CGExprScalar.cpp revision 189d6ef40eff11b83b2cda941d5ed89a5cef09b2
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42struct BinOpInfo {
43  Value *LHS;
44  Value *RHS;
45  QualType Ty;  // Computation Type.
46  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
47  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
48};
49
50namespace {
51class ScalarExprEmitter
52  : public StmtVisitor<ScalarExprEmitter, Value*> {
53  CodeGenFunction &CGF;
54  CGBuilderTy &Builder;
55  bool IgnoreResultAssign;
56  llvm::LLVMContext &VMContext;
57public:
58
59  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
60    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
61      VMContext(cgf.getLLVMContext()) {
62  }
63
64  //===--------------------------------------------------------------------===//
65  //                               Utilities
66  //===--------------------------------------------------------------------===//
67
68  bool TestAndClearIgnoreResultAssign() {
69    bool I = IgnoreResultAssign;
70    IgnoreResultAssign = false;
71    return I;
72  }
73
74  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
75  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
76  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
77
78  Value *EmitLoadOfLValue(LValue LV, QualType T) {
79    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
80  }
81
82  /// EmitLoadOfLValue - Given an expression with complex type that represents a
83  /// value l-value, this method emits the address of the l-value, then loads
84  /// and returns the result.
85  Value *EmitLoadOfLValue(const Expr *E) {
86    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
87  }
88
89  /// EmitConversionToBool - Convert the specified expression value to a
90  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
91  Value *EmitConversionToBool(Value *Src, QualType DstTy);
92
93  /// EmitScalarConversion - Emit a conversion from the specified type to the
94  /// specified destination type, both of which are LLVM scalar types.
95  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
96
97  /// EmitComplexToScalarConversion - Emit a conversion from the specified
98  /// complex type to the specified destination type, where the destination type
99  /// is an LLVM scalar type.
100  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
101                                       QualType SrcTy, QualType DstTy);
102
103  /// EmitNullValue - Emit a value that corresponds to null for the given type.
104  Value *EmitNullValue(QualType Ty);
105
106  //===--------------------------------------------------------------------===//
107  //                            Visitor Methods
108  //===--------------------------------------------------------------------===//
109
110  Value *Visit(Expr *E) {
111    llvm::DenseMap<const Expr *, llvm::Value *>::iterator I =
112      CGF.ConditionalSaveExprs.find(E);
113    if (I != CGF.ConditionalSaveExprs.end())
114      return I->second;
115
116    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
117  }
118
119  Value *VisitStmt(Stmt *S) {
120    S->dump(CGF.getContext().getSourceManager());
121    assert(0 && "Stmt can't have complex result type!");
122    return 0;
123  }
124  Value *VisitExpr(Expr *S);
125
126  Value *VisitParenExpr(ParenExpr *PE) {
127    return Visit(PE->getSubExpr());
128  }
129
130  // Leaves.
131  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
132    return llvm::ConstantInt::get(VMContext, E->getValue());
133  }
134  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
135    return llvm::ConstantFP::get(VMContext, E->getValue());
136  }
137  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
138    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
139  }
140  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
141    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
142  }
143  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
144    return EmitNullValue(E->getType());
145  }
146  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
147    return EmitNullValue(E->getType());
148  }
149  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
150    return llvm::ConstantInt::get(ConvertType(E->getType()),
151                                  CGF.getContext().typesAreCompatible(
152                                    E->getArgType1(), E->getArgType2()));
153  }
154  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
155  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
156  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
157    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
158    return Builder.CreateBitCast(V, ConvertType(E->getType()));
159  }
160
161  // l-values.
162  Value *VisitDeclRefExpr(DeclRefExpr *E) {
163    Expr::EvalResult Result;
164    if (!E->Evaluate(Result, CGF.getContext()))
165      return EmitLoadOfLValue(E);
166
167    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
168
169    llvm::Constant *C;
170    if (Result.Val.isInt()) {
171      C = llvm::ConstantInt::get(VMContext, Result.Val.getInt());
172    } else if (Result.Val.isFloat()) {
173      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
174    } else {
175      return EmitLoadOfLValue(E);
176    }
177
178    // Make sure we emit a debug reference to the global variable.
179    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
180      if (!CGF.getContext().DeclMustBeEmitted(VD))
181        CGF.EmitDeclRefExprDbgValue(E, C);
182    } else if (isa<EnumConstantDecl>(E->getDecl())) {
183      CGF.EmitDeclRefExprDbgValue(E, C);
184    }
185
186    return C;
187  }
188  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
189    return CGF.EmitObjCSelectorExpr(E);
190  }
191  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
192    return CGF.EmitObjCProtocolExpr(E);
193  }
194  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
195    return EmitLoadOfLValue(E);
196  }
197  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
198    return EmitLoadOfLValue(E);
199  }
200  Value *VisitObjCImplicitSetterGetterRefExpr(
201                        ObjCImplicitSetterGetterRefExpr *E) {
202    return EmitLoadOfLValue(E);
203  }
204  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
205    return CGF.EmitObjCMessageExpr(E).getScalarVal();
206  }
207
208  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
209    LValue LV = CGF.EmitObjCIsaExpr(E);
210    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
211    return V;
212  }
213
214  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
215  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
216  Value *VisitMemberExpr(MemberExpr *E);
217  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
218  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
219    return EmitLoadOfLValue(E);
220  }
221
222  Value *VisitInitListExpr(InitListExpr *E);
223
224  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
225    return CGF.CGM.EmitNullConstant(E->getType());
226  }
227  Value *VisitCastExpr(CastExpr *E) {
228    // Make sure to evaluate VLA bounds now so that we have them for later.
229    if (E->getType()->isVariablyModifiedType())
230      CGF.EmitVLASize(E->getType());
231
232    return EmitCastExpr(E);
233  }
234  Value *EmitCastExpr(CastExpr *E);
235
236  Value *VisitCallExpr(const CallExpr *E) {
237    if (E->getCallReturnType()->isReferenceType())
238      return EmitLoadOfLValue(E);
239
240    return CGF.EmitCallExpr(E).getScalarVal();
241  }
242
243  Value *VisitStmtExpr(const StmtExpr *E);
244
245  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
246
247  // Unary Operators.
248  Value *VisitUnaryPostDec(const UnaryOperator *E) {
249    LValue LV = EmitLValue(E->getSubExpr());
250    return EmitScalarPrePostIncDec(E, LV, false, false);
251  }
252  Value *VisitUnaryPostInc(const UnaryOperator *E) {
253    LValue LV = EmitLValue(E->getSubExpr());
254    return EmitScalarPrePostIncDec(E, LV, true, false);
255  }
256  Value *VisitUnaryPreDec(const UnaryOperator *E) {
257    LValue LV = EmitLValue(E->getSubExpr());
258    return EmitScalarPrePostIncDec(E, LV, false, true);
259  }
260  Value *VisitUnaryPreInc(const UnaryOperator *E) {
261    LValue LV = EmitLValue(E->getSubExpr());
262    return EmitScalarPrePostIncDec(E, LV, true, true);
263  }
264
265  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
266                                       bool isInc, bool isPre);
267
268
269  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
270    // If the sub-expression is an instance member reference,
271    // EmitDeclRefLValue will magically emit it with the appropriate
272    // value as the "address".
273    return EmitLValue(E->getSubExpr()).getAddress();
274  }
275  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
276  Value *VisitUnaryPlus(const UnaryOperator *E) {
277    // This differs from gcc, though, most likely due to a bug in gcc.
278    TestAndClearIgnoreResultAssign();
279    return Visit(E->getSubExpr());
280  }
281  Value *VisitUnaryMinus    (const UnaryOperator *E);
282  Value *VisitUnaryNot      (const UnaryOperator *E);
283  Value *VisitUnaryLNot     (const UnaryOperator *E);
284  Value *VisitUnaryReal     (const UnaryOperator *E);
285  Value *VisitUnaryImag     (const UnaryOperator *E);
286  Value *VisitUnaryExtension(const UnaryOperator *E) {
287    return Visit(E->getSubExpr());
288  }
289
290  // C++
291  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
292    return Visit(DAE->getExpr());
293  }
294  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
295    return CGF.LoadCXXThis();
296  }
297
298  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
299    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
300  }
301  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
302    return CGF.EmitCXXNewExpr(E);
303  }
304  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
305    CGF.EmitCXXDeleteExpr(E);
306    return 0;
307  }
308  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
309    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
310  }
311
312  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
313    // C++ [expr.pseudo]p1:
314    //   The result shall only be used as the operand for the function call
315    //   operator (), and the result of such a call has type void. The only
316    //   effect is the evaluation of the postfix-expression before the dot or
317    //   arrow.
318    CGF.EmitScalarExpr(E->getBase());
319    return 0;
320  }
321
322  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
323    return EmitNullValue(E->getType());
324  }
325
326  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
327    CGF.EmitCXXThrowExpr(E);
328    return 0;
329  }
330
331  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
332    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
333  }
334
335  // Binary Operators.
