CGExprScalar.cpp revision 4f692c27d74e249d6ef8d24792c35f3e5c620e2a
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    llvm_unreachable("Stmt can't have complex result type!");
157  }
158  Value *VisitExpr(Expr *S);
159
160  Value *VisitParenExpr(ParenExpr *PE) {
161    return Visit(PE->getSubExpr());
162  }
163  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164    return Visit(E->getReplacement());
165  }
166  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167    return Visit(GE->getResultExpr());
168  }
169
170  // Leaves.
171  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172    return Builder.getInt(E->getValue());
173  }
174  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175    return llvm::ConstantFP::get(VMContext, E->getValue());
176  }
177  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182  }
183  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187    return EmitNullValue(E->getType());
188  }
189  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193    return Builder.CreateBitCast(V, ConvertType(E->getType()));
194  }
195
196  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198  }
199
200  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202  }
203
204  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205    if (E->isGLValue())
206      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207
208    // Otherwise, assume the mapping is the scalar directly.
209    return CGF.getOpaqueRValueMapping(E).getScalarVal();
210  }
211
212  // l-values.
213  Value *VisitDeclRefExpr(DeclRefExpr *E) {
214    Expr::EvalResult Result;
215    if (!E->EvaluateAsRValue(Result, CGF.getContext()))
216      return EmitLoadOfLValue(E);
217
218    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
219
220    llvm::Constant *C;
221    if (Result.Val.isInt())
222      C = Builder.getInt(Result.Val.getInt());
223    else if (Result.Val.isFloat())
224      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
225    else
226      return EmitLoadOfLValue(E);
227
228    // Make sure we emit a debug reference to the global variable.
229    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
230      if (!CGF.getContext().DeclMustBeEmitted(VD))
231        CGF.EmitDeclRefExprDbgValue(E, C);
232    } else if (isa<EnumConstantDecl>(E->getDecl())) {
233      CGF.EmitDeclRefExprDbgValue(E, C);
234    }
235
236    return C;
237  }
238  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239    return CGF.EmitObjCSelectorExpr(E);
240  }
241  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242    return CGF.EmitObjCProtocolExpr(E);
243  }
244  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245    return EmitLoadOfLValue(E);
246  }
247  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248    if (E->getMethodDecl() &&
249        E->getMethodDecl()->getResultType()->isReferenceType())
250      return EmitLoadOfLValue(E);
251    return CGF.EmitObjCMessageExpr(E).getScalarVal();
252  }
253
254  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255    LValue LV = CGF.EmitObjCIsaExpr(E);
256    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
257    return V;
258  }
259
260  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262  Value *VisitMemberExpr(MemberExpr *E);
263  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265    return EmitLoadOfLValue(E);
266  }
267
268  Value *VisitInitListExpr(InitListExpr *E);
269
270  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271    return CGF.CGM.EmitNullConstant(E->getType());
272  }
273  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
274    if (E->getType()->isVariablyModifiedType())
275      CGF.EmitVariablyModifiedType(E->getType());
276    return VisitCastExpr(E);
277  }
278  Value *VisitCastExpr(CastExpr *E);
279
280  Value *VisitCallExpr(const CallExpr *E) {
281    if (E->getCallReturnType()->isReferenceType())
282      return EmitLoadOfLValue(E);
283
284    return CGF.EmitCallExpr(E).getScalarVal();
285  }
286
287  Value *VisitStmtExpr(const StmtExpr *E);
288
289  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
290
291  // Unary Operators.
292  Value *VisitUnaryPostDec(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, false, false);
295  }
296  Value *VisitUnaryPostInc(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, true, false);
299  }
300  Value *VisitUnaryPreDec(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, false, true);
303  }
304  Value *VisitUnaryPreInc(const UnaryOperator *E) {
305    LValue LV = EmitLValue(E->getSubExpr());
306    return EmitScalarPrePostIncDec(E, LV, true, true);
307  }
308
309  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
310                                               llvm::Value *InVal,
311                                               llvm::Value *NextVal,
312                                               bool IsInc);
313
314  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
315                                       bool isInc, bool isPre);
316
317
318  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
319    if (isa<MemberPointerType>(E->getType())) // never sugared
320      return CGF.CGM.getMemberPointerConstant(E);
321
322    return EmitLValue(E->getSubExpr()).getAddress();
323  }
324  Value *VisitUnaryDeref(const UnaryOperator *E) {
325    if (E->getType()->isVoidType())
326      return Visit(E->getSubExpr()); // the actual value should be unused
327    return EmitLoadOfLValue(E);
328  }
329  Value *VisitUnaryPlus(const UnaryOperator *E) {
330    // This differs from gcc, though, most likely due to a bug in gcc.
331    TestAndClearIgnoreResultAssign();
332    return Visit(E->getSubExpr());
333  }
334  Value *VisitUnaryMinus    (const UnaryOperator *E);
335  Value *VisitUnaryNot      (const UnaryOperator *E);
336  Value *VisitUnaryLNot     (const UnaryOperator *E);
337  Value *VisitUnaryReal     (const UnaryOperator *E);
338  Value *VisitUnaryImag     (const UnaryOperator *E);
339  Value *VisitUnaryExtension(const UnaryOperator *E) {
340    return Visit(E->getSubExpr());
341  }
342
343  // C++
344  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
345    return EmitLoadOfLValue(E);
346  }
347
348  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
349    return Visit(DAE->getExpr());
350  }
351  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352    return CGF.LoadCXXThis();
353  }
354
355  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356    CGF.enterFullExpression(E);
357    CodeGenFunction::RunCleanupsScope Scope(CGF);
358    return Visit(E->getSubExpr());
359  }
360  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361    return CGF.EmitCXXNewExpr(E);
362  }
363  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364    CGF.EmitCXXDeleteExpr(E);
365    return 0;
366  }
367  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368    return Builder.getInt1(E->getValue());
369  }
370
371  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373  }
374
375  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377  }
378
379  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381  }
382
383  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384    // C++ [expr.pseudo]p1:
385    //   The result shall only be used as the operand for the function call
386    //   operator (), and the result of such a call has type void. The only
387    //   effect is the evaluation of the postfix-expression before the dot or
388    //   arrow.
