CGExprScalar.cpp revision 34a2d384c745ebc39cae45dc1c0c4a6a7012e09b
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  //===--------------------------------------------------------------------===//
100  //                            Visitor Methods
101  //===--------------------------------------------------------------------===//
102
103  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140  }
141
142  // l-values.
143  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144    Expr::EvalResult Result;
145    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
146      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
147      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
148    }
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152    return CGF.EmitObjCSelectorExpr(E);
153  }
154  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155    return CGF.EmitObjCProtocolExpr(E);
156  }
157  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161    return EmitLoadOfLValue(E);
162  }
163  Value *VisitObjCImplicitSetterGetterRefExpr(
164                        ObjCImplicitSetterGetterRefExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169  }
170
171  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
172    LValue LV = CGF.EmitObjCIsaExpr(E);
173    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
174    return V;
175  }
176
177  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
178  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
179  Value *VisitMemberExpr(MemberExpr *E);
180  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
181  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
182    return EmitLoadOfLValue(E);
183  }
184
185  Value *VisitInitListExpr(InitListExpr *E);
186
187  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
188    return llvm::Constant::getNullValue(ConvertType(E->getType()));
189  }
190  Value *VisitCastExpr(CastExpr *E) {
191    // Make sure to evaluate VLA bounds now so that we have them for later.
192    if (E->getType()->isVariablyModifiedType())
193      CGF.EmitVLASize(E->getType());
194
195    return EmitCastExpr(E);
196  }
197  Value *EmitCastExpr(CastExpr *E);
198
199  Value *VisitCallExpr(const CallExpr *E) {
200    if (E->getCallReturnType()->isReferenceType())
201      return EmitLoadOfLValue(E);
202
203    return CGF.EmitCallExpr(E).getScalarVal();
204  }
205
206  Value *VisitStmtExpr(const StmtExpr *E);
207
208  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
209
210  // Unary Operators.
211  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
212    LValue LV = EmitLValue(E->getSubExpr());
213    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
214  }
215  Value *VisitUnaryPostDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, false);
217  }
218  Value *VisitUnaryPostInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, false);
220  }
221  Value *VisitUnaryPreDec(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, false, true);
223  }
224  Value *VisitUnaryPreInc(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, true, true);
226  }
227  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
228    return EmitLValue(E->getSubExpr()).getAddress();
229  }
230  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
231  Value *VisitUnaryPlus(const UnaryOperator *E) {
232    // This differs from gcc, though, most likely due to a bug in gcc.
233    TestAndClearIgnoreResultAssign();
234    return Visit(E->getSubExpr());
235  }
236  Value *VisitUnaryMinus    (const UnaryOperator *E);
237  Value *VisitUnaryNot      (const UnaryOperator *E);
238  Value *VisitUnaryLNot     (const UnaryOperator *E);
239  Value *VisitUnaryReal     (const UnaryOperator *E);
240  Value *VisitUnaryImag     (const UnaryOperator *E);
241  Value *VisitUnaryExtension(const UnaryOperator *E) {
242    return Visit(E->getSubExpr());
243  }
244  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
245
246  // C++
247  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
248    return Visit(DAE->getExpr());
249  }
250  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
251    return CGF.LoadCXXThis();
252  }
253
254  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
255    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
256  }
257  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
258    return CGF.EmitCXXNewExpr(E);
259  }
260  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
261    CGF.EmitCXXDeleteExpr(E);
262    return 0;
263  }
264  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
265    return llvm::ConstantInt::get(Builder.getInt1Ty(),
266                                  E->EvaluateTrait(CGF.getContext()));
267  }
268
269  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
270    // C++ [expr.pseudo]p1:
271    //   The result shall only be used as the operand for the function call
272    //   operator (), and the result of such a call has type void. The only
273    //   effect is the evaluation of the postfix-expression before the dot or
274    //   arrow.
275    CGF.EmitScalarExpr(E->getBase());
276    return 0;
277  }
278
279  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
280    return llvm::Constant::getNullValue(ConvertType(E->getType()));
281  }
282
283  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
284    CGF.EmitCXXThrowExpr(E);
285    return 0;
286  }
287
288  // Binary Operators.
289  Value *EmitMul(const BinOpInfo &Ops) {
290    if (CGF.getContext().getLangOptions().OverflowChecking
291        && Ops.Ty->isSignedIntegerType())
292      return EmitOverflowCheckedBinOp(Ops);
293    if (Ops.LHS->getType()->isFPOrFPVectorTy())
294      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
295    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
296  }
297  /// Create a binary op that checks for overflow.
298  /// Currently only supports +, - and *.
299  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
300  Value *EmitDiv(const BinOpInfo &Ops);
301  Value *EmitRem(const BinOpInfo &Ops);
302  Value *EmitAdd(const BinOpInfo &Ops);
303  Value *EmitSub(const BinOpInfo &Ops);
304  Value *EmitShl(const BinOpInfo &Ops);
305  Value *EmitShr(const BinOpInfo &Ops);
306  Value *EmitAnd(const BinOpInfo &Ops) {
307    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
308  }
309  Value *EmitXor(const BinOpInfo &Ops) {
310    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
311  }
312  Value *EmitOr (const BinOpInfo &Ops) {
313    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
314  }
315
316  BinOpInfo EmitBinOps(const BinaryOperator *E);
317  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
318                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
319                                  Value *&BitFieldResult);
320
321  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
322                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
323
324  // Binary operators and binary compound assignment operators.
325#define HANDLEBINOP(OP) \
326  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
327    return Emit ## OP(EmitBinOps(E));                                      \
328  }                                                                        \
329  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
330    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
331  }
332  HANDLEBINOP(Mul)
333  HANDLEBINOP(Div)
334  HANDLEBINOP(Rem)
335  HANDLEBINOP(Add)
336  HANDLEBINOP(Sub)
337  HANDLEBINOP(Shl)
338  HANDLEBINOP(Shr)
339  HANDLEBINOP(And)
340  HANDLEBINOP(Xor)
341  HANDLEBINOP(Or)
342#undef HANDLEBINOP
343
344  // Comparisons.
345  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
346                     unsigned SICmpOpc, unsigned FCmpOpc);
347#define VISITCOMP(CODE, UI, SI, FP) \
348    Value *VisitBin##CODE(const BinaryOperator *E) { \
349      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
350                         llvm::FCmpInst::FP); }
351  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
352  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
353  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
354  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
355  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
356  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
357#undef VISITCOMP
358
359  Value *VisitBinAssign     (const BinaryOperator *E);
360
361  Value *VisitBinLAnd       (const BinaryOperator *E);
362  Value *VisitBinLOr        (const BinaryOperator *E);
363  Value *VisitBinComma      (const BinaryOperator *E);
364
365  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
366  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
367
368  // Other Operators.