336  Value *EmitMul(const BinOpInfo &Ops) {
337    if (Ops.Ty->hasSignedIntegerRepresentation()) {
338      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
339      case LangOptions::SOB_Undefined:
340        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
341      case LangOptions::SOB_Defined:
342        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
343      case LangOptions::SOB_Trapping:
344        return EmitOverflowCheckedBinOp(Ops);
345      }
346    }
347
348    if (Ops.LHS->getType()->isFPOrFPVectorTy())
349      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
350    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
351  }
352  bool isTrapvOverflowBehavior() {
353    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
354               == LangOptions::SOB_Trapping;
355  }
356  /// Create a binary op that checks for overflow.
357  /// Currently only supports +, - and *.
358  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
359  // Emit the overflow BB when -ftrapv option is activated.
360  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
361    Builder.SetInsertPoint(overflowBB);
362    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
363    Builder.CreateCall(Trap);
364    Builder.CreateUnreachable();
365  }
366  // Check for undefined division and modulus behaviors.
367  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
368                                                  llvm::Value *Zero,bool isDiv);
369  Value *EmitDiv(const BinOpInfo &Ops);
370  Value *EmitRem(const BinOpInfo &Ops);
371  Value *EmitAdd(const BinOpInfo &Ops);
372  Value *EmitSub(const BinOpInfo &Ops);
373  Value *EmitShl(const BinOpInfo &Ops);
374  Value *EmitShr(const BinOpInfo &Ops);
375  Value *EmitAnd(const BinOpInfo &Ops) {
376    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
377  }
378  Value *EmitXor(const BinOpInfo &Ops) {
379    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
380  }
381  Value *EmitOr (const BinOpInfo &Ops) {
382    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
383  }
384
385  BinOpInfo EmitBinOps(const BinaryOperator *E);
386  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
387                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
388                                  Value *&Result);
389
390  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
391                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
392
393  // Binary operators and binary compound assignment operators.
394#define HANDLEBINOP(OP) \
395  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
396    return Emit ## OP(EmitBinOps(E));                                      \
397  }                                                                        \
398  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
399    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
400  }
401  HANDLEBINOP(Mul)
402  HANDLEBINOP(Div)
403  HANDLEBINOP(Rem)
404  HANDLEBINOP(Add)
405  HANDLEBINOP(Sub)
406  HANDLEBINOP(Shl)
407  HANDLEBINOP(Shr)
408  HANDLEBINOP(And)
409  HANDLEBINOP(Xor)
410  HANDLEBINOP(Or)
411#undef HANDLEBINOP
412
413  // Comparisons.
414  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
415                     unsigned SICmpOpc, unsigned FCmpOpc);
416#define VISITCOMP(CODE, UI, SI, FP) \
417    Value *VisitBin##CODE(const BinaryOperator *E) { \
418      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
419                         llvm::FCmpInst::FP); }
420  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
421  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
422  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
423  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
424  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
425  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
426#undef VISITCOMP
427
428  Value *VisitBinAssign     (const BinaryOperator *E);
429
430  Value *VisitBinLAnd       (const BinaryOperator *E);
431  Value *VisitBinLOr        (const BinaryOperator *E);
432  Value *VisitBinComma      (const BinaryOperator *E);
433
434  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
435  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
436
437  // Other Operators.
438  Value *VisitBlockExpr(const BlockExpr *BE);
439  Value *VisitConditionalOperator(const ConditionalOperator *CO);
440  Value *VisitChooseExpr(ChooseExpr *CE);
441  Value *VisitVAArgExpr(VAArgExpr *VE);
442  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
443    return CGF.EmitObjCStringLiteral(E);
444  }
445};
446}  // end anonymous namespace.
447
448//===----------------------------------------------------------------------===//
449//                                Utilities
450//===----------------------------------------------------------------------===//
451
452/// EmitConversionToBool - Convert the specified expression value to a
453/// boolean (i1) truth value.  This is equivalent to "Val != 0".
454Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
455  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
456
457  if (SrcType->isRealFloatingType()) {
458    // Compare against 0.0 for fp scalars.
459    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
460    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
461  }
462
463  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
464    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
465
466  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
467         "Unknown scalar type to convert");
468
469  // Because of the type rules of C, we often end up computing a logical value,
470  // then zero extending it to int, then wanting it as a logical value again.
471  // Optimize this common case.
472  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
473    if (ZI->getOperand(0)->getType() ==
474        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
475      Value *Result = ZI->getOperand(0);
476      // If there aren't any more uses, zap the instruction to save space.
477      // Note that there can be more uses, for example if this
478      // is the result of an assignment.
479      if (ZI->use_empty())
480        ZI->eraseFromParent();
481      return Result;
482    }
483  }
484
485  // Compare against an integer or pointer null.
486  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
487  return Builder.CreateICmpNE(Src, Zero, "tobool");
488}
489
490/// EmitScalarConversion - Emit a conversion from the specified type to the
491/// specified destination type, both of which are LLVM scalar types.
492Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
493                                               QualType DstType) {
494  SrcType = CGF.getContext().getCanonicalType(SrcType);
495  DstType = CGF.getContext().getCanonicalType(DstType);
496  if (SrcType == DstType) return Src;
497
498  if (DstType->isVoidType()) return 0;
499
500  // Handle conversions to bool first, they are special: comparisons against 0.
501  if (DstType->isBooleanType())
502    return EmitConversionToBool(Src, SrcType);
503
504  const llvm::Type *DstTy = ConvertType(DstType);
505
506  // Ignore conversions like int -> uint.
507  if (Src->getType() == DstTy)
508    return Src;
509
510  // Handle pointer conversions next: pointers can only be converted to/from
511  // other pointers and integers. Check for pointer types in terms of LLVM, as
512  // some native types (like Obj-C id) may map to a pointer type.
513  if (isa<llvm::PointerType>(DstTy)) {
514    // The source value may be an integer, or a pointer.
515    if (isa<llvm::PointerType>(Src->getType()))
516      return Builder.CreateBitCast(Src, DstTy, "conv");
517
518    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
519    // First, convert to the correct width so that we control the kind of
520    // extension.
521    const llvm::Type *MiddleTy = CGF.IntPtrTy;
522    bool InputSigned = SrcType->isSignedIntegerType();
523    llvm::Value* IntResult =
524        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
525    // Then, cast to pointer.
526    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
527  }
528
529  if (isa<llvm::PointerType>(Src->getType())) {
530    // Must be an ptr to int cast.
531    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
532    return Builder.CreatePtrToInt(Src, DstTy, "conv");
533  }
534
535  // A scalar can be splatted to an extended vector of the same element type
536  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
537    // Cast the scalar to element type
538    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
539    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
540
541    // Insert the element in element zero of an undef vector
542    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
543    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
544    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
545
546    // Splat the element across to all elements
547    llvm::SmallVector<llvm::Constant*, 16> Args;
548    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
549    for (unsigned i = 0; i < NumElements; i++)
550      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
551
552    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
553    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
554    return Yay;
555  }
556
557  // Allow bitcast from vector to integer/fp of the same size.
558  if (isa<llvm::VectorType>(Src->getType()) ||
559      isa<llvm::VectorType>(DstTy))
560    return Builder.CreateBitCast(Src, DstTy, "conv");
561
562  // Finally, we have the arithmetic types: real int/float.
563  if (isa<llvm::IntegerType>(Src->getType())) {
564    bool InputSigned = SrcType->isSignedIntegerType();
565    if (isa<llvm::IntegerType>(DstTy))
566      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
567    else if (InputSigned)
568      return Builder.CreateSIToFP(Src, DstTy, "conv");
569    else
570      return Builder.CreateUIToFP(Src, DstTy, "conv");
571  }
572
573  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
574  if (isa<llvm::IntegerType>(DstTy)) {
575    if (DstType->isSignedIntegerType())
576      return Builder.CreateFPToSI(Src, DstTy, "conv");
577    else
578      return Builder.CreateFPToUI(Src, DstTy, "conv");
579  }
580
581  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
582  if (DstTy->getTypeID() < Src->getType()->getTypeID())
583    return Builder.CreateFPTrunc(Src, DstTy, "conv");
584  else
585    return Builder.CreateFPExt(Src, DstTy, "conv");
586}
587
588/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
589/// type to the specified destination type, where the destination type is an
590/// LLVM scalar type.
591Value *ScalarExprEmitter::
592EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
593                              QualType SrcTy, QualType DstTy) {
594  // Get the source element type.
595  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
596
597  // Handle conversions to bool first, they are special: comparisons against 0.
598  if (DstTy->isBooleanType()) {
599    //  Complex != 0  -> (Real != 0) | (Imag != 0)
600    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
601    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
602    return Builder.CreateOr(Src.first, Src.second, "tobool");
603  }
604
605  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
606  // the imaginary part of the complex value is discarded and the value of the
607  // real part is converted according to the conversion rules for the
608  // corresponding real type.
609  return EmitScalarConversion(Src.first, SrcTy, DstTy);
610}
611
612Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
613  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
614    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
615
616  return llvm::Constant::getNullValue(ConvertType(Ty));
617}
618
619//===----------------------------------------------------------------------===//
620//                            Visitor Methods
621//===----------------------------------------------------------------------===//
622
623Value *ScalarExprEmitter::VisitExpr(Expr *E) {
624  CGF.ErrorUnsupported(E, "scalar expression");
625  if (E->getType()->isVoidType())
626    return 0;
627  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
628}
629
630Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
631  // Vector Mask Case
632  if (E->getNumSubExprs() == 2 ||
633      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
634    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
635    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
636    Value *Mask;
637
638    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
639    unsigned LHSElts = LTy->getNumElements();
640
641    if (E->getNumSubExprs() == 3) {
642      Mask = CGF.EmitScalarExpr(E->getExpr(2));
643
644      // Shuffle LHS & RHS into one input vector.