389    CGF.EmitScalarExpr(E->getBase());
390    return 0;
391  }
392
393  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394    return EmitNullValue(E->getType());
395  }
396
397  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398    CGF.EmitCXXThrowExpr(E);
399    return 0;
400  }
401
402  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403    return Builder.getInt1(E->getValue());
404  }
405
406  // Binary Operators.
407  Value *EmitMul(const BinOpInfo &Ops) {
408    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410      case LangOptions::SOB_Undefined:
411        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412      case LangOptions::SOB_Defined:
413        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414      case LangOptions::SOB_Trapping:
415        return EmitOverflowCheckedBinOp(Ops);
416      }
417    }
418
419    if (Ops.LHS->getType()->isFPOrFPVectorTy())
420      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422  }
423  bool isTrapvOverflowBehavior() {
424    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425               == LangOptions::SOB_Trapping;
426  }
427  /// Create a binary op that checks for overflow.
428  /// Currently only supports +, - and *.
429  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430  // Emit the overflow BB when -ftrapv option is activated.
431  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432    Builder.SetInsertPoint(overflowBB);
433    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434    Builder.CreateCall(Trap);
435    Builder.CreateUnreachable();
436  }
437  // Check for undefined division and modulus behaviors.
438  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                  llvm::Value *Zero,bool isDiv);
440  Value *EmitDiv(const BinOpInfo &Ops);
441  Value *EmitRem(const BinOpInfo &Ops);
442  Value *EmitAdd(const BinOpInfo &Ops);
443  Value *EmitSub(const BinOpInfo &Ops);
444  Value *EmitShl(const BinOpInfo &Ops);
445  Value *EmitShr(const BinOpInfo &Ops);
446  Value *EmitAnd(const BinOpInfo &Ops) {
447    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448  }
449  Value *EmitXor(const BinOpInfo &Ops) {
450    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451  }
452  Value *EmitOr (const BinOpInfo &Ops) {
453    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454  }
455
456  BinOpInfo EmitBinOps(const BinaryOperator *E);
457  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                  Value *&Result);
460
461  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463
464  // Binary operators and binary compound assignment operators.
465#define HANDLEBINOP(OP) \
466  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467    return Emit ## OP(EmitBinOps(E));                                      \
468  }                                                                        \
469  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471  }
472  HANDLEBINOP(Mul)
473  HANDLEBINOP(Div)
474  HANDLEBINOP(Rem)
475  HANDLEBINOP(Add)
476  HANDLEBINOP(Sub)
477  HANDLEBINOP(Shl)
478  HANDLEBINOP(Shr)
479  HANDLEBINOP(And)
480  HANDLEBINOP(Xor)
481  HANDLEBINOP(Or)
482#undef HANDLEBINOP
483
484  // Comparisons.
485  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                     unsigned SICmpOpc, unsigned FCmpOpc);
487#define VISITCOMP(CODE, UI, SI, FP) \
488    Value *VisitBin##CODE(const BinaryOperator *E) { \
489      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                         llvm::FCmpInst::FP); }
491  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497#undef VISITCOMP
498
499  Value *VisitBinAssign     (const BinaryOperator *E);
500
501  Value *VisitBinLAnd       (const BinaryOperator *E);
502  Value *VisitBinLOr        (const BinaryOperator *E);
503  Value *VisitBinComma      (const BinaryOperator *E);
504
505  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507
508  // Other Operators.
509  Value *VisitBlockExpr(const BlockExpr *BE);
510  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511  Value *VisitChooseExpr(ChooseExpr *CE);
512  Value *VisitVAArgExpr(VAArgExpr *VE);
513  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514    return CGF.EmitObjCStringLiteral(E);
515  }
516  Value *VisitAsTypeExpr(AsTypeExpr *CE);
517  Value *VisitAtomicExpr(AtomicExpr *AE);
518};
519}  // end anonymous namespace.
520
521//===----------------------------------------------------------------------===//
522//                                Utilities
523//===----------------------------------------------------------------------===//
524
525/// EmitConversionToBool - Convert the specified expression value to a
526/// boolean (i1) truth value.  This is equivalent to "Val != 0".
527Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529
530  if (SrcType->isRealFloatingType())
531    return EmitFloatToBoolConversion(Src);
532
533  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535
536  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537         "Unknown scalar type to convert");
538
539  if (isa<llvm::IntegerType>(Src->getType()))
540    return EmitIntToBoolConversion(Src);
541
542  assert(isa<llvm::PointerType>(Src->getType()));
543  return EmitPointerToBoolConversion(Src);
544}
545
546/// EmitScalarConversion - Emit a conversion from the specified type to the
547/// specified destination type, both of which are LLVM scalar types.
548Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                               QualType DstType) {
550  SrcType = CGF.getContext().getCanonicalType(SrcType);
551  DstType = CGF.getContext().getCanonicalType(DstType);
552  if (SrcType == DstType) return Src;
553
554  if (DstType->isVoidType()) return 0;
555
556  llvm::Type *SrcTy = Src->getType();
557
558  // Floating casts might be a bit special: if we're doing casts to / from half
559  // FP, we should go via special intrinsics.