369  Value *VisitBlockExpr(const BlockExpr *BE);
370  Value *VisitConditionalOperator(const ConditionalOperator *CO);
371  Value *VisitChooseExpr(ChooseExpr *CE);
372  Value *VisitVAArgExpr(VAArgExpr *VE);
373  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
374    return CGF.EmitObjCStringLiteral(E);
375  }
376};
377}  // end anonymous namespace.
378
379//===----------------------------------------------------------------------===//
380//                                Utilities
381//===----------------------------------------------------------------------===//
382
383/// EmitConversionToBool - Convert the specified expression value to a
384/// boolean (i1) truth value.  This is equivalent to "Val != 0".
385Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
386  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
387
388  if (SrcType->isRealFloatingType()) {
389    // Compare against 0.0 for fp scalars.
390    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
391    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
392  }
393
394  if (SrcType->isMemberPointerType()) {
395    // Compare against -1.
396    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
397    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
398  }
399
400  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
401         "Unknown scalar type to convert");
402
403  // Because of the type rules of C, we often end up computing a logical value,
404  // then zero extending it to int, then wanting it as a logical value again.
405  // Optimize this common case.
406  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
407    if (ZI->getOperand(0)->getType() ==
408        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
409      Value *Result = ZI->getOperand(0);
410      // If there aren't any more uses, zap the instruction to save space.
411      // Note that there can be more uses, for example if this
412      // is the result of an assignment.
413      if (ZI->use_empty())
414        ZI->eraseFromParent();
415      return Result;
416    }
417  }
418
419  // Compare against an integer or pointer null.
420  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
421  return Builder.CreateICmpNE(Src, Zero, "tobool");
422}
423
424/// EmitScalarConversion - Emit a conversion from the specified type to the
425/// specified destination type, both of which are LLVM scalar types.
426Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
427                                               QualType DstType) {
428  SrcType = CGF.getContext().getCanonicalType(SrcType);
429  DstType = CGF.getContext().getCanonicalType(DstType);
430  if (SrcType == DstType) return Src;
431
432  if (DstType->isVoidType()) return 0;
433
434  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
435
436  // Handle conversions to bool first, they are special: comparisons against 0.
437  if (DstType->isBooleanType())
438    return EmitConversionToBool(Src, SrcType);
439
440  const llvm::Type *DstTy = ConvertType(DstType);
441
442  // Ignore conversions like int -> uint.
443  if (Src->getType() == DstTy)
444    return Src;
445
446  // Handle pointer conversions next: pointers can only be converted to/from
447  // other pointers and integers. Check for pointer types in terms of LLVM, as
448  // some native types (like Obj-C id) may map to a pointer type.
449  if (isa<llvm::PointerType>(DstTy)) {
450    // The source value may be an integer, or a pointer.
451    if (isa<llvm::PointerType>(Src->getType()))
452      return Builder.CreateBitCast(Src, DstTy, "conv");
453
454    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
455    // First, convert to the correct width so that we control the kind of
456    // extension.
457    const llvm::Type *MiddleTy =
458          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
459    bool InputSigned = SrcType->isSignedIntegerType();
460    llvm::Value* IntResult =
461        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
462    // Then, cast to pointer.
463    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
464  }
465
466  if (isa<llvm::PointerType>(Src->getType())) {
467    // Must be an ptr to int cast.
468    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
469    return Builder.CreatePtrToInt(Src, DstTy, "conv");
470  }
471
472  // A scalar can be splatted to an extended vector of the same element type
473  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
474    // Cast the scalar to element type
475    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
476    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
477
478    // Insert the element in element zero of an undef vector
479    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
480    llvm::Value *Idx =
481        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
482    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
483
484    // Splat the element across to all elements
485    llvm::SmallVector<llvm::Constant*, 16> Args;
486    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
487    for (unsigned i = 0; i < NumElements; i++)
488      Args.push_back(llvm::ConstantInt::get(
489                                        llvm::Type::getInt32Ty(VMContext), 0));
490
491    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
492    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
493    return Yay;
494  }
495
496  // Allow bitcast from vector to integer/fp of the same size.
497  if (isa<llvm::VectorType>(Src->getType()) ||
498      isa<llvm::VectorType>(DstTy))
499    return Builder.CreateBitCast(Src, DstTy, "conv");
500
501  // Finally, we have the arithmetic types: real int/float.
502  if (isa<llvm::IntegerType>(Src->getType())) {
503    bool InputSigned = SrcType->isSignedIntegerType();
504    if (isa<llvm::IntegerType>(DstTy))
505      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
506    else if (InputSigned)
507      return Builder.CreateSIToFP(Src, DstTy, "conv");
508    else
509      return Builder.CreateUIToFP(Src, DstTy, "conv");
510  }
511
512  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
513  if (isa<llvm::IntegerType>(DstTy)) {
514    if (DstType->isSignedIntegerType())
515      return Builder.CreateFPToSI(Src, DstTy, "conv");
516    else
517      return Builder.CreateFPToUI(Src, DstTy, "conv");
518  }
519
520  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
521  if (DstTy->getTypeID() < Src->getType()->getTypeID())
522    return Builder.CreateFPTrunc(Src, DstTy, "conv");
523  else
524    return Builder.CreateFPExt(Src, DstTy, "conv");
525}
526
527/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
528/// type to the specified destination type, where the destination type is an
529/// LLVM scalar type.
530Value *ScalarExprEmitter::
531EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
532                              QualType SrcTy, QualType DstTy) {
533  // Get the source element type.
534  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
535
536  // Handle conversions to bool first, they are special: comparisons against 0.
537  if (DstTy->isBooleanType()) {
538    //  Complex != 0  -> (Real != 0) | (Imag != 0)
539    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
540    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
541    return Builder.CreateOr(Src.first, Src.second, "tobool");
542  }
543
544  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
545  // the imaginary part of the complex value is discarded and the value of the
546  // real part is converted according to the conversion rules for the
547  // corresponding real type.
548  return EmitScalarConversion(Src.first, SrcTy, DstTy);
549}
550
551
552//===----------------------------------------------------------------------===//
553//                            Visitor Methods
554//===----------------------------------------------------------------------===//
555
556Value *ScalarExprEmitter::VisitExpr(Expr *E) {
557  CGF.ErrorUnsupported(E, "scalar expression");
558  if (E->getType()->isVoidType())
559    return 0;
560  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
561}
562
563Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
564  llvm::SmallVector<llvm::Constant*, 32> indices;
565  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
566    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
567  }
568  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
569  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
570  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
571  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
572}
573Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
574  Expr::EvalResult Result;
575  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
576    if (E->isArrow())
577      CGF.EmitScalarExpr(E->getBase());
578    else
579      EmitLValue(E->getBase());
580    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
581  }
582  return EmitLoadOfLValue(E);
583}
584
585Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
586  TestAndClearIgnoreResultAssign();
587
588  // Emit subscript expressions in rvalue context's.  For most cases, this just
589  // loads the lvalue formed by the subscript expr.  However, we have to be
590  // careful, because the base of a vector subscript is occasionally an rvalue,
591  // so we can't get it as an lvalue.
