Out << cast<CharacterLiteral>(E)->getValue();
2051    Out << 'E';
2052    break;
2053
2054  case Expr::CXXBoolLiteralExprClass:
2055    Out << "Lb";
2056    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
2057    Out << 'E';
2058    break;
2059
2060  case Expr::IntegerLiteralClass: {
2061    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
2062    if (E->getType()->isSignedIntegerType())
2063      Value.setIsSigned(true);
2064    mangleIntegerLiteral(E->getType(), Value);
2065    break;
2066  }
2067
2068  case Expr::ImaginaryLiteralClass: {
2069    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
2070    // Mangle as if a complex literal.
2071    // Proposal from David Vandevoorde, 2010.06.30.
2072    Out << 'L';
2073    mangleType(E->getType());
2074    if (const FloatingLiteral *Imag =
2075          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
2076      // Mangle a floating-point zero of the appropriate type.
2077      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
2078      Out << '_';
2079      mangleFloat(Imag->getValue());
2080    } else {
2081      Out << "0_";
2082      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
2083      if (IE->getSubExpr()->getType()->isSignedIntegerType())
2084        Value.setIsSigned(true);
2085      mangleNumber(Value);
2086    }
2087    Out << 'E';
2088    break;
2089  }
2090
2091  case Expr::StringLiteralClass: {
2092    // Revised proposal from David Vandervoorde, 2010.07.15.
2093    Out << 'L';
2094    assert(isa<ConstantArrayType>(E->getType()));
2095    mangleType(E->getType());
2096    Out << 'E';
2097    break;
2098  }
2099
2100  case Expr::GNUNullExprClass:
2101    // FIXME: should this really be mangled the same as nullptr?
2102    // fallthrough
2103
2104  case Expr::CXXNullPtrLiteralExprClass: {
2105    // Proposal from David Vandervoorde, 2010.06.30, as
2106    // modified by ABI list discussion.
2107    Out << "LDnE";
2108    break;
2109  }
2110
2111  case Expr::PackExpansionExprClass:
2112    Out << "sp";
2113    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
2114    break;
2115
2116  case Expr::SizeOfPackExprClass: {
2117    Out << "sZ";
2118    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
2119    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
2120      mangleTemplateParameter(TTP->getIndex());
2121    else if (const NonTypeTemplateParmDecl *NTTP
2122                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
2123      mangleTemplateParameter(NTTP->getIndex());
2124    else if (const TemplateTemplateParmDecl *TempTP
2125                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
2126      mangleTemplateParameter(TempTP->getIndex());
2127    else {
2128      // Note: proposed by Mike Herrick on 11/30/10
2129      // <expression> ::= sZ <function-param>  # size of function parameter pack
2130      Diagnostic &Diags = Context.getDiags();
2131      unsigned DiagID = Diags.getCustomDiagID(Diagnostic::Error,
2132                            "cannot mangle sizeof...(function parameter pack)");
2133      Diags.Report(DiagID);
2134      return;
2135    }
2136  }
2137  }
2138}
2139
2140void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
2141  // <ctor-dtor-name> ::= C1  # complete object constructor
2142  //                  ::= C2  # base object constructor
2143  //                  ::= C3  # complete object allocating constructor
2144  //
2145  switch (T) {
2146  case Ctor_Complete:
2147    Out << "C1";
2148    break;
2149  case Ctor_Base:
2150    Out << "C2";
2151    break;
2152  case Ctor_CompleteAllocating:
2153    Out << "C3";
2154    break;
2155  }
2156}
2157
2158void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
2159  // <ctor-dtor-name> ::= D0  # deleting destructor
2160  //                  ::= D1  # complete object destructor
2161  //                  ::= D2  # base object destructor
2162  //
2163  switch (T) {
2164  case Dtor_Deleting:
2165    Out << "D0";
2166    break;
2167  case Dtor_Complete:
2168    Out << "D1";
2169    break;
2170  case Dtor_Base:
2171    Out << "D2";
2172    break;
2173  }
2174}
2175