560  if (SrcType->isHalfType()) {
561    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
562    SrcType = CGF.getContext().FloatTy;
563    SrcTy = llvm::Type::getFloatTy(VMContext);
564  }
565
566  // Handle conversions to bool first, they are special: comparisons against 0.
567  if (DstType->isBooleanType())
568    return EmitConversionToBool(Src, SrcType);
569
570  llvm::Type *DstTy = ConvertType(DstType);
571
572  // Ignore conversions like int -> uint.
573  if (SrcTy == DstTy)
574    return Src;
575
576  // Handle pointer conversions next: pointers can only be converted to/from
577  // other pointers and integers. Check for pointer types in terms of LLVM, as
578  // some native types (like Obj-C id) may map to a pointer type.
579  if (isa<llvm::PointerType>(DstTy)) {
580    // The source value may be an integer, or a pointer.
581    if (isa<llvm::PointerType>(SrcTy))
582      return Builder.CreateBitCast(Src, DstTy, "conv");
583
584    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
585    // First, convert to the correct width so that we control the kind of
586    // extension.
587    llvm::Type *MiddleTy = CGF.IntPtrTy;
588    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
589    llvm::Value* IntResult =
590        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
591    // Then, cast to pointer.
592    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
593  }
594
595  if (isa<llvm::PointerType>(SrcTy)) {
596    // Must be an ptr to int cast.
597    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
598    return Builder.CreatePtrToInt(Src, DstTy, "conv");
599  }
600
601  // A scalar can be splatted to an extended vector of the same element type
602  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
603    // Cast the scalar to element type
604    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
605    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
606
607    // Insert the element in element zero of an undef vector
608    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
609    llvm::Value *Idx = Builder.getInt32(0);
610    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
611
612    // Splat the element across to all elements
613    SmallVector<llvm::Constant*, 16> Args;
614    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
615    for (unsigned i = 0; i != NumElements; ++i)
616      Args.push_back(Builder.getInt32(0));
617
618    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
619    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
620    return Yay;
621  }
622
623  // Allow bitcast from vector to integer/fp of the same size.
624  if (isa<llvm::VectorType>(SrcTy) ||
625      isa<llvm::VectorType>(DstTy))
626    return Builder.CreateBitCast(Src, DstTy, "conv");
627
628  // Finally, we have the arithmetic types: real int/float.
629  Value *Res = NULL;
630  llvm::Type *ResTy = DstTy;
631
632  // Cast to half via float
633  if (DstType->isHalfType())
634    DstTy = llvm::Type::getFloatTy(VMContext);
635
636  if (isa<llvm::IntegerType>(SrcTy)) {
637    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
638    if (isa<llvm::IntegerType>(DstTy))
639      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
640    else if (InputSigned)
641      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
642    else
643      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
644  } else if (isa<llvm::IntegerType>(DstTy)) {
645    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
646    if (DstType->isSignedIntegerOrEnumerationType())
647      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
648    else
649      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
650  } else {
651    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
652           "Unknown real conversion");
653    if (DstTy->getTypeID() < SrcTy->getTypeID())
654      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
655    else
656      Res = Builder.CreateFPExt(Src, DstTy, "conv");
657  }
658
659  if (DstTy != ResTy) {
660    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
661    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
662  }
663
664  return Res;
665}
666
667/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
668/// type to the specified destination type, where the destination type is an
669/// LLVM scalar type.
670Value *ScalarExprEmitter::
671EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
672                              QualType SrcTy, QualType DstTy) {
673  // Get the source element type.
674  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
675
676  // Handle conversions to bool first, they are special: comparisons against 0.
677  if (DstTy->isBooleanType()) {
678    //  Complex != 0  -> (Real != 0) | (Imag != 0)
679    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
680    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
681    return Builder.CreateOr(Src.first, Src.second, "tobool");
682  }
683
684  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
685  // the imaginary part of the complex value is discarded and the value of the
686  // real part is converted according to the conversion rules for the
687  // corresponding real type.
688  return EmitScalarConversion(Src.first, SrcTy, DstTy);
689}
690
691Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
692  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
693    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
694
695  return llvm::Constant::getNullValue(ConvertType(Ty));
696}
697
698//===----------------------------------------------------------------------===//
699//                            Visitor Methods
700//===----------------------------------------------------------------------===//
701
702Value *ScalarExprEmitter::VisitExpr(Expr *E) {
703  CGF.ErrorUnsupported(E, "scalar expression");
704  if (E->getType()->isVoidType())
705    return 0;
706  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
707}
708
709Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
710  // Vector Mask Case
711  if (E->getNumSubExprs() == 2 ||
712      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
713    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
714    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
715    Value *Mask;
716
717    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
718    unsigned LHSElts = LTy->getNumElements();
719
720    if (E->getNumSubExprs() == 3) {
721      Mask = CGF.EmitScalarExpr(E->getExpr(2));
722
723      // Shuffle LHS & RHS into one input vector.
724      SmallVector<llvm::Constant*, 32> concat;
725      for (unsigned i = 0; i != LHSElts; ++i) {
726        concat.push_back(Builder.getInt32(2*i));
727        concat.push_back(Builder.getInt32(2*i+1));
728      }
729
730      Value* CV = llvm::ConstantVector::get(concat);
731      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
732      LHSElts *= 2;
733    } else {
734      Mask = RHS;
735    }
736
737    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
738    llvm::Constant* EltMask;
739
740    // Treat vec3 like vec4.
741    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
742      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
743                                       (1 << llvm::Log2_32(LHSElts+2))-1);
744    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
745      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                       (1 << llvm::Log2_32(LHSElts+1))-1);
747    else
748      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
749                                       (1 << llvm::Log2_32(LHSElts))-1);
750
751    // Mask off the high bits of each shuffle index.