645      llvm::SmallVector<llvm::Constant*, 32> concat;
646      for (unsigned i = 0; i != LHSElts; ++i) {
647        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i));
648        concat.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 2*i+1));
649      }
650
651      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
652      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
653      LHSElts *= 2;
654    } else {
655      Mask = RHS;
656    }
657
658    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
659    llvm::Constant* EltMask;
660
661    // Treat vec3 like vec4.
662    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
663      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
664                                       (1 << llvm::Log2_32(LHSElts+2))-1);
665    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
666      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
667                                       (1 << llvm::Log2_32(LHSElts+1))-1);
668    else
669      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
670                                       (1 << llvm::Log2_32(LHSElts))-1);
671
672    // Mask off the high bits of each shuffle index.
673    llvm::SmallVector<llvm::Constant *, 32> MaskV;
674    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
675      MaskV.push_back(EltMask);
676
677    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
678    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
679
680    // newv = undef
681    // mask = mask & maskbits
682    // for each elt
683    //   n = extract mask i
684    //   x = extract val n
685    //   newv = insert newv, x, i
686    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
687                                                        MTy->getNumElements());
688    Value* NewV = llvm::UndefValue::get(RTy);
689    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
690      Value *Indx = llvm::ConstantInt::get(CGF.Int32Ty, i);
691      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
692      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
693
694      // Handle vec3 special since the index will be off by one for the RHS.
695      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
696        Value *cmpIndx, *newIndx;
697        cmpIndx = Builder.CreateICmpUGT(Indx,
698                                        llvm::ConstantInt::get(CGF.Int32Ty, 3),
699                                        "cmp_shuf_idx");
700        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(CGF.Int32Ty,1),
701                                    "shuf_idx_adj");
702        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
703      }
704      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
705      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
706    }
707    return NewV;
708  }
709
710  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
711  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
712
713  // Handle vec3 special since the index will be off by one for the RHS.
714  llvm::SmallVector<llvm::Constant*, 32> indices;
715  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
716    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
717    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
718    if (VTy->getNumElements() == 3) {
719      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
720        uint64_t cVal = CI->getZExtValue();
721        if (cVal > 3) {
722          C = llvm::ConstantInt::get(C->getType(), cVal-1);
723        }
724      }
725    }
726    indices.push_back(C);
727  }
728
729  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
730  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
731}
732Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
733  Expr::EvalResult Result;
734  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
735    if (E->isArrow())
736      CGF.EmitScalarExpr(E->getBase());
737    else
738      EmitLValue(E->getBase());
739    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
740  }
741
742  // Emit debug info for aggregate now, if it was delayed to reduce
743  // debug info size.
744  CGDebugInfo *DI = CGF.getDebugInfo();
745  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
746    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
747    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
748      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
749        DI->getOrCreateRecordType(PTy->getPointeeType(),
750                                  M->getParent()->getLocation());
751  }
752  return EmitLoadOfLValue(E);
753}
754
755Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
756  TestAndClearIgnoreResultAssign();
757
758  // Emit subscript expressions in rvalue context's.  For most cases, this just
759  // loads the lvalue formed by the subscript expr.  However, we have to be
760  // careful, because the base of a vector subscript is occasionally an rvalue,
761  // so we can't get it as an lvalue.
762  if (!E->getBase()->getType()->isVectorType())
763    return EmitLoadOfLValue(E);
764
765  // Handle the vector case.  The base must be a vector, the index must be an
766  // integer value.
767  Value *Base = Visit(E->getBase());
768  Value *Idx  = Visit(E->getIdx());
769  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
770  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
771  return Builder.CreateExtractElement(Base, Idx, "vecext");
772}
773
774static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
775                                  unsigned Off, const llvm::Type *I32Ty) {
776  int MV = SVI->getMaskValue(Idx);
777  if (MV == -1)
778    return llvm::UndefValue::get(I32Ty);
779  return llvm::ConstantInt::get(I32Ty, Off+MV);
780}
781
782Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
783  bool Ignore = TestAndClearIgnoreResultAssign();
784  (void)Ignore;
785  assert (Ignore == false && "init list ignored");
786  unsigned NumInitElements = E->getNumInits();
787
788  if (E->hadArrayRangeDesignator())
789    CGF.ErrorUnsupported(E, "GNU array range designator extension");
790
791  const llvm::VectorType *VType =
792    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
793
794  // We have a scalar in braces. Just use the first element.
795  if (!VType)
796    return Visit(E->getInit(0));
797
798  unsigned ResElts = VType->getNumElements();
799
800  // Loop over initializers collecting the Value for each, and remembering
801  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
802  // us to fold the shuffle for the swizzle into the shuffle for the vector
803  // initializer, since LLVM optimizers generally do not want to touch
804  // shuffles.
805  unsigned CurIdx = 0;
806  bool VIsUndefShuffle = false;
807  llvm::Value *V = llvm::UndefValue::get(VType);
808  for (unsigned i = 0; i != NumInitElements; ++i) {
809    Expr *IE = E->getInit(i);
810    Value *Init = Visit(IE);
811    llvm::SmallVector<llvm::Constant*, 16> Args;
812
813    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
814
815    // Handle scalar elements.  If the scalar initializer is actually one
816    // element of a different vector of the same width, use shuffle instead of
817    // extract+insert.
818    if (!VVT) {
819      if (isa<ExtVectorElementExpr>(IE)) {
820        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
821
822        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
823          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
824          Value *LHS = 0, *RHS = 0;
825          if (CurIdx == 0) {
826            // insert into undef -> shuffle (src, undef)
827            Args.push_back(C);
828            for (unsigned j = 1; j != ResElts; ++j)
829              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
830
831            LHS = EI->getVectorOperand();
832            RHS = V;
833            VIsUndefShuffle = true;
834          } else if (VIsUndefShuffle) {
835            // insert into undefshuffle && size match -> shuffle (v, src)
836            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
837            for (unsigned j = 0; j != CurIdx; ++j)
838              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
839            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
840                                                  ResElts + C->getZExtValue()));
841            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
842              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
843
844            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
845            RHS = EI->getVectorOperand();
846            VIsUndefShuffle = false;
847          }
848          if (!Args.empty()) {
849            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
850            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
851            ++CurIdx;
852            continue;
853          }
854        }
855      }
856      Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
857      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
858      VIsUndefShuffle = false;
859      ++CurIdx;
860      continue;
861    }
862
863    unsigned InitElts = VVT->getNumElements();
864
865    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
866    // input is the same width as the vector being constructed, generate an
867    // optimized shuffle of the swizzle input into the result.
868    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
869    if (isa<ExtVectorElementExpr>(IE)) {
870      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
871      Value *SVOp = SVI->getOperand(0);
872      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
873
874      if (OpTy->getNumElements() == ResElts) {
875        for (unsigned j = 0; j != CurIdx; ++j) {
876          // If the current vector initializer is a shuffle with undef, merge
877          // this shuffle directly into it.
878          if (VIsUndefShuffle) {
879            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
880                                      CGF.Int32Ty));
881          } else {
882            Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
883          }
884        }
885        for (unsigned j = 0, je = InitElts; j != je; ++j)
886          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
887        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
888          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
889
890        if (VIsUndefShuffle)
891          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
892
893        Init = SVOp;
894      }
895    }
896
897    // Extend init to result vector length, and then shuffle its contribution
898    // to the vector initializer into V.
899    if (Args.empty()) {
900      for (unsigned j = 0; j != InitElts; ++j)
901        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
902      for (unsigned j = InitElts; j != ResElts; ++j)
903        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
904      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
905      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
906                                         Mask, "vext");
907
908      Args.clear();
909      for (unsigned j = 0; j != CurIdx; ++j)
910        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j));
911      for (unsigned j = 0; j != InitElts; ++j)
912        Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, j+Offset));
913      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
914        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
915    }
916
917    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
918    // merging subsequent shuffles into this one.
919    if (CurIdx == 0)
920      std::swap(V, Init);
921    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
922    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
923    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
924    CurIdx += InitElts;
925  }
926
927  // FIXME: evaluate codegen vs. shuffling against constant null vector.
928  // Emit remaining default initializers.
929  const llvm::Type *EltTy = VType->getElementType();
930
931  // Emit remaining default initializers
932  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
933    Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, CurIdx);
934    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
935    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
936  }
937  return V;
938}
939
940static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
941  const Expr *E = CE->getSubExpr();
942
943  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
944    return false;
945
946  if (isa<CXXThisExpr>(E)) {
947    // We always assume that 'this' is never null.
948    return false;
949  }
950
951  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
952    // And that glvalue casts are never null.
953    if (ICE->getValueKind() != VK_RValue)
954      return false;
955  }
956
957  return true;
958}
959
960// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
961// have to handle a more broad range of conversions than explicit casts, as they
962// handle things like function to ptr-to-function decay etc.
963Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
964  Expr *E = CE->getSubExpr();
965  QualType DestTy = CE->getType();
966  CastKind Kind = CE->getCastKind();
967
968  if (!DestTy->isVoidType())
969    TestAndClearIgnoreResultAssign();
970
971  // Since almost all cast kinds apply to scalars, this switch doesn't have
972  // a default case, so the compiler will warn on a missing case.  The cases
973  // are in the same order as in the CastKind enum.