2176void CXXNameMangler::mangleTemplateArgs(
2177                          const ExplicitTemplateArgumentList &TemplateArgs) {
2178  // <template-args> ::= I <template-arg>+ E
2179  Out << 'I';
2180  for (unsigned I = 0, E = TemplateArgs.NumTemplateArgs; I != E; ++I)
2181    mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[I].getArgument());
2182  Out << 'E';
2183}
2184
2185void CXXNameMangler::mangleTemplateArgs(TemplateName Template,
2186                                        const TemplateArgument *TemplateArgs,
2187                                        unsigned NumTemplateArgs) {
2188  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2189    return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs,
2190                              NumTemplateArgs);
2191
2192  // <template-args> ::= I <template-arg>+ E
2193  Out << 'I';
2194  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2195    mangleTemplateArg(0, TemplateArgs[i]);
2196  Out << 'E';
2197}
2198
2199void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2200                                        const TemplateArgumentList &AL) {
2201  // <template-args> ::= I <template-arg>+ E
2202  Out << 'I';
2203  for (unsigned i = 0, e = AL.size(); i != e; ++i)
2204    mangleTemplateArg(PL.getParam(i), AL[i]);
2205  Out << 'E';
2206}
2207
2208void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL,
2209                                        const TemplateArgument *TemplateArgs,
2210                                        unsigned NumTemplateArgs) {
2211  // <template-args> ::= I <template-arg>+ E
2212  Out << 'I';
2213  for (unsigned i = 0; i != NumTemplateArgs; ++i)
2214    mangleTemplateArg(PL.getParam(i), TemplateArgs[i]);
2215  Out << 'E';
2216}
2217
2218void CXXNameMangler::mangleTemplateArg(const NamedDecl *P,
2219                                       const TemplateArgument &A) {
2220  // <template-arg> ::= <type>              # type or template
2221  //                ::= X <expression> E    # expression
2222  //                ::= <expr-primary>      # simple expressions
2223  //                ::= J <template-arg>* E # argument pack
2224  //                ::= sp <expression>     # pack expansion of (C++0x)
2225  switch (A.getKind()) {
2226  case TemplateArgument::Null:
2227    llvm_unreachable("Cannot mangle NULL template argument");
2228
2229  case TemplateArgument::Type:
2230    mangleType(A.getAsType());
2231    break;
2232  case TemplateArgument::Template:
2233    // This is mangled as <type>.
2234    mangleType(A.getAsTemplate());
2235    break;
2236  case TemplateArgument::TemplateExpansion:
2237    // <type>  ::= Dp <type>          # pack expansion (C++0x)
2238    Out << "Dp";
2239    mangleType(A.getAsTemplateOrTemplatePattern());
2240    break;
2241  case TemplateArgument::Expression:
2242    Out << 'X';
2243    mangleExpression(A.getAsExpr());
2244    Out << 'E';
2245    break;
2246  case TemplateArgument::Integral:
2247    mangleIntegerLiteral(A.getIntegralType(), *A.getAsIntegral());
2248    break;
2249  case TemplateArgument::Declaration: {
2250    assert(P && "Missing template parameter for declaration argument");
2251    //  <expr-primary> ::= L <mangled-name> E # external name
2252
2253    // Clang produces AST's where pointer-to-member-function expressions
2254    // and pointer-to-function expressions are represented as a declaration not
2255    // an expression. We compensate for it here to produce the correct mangling.
2256    NamedDecl *D = cast<NamedDecl>(A.getAsDecl());
2257    const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P);
2258    bool compensateMangling = D->isCXXClassMember() &&
2259      !Parameter->getType()->isReferenceType();
2260    if (compensateMangling) {
2261      Out << 'X';
2262      mangleOperatorName(OO_Amp, 1);
2263    }
2264
2265    Out << 'L';
2266    // References to external entities use the mangled name; if the name would
2267    // not normally be manged then mangle it as unqualified.
2268    //
2269    // FIXME: The ABI specifies that external names here should have _Z, but
2270    // gcc leaves this off.