752    SmallVector<llvm::Constant *, 32> MaskV;
753    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
754      MaskV.push_back(EltMask);
755
756    Value* MaskBits = llvm::ConstantVector::get(MaskV);
757    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
758
759    // newv = undef
760    // mask = mask & maskbits
761    // for each elt
762    //   n = extract mask i
763    //   x = extract val n
764    //   newv = insert newv, x, i
765    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
766                                                        MTy->getNumElements());
767    Value* NewV = llvm::UndefValue::get(RTy);
768    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
769      Value *Indx = Builder.getInt32(i);
770      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
771      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
772
773      // Handle vec3 special since the index will be off by one for the RHS.
774      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
775        Value *cmpIndx, *newIndx;
776        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
777                                        "cmp_shuf_idx");
778        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
779        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
780      }
781      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
782      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
783    }
784    return NewV;
785  }
786
787  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
788  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
789
790  // Handle vec3 special since the index will be off by one for the RHS.
791  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
792  SmallVector<llvm::Constant*, 32> indices;
793  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
794    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
795    if (VTy->getNumElements() == 3 && Idx > 3)
796      Idx -= 1;
797    indices.push_back(Builder.getInt32(Idx));
798  }
799
800  Value *SV = llvm::ConstantVector::get(indices);
801  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
802}
803Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
804  llvm::APSInt Value;
805  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
806    if (E->isArrow())
807      CGF.EmitScalarExpr(E->getBase());
808    else
809      EmitLValue(E->getBase());
810    return Builder.getInt(Value);
811  }
812
813  // Emit debug info for aggregate now, if it was delayed to reduce
814  // debug info size.
815  CGDebugInfo *DI = CGF.getDebugInfo();
816  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
817    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
818    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
819      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
820        DI->getOrCreateRecordType(PTy->getPointeeType(),
821                                  M->getParent()->getLocation());
822  }
823  return EmitLoadOfLValue(E);
824}
825
826Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
827  TestAndClearIgnoreResultAssign();
828
829  // Emit subscript expressions in rvalue context's.  For most cases, this just
830  // loads the lvalue formed by the subscript expr.  However, we have to be
831  // careful, because the base of a vector subscript is occasionally an rvalue,
832  // so we can't get it as an lvalue.
833  if (!E->getBase()->getType()->isVectorType())
834    return EmitLoadOfLValue(E);
835
836  // Handle the vector case.  The base must be a vector, the index must be an
837  // integer value.
838  Value *Base = Visit(E->getBase());
839  Value *Idx  = Visit(E->getIdx());
840  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
841  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
842  return Builder.CreateExtractElement(Base, Idx, "vecext");
843}
844
845static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
846                                  unsigned Off, llvm::Type *I32Ty) {
847  int MV = SVI->getMaskValue(Idx);
848  if (MV == -1)
849    return llvm::UndefValue::get(I32Ty);
850  return llvm::ConstantInt::get(I32Ty, Off+MV);
851}
852
853Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
854  bool Ignore = TestAndClearIgnoreResultAssign();
855  (void)Ignore;
856  assert (Ignore == false && "init list ignored");
857  unsigned NumInitElements = E->getNumInits();
858
859  if (E->hadArrayRangeDesignator())
860    CGF.ErrorUnsupported(E, "GNU array range designator extension");
861
862  llvm::VectorType *VType =
863    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
864
865  if (!VType) {
866    if (NumInitElements == 0) {
867      // C++11 value-initialization for the scalar.
868      return EmitNullValue(E->getType());
869    }
870    // We have a scalar in braces. Just use the first element.
871    return Visit(E->getInit(0));
872  }
873
874  unsigned ResElts = VType->getNumElements();
875
876  // Loop over initializers collecting the Value for each, and remembering
877  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
878  // us to fold the shuffle for the swizzle into the shuffle for the vector
879  // initializer, since LLVM optimizers generally do not want to touch
880  // shuffles.
881  unsigned CurIdx = 0;
882  bool VIsUndefShuffle = false;
883  llvm::Value *V = llvm::UndefValue::get(VType);
884  for (unsigned i = 0; i != NumInitElements; ++i) {
885    Expr *IE = E->getInit(i);
886    Value *Init = Visit(IE);
887    SmallVector<llvm::Constant*, 16> Args;
888
889    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
890
891    // Handle scalar elements.  If the scalar initializer is actually one
892    // element of a different vector of the same width, use shuffle instead of
893    // extract+insert.
894    if (!VVT) {
895      if (isa<ExtVectorElementExpr>(IE)) {
896        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
897
898        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
899          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
900          Value *LHS = 0, *RHS = 0;
901          if (CurIdx == 0) {
902            // insert into undef -> shuffle (src, undef)
903            Args.push_back(C);
904            for (unsigned j = 1; j != ResElts; ++j)
905              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
906
907            LHS = EI->getVectorOperand();
908            RHS = V;
909            VIsUndefShuffle = true;
910          } else if (VIsUndefShuffle) {
911            // insert into undefshuffle && size match -> shuffle (v, src)
912            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
913            for (unsigned j = 0; j != CurIdx; ++j)
914              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
915            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
916            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
917              Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
918
919            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
920            RHS = EI->getVectorOperand();
921            VIsUndefShuffle = false;
922          }
923          if (!Args.empty()) {
924            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
925            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
926            ++CurIdx;
927            continue;
928          }
929        }
930      }
931      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
932                                      "vecinit");
933      VIsUndefShuffle = false;
934      ++CurIdx;
935      continue;
936    }
937
938    unsigned InitElts = VVT->getNumElements();
939
940    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
941    // input is the same width as the vector being constructed, generate an
942    // optimized shuffle of the swizzle input into the result.