974  switch (Kind) {
975  case CK_Unknown:
976    // FIXME: All casts should have a known kind!
977    //assert(0 && "Unknown cast kind!");
978    break;
979
980  case CK_LValueBitCast:
981  case CK_ObjCObjectLValueCast: {
982    Value *V = EmitLValue(E).getAddress();
983    V = Builder.CreateBitCast(V,
984                          ConvertType(CGF.getContext().getPointerType(DestTy)));
985    return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
986  }
987
988  case CK_AnyPointerToObjCPointerCast:
989  case CK_AnyPointerToBlockPointerCast:
990  case CK_BitCast: {
991    Value *Src = Visit(const_cast<Expr*>(E));
992    return Builder.CreateBitCast(Src, ConvertType(DestTy));
993  }
994  case CK_NoOp:
995  case CK_UserDefinedConversion:
996    return Visit(const_cast<Expr*>(E));
997
998  case CK_BaseToDerived: {
999    const CXXRecordDecl *DerivedClassDecl =
1000      DestTy->getCXXRecordDeclForPointerType();
1001
1002    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1003                                        CE->path_begin(), CE->path_end(),
1004                                        ShouldNullCheckClassCastValue(CE));
1005  }
1006  case CK_UncheckedDerivedToBase:
1007  case CK_DerivedToBase: {
1008    const RecordType *DerivedClassTy =
1009      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1010    CXXRecordDecl *DerivedClassDecl =
1011      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1012
1013    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1014                                     CE->path_begin(), CE->path_end(),
1015                                     ShouldNullCheckClassCastValue(CE));
1016  }
1017  case CK_Dynamic: {
1018    Value *V = Visit(const_cast<Expr*>(E));
1019    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1020    return CGF.EmitDynamicCast(V, DCE);
1021  }
1022  case CK_ToUnion:
1023    assert(0 && "Should be unreachable!");
1024    break;
1025
1026  case CK_ArrayToPointerDecay: {
1027    assert(E->getType()->isArrayType() &&
1028           "Array to pointer decay must have array source type!");
1029
1030    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1031
1032    // Note that VLA pointers are always decayed, so we don't need to do
1033    // anything here.
1034    if (!E->getType()->isVariableArrayType()) {
1035      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1036      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1037                                 ->getElementType()) &&
1038             "Expected pointer to array");
1039      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1040    }
1041
1042    return V;
1043  }
1044  case CK_FunctionToPointerDecay:
1045    return EmitLValue(E).getAddress();
1046
1047  case CK_NullToMemberPointer: {
1048    // If the subexpression's type is the C++0x nullptr_t, emit the
1049    // subexpression, which may have side effects.
1050    if (E->getType()->isNullPtrType())
1051      (void) Visit(E);
1052
1053    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1054    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1055  }
1056
1057  case CK_BaseToDerivedMemberPointer:
1058  case CK_DerivedToBaseMemberPointer: {
1059    Value *Src = Visit(E);
1060
1061    // Note that the AST doesn't distinguish between checked and
1062    // unchecked member pointer conversions, so we always have to
1063    // implement checked conversions here.  This is inefficient when
1064    // actual control flow may be required in order to perform the
1065    // check, which it is for data member pointers (but not member
1066    // function pointers on Itanium and ARM).
1067    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1068  }
1069
1070
1071  case CK_ConstructorConversion:
1072    assert(0 && "Should be unreachable!");
1073    break;
1074
1075  case CK_IntegralToPointer: {
1076    Value *Src = Visit(const_cast<Expr*>(E));
1077
1078    // First, convert to the correct width so that we control the kind of
1079    // extension.
1080    const llvm::Type *MiddleTy = CGF.IntPtrTy;
1081    bool InputSigned = E->getType()->isSignedIntegerType();
1082    llvm::Value* IntResult =
1083      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1084
1085    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1086  }
1087  case CK_PointerToIntegral: {
1088    Value *Src = Visit(const_cast<Expr*>(E));
1089
1090    // Handle conversion to bool correctly.
1091    if (DestTy->isBooleanType())
1092      return EmitScalarConversion(Src, E->getType(), DestTy);
1093
1094    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1095  }
1096  case CK_ToVoid: {
1097    if (E->Classify(CGF.getContext()).isGLValue()) {
1098      LValue LV = CGF.EmitLValue(E);
1099      if (LV.isPropertyRef())
1100        CGF.EmitLoadOfPropertyRefLValue(LV, E->getType());
1101      else if (LV.isKVCRef())
1102        CGF.EmitLoadOfKVCRefLValue(LV, E->getType());
1103    }
1104    else
1105      CGF.EmitAnyExpr(E, AggValueSlot::ignored(), true);
1106    return 0;
1107  }
1108  case CK_VectorSplat: {
1109    const llvm::Type *DstTy = ConvertType(DestTy);
1110    Value *Elt = Visit(const_cast<Expr*>(E));
1111
1112    // Insert the element in element zero of an undef vector
1113    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1114    llvm::Value *Idx = llvm::ConstantInt::get(CGF.Int32Ty, 0);
1115    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1116
1117    // Splat the element across to all elements
1118    llvm::SmallVector<llvm::Constant*, 16> Args;
1119    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1120    for (unsigned i = 0; i < NumElements; i++)
1121      Args.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 0));
1122
1123    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1124    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1125    return Yay;
1126  }
1127  case CK_IntegralCast:
1128  case CK_IntegralToFloating:
1129  case CK_FloatingToIntegral:
1130  case CK_FloatingCast:
1131    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1132
1133  case CK_MemberPointerToBoolean: {
1134    llvm::Value *MemPtr = Visit(E);
1135    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1136    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1137  }
1138  }
1139
1140  // Handle cases where the source is an non-complex type.
1141
1142  if (!CGF.hasAggregateLLVMType(E->getType())) {
1143    Value *Src = Visit(const_cast<Expr*>(E));
1144
1145    // Use EmitScalarConversion to perform the conversion.
1146    return EmitScalarConversion(Src, E->getType(), DestTy);
1147  }
1148
1149  if (E->getType()->isAnyComplexType()) {
1150    // Handle cases where the source is a complex type.
1151    bool IgnoreImag = true;
1152    bool IgnoreImagAssign = true;
1153    bool IgnoreReal = IgnoreResultAssign;
1154    bool IgnoreRealAssign = IgnoreResultAssign;
1155    if (DestTy->isBooleanType())
1156      IgnoreImagAssign = IgnoreImag = false;
1157    else if (DestTy->isVoidType()) {
1158      IgnoreReal = IgnoreImag = false;
1159      IgnoreRealAssign = IgnoreImagAssign = true;
1160    }
1161    CodeGenFunction::ComplexPairTy V
1162      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1163                            IgnoreImagAssign);
1164    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1165  }
1166
1167  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1168  // evaluate the result and return.
1169  CGF.EmitAggExpr(E, AggValueSlot::ignored(), true);
1170  return 0;
1171}
1172
1173Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1174  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1175                              !E->getType()->isVoidType()).getScalarVal();
1176}
1177
1178Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1179  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1180  if (E->getType().isObjCGCWeak())
1181    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1182  return CGF.EmitLoadOfScalar(V, false, 0, E->getType());
1183}
1184
1185//===----------------------------------------------------------------------===//
1186//                             Unary Operators
1187//===----------------------------------------------------------------------===//
1188
1189llvm::Value *ScalarExprEmitter::
1190EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1191                        bool isInc, bool isPre) {
1192
1193  QualType ValTy = E->getSubExpr()->getType();
1194  llvm::Value *InVal = EmitLoadOfLValue(LV, ValTy);
1195
1196  int AmountVal = isInc ? 1 : -1;
1197
1198  if (ValTy->isPointerType() &&
1199      ValTy->getAs<PointerType>()->isVariableArrayType()) {
1200    // The amount of the addition/subtraction needs to account for the VLA size
1201    CGF.ErrorUnsupported(E, "VLA pointer inc/dec");
1202  }
1203
1204  llvm::Value *NextVal;
1205  if (const llvm::PointerType *PT =
1206      dyn_cast<llvm::PointerType>(InVal->getType())) {
1207    llvm::Constant *Inc = llvm::ConstantInt::get(CGF.Int32Ty, AmountVal);
1208    if (!isa<llvm::FunctionType>(PT->getElementType())) {
1209      QualType PTEE = ValTy->getPointeeType();
1210      if (const ObjCObjectType *OIT = PTEE->getAs<ObjCObjectType>()) {
1211        // Handle interface types, which are not represented with a concrete
1212        // type.