2271    if (compensateMangling)
2272      mangle(D, "_Z");
2273    else
2274      mangle(D, "Z");
2275    Out << 'E';
2276
2277    if (compensateMangling)
2278      Out << 'E';
2279
2280    break;
2281  }
2282
2283  case TemplateArgument::Pack: {
2284    // Note: proposal by Mike Herrick on 12/20/10
2285    Out << 'J';
2286    for (TemplateArgument::pack_iterator PA = A.pack_begin(),
2287                                      PAEnd = A.pack_end();
2288         PA != PAEnd; ++PA)
2289      mangleTemplateArg(P, *PA);
2290    Out << 'E';
2291  }
2292  }
2293}
2294
2295void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
2296  // <template-param> ::= T_    # first template parameter
2297  //                  ::= T <parameter-2 non-negative number> _
2298  if (Index == 0)
2299    Out << "T_";
2300  else
2301    Out << 'T' << (Index - 1) << '_';
2302}
2303
2304// <substitution> ::= S <seq-id> _
2305//                ::= S_
2306bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
2307  // Try one of the standard substitutions first.
2308  if (mangleStandardSubstitution(ND))
2309    return true;
2310
2311  ND = cast<NamedDecl>(ND->getCanonicalDecl());
2312  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
2313}
2314
2315bool CXXNameMangler::mangleSubstitution(QualType T) {
2316  if (!T.getCVRQualifiers()) {
2317    if (const RecordType *RT = T->getAs<RecordType>())
2318      return mangleSubstitution(RT->getDecl());
2319  }
2320
2321  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2322
2323  return mangleSubstitution(TypePtr);
2324}
2325
2326bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
2327  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2328    return mangleSubstitution(TD);
2329
2330  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2331  return mangleSubstitution(
2332                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2333}
2334
2335bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
2336  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
2337  if (I == Substitutions.end())
2338    return false;
2339
2340  unsigned SeqID = I->second;
2341  if (SeqID == 0)
2342    Out << "S_";
2343  else {
2344    SeqID--;
2345
2346    // <seq-id> is encoded in base-36, using digits and upper case letters.
2347    char Buffer[10];
2348    char *BufferPtr = llvm::array_endof(Buffer);
2349
2350    if (SeqID == 0) *--BufferPtr = '0';
2351
2352    while (SeqID) {
2353      assert(BufferPtr > Buffer && "Buffer overflow!");
2354
2355      char c = static_cast<char>(SeqID % 36);
2356
2357      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
2358      SeqID /= 36;
2359    }
2360
2361    Out << 'S'
2362        << llvm::StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
2363        << '_';
2364  }
2365
2366  return true;
2367}
2368
2369static bool isCharType(QualType T) {
2370  if (T.isNull())
2371    return false;
2372
2373  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
2374    T->isSpecificBuiltinType(BuiltinType::Char_U);
2375}
2376
2377/// isCharSpecialization - Returns whether a given type is a template
2378/// specialization of a given name with a single argument of type char.
2379static bool isCharSpecialization(QualType T, const char *Name) {
2380  if (T.isNull())
2381    return false;
2382
2383  const RecordType *RT = T->getAs<RecordType>();
2384  if (!RT)
2385    return false;
2386
2387  const ClassTemplateSpecializationDecl *SD =
2388    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
2389  if (!SD)
2390    return false;
2391
2392  if (!isStdNamespace(SD->getDeclContext()))
2393    return false;
2394
2395  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2396  if (TemplateArgs.size() != 1)
2397    return false;
2398
2399  if (!isCharType(TemplateArgs[0].getAsType()))
2400    return false;
2401
2402  return SD->getIdentifier()->getName() == Name;
2403}
2404
2405template <std::size_t StrLen>
2406static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
2407                                       const char (&Str)[StrLen]) {
2408  if (!SD->getIdentifier()->isStr(Str))
2409    return false;
2410
2411  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2412  if (TemplateArgs.size() != 2)
2413    return false;
2414
2415  if (!isCharType(TemplateArgs[0].getAsType()))
2416    return false;
2417
2418  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2419    return false;
2420
2421  return true;
2422}
2423
2424bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
2425  // <substitution> ::= St # ::std::
2426  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
2427    if (isStd(NS)) {
2428      Out << "St";
2429      return true;
2430    }
2431  }
2432
2433  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
2434    if (!isStdNamespace(TD->getDeclContext()))
2435      return false;
2436
2437    // <substitution> ::= Sa # ::std::allocator
2438    if (TD->getIdentifier()->isStr("allocator")) {
2439      Out << "Sa";
2440      return true;
2441    }
2442
2443    // <<substitution> ::= Sb # ::std::basic_string
2444    if (TD->getIdentifier()->isStr("basic_string")) {
2445      Out << "Sb";
2446      return true;