943    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
944    if (isa<ExtVectorElementExpr>(IE)) {
945      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
946      Value *SVOp = SVI->getOperand(0);
947      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
948
949      if (OpTy->getNumElements() == ResElts) {
950        for (unsigned j = 0; j != CurIdx; ++j) {
951          // If the current vector initializer is a shuffle with undef, merge
952          // this shuffle directly into it.
953          if (VIsUndefShuffle) {
954            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
955                                      CGF.Int32Ty));
956          } else {
957            Args.push_back(Builder.getInt32(j));
958          }
959        }
960        for (unsigned j = 0, je = InitElts; j != je; ++j)
961          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
962        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
963          Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
964
965        if (VIsUndefShuffle)
966          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
967
968        Init = SVOp;
969      }
970    }
971
972    // Extend init to result vector length, and then shuffle its contribution
973    // to the vector initializer into V.
974    if (Args.empty()) {
975      for (unsigned j = 0; j != InitElts; ++j)
976        Args.push_back(Builder.getInt32(j));
977      for (unsigned j = InitElts; j != ResElts; ++j)
978        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
979      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
980      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
981                                         Mask, "vext");
982
983      Args.clear();
984      for (unsigned j = 0; j != CurIdx; ++j)
985        Args.push_back(Builder.getInt32(j));
986      for (unsigned j = 0; j != InitElts; ++j)
987        Args.push_back(Builder.getInt32(j+Offset));
988      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
989        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
990    }
991
992    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
993    // merging subsequent shuffles into this one.
994    if (CurIdx == 0)
995      std::swap(V, Init);
996    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
997    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
998    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
999    CurIdx += InitElts;
1000  }
1001
1002  // FIXME: evaluate codegen vs. shuffling against constant null vector.
1003  // Emit remaining default initializers.
1004  llvm::Type *EltTy = VType->getElementType();
1005
1006  // Emit remaining default initializers
1007  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1008    Value *Idx = Builder.getInt32(CurIdx);
1009    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1010    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1011  }
1012  return V;
1013}
1014
1015static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1016  const Expr *E = CE->getSubExpr();
1017
1018  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1019    return false;
1020
1021  if (isa<CXXThisExpr>(E)) {
1022    // We always assume that 'this' is never null.
1023    return false;
1024  }
1025
1026  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1027    // And that glvalue casts are never null.
1028    if (ICE->getValueKind() != VK_RValue)
1029      return false;
1030  }
1031
1032  return true;
1033}
1034
1035// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1036// have to handle a more broad range of conversions than explicit casts, as they
1037// handle things like function to ptr-to-function decay etc.
1038Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1039  Expr *E = CE->getSubExpr();
1040  QualType DestTy = CE->getType();
1041  CastKind Kind = CE->getCastKind();
1042
1043  if (!DestTy->isVoidType())
1044    TestAndClearIgnoreResultAssign();
1045
1046  // Since almost all cast kinds apply to scalars, this switch doesn't have
1047  // a default case, so the compiler will warn on a missing case.  The cases
1048  // are in the same order as in the CastKind enum.
1049  switch (Kind) {
1050  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1051
1052  case CK_LValueBitCast:
1053  case CK_ObjCObjectLValueCast: {
1054    Value *V = EmitLValue(E).getAddress();
1055    V = Builder.CreateBitCast(V,
1056                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1057    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1058  }
1059
1060  case CK_CPointerToObjCPointerCast:
1061  case CK_BlockPointerToObjCPointerCast:
1062  case CK_AnyPointerToBlockPointerCast:
1063  case CK_BitCast: {
1064    Value *Src = Visit(const_cast<Expr*>(E));
1065    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1066  }
1067  case CK_AtomicToNonAtomic:
1068  case CK_NonAtomicToAtomic:
1069  case CK_NoOp:
1070  case CK_UserDefinedConversion:
1071    return Visit(const_cast<Expr*>(E));
1072
1073  case CK_BaseToDerived: {
1074    const CXXRecordDecl *DerivedClassDecl =
1075      DestTy->getCXXRecordDeclForPointerType();
1076
1077    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1078                                        CE->path_begin(), CE->path_end(),
1079                                        ShouldNullCheckClassCastValue(CE));
1080  }
1081  case CK_UncheckedDerivedToBase:
1082  case CK_DerivedToBase: {
1083    const RecordType *DerivedClassTy =
1084      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1085    CXXRecordDecl *DerivedClassDecl =
1086      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1087
1088    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1089                                     CE->path_begin(), CE->path_end(),
1090                                     ShouldNullCheckClassCastValue(CE));
1091  }
1092  case CK_Dynamic: {
1093    Value *V = Visit(const_cast<Expr*>(E));
1094    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1095    return CGF.EmitDynamicCast(V, DCE);
1096  }
1097
1098  case CK_ArrayToPointerDecay: {
1099    assert(E->getType()->isArrayType() &&
1100           "Array to pointer decay must have array source type!");
1101
1102    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1103
1104    // Note that VLA pointers are always decayed, so we don't need to do
1105    // anything here.
1106    if (!E->getType()->isVariableArrayType()) {
1107      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1108      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1109                                 ->getElementType()) &&
1110             "Expected pointer to array");
1111      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1112    }
1113
1114    // Make sure the array decay ends up being the right type.  This matters if
1115    // the array type was of an incomplete type.