592  if (!E->getBase()->getType()->isVectorType())
593    return EmitLoadOfLValue(E);
594
595  // Handle the vector case.  The base must be a vector, the index must be an
596  // integer value.
597  Value *Base = Visit(E->getBase());
598  Value *Idx  = Visit(E->getIdx());
599  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
600  Idx = Builder.CreateIntCast(Idx,
601                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
602                              IdxSigned,
603                              "vecidxcast");
604  return Builder.CreateExtractElement(Base, Idx, "vecext");
605}
606
607static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
608                                  unsigned Off, const llvm::Type *I32Ty) {
609  int MV = SVI->getMaskValue(Idx);
610  if (MV == -1)
611    return llvm::UndefValue::get(I32Ty);
612  return llvm::ConstantInt::get(I32Ty, Off+MV);
613}
614
615Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
616  bool Ignore = TestAndClearIgnoreResultAssign();
617  (void)Ignore;
618  assert (Ignore == false && "init list ignored");
619  unsigned NumInitElements = E->getNumInits();
620
621  if (E->hadArrayRangeDesignator())
622    CGF.ErrorUnsupported(E, "GNU array range designator extension");
623
624  const llvm::VectorType *VType =
625    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
626
627  // We have a scalar in braces. Just use the first element.
628  if (!VType)
629    return Visit(E->getInit(0));
630
631  unsigned ResElts = VType->getNumElements();
632  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
633
634  // Loop over initializers collecting the Value for each, and remembering
635  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
636  // us to fold the shuffle for the swizzle into the shuffle for the vector
637  // initializer, since LLVM optimizers generally do not want to touch
638  // shuffles.
639  unsigned CurIdx = 0;
640  bool VIsUndefShuffle = false;
641  llvm::Value *V = llvm::UndefValue::get(VType);
642  for (unsigned i = 0; i != NumInitElements; ++i) {
643    Expr *IE = E->getInit(i);
644    Value *Init = Visit(IE);
645    llvm::SmallVector<llvm::Constant*, 16> Args;
646
647    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
648
649    // Handle scalar elements.  If the scalar initializer is actually one
650    // element of a different vector of the same width, use shuffle instead of
651    // extract+insert.
652    if (!VVT) {
653      if (isa<ExtVectorElementExpr>(IE)) {
654        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
655
656        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
657          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
658          Value *LHS = 0, *RHS = 0;
659          if (CurIdx == 0) {
660            // insert into undef -> shuffle (src, undef)
661            Args.push_back(C);
662            for (unsigned j = 1; j != ResElts; ++j)
663              Args.push_back(llvm::UndefValue::get(I32Ty));
664
665            LHS = EI->getVectorOperand();
666            RHS = V;
667            VIsUndefShuffle = true;
668          } else if (VIsUndefShuffle) {
669            // insert into undefshuffle && size match -> shuffle (v, src)
670            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
671            for (unsigned j = 0; j != CurIdx; ++j)
672              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
673            Args.push_back(llvm::ConstantInt::get(I32Ty,
674                                                  ResElts + C->getZExtValue()));
675            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
676              Args.push_back(llvm::UndefValue::get(I32Ty));
677
678            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
679            RHS = EI->getVectorOperand();
680            VIsUndefShuffle = false;
681          }
682          if (!Args.empty()) {
683            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
684            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
685            ++CurIdx;
686            continue;
687          }
688        }
689      }
690      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
691      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
692      VIsUndefShuffle = false;
693      ++CurIdx;
694      continue;
695    }
696
697    unsigned InitElts = VVT->getNumElements();
698
699    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
700    // input is the same width as the vector being constructed, generate an
701    // optimized shuffle of the swizzle input into the result.
702    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
703    if (isa<ExtVectorElementExpr>(IE)) {
704      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
705      Value *SVOp = SVI->getOperand(0);
706      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
707
708      if (OpTy->getNumElements() == ResElts) {
709        for (unsigned j = 0; j != CurIdx; ++j) {
710          // If the current vector initializer is a shuffle with undef, merge
711          // this shuffle directly into it.
712          if (VIsUndefShuffle) {
713            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
714                                      I32Ty));
715          } else {
716            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
717          }
718        }
719        for (unsigned j = 0, je = InitElts; j != je; ++j)
720          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
721        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
722          Args.push_back(llvm::UndefValue::get(I32Ty));
723
724        if (VIsUndefShuffle)
725          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
726
727        Init = SVOp;
728      }
729    }
730
731    // Extend init to result vector length, and then shuffle its contribution
732    // to the vector initializer into V.
733    if (Args.empty()) {
734      for (unsigned j = 0; j != InitElts; ++j)
735        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
736      for (unsigned j = InitElts; j != ResElts; ++j)
737        Args.push_back(llvm::UndefValue::get(I32Ty));
738      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
739      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
740                                         Mask, "vext");
741
742      Args.clear();
743      for (unsigned j = 0; j != CurIdx; ++j)
744        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
745      for (unsigned j = 0; j != InitElts; ++j)
746        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
747      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
748        Args.push_back(llvm::UndefValue::get(I32Ty));
749    }
750
751    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
752    // merging subsequent shuffles into this one.
753    if (CurIdx == 0)
754      std::swap(V, Init);
755    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
756    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
757    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
758    CurIdx += InitElts;
759  }
760
761  // FIXME: evaluate codegen vs. shuffling against constant null vector.
762  // Emit remaining default initializers.
763  const llvm::Type *EltTy = VType->getElementType();
764
765  // Emit remaining default initializers
766  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
767    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
768    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
769    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
770  }
771  return V;
772}
773
774static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
775  const Expr *E = CE->getSubExpr();
776
777  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
778    return false;
779
780  if (isa<CXXThisExpr>(E)) {
781    // We always assume that 'this' is never null.
782    return false;
783  }
784
785  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
786    // And that lvalue casts are never null.
787    if (ICE->isLvalueCast())
788      return false;
789  }
790
791  return true;
792}
793
794// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
795// have to handle a more broad range of conversions than explicit casts, as they
796// handle things like function to ptr-to-function decay etc.
797Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
798  Expr *E = CE->getSubExpr();
799  QualType DestTy = CE->getType();
800  CastExpr::CastKind Kind = CE->getCastKind();
801
802  if (!DestTy->isVoidType())
803    TestAndClearIgnoreResultAssign();
804
805  // Since almost all cast kinds apply to scalars, this switch doesn't have
806  // a default case, so the compiler will warn on a missing case.  The cases
807  // are in the same order as in the CastKind enum.
808  switch (Kind) {
809  case CastExpr::CK_Unknown:
810    // FIXME: All casts should have a known kind!