2447    }
2448  }
2449
2450  if (const ClassTemplateSpecializationDecl *SD =
2451        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
2452    if (!isStdNamespace(SD->getDeclContext()))
2453      return false;
2454
2455    //    <substitution> ::= Ss # ::std::basic_string<char,
2456    //                            ::std::char_traits<char>,
2457    //                            ::std::allocator<char> >
2458    if (SD->getIdentifier()->isStr("basic_string")) {
2459      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
2460
2461      if (TemplateArgs.size() != 3)
2462        return false;
2463
2464      if (!isCharType(TemplateArgs[0].getAsType()))
2465        return false;
2466
2467      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
2468        return false;
2469
2470      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
2471        return false;
2472
2473      Out << "Ss";
2474      return true;
2475    }
2476
2477    //    <substitution> ::= Si # ::std::basic_istream<char,
2478    //                            ::std::char_traits<char> >
2479    if (isStreamCharSpecialization(SD, "basic_istream")) {
2480      Out << "Si";
2481      return true;
2482    }
2483
2484    //    <substitution> ::= So # ::std::basic_ostream<char,
2485    //                            ::std::char_traits<char> >
2486    if (isStreamCharSpecialization(SD, "basic_ostream")) {
2487      Out << "So";
2488      return true;
2489    }
2490
2491    //    <substitution> ::= Sd # ::std::basic_iostream<char,
2492    //                            ::std::char_traits<char> >
2493    if (isStreamCharSpecialization(SD, "basic_iostream")) {
2494      Out << "Sd";
2495      return true;
2496    }
2497  }
2498  return false;
2499}
2500
2501void CXXNameMangler::addSubstitution(QualType T) {
2502  if (!T.getCVRQualifiers()) {
2503    if (const RecordType *RT = T->getAs<RecordType>()) {
2504      addSubstitution(RT->getDecl());
2505      return;
2506    }
2507  }
2508
2509  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
2510  addSubstitution(TypePtr);
2511}
2512
2513void CXXNameMangler::addSubstitution(TemplateName Template) {
2514  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2515    return addSubstitution(TD);
2516
2517  Template = Context.getASTContext().getCanonicalTemplateName(Template);
2518  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
2519}
2520
2521void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
2522  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
2523  Substitutions[Ptr] = SeqID++;
2524}
2525
2526//
2527
2528/// \brief Mangles the name of the declaration D and emits that name to the
2529/// given output stream.
2530///
2531/// If the declaration D requires a mangled name, this routine will emit that
2532/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
2533/// and this routine will return false. In this case, the caller should just
2534/// emit the identifier of the declaration (\c D->getIdentifier()) as its
2535/// name.
2536void ItaniumMangleContext::mangleName(const NamedDecl *D,
2537                                      llvm::raw_ostream &Out) {
2538  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2539          "Invalid mangleName() call, argument is not a variable or function!");
2540  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2541         "Invalid mangleName() call on 'structor decl!");
2542
2543  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2544                                 getASTContext().getSourceManager(),
2545                                 "Mangling declaration");
2546
2547  CXXNameMangler Mangler(*this, Out);
2548  return Mangler.mangle(D);
2549}
2550
2551void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
2552                                         CXXCtorType Type,
2553                                         llvm::raw_ostream &Out) {
2554  CXXNameMangler Mangler(*this, Out, D, Type);
2555  Mangler.mangle(D);
2556}
2557
2558void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
2559                                         CXXDtorType Type,
2560                                         llvm::raw_ostream &Out) {
2561  CXXNameMangler Mangler(*this, Out, D, Type);
2562  Mangler.mangle(D);
2563}
2564
2565void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
2566                                       const ThunkInfo &Thunk,
2567                                       llvm::raw_ostream &Out) {
2568  //  <special-name> ::= T <call-offset> <base encoding>
2569  //                      # base is the nominal target function of thunk
2570  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
2571  //                      # base is the nominal target function of thunk
2572  //                      # first call-offset is 'this' adjustment
2573  //                      # second call-offset is result adjustment
2574
2575  assert(!isa<CXXDestructorDecl>(MD) &&
2576         "Use mangleCXXDtor for destructor decls!");
2577  CXXNameMangler Mangler(*this, Out);
2578  Mangler.getStream() << "_ZT";
2579  if (!Thunk.Return.isEmpty())
2580    Mangler.getStream() << 'c';
2581
2582  // Mangle the 'this' pointer adjustment.