1116    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1117  }
1118  case CK_FunctionToPointerDecay:
1119    return EmitLValue(E).getAddress();
1120
1121  case CK_NullToPointer:
1122    if (MustVisitNullValue(E))
1123      (void) Visit(E);
1124
1125    return llvm::ConstantPointerNull::get(
1126                               cast<llvm::PointerType>(ConvertType(DestTy)));
1127
1128  case CK_NullToMemberPointer: {
1129    if (MustVisitNullValue(E))
1130      (void) Visit(E);
1131
1132    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1133    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1134  }
1135
1136  case CK_BaseToDerivedMemberPointer:
1137  case CK_DerivedToBaseMemberPointer: {
1138    Value *Src = Visit(E);
1139
1140    // Note that the AST doesn't distinguish between checked and
1141    // unchecked member pointer conversions, so we always have to
1142    // implement checked conversions here.  This is inefficient when
1143    // actual control flow may be required in order to perform the
1144    // check, which it is for data member pointers (but not member
1145    // function pointers on Itanium and ARM).
1146    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1147  }
1148
1149  case CK_ARCProduceObject:
1150    return CGF.EmitARCRetainScalarExpr(E);
1151  case CK_ARCConsumeObject:
1152    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1153  case CK_ARCReclaimReturnedObject: {
1154    llvm::Value *value = Visit(E);
1155    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1156    return CGF.EmitObjCConsumeObject(E->getType(), value);
1157  }
1158  case CK_ARCExtendBlockObject:
1159    return CGF.EmitARCExtendBlockObject(E);
1160
1161  case CK_FloatingRealToComplex:
1162  case CK_FloatingComplexCast:
1163  case CK_IntegralRealToComplex:
1164  case CK_IntegralComplexCast:
1165  case CK_IntegralComplexToFloatingComplex:
1166  case CK_FloatingComplexToIntegralComplex:
1167  case CK_ConstructorConversion:
1168  case CK_ToUnion:
1169    llvm_unreachable("scalar cast to non-scalar value");
1170    break;
1171
1172  case CK_LValueToRValue:
1173    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1174    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1175    return Visit(const_cast<Expr*>(E));
1176
1177  case CK_IntegralToPointer: {
1178    Value *Src = Visit(const_cast<Expr*>(E));
1179
1180    // First, convert to the correct width so that we control the kind of
1181    // extension.
1182    llvm::Type *MiddleTy = CGF.IntPtrTy;
1183    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1184    llvm::Value* IntResult =
1185      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1186
1187    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1188  }
1189  case CK_PointerToIntegral:
1190    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1191    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1192
1193  case CK_ToVoid: {
1194    CGF.EmitIgnoredExpr(E);
1195    return 0;
1196  }
1197  case CK_VectorSplat: {
1198    llvm::Type *DstTy = ConvertType(DestTy);
1199    Value *Elt = Visit(const_cast<Expr*>(E));
1200
1201    // Insert the element in element zero of an undef vector
1202    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1203    llvm::Value *Idx = Builder.getInt32(0);
1204    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1205
1206    // Splat the element across to all elements
1207    SmallVector<llvm::Constant*, 16> Args;
1208    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1209    llvm::Constant *Zero = Builder.getInt32(0);
1210    for (unsigned i = 0; i < NumElements; i++)
1211      Args.push_back(Zero);
1212
1213    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1214    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1215    return Yay;
1216  }
1217
1218  case CK_IntegralCast:
1219  case CK_IntegralToFloating:
1220  case CK_FloatingToIntegral:
1221  case CK_FloatingCast:
1222    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1223  case CK_IntegralToBoolean:
1224    return EmitIntToBoolConversion(Visit(E));
1225  case CK_PointerToBoolean:
1226    return EmitPointerToBoolConversion(Visit(E));
1227  case CK_FloatingToBoolean:
1228    return EmitFloatToBoolConversion(Visit(E));
1229  case CK_MemberPointerToBoolean: {
1230    llvm::Value *MemPtr = Visit(E);
1231    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1232    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1233  }
1234
1235  case CK_FloatingComplexToReal:
1236  case CK_IntegralComplexToReal:
1237    return CGF.EmitComplexExpr(E, false, true).first;
1238
1239  case CK_FloatingComplexToBoolean:
1240  case CK_IntegralComplexToBoolean: {
1241    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1242
1243    // TODO: kill this function off, inline appropriate case here
1244    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1245  }
1246
1247  }
1248
1249  llvm_unreachable("unknown scalar cast");
1250  return 0;
1251}
1252
1253Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1254  CodeGenFunction::StmtExprEvaluation eval(CGF);
1255  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1256    .getScalarVal();
1257}
1258
1259Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1260  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1261  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1262}
1263
1264//===----------------------------------------------------------------------===//
1265//                             Unary Operators
1266//===----------------------------------------------------------------------===//
1267
1268llvm::Value *ScalarExprEmitter::
1269EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1270                                llvm::Value *InVal,
1271                                llvm::Value *NextVal, bool IsInc) {
1272  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1273  case LangOptions::SOB_Undefined:
1274    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1275    break;
1276  case LangOptions::SOB_Defined:
1277    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1278    break;
1279  case LangOptions::SOB_Trapping:
1280    BinOpInfo BinOp;
1281    BinOp.LHS = InVal;
1282    BinOp.RHS = NextVal;
1283    BinOp.Ty = E->getType();
1284    BinOp.Opcode = BO_Add;
1285    BinOp.E = E;
1286    return EmitOverflowCheckedBinOp(BinOp);
1287  }
1288  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1289}
1290
1291llvm::Value *
1292ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1293                                           bool isInc, bool isPre) {
1294
1295  QualType type = E->getSubExpr()->getType();
1296  llvm::Value *value = EmitLoadOfLValue(LV);
1297  llvm::Value *input = value;
1298  llvm::PHINode *atomicPHI = 0;
1299
1300  int amount = (isInc ? 1 : -1);
1301
1302  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1303    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1304    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1305    Builder.CreateBr(opBB);
1306    Builder.SetInsertPoint(opBB);
1307    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1308    atomicPHI->addIncoming(value, startBB);
1309    type = atomicTy->getValueType();
1310    value = atomicPHI;
1311  }
1312
1313  // Special case of integer increment that we have to check first: bool++.