811    //assert(0 && "Unknown cast kind!");
812    break;
813
814  case CastExpr::CK_AnyPointerToObjCPointerCast:
815  case CastExpr::CK_AnyPointerToBlockPointerCast:
816  case CastExpr::CK_BitCast: {
817    Value *Src = Visit(const_cast<Expr*>(E));
818    return Builder.CreateBitCast(Src, ConvertType(DestTy));
819  }
820  case CastExpr::CK_NoOp:
821  case CastExpr::CK_UserDefinedConversion:
822    return Visit(const_cast<Expr*>(E));
823
824  case CastExpr::CK_BaseToDerived: {
825    const CXXRecordDecl *BaseClassDecl =
826      E->getType()->getCXXRecordDeclForPointerType();
827    const CXXRecordDecl *DerivedClassDecl =
828      DestTy->getCXXRecordDeclForPointerType();
829
830    Value *Src = Visit(const_cast<Expr*>(E));
831
832    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
833    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl,
834                                        NullCheckValue);
835  }
836  case CastExpr::CK_UncheckedDerivedToBase:
837  case CastExpr::CK_DerivedToBase: {
838    const RecordType *DerivedClassTy =
839      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
840    CXXRecordDecl *DerivedClassDecl =
841      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
842
843    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
844                                     CE->getBasePath(),
845                                     ShouldNullCheckClassCastValue(CE));
846  }
847  case CastExpr::CK_Dynamic: {
848    Value *V = Visit(const_cast<Expr*>(E));
849    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
850    return CGF.EmitDynamicCast(V, DCE);
851  }
852  case CastExpr::CK_ToUnion:
853    assert(0 && "Should be unreachable!");
854    break;
855
856  case CastExpr::CK_ArrayToPointerDecay: {
857    assert(E->getType()->isArrayType() &&
858           "Array to pointer decay must have array source type!");
859
860    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
861
862    // Note that VLA pointers are always decayed, so we don't need to do
863    // anything here.
864    if (!E->getType()->isVariableArrayType()) {
865      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
866      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
867                                 ->getElementType()) &&
868             "Expected pointer to array");
869      V = Builder.CreateStructGEP(V, 0, "arraydecay");
870    }
871
872    return V;
873  }
874  case CastExpr::CK_FunctionToPointerDecay:
875    return EmitLValue(E).getAddress();
876
877  case CastExpr::CK_NullToMemberPointer:
878    return CGF.CGM.EmitNullConstant(DestTy);
879
880  case CastExpr::CK_BaseToDerivedMemberPointer:
881  case CastExpr::CK_DerivedToBaseMemberPointer: {
882    Value *Src = Visit(E);
883
884    // See if we need to adjust the pointer.
885    const CXXRecordDecl *BaseDecl =
886      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
887                          getClass()->getAs<RecordType>()->getDecl());
888    const CXXRecordDecl *DerivedDecl =
889      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
890                          getClass()->getAs<RecordType>()->getDecl());
891    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
892      std::swap(DerivedDecl, BaseDecl);
893
894    if (llvm::Constant *Adj =
895          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, BaseDecl)) {
896      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
897        Src = Builder.CreateSub(Src, Adj, "adj");
898      else
899        Src = Builder.CreateAdd(Src, Adj, "adj");
900    }
901    return Src;
902  }
903
904  case CastExpr::CK_ConstructorConversion:
905    assert(0 && "Should be unreachable!");
906    break;
907
908  case CastExpr::CK_IntegralToPointer: {
909    Value *Src = Visit(const_cast<Expr*>(E));
910
911    // First, convert to the correct width so that we control the kind of
912    // extension.
913    const llvm::Type *MiddleTy =
914      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
915    bool InputSigned = E->getType()->isSignedIntegerType();
916    llvm::Value* IntResult =
917      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
918
919    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
920  }
921  case CastExpr::CK_PointerToIntegral: {
922    Value *Src = Visit(const_cast<Expr*>(E));
923    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
924  }
925  case CastExpr::CK_ToVoid: {
926    CGF.EmitAnyExpr(E, 0, false, true);
927    return 0;
928  }
929  case CastExpr::CK_VectorSplat: {
930    const llvm::Type *DstTy = ConvertType(DestTy);
931    Value *Elt = Visit(const_cast<Expr*>(E));
932
933    // Insert the element in element zero of an undef vector
934    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
935    llvm::Value *Idx =
936        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
937    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
938
939    // Splat the element across to all elements
940    llvm::SmallVector<llvm::Constant*, 16> Args;
941    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
942    for (unsigned i = 0; i < NumElements; i++)
943      Args.push_back(llvm::ConstantInt::get(
944                                        llvm::Type::getInt32Ty(VMContext), 0));
945
946    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
947    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
948    return Yay;
949  }
950  case CastExpr::CK_IntegralCast:
951  case CastExpr::CK_IntegralToFloating:
952  case CastExpr::CK_FloatingToIntegral:
953  case CastExpr::CK_FloatingCast:
954    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
955
956  case CastExpr::CK_MemberPointerToBoolean:
957    return CGF.EvaluateExprAsBool(E);
958  }
959
960  // Handle cases where the source is an non-complex type.
961
962  if (!CGF.hasAggregateLLVMType(E->getType())) {
963    Value *Src = Visit(const_cast<Expr*>(E));
964
965    // Use EmitScalarConversion to perform the conversion.
966    return EmitScalarConversion(Src, E->getType(), DestTy);
967  }
968
969  if (E->getType()->isAnyComplexType()) {
970    // Handle cases where the source is a complex type.
971    bool IgnoreImag = true;
972    bool IgnoreImagAssign = true;
973    bool IgnoreReal = IgnoreResultAssign;
974    bool IgnoreRealAssign = IgnoreResultAssign;
975    if (DestTy->isBooleanType())
976      IgnoreImagAssign = IgnoreImag = false;
977    else if (DestTy->isVoidType()) {
978      IgnoreReal = IgnoreImag = false;
979      IgnoreRealAssign = IgnoreImagAssign = true;
980    }
981    CodeGenFunction::ComplexPairTy V
982      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
983                            IgnoreImagAssign);
984    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
985  }
986
987  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
988  // evaluate the result and return.
989  CGF.EmitAggExpr(E, 0, false, true);
990  return 0;
991}
992
993Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
994  return CGF.EmitCompoundStmt(*E->getSubStmt(),
995                              !E->getType()->isVoidType()).getScalarVal();
996}
997
998Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
999  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1000  if (E->getType().isObjCGCWeak())
1001    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1002  return Builder.CreateLoad(V, "tmp");
1003}
1004
1005//===----------------------------------------------------------------------===//
1006//                             Unary Operators
1007//===----------------------------------------------------------------------===//
1008
1009Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1010  TestAndClearIgnoreResultAssign();
1011  Value *Op = Visit(E->getSubExpr());
1012  if (Op->getType()->isFPOrFPVectorTy())
1013    return Builder.CreateFNeg(Op, "neg");
1014  return Builder.CreateNeg(Op, "neg");
1015}
1016
1017Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1018  TestAndClearIgnoreResultAssign();
1019  Value *Op = Visit(E->getSubExpr());
1020  return Builder.CreateNot(Op, "neg");
1021}
1022
1023Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1024  // Compare operand to zero.
1025  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1026
1027  // Invert value.