2583  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
2584
2585  // Mangle the return pointer adjustment if there is one.
2586  if (!Thunk.Return.isEmpty())
2587    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
2588                             Thunk.Return.VBaseOffsetOffset);
2589
2590  Mangler.mangleFunctionEncoding(MD);
2591}
2592
2593void
2594ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
2595                                         CXXDtorType Type,
2596                                         const ThisAdjustment &ThisAdjustment,
2597                                         llvm::raw_ostream &Out) {
2598  //  <special-name> ::= T <call-offset> <base encoding>
2599  //                      # base is the nominal target function of thunk
2600  CXXNameMangler Mangler(*this, Out, DD, Type);
2601  Mangler.getStream() << "_ZT";
2602
2603  // Mangle the 'this' pointer adjustment.
2604  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
2605                           ThisAdjustment.VCallOffsetOffset);
2606
2607  Mangler.mangleFunctionEncoding(DD);
2608}
2609
2610/// mangleGuardVariable - Returns the mangled name for a guard variable
2611/// for the passed in VarDecl.
2612void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
2613                                                      llvm::raw_ostream &Out) {
2614  //  <special-name> ::= GV <object name>       # Guard variable for one-time
2615  //                                            # initialization
2616  CXXNameMangler Mangler(*this, Out);
2617  Mangler.getStream() << "_ZGV";
2618  Mangler.mangleName(D);
2619}
2620
2621void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
2622                                                    llvm::raw_ostream &Out) {
2623  // We match the GCC mangling here.
2624  //  <special-name> ::= GR <object name>
2625  CXXNameMangler Mangler(*this, Out);
2626  Mangler.getStream() << "_ZGR";
2627  Mangler.mangleName(D);
2628}
2629
2630void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
2631                                           llvm::raw_ostream &Out) {
2632  // <special-name> ::= TV <type>  # virtual table
2633  CXXNameMangler Mangler(*this, Out);
2634  Mangler.getStream() << "_ZTV";
2635  Mangler.mangleNameOrStandardSubstitution(RD);
2636}
2637
2638void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
2639                                        llvm::raw_ostream &Out) {
2640  // <special-name> ::= TT <type>  # VTT structure
2641  CXXNameMangler Mangler(*this, Out);
2642  Mangler.getStream() << "_ZTT";
2643  Mangler.mangleNameOrStandardSubstitution(RD);
2644}
2645
2646void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
2647                                               int64_t Offset,
2648                                               const CXXRecordDecl *Type,
2649                                               llvm::raw_ostream &Out) {
2650  // <special-name> ::= TC <type> <offset number> _ <base type>
2651  CXXNameMangler Mangler(*this, Out);
2652  Mangler.getStream() << "_ZTC";
2653  Mangler.mangleNameOrStandardSubstitution(RD);
2654  Mangler.getStream() << Offset;
2655  Mangler.getStream() << '_';
2656  Mangler.mangleNameOrStandardSubstitution(Type);
2657}
2658
2659void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
2660                                         llvm::raw_ostream &Out) {
2661  // <special-name> ::= TI <type>  # typeinfo structure
2662  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
2663  CXXNameMangler Mangler(*this, Out);
2664  Mangler.getStream() << "_ZTI";
2665  Mangler.mangleType(Ty);
2666}
2667
2668void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
2669                                             llvm::raw_ostream &Out) {
2670  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
2671  CXXNameMangler Mangler(*this, Out);
2672  Mangler.getStream() << "_ZTS";
2673  Mangler.mangleType(Ty);
2674}
2675
2676MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
2677                                                 Diagnostic &Diags) {
2678  return new ItaniumMangleContext(Context, Diags);
2679}
2680