1213        int size = CGF.getContext().getTypeSize(OIT) / 8;
1214        if (!isInc)
1215          size = -size;
1216        Inc = llvm::ConstantInt::get(Inc->getType(), size);
1217        const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1218        InVal = Builder.CreateBitCast(InVal, i8Ty);
1219        NextVal = Builder.CreateGEP(InVal, Inc, "add.ptr");
1220        llvm::Value *lhs = LV.getAddress();
1221        lhs = Builder.CreateBitCast(lhs, llvm::PointerType::getUnqual(i8Ty));
1222        LV = CGF.MakeAddrLValue(lhs, ValTy);
1223      } else
1224        NextVal = Builder.CreateInBoundsGEP(InVal, Inc, "ptrincdec");
1225    } else {
1226      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1227      NextVal = Builder.CreateBitCast(InVal, i8Ty, "tmp");
1228      NextVal = Builder.CreateGEP(NextVal, Inc, "ptrincdec");
1229      NextVal = Builder.CreateBitCast(NextVal, InVal->getType());
1230    }
1231  } else if (InVal->getType()->isIntegerTy(1) && isInc) {
1232    // Bool++ is an interesting case, due to promotion rules, we get:
1233    // Bool++ -> Bool = Bool+1 -> Bool = (int)Bool+1 ->
1234    // Bool = ((int)Bool+1) != 0
1235    // An interesting aspect of this is that increment is always true.
1236    // Decrement does not have this property.
1237    NextVal = llvm::ConstantInt::getTrue(VMContext);
1238  } else if (isa<llvm::IntegerType>(InVal->getType())) {
1239    NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
1240
1241    if (!ValTy->isSignedIntegerType())
1242      // Unsigned integer inc is always two's complement.
1243      NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1244    else {
1245      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1246      case LangOptions::SOB_Undefined:
1247        NextVal = Builder.CreateNSWAdd(InVal, NextVal, isInc ? "inc" : "dec");
1248        break;
1249      case LangOptions::SOB_Defined:
1250        NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
1251        break;
1252      case LangOptions::SOB_Trapping:
1253        BinOpInfo BinOp;
1254        BinOp.LHS = InVal;
1255        BinOp.RHS = NextVal;
1256        BinOp.Ty = E->getType();
1257        BinOp.Opcode = BO_Add;
1258        BinOp.E = E;
1259        NextVal = EmitOverflowCheckedBinOp(BinOp);
1260        break;
1261      }
1262    }
1263  } else {
1264    // Add the inc/dec to the real part.
1265    if (InVal->getType()->isFloatTy())
1266      NextVal =
1267      llvm::ConstantFP::get(VMContext,
1268                            llvm::APFloat(static_cast<float>(AmountVal)));
1269    else if (InVal->getType()->isDoubleTy())
1270      NextVal =
1271      llvm::ConstantFP::get(VMContext,
1272                            llvm::APFloat(static_cast<double>(AmountVal)));
1273    else {
1274      llvm::APFloat F(static_cast<float>(AmountVal));
1275      bool ignored;
1276      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1277                &ignored);
1278      NextVal = llvm::ConstantFP::get(VMContext, F);
1279    }
1280    NextVal = Builder.CreateFAdd(InVal, NextVal, isInc ? "inc" : "dec");
1281  }
1282
1283  // Store the updated result through the lvalue.
1284  if (LV.isBitField())
1285    CGF.EmitStoreThroughBitfieldLValue(RValue::get(NextVal), LV, ValTy, &NextVal);
1286  else
1287    CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV, ValTy);
1288
1289  // If this is a postinc, return the value read from memory, otherwise use the
1290  // updated value.
1291  return isPre ? NextVal : InVal;
1292}
1293
1294
1295
1296Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1297  TestAndClearIgnoreResultAssign();
1298  // Emit unary minus with EmitSub so we handle overflow cases etc.
1299  BinOpInfo BinOp;
1300  BinOp.RHS = Visit(E->getSubExpr());
1301
1302  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1303    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1304  else
1305    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1306  BinOp.Ty = E->getType();
1307  BinOp.Opcode = BO_Sub;
1308  BinOp.E = E;
1309  return EmitSub(BinOp);
1310}
1311
1312Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1313  TestAndClearIgnoreResultAssign();
1314  Value *Op = Visit(E->getSubExpr());
1315  return Builder.CreateNot(Op, "neg");
1316}
1317
1318Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1319  // Compare operand to zero.
1320  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1321
1322  // Invert value.
1323  // TODO: Could dynamically modify easy computations here.  For example, if
1324  // the operand is an icmp ne, turn into icmp eq.
1325  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1326
1327  // ZExt result to the expr type.
1328  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1329}
1330
1331Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1332  // Try folding the offsetof to a constant.
1333  Expr::EvalResult EvalResult;
1334  if (E->Evaluate(EvalResult, CGF.getContext()))
1335    return llvm::ConstantInt::get(VMContext, EvalResult.Val.getInt());
1336
1337  // Loop over the components of the offsetof to compute the value.
1338  unsigned n = E->getNumComponents();
1339  const llvm::Type* ResultType = ConvertType(E->getType());
1340  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1341  QualType CurrentType = E->getTypeSourceInfo()->getType();
1342  for (unsigned i = 0; i != n; ++i) {
1343    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1344    llvm::Value *Offset = 0;
1345    switch (ON.getKind()) {
1346    case OffsetOfExpr::OffsetOfNode::Array: {
1347      // Compute the index
1348      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1349      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1350      bool IdxSigned = IdxExpr->getType()->isSignedIntegerType();
1351      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1352
1353      // Save the element type
1354      CurrentType =
1355          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1356
1357      // Compute the element size
1358      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1359          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1360
1361      // Multiply out to compute the result
1362      Offset = Builder.CreateMul(Idx, ElemSize);
1363      break;
1364    }
1365
1366    case OffsetOfExpr::OffsetOfNode::Field: {
1367      FieldDecl *MemberDecl = ON.getField();
1368      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1369      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1370
1371      // Compute the index of the field in its parent.
1372      unsigned i = 0;
1373      // FIXME: It would be nice if we didn't have to loop here!
1374      for (RecordDecl::field_iterator Field = RD->field_begin(),
1375                                      FieldEnd = RD->field_end();
1376           Field != FieldEnd; (void)++Field, ++i) {
1377        if (*Field == MemberDecl)
1378          break;
1379      }
1380      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1381
1382      // Compute the offset to the field
1383      int64_t OffsetInt = RL.getFieldOffset(i) /
1384                          CGF.getContext().getCharWidth();
1385      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1386
1387      // Save the element type.
1388      CurrentType = MemberDecl->getType();
1389      break;
1390    }
1391
1392    case OffsetOfExpr::OffsetOfNode::Identifier:
1393      llvm_unreachable("dependent __builtin_offsetof");
1394
1395    case OffsetOfExpr::OffsetOfNode::Base: {
1396      if (ON.getBase()->isVirtual()) {
1397        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1398        continue;
1399      }
1400
1401      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1402      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1403
1404      // Save the element type.
1405      CurrentType = ON.getBase()->getType();
1406
1407      // Compute the offset to the base.
1408      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1409      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1410      int64_t OffsetInt = RL.getBaseClassOffset(BaseRD) /
1411                          CGF.getContext().getCharWidth();
1412      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1413      break;
1414    }
1415    }
1416    Result = Builder.CreateAdd(Result, Offset);
1417  }
1418  return Result;
1419}
1420
1421/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1422/// argument of the sizeof expression as an integer.
1423Value *
1424ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1425  QualType TypeToSize = E->getTypeOfArgument();
1426  if (E->isSizeOf()) {
1427    if (const VariableArrayType *VAT =
1428          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1429      if (E->isArgumentType()) {
1430        // sizeof(type) - make sure to emit the VLA size.
1431        CGF.EmitVLASize(TypeToSize);
1432      } else {
1433        // C99 6.5.3.4p2: If the argument is an expression of type
1434        // VLA, it is evaluated.
1435        CGF.EmitAnyExpr(E->getArgumentExpr());
1436      }
1437
1438      return CGF.GetVLASize(VAT);
1439    }
1440  }
1441
1442  // If this isn't sizeof(vla), the result must be constant; use the constant
1443  // folding logic so we don't have to duplicate it here.
1444  Expr::EvalResult Result;
1445  E->Evaluate(Result, CGF.getContext());
1446  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1447}
1448
1449Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1450  Expr *Op = E->getSubExpr();
1451  if (Op->getType()->isAnyComplexType())
1452    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1453  return Visit(Op);
1454}
1455Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1456  Expr *Op = E->getSubExpr();
1457  if (Op->getType()->isAnyComplexType())
1458    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1459
1460  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1461  // effects are evaluated, but not the actual value.
1462  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1463    CGF.EmitLValue(Op);
1464  else
1465    CGF.EmitScalarExpr(Op, true);
1466  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1467}
1468
1469//===----------------------------------------------------------------------===//
1470//                           Binary Operators
1471//===----------------------------------------------------------------------===//
1472
1473BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1474  TestAndClearIgnoreResultAssign();
1475  BinOpInfo Result;
1476  Result.LHS = Visit(E->getLHS());
1477  Result.RHS = Visit(E->getRHS());
1478  Result.Ty  = E->getType();
1479  Result.Opcode = E->getOpcode();
1480  Result.E = E;
1481  return Result;
1482}
1483
1484LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1485                                              const CompoundAssignOperator *E,
1486                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1487                                                   Value *&Result) {
1488  QualType LHSTy = E->getLHS()->getType();
1489  BinOpInfo OpInfo;
1490
1491  if (E->getComputationResultType()->isAnyComplexType()) {
1492    // This needs to go through the complex expression emitter, but it's a tad
1493    // complicated to do that... I'm leaving it out for now.  (Note that we do
1494    // actually need the imaginary part of the RHS for multiplication and
1495    // division.)