1028  // TODO: Could dynamically modify easy computations here.  For example, if
1029  // the operand is an icmp ne, turn into icmp eq.
1030  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1031
1032  // ZExt result to the expr type.
1033  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1034}
1035
1036/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1037/// argument of the sizeof expression as an integer.
1038Value *
1039ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1040  QualType TypeToSize = E->getTypeOfArgument();
1041  if (E->isSizeOf()) {
1042    if (const VariableArrayType *VAT =
1043          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1044      if (E->isArgumentType()) {
1045        // sizeof(type) - make sure to emit the VLA size.
1046        CGF.EmitVLASize(TypeToSize);
1047      } else {
1048        // C99 6.5.3.4p2: If the argument is an expression of type
1049        // VLA, it is evaluated.
1050        CGF.EmitAnyExpr(E->getArgumentExpr());
1051      }
1052
1053      return CGF.GetVLASize(VAT);
1054    }
1055  }
1056
1057  // If this isn't sizeof(vla), the result must be constant; use the constant
1058  // folding logic so we don't have to duplicate it here.
1059  Expr::EvalResult Result;
1060  E->Evaluate(Result, CGF.getContext());
1061  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1062}
1063
1064Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1065  Expr *Op = E->getSubExpr();
1066  if (Op->getType()->isAnyComplexType())
1067    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1068  return Visit(Op);
1069}
1070Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1071  Expr *Op = E->getSubExpr();
1072  if (Op->getType()->isAnyComplexType())
1073    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1074
1075  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1076  // effects are evaluated, but not the actual value.
1077  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1078    CGF.EmitLValue(Op);
1079  else
1080    CGF.EmitScalarExpr(Op, true);
1081  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1082}
1083
1084Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1085  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1086  const llvm::Type* ResultType = ConvertType(E->getType());
1087  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1088}
1089
1090//===----------------------------------------------------------------------===//
1091//                           Binary Operators
1092//===----------------------------------------------------------------------===//
1093
1094BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1095  TestAndClearIgnoreResultAssign();
1096  BinOpInfo Result;
1097  Result.LHS = Visit(E->getLHS());
1098  Result.RHS = Visit(E->getRHS());
1099  Result.Ty  = E->getType();
1100  Result.E = E;
1101  return Result;
1102}
1103
1104LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1105                                              const CompoundAssignOperator *E,
1106                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1107                                                   Value *&BitFieldResult) {
1108  QualType LHSTy = E->getLHS()->getType();
1109  BitFieldResult = 0;
1110  BinOpInfo OpInfo;
1111
1112  if (E->getComputationResultType()->isAnyComplexType()) {
1113    // This needs to go through the complex expression emitter, but it's a tad
1114    // complicated to do that... I'm leaving it out for now.  (Note that we do
1115    // actually need the imaginary part of the RHS for multiplication and
1116    // division.)
1117    CGF.ErrorUnsupported(E, "complex compound assignment");
1118    llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1119    return LValue();
1120  }
1121
1122  // Emit the RHS first.  __block variables need to have the rhs evaluated
1123  // first, plus this should improve codegen a little.
1124  OpInfo.RHS = Visit(E->getRHS());
1125  OpInfo.Ty = E->getComputationResultType();
1126  OpInfo.E = E;
1127  // Load/convert the LHS.
1128  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1129  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1130  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1131                                    E->getComputationLHSType());
1132
1133  // Expand the binary operator.
1134  Value *Result = (this->*Func)(OpInfo);
1135
1136  // Convert the result back to the LHS type.
1137  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1138
1139  // Store the result value into the LHS lvalue. Bit-fields are handled
1140  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1141  // 'An assignment expression has the value of the left operand after the
1142  // assignment...'.
1143  if (LHSLV.isBitField()) {
1144    if (!LHSLV.isVolatileQualified()) {
1145      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1146                                         &Result);
1147      BitFieldResult = Result;
1148      return LHSLV;
1149    } else
1150      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1151  } else
1152    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1153  return LHSLV;
1154}
1155
1156Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1157                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1158  bool Ignore = TestAndClearIgnoreResultAssign();
1159  Value *BitFieldResult;
1160  LValue LHSLV = EmitCompoundAssignLValue(E, Func, BitFieldResult);
1161  if (BitFieldResult)
1162    return BitFieldResult;
1163
1164  if (Ignore)
1165    return 0;
1166  return EmitLoadOfLValue(LHSLV, E->getType());
1167}
1168
1169
1170Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1171  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1172    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1173  else if (Ops.Ty->isUnsignedIntegerType())
1174    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1175  else
1176    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1177}
1178
1179Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1180  // Rem in C can't be a floating point type: C99 6.5.5p2.
1181  if (Ops.Ty->isUnsignedIntegerType())
1182    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1183  else
1184    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1185}
1186
1187Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1188  unsigned IID;
1189  unsigned OpID = 0;
1190
1191  switch (Ops.E->getOpcode()) {
1192  case BinaryOperator::Add:
1193  case BinaryOperator::AddAssign:
1194    OpID = 1;
1195    IID = llvm::Intrinsic::sadd_with_overflow;
1196    break;
1197  case BinaryOperator::Sub:
1198  case BinaryOperator::SubAssign:
1199    OpID = 2;
1200    IID = llvm::Intrinsic::ssub_with_overflow;
1201    break;
1202  case BinaryOperator::Mul:
1203  case BinaryOperator::MulAssign:
1204    OpID = 3;
1205    IID = llvm::Intrinsic::smul_with_overflow;
1206    break;
1207  default:
1208    assert(false && "Unsupported operation for overflow detection");
1209    IID = 0;
1210  }
1211  OpID <<= 1;
1212  OpID |= 1;
1213
1214  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1215
1216  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1217
1218  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1219  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1220  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1221
1222  // Branch in case of overflow.
1223  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1224  llvm::BasicBlock *overflowBB =
1225    CGF.createBasicBlock("overflow", CGF.CurFn);
1226  llvm::BasicBlock *continueBB =
1227    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1228
1229  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1230
1231  // Handle overflow
1232
1233  Builder.SetInsertPoint(overflowBB);
1234
1235  // Handler is:
1236  // long long *__overflow_handler)(long long a, long long b, char op,
1237  // char width)
1238  std::vector<const llvm::Type*> handerArgTypes;
1239  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1240  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1241  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1242  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1243  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1244      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1245  llvm::Value *handlerFunction =
1246    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1247        llvm::PointerType::getUnqual(handlerTy));
1248  handlerFunction = Builder.CreateLoad(handlerFunction);
1249
1250  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1251      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1252      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1253      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1254      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1255        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1256
1257  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1258
1259  Builder.CreateBr(continueBB);
1260
1261  // Set up the continuation
1262  Builder.SetInsertPoint(continueBB);
1263  // Get the correct result
1264  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1265  phi->reserveOperandSpace(2);
1266  phi->addIncoming(result, initialBB);
1267  phi->addIncoming(handlerResult, overflowBB);
1268
1269  return phi;
1270}
1271
1272Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1273  if (!Ops.Ty->isAnyPointerType()) {
1274    if (CGF.getContext().getLangOptions().OverflowChecking &&
1275        Ops.Ty->isSignedIntegerType())
1276      return EmitOverflowCheckedBinOp(Ops);
1277
1278    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1279      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1280
1281    // Signed integer overflow is undefined behavior.