1314  // Due to promotion rules, we get:
1315  //   bool++ -> bool = bool + 1
1316  //          -> bool = (int)bool + 1
1317  //          -> bool = ((int)bool + 1 != 0)
1318  // An interesting aspect of this is that increment is always true.
1319  // Decrement does not have this property.
1320  if (isInc && type->isBooleanType()) {
1321    value = Builder.getTrue();
1322
1323  // Most common case by far: integer increment.
1324  } else if (type->isIntegerType()) {
1325
1326    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1327
1328    // Note that signed integer inc/dec with width less than int can't
1329    // overflow because of promotion rules; we're just eliding a few steps here.
1330    if (type->isSignedIntegerOrEnumerationType() &&
1331        value->getType()->getPrimitiveSizeInBits() >=
1332            CGF.IntTy->getBitWidth())
1333      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1334    else
1335      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1336
1337  // Next most common: pointer increment.
1338  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1339    QualType type = ptr->getPointeeType();
1340
1341    // VLA types don't have constant size.
1342    if (const VariableArrayType *vla
1343          = CGF.getContext().getAsVariableArrayType(type)) {
1344      llvm::Value *numElts = CGF.getVLASize(vla).first;
1345      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1346      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1347        value = Builder.CreateGEP(value, numElts, "vla.inc");
1348      else
1349        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1350
1351    // Arithmetic on function pointers (!) is just +-1.
1352    } else if (type->isFunctionType()) {
1353      llvm::Value *amt = Builder.getInt32(amount);
1354
1355      value = CGF.EmitCastToVoidPtr(value);
1356      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1357        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1358      else
1359        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1360      value = Builder.CreateBitCast(value, input->getType());
1361
1362    // For everything else, we can just do a simple increment.
1363    } else {
1364      llvm::Value *amt = Builder.getInt32(amount);
1365      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1366        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1367      else
1368        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1369    }
1370
1371  // Vector increment/decrement.
1372  } else if (type->isVectorType()) {
1373    if (type->hasIntegerRepresentation()) {
1374      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1375
1376      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1377    } else {
1378      value = Builder.CreateFAdd(
1379                  value,
1380                  llvm::ConstantFP::get(value->getType(), amount),
1381                  isInc ? "inc" : "dec");
1382    }
1383
1384  // Floating point.
1385  } else if (type->isRealFloatingType()) {
1386    // Add the inc/dec to the real part.
1387    llvm::Value *amt;
1388
1389    if (type->isHalfType()) {
1390      // Another special case: half FP increment should be done via float
1391      value =
1392    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1393                       input);
1394    }
1395
1396    if (value->getType()->isFloatTy())
1397      amt = llvm::ConstantFP::get(VMContext,
1398                                  llvm::APFloat(static_cast<float>(amount)));
1399    else if (value->getType()->isDoubleTy())
1400      amt = llvm::ConstantFP::get(VMContext,
1401                                  llvm::APFloat(static_cast<double>(amount)));
1402    else {
1403      llvm::APFloat F(static_cast<float>(amount));
1404      bool ignored;
1405      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1406                &ignored);
1407      amt = llvm::ConstantFP::get(VMContext, F);
1408    }
1409    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1410
1411    if (type->isHalfType())
1412      value =
1413       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1414                          value);
1415
1416  // Objective-C pointer types.
1417  } else {
1418    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1419    value = CGF.EmitCastToVoidPtr(value);
1420
1421    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1422    if (!isInc) size = -size;
1423    llvm::Value *sizeValue =
1424      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1425
1426    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1427      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1428    else
1429      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1430    value = Builder.CreateBitCast(value, input->getType());
1431  }
1432
1433  if (atomicPHI) {
1434    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1435    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1436    llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1437        value, llvm::SequentiallyConsistent);
1438    atomicPHI->addIncoming(old, opBB);
1439    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1440    Builder.CreateCondBr(success, contBB, opBB);
1441    Builder.SetInsertPoint(contBB);
1442    return isPre ? value : input;
1443  }
1444
1445  // Store the updated result through the lvalue.
1446  if (LV.isBitField())
1447    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1448  else
1449    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1450
1451  // If this is a postinc, return the value read from memory, otherwise use the
1452  // updated value.
1453  return isPre ? value : input;
1454}
1455
1456
1457
1458Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1459  TestAndClearIgnoreResultAssign();
1460  // Emit unary minus with EmitSub so we handle overflow cases etc.
1461  BinOpInfo BinOp;
1462  BinOp.RHS = Visit(E->getSubExpr());
1463
1464  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1465    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1466  else
1467    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1468  BinOp.Ty = E->getType();
1469  BinOp.Opcode = BO_Sub;
1470  BinOp.E = E;
1471  return EmitSub(BinOp);
1472}
1473
1474Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1475  TestAndClearIgnoreResultAssign();
1476  Value *Op = Visit(E->getSubExpr());
1477  return Builder.CreateNot(Op, "neg");
1478}
1479
1480Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1481
1482  // Perform vector logical not on comparison with zero vector.
1483  if (E->getType()->isExtVectorType()) {
1484    Value *Oper = Visit(E->getSubExpr());
1485    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1486    Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1487    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1488  }
1489
1490  // Compare operand to zero.
1491  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1492
1493  // Invert value.
1494  // TODO: Could dynamically modify easy computations here.  For example, if
1495  // the operand is an icmp ne, turn into icmp eq.
1496  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1497
1498  // ZExt result to the expr type.
1499  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1500}
1501
1502Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1503  // Try folding the offsetof to a constant.