1496    CGF.ErrorUnsupported(E, "complex compound assignment");
1497    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1498    return LValue();
1499  }
1500
1501  // Emit the RHS first.  __block variables need to have the rhs evaluated
1502  // first, plus this should improve codegen a little.
1503  OpInfo.RHS = Visit(E->getRHS());
1504  OpInfo.Ty = E->getComputationResultType();
1505  OpInfo.Opcode = E->getOpcode();
1506  OpInfo.E = E;
1507  // Load/convert the LHS.
1508  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1509  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1510  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1511                                    E->getComputationLHSType());
1512
1513  // Expand the binary operator.
1514  Result = (this->*Func)(OpInfo);
1515
1516  // Convert the result back to the LHS type.
1517  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1518
1519  // Store the result value into the LHS lvalue. Bit-fields are handled
1520  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1521  // 'An assignment expression has the value of the left operand after the
1522  // assignment...'.
1523  if (LHSLV.isBitField())
1524    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1525                                       &Result);
1526  else
1527    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1528
1529  return LHSLV;
1530}
1531
1532Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1533                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1534  bool Ignore = TestAndClearIgnoreResultAssign();
1535  Value *RHS;
1536  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1537
1538  // If the result is clearly ignored, return now.
1539  if (Ignore)
1540    return 0;
1541
1542  // Objective-C property assignment never reloads the value following a store.
1543  if (LHS.isPropertyRef() || LHS.isKVCRef())
1544    return RHS;
1545
1546  // If the lvalue is non-volatile, return the computed value of the assignment.
1547  if (!LHS.isVolatileQualified())
1548    return RHS;
1549
1550  // Otherwise, reload the value.
1551  return EmitLoadOfLValue(LHS, E->getType());
1552}
1553
1554void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1555     					    const BinOpInfo &Ops,
1556				     	    llvm::Value *Zero, bool isDiv) {
1557  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1558  llvm::BasicBlock *contBB =
1559    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1560
1561  const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1562
1563  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1564    llvm::Value *IntMin =
1565      llvm::ConstantInt::get(VMContext,
1566                             llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1567    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1568
1569    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1570    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1571    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1572    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1573    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1574                         overflowBB, contBB);
1575  } else {
1576    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1577                             overflowBB, contBB);
1578  }
1579  EmitOverflowBB(overflowBB);
1580  Builder.SetInsertPoint(contBB);
1581}
1582
1583Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1584  if (isTrapvOverflowBehavior()) {
1585    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1586
1587    if (Ops.Ty->isIntegerType())
1588      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1589    else if (Ops.Ty->isRealFloatingType()) {
1590      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1591                                                          CGF.CurFn);
1592      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1593      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1594                               overflowBB, DivCont);
1595      EmitOverflowBB(overflowBB);
1596      Builder.SetInsertPoint(DivCont);
1597    }
1598  }
1599  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1600    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1601  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1602    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1603  else
1604    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1605}
1606
1607Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1608  // Rem in C can't be a floating point type: C99 6.5.5p2.
1609  if (isTrapvOverflowBehavior()) {
1610    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1611
1612    if (Ops.Ty->isIntegerType())
1613      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1614  }
1615
1616  if (Ops.Ty->isUnsignedIntegerType())
1617    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1618  else
1619    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1620}
1621
1622Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1623  unsigned IID;
1624  unsigned OpID = 0;
1625
1626  switch (Ops.Opcode) {
1627  case BO_Add:
1628  case BO_AddAssign:
1629    OpID = 1;
1630    IID = llvm::Intrinsic::sadd_with_overflow;
1631    break;
1632  case BO_Sub:
1633  case BO_SubAssign:
1634    OpID = 2;
1635    IID = llvm::Intrinsic::ssub_with_overflow;
1636    break;
1637  case BO_Mul:
1638  case BO_MulAssign:
1639    OpID = 3;
1640    IID = llvm::Intrinsic::smul_with_overflow;
1641    break;
1642  default:
1643    assert(false && "Unsupported operation for overflow detection");
1644    IID = 0;
1645  }
1646  OpID <<= 1;
1647  OpID |= 1;
1648
1649  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1650
1651  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1652
1653  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1654  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1655  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1656
1657  // Branch in case of overflow.
1658  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1659  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1660  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1661
1662  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1663
1664  // Handle overflow with llvm.trap.
1665  const std::string *handlerName =
1666    &CGF.getContext().getLangOptions().OverflowHandler;
1667  if (handlerName->empty()) {
1668    EmitOverflowBB(overflowBB);
1669    Builder.SetInsertPoint(continueBB);
1670    return result;
1671  }
1672
1673  // If an overflow handler is set, then we want to call it and then use its
1674  // result, if it returns.
1675  Builder.SetInsertPoint(overflowBB);
1676
1677  // Get the overflow handler.
1678  const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1679  std::vector<const llvm::Type*> argTypes;
1680  argTypes.push_back(CGF.Int64Ty); argTypes.push_back(CGF.Int64Ty);
1681  argTypes.push_back(Int8Ty); argTypes.push_back(Int8Ty);
1682  llvm::FunctionType *handlerTy =
1683      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1684  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1685
1686  // Sign extend the args to 64-bit, so that we can use the same handler for
1687  // all types of overflow.
1688  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1689  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1690
1691  // Call the handler with the two arguments, the operation, and the size of
1692  // the result.
1693  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1694      Builder.getInt8(OpID),
1695      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1696
1697  // Truncate the result back to the desired size.
1698  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1699  Builder.CreateBr(continueBB);
1700
1701  Builder.SetInsertPoint(continueBB);
1702  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1703  phi->reserveOperandSpace(2);
1704  phi->addIncoming(result, initialBB);
1705  phi->addIncoming(handlerResult, overflowBB);
1706
1707  return phi;
1708}
1709
1710Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1711  if (!Ops.Ty->isAnyPointerType()) {
1712    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1713      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1714      case LangOptions::SOB_Undefined:
1715        return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1716      case LangOptions::SOB_Defined:
1717        return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1718      case LangOptions::SOB_Trapping:
1719        return EmitOverflowCheckedBinOp(Ops);
1720      }
1721    }
1722
1723    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1724      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1725
1726    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1727  }
1728
1729  // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1730  // use this path.
1731  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1732
1733  if (Ops.Ty->isPointerType() &&
1734      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1735    // The amount of the addition needs to account for the VLA size
1736    CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1737  }
1738
1739  Value *Ptr, *Idx;
1740  Expr *IdxExp;
1741  const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1742  const ObjCObjectPointerType *OPT =
1743    BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1744  if (PT || OPT) {
1745    Ptr = Ops.LHS;
1746    Idx = Ops.RHS;
1747    IdxExp = BinOp->getRHS();
1748  } else {  // int + pointer
1749    PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1750    OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1751    assert((PT || OPT) && "Invalid add expr");
1752    Ptr = Ops.RHS;
1753    Idx = Ops.LHS;
1754    IdxExp = BinOp->getLHS();
1755  }
1756
1757  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1758  if (Width < CGF.LLVMPointerWidth) {
1759    // Zero or sign extend the pointer value based on whether the index is
1760    // signed or not.
1761    const llvm::Type *IdxType = CGF.IntPtrTy;
1762    if (IdxExp->getType()->isSignedIntegerType())
1763      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1764    else
1765      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1766  }
1767  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1768  // Handle interface types, which are not represented with a concrete type.
1769  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1770    llvm::Value *InterfaceSize =
1771      llvm::ConstantInt::get(Idx->getType(),
1772          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1773    Idx = Builder.CreateMul(Idx, InterfaceSize);
1774    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1775    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1776    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1777    return Builder.CreateBitCast(Res, Ptr->getType());
1778  }
1779
1780  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1781  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1782  // future proof.
1783  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1784    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1785    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1786    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1787    return Builder.CreateBitCast(Res, Ptr->getType());
1788  }
1789
1790  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1791}
1792
1793Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1794  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1795    if (Ops.Ty->hasSignedIntegerRepresentation()) {
1796      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1797      case LangOptions::SOB_Undefined:
1798        return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1799      case LangOptions::SOB_Defined:
1800        return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1801      case LangOptions::SOB_Trapping:
1802        return EmitOverflowCheckedBinOp(Ops);
1803      }
1804    }
1805
1806    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1807      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1808
1809    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1810  }
1811
1812  // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1813  // use this path.
1814  const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1815
1816  if (BinOp->getLHS()->getType()->isPointerType() &&
1817      BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1818    // The amount of the addition needs to account for the VLA size for
1819    // ptr-int
1820    // The amount of the division needs to account for the VLA size for
1821    // ptr-ptr.
1822    CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1823  }
1824
1825  const QualType LHSType = BinOp->getLHS()->getType();
1826  const QualType LHSElementType = LHSType->getPointeeType();
1827  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1828    // pointer - int
1829    Value *Idx = Ops.RHS;
1830    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1831    if (Width < CGF.LLVMPointerWidth) {
1832      // Zero or sign extend the pointer value based on whether the index is
1833      // signed or not.
1834      const llvm::Type *IdxType = CGF.IntPtrTy;
1835      if (BinOp->getRHS()->getType()->isSignedIntegerType())
1836        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1837      else
1838        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1839    }
1840    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1841
1842    // Handle interface types, which are not represented with a concrete type.