1282    if (Ops.Ty->isSignedIntegerType())
1283      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1284
1285    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1286  }
1287
1288  if (Ops.Ty->isPointerType() &&
1289      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1290    // The amount of the addition needs to account for the VLA size
1291    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1292  }
1293  Value *Ptr, *Idx;
1294  Expr *IdxExp;
1295  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1296  const ObjCObjectPointerType *OPT =
1297    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1298  if (PT || OPT) {
1299    Ptr = Ops.LHS;
1300    Idx = Ops.RHS;
1301    IdxExp = Ops.E->getRHS();
1302  } else {  // int + pointer
1303    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1304    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1305    assert((PT || OPT) && "Invalid add expr");
1306    Ptr = Ops.RHS;
1307    Idx = Ops.LHS;
1308    IdxExp = Ops.E->getLHS();
1309  }
1310
1311  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1312  if (Width < CGF.LLVMPointerWidth) {
1313    // Zero or sign extend the pointer value based on whether the index is
1314    // signed or not.
1315    const llvm::Type *IdxType =
1316        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1317    if (IdxExp->getType()->isSignedIntegerType())
1318      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1319    else
1320      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1321  }
1322  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1323  // Handle interface types, which are not represented with a concrete type.
1324  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1325    llvm::Value *InterfaceSize =
1326      llvm::ConstantInt::get(Idx->getType(),
1327          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1328    Idx = Builder.CreateMul(Idx, InterfaceSize);
1329    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1330    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1331    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1332    return Builder.CreateBitCast(Res, Ptr->getType());
1333  }
1334
1335  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1336  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1337  // future proof.
1338  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1339    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1340    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1341    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1342    return Builder.CreateBitCast(Res, Ptr->getType());
1343  }
1344
1345  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1346}
1347
1348Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1349  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1350    if (CGF.getContext().getLangOptions().OverflowChecking
1351        && Ops.Ty->isSignedIntegerType())
1352      return EmitOverflowCheckedBinOp(Ops);
1353
1354    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1355      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1356
1357    // Signed integer overflow is undefined behavior.
1358    if (Ops.Ty->isSignedIntegerType())
1359      return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1360
1361    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1362  }
1363
1364  if (Ops.E->getLHS()->getType()->isPointerType() &&
1365      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1366    // The amount of the addition needs to account for the VLA size for
1367    // ptr-int
1368    // The amount of the division needs to account for the VLA size for
1369    // ptr-ptr.
1370    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1371  }
1372
1373  const QualType LHSType = Ops.E->getLHS()->getType();
1374  const QualType LHSElementType = LHSType->getPointeeType();
1375  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1376    // pointer - int
1377    Value *Idx = Ops.RHS;
1378    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1379    if (Width < CGF.LLVMPointerWidth) {
1380      // Zero or sign extend the pointer value based on whether the index is
1381      // signed or not.
1382      const llvm::Type *IdxType =
1383          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1384      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1385        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1386      else
1387        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1388    }
1389    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1390
1391    // Handle interface types, which are not represented with a concrete type.
1392    if (const ObjCInterfaceType *OIT =
1393        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1394      llvm::Value *InterfaceSize =
1395        llvm::ConstantInt::get(Idx->getType(),
1396                               CGF.getContext().
1397                                 getTypeSizeInChars(OIT).getQuantity());
1398      Idx = Builder.CreateMul(Idx, InterfaceSize);
1399      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1400      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1401      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1402      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1403    }
1404
1405    // Explicitly handle GNU void* and function pointer arithmetic
1406    // extensions. The GNU void* casts amount to no-ops since our void* type is
1407    // i8*, but this is future proof.
1408    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1409      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1410      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1411      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1412      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1413    }
1414
1415    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1416  } else {
1417    // pointer - pointer
1418    Value *LHS = Ops.LHS;
1419    Value *RHS = Ops.RHS;
1420
1421    CharUnits ElementSize;
1422
1423    // Handle GCC extension for pointer arithmetic on void* and function pointer
1424    // types.
1425    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1426      ElementSize = CharUnits::One();
1427    } else {
1428      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1429    }
1430
1431    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1432    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1433    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1434    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1435
1436    // Optimize out the shift for element size of 1.
1437    if (ElementSize.isOne())
1438      return BytesBetween;
1439
1440    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1441    // pointer difference in C is only defined in the case where both operands
1442    // are pointing to elements of an array.
1443    Value *BytesPerElt =
1444        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1445    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1446  }
1447}
1448
1449Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1450  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1451  // RHS to the same size as the LHS.
1452  Value *RHS = Ops.RHS;
1453  if (Ops.LHS->getType() != RHS->getType())
1454    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1455
1456  if (CGF.CatchUndefined
1457      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1458    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1459    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1460    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1461                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1462                             Cont, CGF.getTrapBB());
1463    CGF.EmitBlock(Cont);
1464  }
1465
1466  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1467}
1468
1469Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1470  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1471  // RHS to the same size as the LHS.
1472  Value *RHS = Ops.RHS;
1473  if (Ops.LHS->getType() != RHS->getType())
1474    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1475
1476  if (CGF.CatchUndefined
1477      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1478    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1479    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1480    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1481                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1482                             Cont, CGF.getTrapBB());
1483    CGF.EmitBlock(Cont);
1484  }
1485
1486  if (Ops.Ty->isUnsignedIntegerType())
1487    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1488  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1489}
1490
1491Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1492                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1493  TestAndClearIgnoreResultAssign();
1494  Value *Result;
1495  QualType LHSTy = E->getLHS()->getType();
1496  if (LHSTy->isMemberFunctionPointerType()) {
1497    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1498    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1499    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1500    LHSFunc = Builder.CreateLoad(LHSFunc);
1501    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1502    RHSFunc = Builder.CreateLoad(RHSFunc);
1503    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1504                                        LHSFunc, RHSFunc, "cmp.func");
1505    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1506    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1507                                           LHSFunc, NullPtr, "cmp.null");
1508    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1509    LHSAdj = Builder.CreateLoad(LHSAdj);
1510    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1511    RHSAdj = Builder.CreateLoad(RHSAdj);
1512    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1513                                        LHSAdj, RHSAdj, "cmp.adj");
1514    if (E->getOpcode() == BinaryOperator::EQ) {
1515      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1516      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1517    } else {
1518      assert(E->getOpcode() == BinaryOperator::NE &&
1519             "Member pointer comparison other than == or != ?");
1520      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1521      Result = Builder.CreateOr(Result, ResultF, "or.f");
1522    }
1523  } else if (!LHSTy->isAnyComplexType()) {
1524    Value *LHS = Visit(E->getLHS());
1525    Value *RHS = Visit(E->getRHS());
1526
1527    if (LHS->getType()->isFPOrFPVectorTy()) {
1528      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1529                                  LHS, RHS, "cmp");
1530    } else if (LHSTy->isSignedIntegerType()) {
1531      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1532                                  LHS, RHS, "cmp");
1533    } else {
1534      // Unsigned integers and pointers.
1535      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1536                                  LHS, RHS, "cmp");
1537    }
1538
1539    // If this is a vector comparison, sign extend the result to the appropriate
1540    // vector integer type and return it (don't convert to bool).
1541    if (LHSTy->isVectorType())
1542      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1543
1544  } else {
1545    // Complex Comparison: can only be an equality comparison.
1546    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1547    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1548
1549    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1550
1551    Value *ResultR, *ResultI;
1552    if (CETy->isRealFloatingType()) {
1553      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1554                                   LHS.first, RHS.first, "cmp.r");
1555      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1556                                   LHS.second, RHS.second, "cmp.i");
1557    } else {
1558      // Complex comparisons can only be equality comparisons.  As such, signed
1559      // and unsigned opcodes are the same.
1560      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1561                                   LHS.first, RHS.first, "cmp.r");
1562      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1563                                   LHS.second, RHS.second, "cmp.i");
1564    }
1565
1566    if (E->getOpcode() == BinaryOperator::EQ) {
1567      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1568    } else {
1569      assert(E->getOpcode() == BinaryOperator::NE &&
1570             "Complex comparison other than == or != ?");
1571      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1572    }
1573  }
1574
1575  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1576}
1577
1578Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1579  bool Ignore = TestAndClearIgnoreResultAssign();
1580
1581  // __block variables need to have the rhs evaluated first, plus this should
1582  // improve codegen just a little.
1583  Value *RHS = Visit(E->getRHS());
1584  LValue LHS = EmitCheckedLValue(E->getLHS());
1585
1586  // Store the value into the LHS.  Bit-fields are handled specially
1587  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1588  // 'An assignment expression has the value of the left operand after
1589  // the assignment...'.
1590  if (LHS.isBitField()) {
1591    if (!LHS.isVolatileQualified()) {
1592      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1593                                         &RHS);
1594      return RHS;
1595    } else
1596      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1597  } else
1598    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1599  if (Ignore)
1600    return 0;
1601  return EmitLoadOfLValue(LHS, E->getType());
1602}
1603
1604Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1605  const llvm::Type *ResTy = ConvertType(E->getType());
1606
1607  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1608  // If we have 1 && X, just emit X without inserting the control flow.
1609  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1610    if (Cond == 1) { // If we have 1 && X, just emit X.
1611      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1612      // ZExt result to int or bool.
1613      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1614    }
1615
1616    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1617    if (!CGF.ContainsLabel(E->getRHS()))
1618      return llvm::Constant::getNullValue(ResTy);
1619  }
1620
1621  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1622  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1623
1624  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1625  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1626
1627  // Any edges into the ContBlock are now from an (indeterminate number of)
1628  // edges from this first condition.  All of these values will be false.  Start
1629  // setting up the PHI node in the Cont Block for this.
1630  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1631                                            "", ContBlock);
1632  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1633  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1634       PI != PE; ++PI)
1635    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1636
1637  CGF.BeginConditionalBranch();
1638  CGF.EmitBlock(RHSBlock);
1639  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1640  CGF.EndConditionalBranch();
1641
1642  // Reaquire the RHS block, as there may be subblocks inserted.
1643  RHSBlock = Builder.GetInsertBlock();
1644
1645  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1646  // into the phi node for the edge with the value of RHSCond.
1647  CGF.EmitBlock(ContBlock);
1648  PN->addIncoming(RHSCond, RHSBlock);
1649
1650  // ZExt result to int.
1651  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1652}
1653
1654Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1655  const llvm::Type *ResTy = ConvertType(E->getType());
1656
1657  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1658  // If we have 0 || X, just emit X without inserting the control flow.
1659  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1660    if (Cond == -1) { // If we have 0 || X, just emit X.
1661      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1662      // ZExt result to int or bool.
1663      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1664    }
1665
1666    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1667    if (!CGF.ContainsLabel(E->getRHS()))
1668      return llvm::ConstantInt::get(ResTy, 1);
1669  }
1670
1671  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1672  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1673
1674  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1675  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1676
1677  // Any edges into the ContBlock are now from an (indeterminate number of)
1678  // edges from this first condition.  All of these values will be true.  Start
1679  // setting up the PHI node in the Cont Block for this.
1680  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1681                                            "", ContBlock);
1682  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1683  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1684       PI != PE; ++PI)
1685    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1686
1687  CGF.BeginConditionalBranch();
1688
1689  // Emit the RHS condition as a bool value.
1690  CGF.EmitBlock(RHSBlock);
1691  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1692
1693  CGF.EndConditionalBranch();
1694
1695  // Reaquire the RHS block, as there may be subblocks inserted.
1696  RHSBlock = Builder.GetInsertBlock();
1697
1698  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1699  // into the phi node for the edge with the value of RHSCond.
1700  CGF.EmitBlock(ContBlock);
1701  PN->addIncoming(RHSCond, RHSBlock);
1702
1703  // ZExt result to int.
1704  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1705}
1706
1707Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1708  CGF.EmitStmt(E->getLHS());
1709  CGF.EnsureInsertPoint();
1710  return Visit(E->getRHS());
1711}
1712
1713//===----------------------------------------------------------------------===//
1714//                             Other Operators
1715//===----------------------------------------------------------------------===//
1716
1717/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1718/// expression is cheap enough and side-effect-free enough to evaluate
1719/// unconditionally instead of conditionally.  This is used to convert control
1720/// flow into selects in some cases.
1721static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1722                                                   CodeGenFunction &CGF) {
1723  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1724    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1725
1726  // TODO: Allow anything we can constant fold to an integer or fp constant.
1727  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1728      isa<FloatingLiteral>(E))
1729    return true;
1730
1731  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1732  // X and Y are local variables.
1733  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1734    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1735      if (VD->hasLocalStorage() && !(CGF.getContext()
1736                                     .getCanonicalType(VD->getType())
1737                                     .isVolatileQualified()))
1738        return true;
1739
1740  return false;
1741}
1742
1743
1744Value *ScalarExprEmitter::
1745VisitConditionalOperator(const ConditionalOperator *E) {
1746  TestAndClearIgnoreResultAssign();
1747  // If the condition constant folds and can be elided, try to avoid emitting
1748  // the condition and the dead arm.
1749  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1750    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1751    if (Cond == -1)
1752      std::swap(Live, Dead);
1753
1754    // If the dead side doesn't have labels we need, and if the Live side isn't
1755    // the gnu missing ?: extension (which we could handle, but don't bother
1756    // to), just emit the Live part.
1757    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1758        Live)                                   // Live part isn't missing.
1759      return Visit(Live);
1760  }
1761
1762
1763  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1764  // select instead of as control flow.  We can only do this if it is cheap and
1765  // safe to evaluate the LHS and RHS unconditionally.