1843    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1844      llvm::Value *InterfaceSize =
1845        llvm::ConstantInt::get(Idx->getType(),
1846                               CGF.getContext().
1847                                 getTypeSizeInChars(OIT).getQuantity());
1848      Idx = Builder.CreateMul(Idx, InterfaceSize);
1849      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1850      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1851      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1852      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1853    }
1854
1855    // Explicitly handle GNU void* and function pointer arithmetic
1856    // extensions. The GNU void* casts amount to no-ops since our void* type is
1857    // i8*, but this is future proof.
1858    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1859      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1860      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1861      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1862      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1863    }
1864
1865    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1866  } else {
1867    // pointer - pointer
1868    Value *LHS = Ops.LHS;
1869    Value *RHS = Ops.RHS;
1870
1871    CharUnits ElementSize;
1872
1873    // Handle GCC extension for pointer arithmetic on void* and function pointer
1874    // types.
1875    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1876      ElementSize = CharUnits::One();
1877    } else {
1878      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1879    }
1880
1881    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1882    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1883    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1884    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1885
1886    // Optimize out the shift for element size of 1.
1887    if (ElementSize.isOne())
1888      return BytesBetween;
1889
1890    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1891    // pointer difference in C is only defined in the case where both operands
1892    // are pointing to elements of an array.
1893    Value *BytesPerElt =
1894        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1895    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1896  }
1897}
1898
1899Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1900  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1901  // RHS to the same size as the LHS.
1902  Value *RHS = Ops.RHS;
1903  if (Ops.LHS->getType() != RHS->getType())
1904    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1905
1906  if (CGF.CatchUndefined
1907      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1908    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1909    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1910    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1911                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1912                             Cont, CGF.getTrapBB());
1913    CGF.EmitBlock(Cont);
1914  }
1915
1916  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1917}
1918
1919Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1920  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1921  // RHS to the same size as the LHS.
1922  Value *RHS = Ops.RHS;
1923  if (Ops.LHS->getType() != RHS->getType())
1924    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1925
1926  if (CGF.CatchUndefined
1927      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1928    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1929    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1930    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1931                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1932                             Cont, CGF.getTrapBB());
1933    CGF.EmitBlock(Cont);
1934  }
1935
1936  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1937    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1938  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1939}
1940
1941Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1942                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1943  TestAndClearIgnoreResultAssign();
1944  Value *Result;
1945  QualType LHSTy = E->getLHS()->getType();
1946  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
1947    assert(E->getOpcode() == BO_EQ ||
1948           E->getOpcode() == BO_NE);
1949    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
1950    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
1951    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
1952                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
1953  } else if (!LHSTy->isAnyComplexType()) {
1954    Value *LHS = Visit(E->getLHS());
1955    Value *RHS = Visit(E->getRHS());
1956
1957    if (LHS->getType()->isFPOrFPVectorTy()) {
1958      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1959                                  LHS, RHS, "cmp");
1960    } else if (LHSTy->hasSignedIntegerRepresentation()) {
1961      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1962                                  LHS, RHS, "cmp");
1963    } else {
1964      // Unsigned integers and pointers.
1965      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1966                                  LHS, RHS, "cmp");
1967    }
1968
1969    // If this is a vector comparison, sign extend the result to the appropriate
1970    // vector integer type and return it (don't convert to bool).
1971    if (LHSTy->isVectorType())
1972      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1973
1974  } else {
1975    // Complex Comparison: can only be an equality comparison.
1976    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1977    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1978
1979    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1980
1981    Value *ResultR, *ResultI;
1982    if (CETy->isRealFloatingType()) {
1983      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1984                                   LHS.first, RHS.first, "cmp.r");
1985      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1986                                   LHS.second, RHS.second, "cmp.i");
1987    } else {
1988      // Complex comparisons can only be equality comparisons.  As such, signed
1989      // and unsigned opcodes are the same.
1990      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1991                                   LHS.first, RHS.first, "cmp.r");
1992      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1993                                   LHS.second, RHS.second, "cmp.i");
1994    }
1995
1996    if (E->getOpcode() == BO_EQ) {
1997      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1998    } else {
1999      assert(E->getOpcode() == BO_NE &&
2000             "Complex comparison other than == or != ?");
2001      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2002    }
2003  }
2004
2005  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2006}
2007
2008Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2009  bool Ignore = TestAndClearIgnoreResultAssign();
2010
2011  // __block variables need to have the rhs evaluated first, plus this should
2012  // improve codegen just a little.
2013  Value *RHS = Visit(E->getRHS());
2014  LValue LHS = EmitCheckedLValue(E->getLHS());
2015
2016  // Store the value into the LHS.  Bit-fields are handled specially
2017  // because the result is altered by the store, i.e., [C99 6.5.16p1]
2018  // 'An assignment expression has the value of the left operand after
2019  // the assignment...'.
2020  if (LHS.isBitField())
2021    CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2022                                       &RHS);
2023  else
2024    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2025
2026  // If the result is clearly ignored, return now.
2027  if (Ignore)
2028    return 0;
2029
2030  // Objective-C property assignment never reloads the value following a store.
2031  if (LHS.isPropertyRef() || LHS.isKVCRef())
2032    return RHS;
2033
2034  // If the lvalue is non-volatile, return the computed value of the assignment.
2035  if (!LHS.isVolatileQualified())
2036    return RHS;
2037
2038  // Otherwise, reload the value.
2039  return EmitLoadOfLValue(LHS, E->getType());
2040}
2041
2042Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2043  const llvm::Type *ResTy = ConvertType(E->getType());
2044
2045  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2046  // If we have 1 && X, just emit X without inserting the control flow.
2047  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2048    if (Cond == 1) { // If we have 1 && X, just emit X.
2049      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2050      // ZExt result to int or bool.
2051      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2052    }
2053
2054    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2055    if (!CGF.ContainsLabel(E->getRHS()))
2056      return llvm::Constant::getNullValue(ResTy);
2057  }
2058
2059  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2060  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2061
2062  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2063  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2064
2065  // Any edges into the ContBlock are now from an (indeterminate number of)
2066  // edges from this first condition.  All of these values will be false.  Start
2067  // setting up the PHI node in the Cont Block for this.
2068  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2069                                            "", ContBlock);
2070  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2071  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2072       PI != PE; ++PI)
2073    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2074
2075  CGF.BeginConditionalBranch();
2076  CGF.EmitBlock(RHSBlock);
2077  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2078  CGF.EndConditionalBranch();
2079
2080  // Reaquire the RHS block, as there may be subblocks inserted.
2081  RHSBlock = Builder.GetInsertBlock();
2082
2083  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2084  // into the phi node for the edge with the value of RHSCond.
2085  CGF.EmitBlock(ContBlock);
2086  PN->addIncoming(RHSCond, RHSBlock);
2087
2088  // ZExt result to int.
2089  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2090}
2091
2092Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2093  const llvm::Type *ResTy = ConvertType(E->getType());
2094
2095  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2096  // If we have 0 || X, just emit X without inserting the control flow.
2097  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
2098    if (Cond == -1) { // If we have 0 || X, just emit X.
2099      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2100      // ZExt result to int or bool.
2101      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2102    }
2103
2104    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2105    if (!CGF.ContainsLabel(E->getRHS()))
2106      return llvm::ConstantInt::get(ResTy, 1);
2107  }
2108
2109  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2110  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2111
2112  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2113  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2114
2115  // Any edges into the ContBlock are now from an (indeterminate number of)
2116  // edges from this first condition.  All of these values will be true.  Start
2117  // setting up the PHI node in the Cont Block for this.
2118  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
2119                                            "", ContBlock);
2120  PN->reserveOperandSpace(2);  // Normal case, two inputs.
2121  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2122       PI != PE; ++PI)
2123    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2124
2125  CGF.BeginConditionalBranch();
2126
2127  // Emit the RHS condition as a bool value.
2128  CGF.EmitBlock(RHSBlock);
2129  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2130
2131  CGF.EndConditionalBranch();
2132
2133  // Reaquire the RHS block, as there may be subblocks inserted.
2134  RHSBlock = Builder.GetInsertBlock();
2135
2136  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2137  // into the phi node for the edge with the value of RHSCond.
2138  CGF.EmitBlock(ContBlock);
2139  PN->addIncoming(RHSCond, RHSBlock);
2140
2141  // ZExt result to int.
2142  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2143}
2144
2145Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2146  CGF.EmitStmt(E->getLHS());
2147  CGF.EnsureInsertPoint();
2148  return Visit(E->getRHS());
2149}
2150
2151//===----------------------------------------------------------------------===//
2152//                             Other Operators
2153//===----------------------------------------------------------------------===//
2154
2155/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2156/// expression is cheap enough and side-effect-free enough to evaluate
2157/// unconditionally instead of conditionally.  This is used to convert control
2158/// flow into selects in some cases.
2159static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2160                                                   CodeGenFunction &CGF) {
2161  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
2162    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
2163
2164  // TODO: Allow anything we can constant fold to an integer or fp constant.
2165  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
2166      isa<FloatingLiteral>(E))
2167    return true;
2168
2169  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2170  // X and Y are local variables.
2171  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2172    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2173      if (VD->hasLocalStorage() && !(CGF.getContext()
2174                                     .getCanonicalType(VD->getType())
2175                                     .isVolatileQualified()))
2176        return true;
2177
2178  return false;
2179}
2180
2181
2182Value *ScalarExprEmitter::
2183VisitConditionalOperator(const ConditionalOperator *E) {
2184  TestAndClearIgnoreResultAssign();
2185  // If the condition constant folds and can be elided, try to avoid emitting
2186  // the condition and the dead arm.
2187  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
2188    Expr *Live = E->getLHS(), *Dead = E->getRHS();
2189    if (Cond == -1)
2190      std::swap(Live, Dead);
2191
2192    // If the dead side doesn't have labels we need, and if the Live side isn't
2193    // the gnu missing ?: extension (which we could handle, but don't bother
2194    // to), just emit the Live part.
2195    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
2196        Live)                                   // Live part isn't missing.
2197      return Visit(Live);
2198  }
2199
2200  // OpenCL: If the condition is a vector, we can treat this condition like
2201  // the select function.
2202  if (CGF.getContext().getLangOptions().OpenCL
2203      && E->getCond()->getType()->isVectorType()) {
2204    llvm::Value *CondV = CGF.EmitScalarExpr(E->getCond());
2205    llvm::Value *LHS = Visit(E->getLHS());
2206    llvm::Value *RHS = Visit(E->getRHS());
2207
2208    const llvm::Type *condType = ConvertType(E->getCond()->getType());
2209    const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2210
2211    unsigned numElem = vecTy->getNumElements();
2212    const llvm::Type *elemType = vecTy->getElementType();
2213
2214    std::vector<llvm::Constant*> Zvals;
2215    for (unsigned i = 0; i < numElem; ++i)
2216      Zvals.push_back(llvm::ConstantInt::get(elemType,0));
2217
2218    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2219    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2220    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2221                                          llvm::VectorType::get(elemType,
2222                                                                numElem),
2223                                          "sext");
2224    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2225
2226    // Cast float to int to perform ANDs if necessary.
2227    llvm::Value *RHSTmp = RHS;
2228    llvm::Value *LHSTmp = LHS;
2229    bool wasCast = false;
2230    const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2231    if (rhsVTy->getElementType()->isFloatTy()) {
2232      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2233      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2234      wasCast = true;
2235    }
2236
2237    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2238    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2239    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2240    if (wasCast)
2241      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2242
2243    return tmp5;
2244  }
2245
2246  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2247  // select instead of as control flow.  We can only do this if it is cheap and
2248  // safe to evaluate the LHS and RHS unconditionally.
2249  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
2250                                                            CGF) &&
2251      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
2252    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
2253    llvm::Value *LHS = Visit(E->getLHS());
2254    llvm::Value *RHS = Visit(E->getRHS());
2255    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2256  }
2257
2258  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2259  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2260  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2261
2262  // If we don't have the GNU missing condition extension, emit a branch on bool
2263  // the normal way.
2264  if (E->getLHS()) {
2265    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
2266    // the branch on bool.
2267    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
2268  } else {
2269    // Otherwise, for the ?: extension, evaluate the conditional and then
2270    // convert it to bool the hard way.  We do this explicitly because we need
2271    // the unconverted value for the missing middle value of the ?:.
2272    Expr *save = E->getSAVE();
2273    assert(save && "VisitConditionalOperator - save is null");
2274    // Intentianlly not doing direct assignment to ConditionalSaveExprs[save] !!
2275    Value *SaveVal = CGF.EmitScalarExpr(save);
2276    CGF.ConditionalSaveExprs[save] = SaveVal;
2277    Value *CondVal = Visit(E->getCond());
2278    // In some cases, EmitScalarConversion will delete the "CondVal" expression
2279    // if there are no extra uses (an optimization).  Inhibit this by making an
2280    // extra dead use, because we're going to add a use of CondVal later.  We
2281    // don't use the builder for this, because we don't want it to get optimized
2282    // away.  This leaves dead code, but the ?: extension isn't common.
2283    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
2284                          Builder.GetInsertBlock());
2285
2286    Value *CondBoolVal =
2287      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
2288                               CGF.getContext().BoolTy);
2289    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
2290  }
2291
2292  CGF.BeginConditionalBranch();
2293  CGF.EmitBlock(LHSBlock);
2294
2295  // Handle the GNU extension for missing LHS.
2296  Value *LHS = Visit(E->getTrueExpr());
2297
2298  CGF.EndConditionalBranch();
2299  LHSBlock = Builder.GetInsertBlock();
2300  CGF.EmitBranch(ContBlock);
2301
2302  CGF.BeginConditionalBranch();
2303  CGF.EmitBlock(RHSBlock);
2304
2305  Value *RHS = Visit(E->getRHS());
2306  CGF.EndConditionalBranch();
2307  RHSBlock = Builder.GetInsertBlock();
2308  CGF.EmitBranch(ContBlock);
2309
2310  CGF.EmitBlock(ContBlock);
2311
2312  // If the LHS or RHS is a throw expression, it will be legitimately null.
2313  if (!LHS)
2314    return RHS;
2315  if (!RHS)
2316    return LHS;
2317
2318  // Create a PHI node for the real part.
2319  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
2320  PN->reserveOperandSpace(2);
2321  PN->addIncoming(LHS, LHSBlock);
2322  PN->addIncoming(RHS, RHSBlock);
2323  return PN;
2324}
2325
2326Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2327  return Visit(E->getChosenSubExpr(CGF.getContext()));
2328}
2329
2330Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2331  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2332  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2333
2334  // If EmitVAArg fails, we fall back to the LLVM instruction.
2335  if (!ArgPtr)
2336    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2337
2338  // FIXME Volatility.
2339  return Builder.CreateLoad(ArgPtr);
2340}
2341
2342Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
2343  return CGF.BuildBlockLiteralTmp(BE);
2344}
2345
2346//===----------------------------------------------------------------------===//
2347//                         Entry Point into this File
2348//===----------------------------------------------------------------------===//
2349
2350/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2351/// type, ignoring the result.
2352Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2353  assert(E && !hasAggregateLLVMType(E->getType()) &&
2354         "Invalid scalar expression to emit");
2355
2356  return ScalarExprEmitter(*this, IgnoreResultAssign)
2357    .Visit(const_cast<Expr*>(E));
2358}
2359
2360/// EmitScalarConversion - Emit a conversion from the specified type to the
2361/// specified destination type, both of which are LLVM scalar types.
2362Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2363                                             QualType DstTy) {
2364  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2365         "Invalid scalar expression to emit");
2366  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2367}
2368
2369/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2370/// type to the specified destination type, where the destination type is an
2371/// LLVM scalar type.
2372Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2373                                                      QualType SrcTy,
2374                                                      QualType DstTy) {
2375  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2376         "Invalid complex -> scalar conversion");
2377  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2378                                                                DstTy);
2379}
2380
2381
2382llvm::Value *CodeGenFunction::
2383EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2384                        bool isInc, bool isPre) {
2385  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2386}
2387
2388LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2389  llvm::Value *V;
2390  // object->isa or (*object).isa
2391  // Generate code as for: *(Class*)object
2392  // build Class* type
2393  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2394
2395  Expr *BaseExpr = E->getBase();
2396  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2397    V = CreateTempAlloca(ClassPtrTy, "resval");
2398    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2399    Builder.CreateStore(Src, V);
2400    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2401      MakeAddrLValue(V, E->getType()), E->getType());
2402  } else {
2403    if (E->isArrow())
2404      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2405    else
2406      V = EmitLValue(BaseExpr).getAddress();
2407  }
2408
2409  // build Class* type
2410  ClassPtrTy = ClassPtrTy->getPointerTo();
2411  V = Builder.CreateBitCast(V, ClassPtrTy);
2412  return MakeAddrLValue(V, E->getType());
2413}
2414
2415
2416LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2417                                            const CompoundAssignOperator *E) {
2418  ScalarExprEmitter Scalar(*this);
2419  Value *Result = 0;
2420  switch (E->getOpcode()) {
2421#define COMPOUND_OP(Op)                                                       \
2422    case BO_##Op##Assign:                                                     \
2423      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2424                                             Result)
2425  COMPOUND_OP(Mul);
2426  COMPOUND_OP(Div);
2427  COMPOUND_OP(Rem);
2428  COMPOUND_OP(Add);
2429  COMPOUND_OP(Sub);
2430  COMPOUND_OP(Shl);
2431  COMPOUND_OP(Shr);
2432  COMPOUND_OP(And);
2433  COMPOUND_OP(Xor);
2434  COMPOUND_OP(Or);
2435#undef COMPOUND_OP
2436
2437  case BO_PtrMemD:
2438  case BO_PtrMemI:
2439  case BO_Mul:
2440  case BO_Div:
2441  case BO_Rem:
2442  case BO_Add:
2443  case BO_Sub:
2444  case BO_Shl:
2445  case BO_Shr:
2446  case BO_LT:
2447  case BO_GT:
2448  case BO_LE:
2449  case BO_GE:
2450  case BO_EQ:
2451  case BO_NE:
2452  case BO_And:
2453  case BO_Xor:
2454  case BO_Or:
2455  case BO_LAnd:
2456  case BO_LOr:
2457  case BO_Assign:
2458  case BO_Comma:
2459    assert(false && "Not valid compound assignment operators");
2460    break;
2461  }
2462
2463  llvm_unreachable("Unhandled compound assignment operator");
2464}
2465