1766  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1767                                                            CGF) &&
1768      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1769    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1770    llvm::Value *LHS = Visit(E->getLHS());
1771    llvm::Value *RHS = Visit(E->getRHS());
1772    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1773  }
1774
1775
1776  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1777  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1778  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1779  Value *CondVal = 0;
1780
1781  // If we don't have the GNU missing condition extension, emit a branch on bool
1782  // the normal way.
1783  if (E->getLHS()) {
1784    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1785    // the branch on bool.
1786    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1787  } else {
1788    // Otherwise, for the ?: extension, evaluate the conditional and then
1789    // convert it to bool the hard way.  We do this explicitly because we need
1790    // the unconverted value for the missing middle value of the ?:.
1791    CondVal = CGF.EmitScalarExpr(E->getCond());
1792
1793    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1794    // if there are no extra uses (an optimization).  Inhibit this by making an
1795    // extra dead use, because we're going to add a use of CondVal later.  We
1796    // don't use the builder for this, because we don't want it to get optimized
1797    // away.  This leaves dead code, but the ?: extension isn't common.
1798    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1799                          Builder.GetInsertBlock());
1800
1801    Value *CondBoolVal =
1802      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1803                               CGF.getContext().BoolTy);
1804    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1805  }
1806
1807  CGF.BeginConditionalBranch();
1808  CGF.EmitBlock(LHSBlock);
1809
1810  // Handle the GNU extension for missing LHS.
1811  Value *LHS;
1812  if (E->getLHS())
1813    LHS = Visit(E->getLHS());
1814  else    // Perform promotions, to handle cases like "short ?: int"
1815    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1816
1817  CGF.EndConditionalBranch();
1818  LHSBlock = Builder.GetInsertBlock();
1819  CGF.EmitBranch(ContBlock);
1820
1821  CGF.BeginConditionalBranch();
1822  CGF.EmitBlock(RHSBlock);
1823
1824  Value *RHS = Visit(E->getRHS());
1825  CGF.EndConditionalBranch();
1826  RHSBlock = Builder.GetInsertBlock();
1827  CGF.EmitBranch(ContBlock);
1828
1829  CGF.EmitBlock(ContBlock);
1830
1831  // If the LHS or RHS is a throw expression, it will be legitimately null.
1832  if (!LHS)
1833    return RHS;
1834  if (!RHS)
1835    return LHS;
1836
1837  // Create a PHI node for the real part.
1838  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1839  PN->reserveOperandSpace(2);
1840  PN->addIncoming(LHS, LHSBlock);
1841  PN->addIncoming(RHS, RHSBlock);
1842  return PN;
1843}
1844
1845Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1846  return Visit(E->getChosenSubExpr(CGF.getContext()));
1847}
1848
1849Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1850  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1851  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1852
1853  // If EmitVAArg fails, we fall back to the LLVM instruction.
1854  if (!ArgPtr)
1855    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1856
1857  // FIXME Volatility.
1858  return Builder.CreateLoad(ArgPtr);
1859}
1860
1861Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1862  return CGF.BuildBlockLiteralTmp(BE);
1863}
1864
1865//===----------------------------------------------------------------------===//
1866//                         Entry Point into this File
1867//===----------------------------------------------------------------------===//
1868
1869/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1870/// type, ignoring the result.
1871Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1872  assert(E && !hasAggregateLLVMType(E->getType()) &&
1873         "Invalid scalar expression to emit");
1874
1875  return ScalarExprEmitter(*this, IgnoreResultAssign)
1876    .Visit(const_cast<Expr*>(E));
1877}
1878
1879/// EmitScalarConversion - Emit a conversion from the specified type to the
1880/// specified destination type, both of which are LLVM scalar types.
1881Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1882                                             QualType DstTy) {
1883  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1884         "Invalid scalar expression to emit");
1885  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1886}
1887
1888/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1889/// type to the specified destination type, where the destination type is an
1890/// LLVM scalar type.
1891Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1892                                                      QualType SrcTy,
1893                                                      QualType DstTy) {
1894  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1895         "Invalid complex -> scalar conversion");
1896  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1897                                                                DstTy);
1898}
1899
1900LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
1901  llvm::Value *V;
1902  // object->isa or (*object).isa
1903  // Generate code as for: *(Class*)object
1904  // build Class* type
1905  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
1906
1907  Expr *BaseExpr = E->getBase();
1908  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
1909    V = CreateTempAlloca(ClassPtrTy, "resval");
1910    llvm::Value *Src = EmitScalarExpr(BaseExpr);
1911    Builder.CreateStore(Src, V);
1912    LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1913    V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
1914  }
1915  else {
1916      if (E->isArrow())
1917        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
1918      else
1919        V  = EmitLValue(BaseExpr).getAddress();
1920  }
1921
1922  // build Class* type
1923  ClassPtrTy = ClassPtrTy->getPointerTo();
1924  V = Builder.CreateBitCast(V, ClassPtrTy);
1925  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1926  return LV;
1927}
1928
1929
1930LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
1931                                            const CompoundAssignOperator *E) {
1932  ScalarExprEmitter Scalar(*this);
1933  Value *BitFieldResult = 0;
1934  switch (E->getOpcode()) {
1935#define COMPOUND_OP(Op)                                                       \
1936    case BinaryOperator::Op##Assign:                                          \
1937      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
1938                                             BitFieldResult)
1939  COMPOUND_OP(Mul);
1940  COMPOUND_OP(Div);
1941  COMPOUND_OP(Rem);
1942  COMPOUND_OP(Add);
1943  COMPOUND_OP(Sub);
1944  COMPOUND_OP(Shl);
1945  COMPOUND_OP(Shr);
1946  COMPOUND_OP(And);
1947  COMPOUND_OP(Xor);
1948  COMPOUND_OP(Or);
1949#undef COMPOUND_OP
1950
1951  case BinaryOperator::PtrMemD:
1952  case BinaryOperator::PtrMemI:
1953  case BinaryOperator::Mul:
1954  case BinaryOperator::Div:
1955  case BinaryOperator::Rem:
1956  case BinaryOperator::Add:
1957  case BinaryOperator::Sub:
1958  case BinaryOperator::Shl:
1959  case BinaryOperator::Shr:
1960  case BinaryOperator::LT:
1961  case BinaryOperator::GT:
1962  case BinaryOperator::LE:
1963  case BinaryOperator::GE:
1964  case BinaryOperator::EQ:
1965  case BinaryOperator::NE:
1966  case BinaryOperator::And:
1967  case BinaryOperator::Xor:
1968  case BinaryOperator::Or:
1969  case BinaryOperator::LAnd:
1970  case BinaryOperator::LOr:
1971  case BinaryOperator::Assign:
1972  case BinaryOperator::Comma:
1973    assert(false && "Not valid compound assignment operators");
1974    break;
1975  }
1976
1977  llvm_unreachable("Unhandled compound assignment operator");
1978}
1979