1504  llvm::APSInt Value;
1505  if (E->EvaluateAsInt(Value, CGF.getContext()))
1506    return Builder.getInt(Value);
1507
1508  // Loop over the components of the offsetof to compute the value.
1509  unsigned n = E->getNumComponents();
1510  llvm::Type* ResultType = ConvertType(E->getType());
1511  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1512  QualType CurrentType = E->getTypeSourceInfo()->getType();
1513  for (unsigned i = 0; i != n; ++i) {
1514    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1515    llvm::Value *Offset = 0;
1516    switch (ON.getKind()) {
1517    case OffsetOfExpr::OffsetOfNode::Array: {
1518      // Compute the index
1519      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1520      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1521      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1522      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1523
1524      // Save the element type
1525      CurrentType =
1526          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1527
1528      // Compute the element size
1529      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1530          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1531
1532      // Multiply out to compute the result
1533      Offset = Builder.CreateMul(Idx, ElemSize);
1534      break;
1535    }
1536
1537    case OffsetOfExpr::OffsetOfNode::Field: {
1538      FieldDecl *MemberDecl = ON.getField();
1539      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1540      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1541
1542      // Compute the index of the field in its parent.
1543      unsigned i = 0;
1544      // FIXME: It would be nice if we didn't have to loop here!
1545      for (RecordDecl::field_iterator Field = RD->field_begin(),
1546                                      FieldEnd = RD->field_end();
1547           Field != FieldEnd; (void)++Field, ++i) {
1548        if (*Field == MemberDecl)
1549          break;
1550      }
1551      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1552
1553      // Compute the offset to the field
1554      int64_t OffsetInt = RL.getFieldOffset(i) /
1555                          CGF.getContext().getCharWidth();
1556      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1557
1558      // Save the element type.
1559      CurrentType = MemberDecl->getType();
1560      break;
1561    }
1562
1563    case OffsetOfExpr::OffsetOfNode::Identifier:
1564      llvm_unreachable("dependent __builtin_offsetof");
1565
1566    case OffsetOfExpr::OffsetOfNode::Base: {
1567      if (ON.getBase()->isVirtual()) {
1568        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1569        continue;
1570      }
1571
1572      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1573      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1574
1575      // Save the element type.
1576      CurrentType = ON.getBase()->getType();
1577
1578      // Compute the offset to the base.
1579      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1580      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1581      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1582                          CGF.getContext().getCharWidth();
1583      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1584      break;
1585    }
1586    }
1587    Result = Builder.CreateAdd(Result, Offset);
1588  }
1589  return Result;
1590}
1591
1592/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1593/// argument of the sizeof expression as an integer.
1594Value *
1595ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1596                              const UnaryExprOrTypeTraitExpr *E) {
1597  QualType TypeToSize = E->getTypeOfArgument();
1598  if (E->getKind() == UETT_SizeOf) {
1599    if (const VariableArrayType *VAT =
1600          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1601      if (E->isArgumentType()) {
1602        // sizeof(type) - make sure to emit the VLA size.
1603        CGF.EmitVariablyModifiedType(TypeToSize);
1604      } else {
1605        // C99 6.5.3.4p2: If the argument is an expression of type
1606        // VLA, it is evaluated.
1607        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1608      }
1609
1610      QualType eltType;
1611      llvm::Value *numElts;
1612      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1613
1614      llvm::Value *size = numElts;
1615
1616      // Scale the number of non-VLA elements by the non-VLA element size.
1617      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1618      if (!eltSize.isOne())
1619        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1620
1621      return size;
1622    }
1623  }
1624
1625  // If this isn't sizeof(vla), the result must be constant; use the constant
1626  // folding logic so we don't have to duplicate it here.
1627  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1628}
1629
1630Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1631  Expr *Op = E->getSubExpr();
1632  if (Op->getType()->isAnyComplexType()) {
1633    // If it's an l-value, load through the appropriate subobject l-value.
1634    // Note that we have to ask E because Op might be an l-value that
1635    // this won't work for, e.g. an Obj-C property.
1636    if (E->isGLValue())
1637      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1638
1639    // Otherwise, calculate and project.
1640    return CGF.EmitComplexExpr(Op, false, true).first;
1641  }
1642
1643  return Visit(Op);
1644}
1645
1646Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1647  Expr *Op = E->getSubExpr();
1648  if (Op->getType()->isAnyComplexType()) {
1649    // If it's an l-value, load through the appropriate subobject l-value.
1650    // Note that we have to ask E because Op might be an l-value that
1651    // this won't work for, e.g. an Obj-C property.
1652    if (Op->isGLValue())
1653      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1654
1655    // Otherwise, calculate and project.
1656    return CGF.EmitComplexExpr(Op, true, false).second;
1657  }
1658
1659  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1660  // effects are evaluated, but not the actual value.
1661  CGF.EmitScalarExpr(Op, true);
1662  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1663}
1664
1665//===----------------------------------------------------------------------===//
1666//                           Binary Operators
1667//===----------------------------------------------------------------------===//
1668
1669BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1670  TestAndClearIgnoreResultAssign();
1671  BinOpInfo Result;
1672  Result.LHS = Visit(E->getLHS());
1673  Result.RHS = Visit(E->getRHS());
1674  Result.Ty  = E->getType();
1675  Result.Opcode = E->getOpcode();
1676  Result.E = E;
1677  return Result;
1678}
1679
1680LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1681                                              const CompoundAssignOperator *E,
1682                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1683                                                   Value *&Result) {
1684  QualType LHSTy = E->getLHS()->getType();
1685  BinOpInfo OpInfo;
1686
1687  if (E->getComputationResultType()->isAnyComplexType()) {
1688    // This needs to go through the complex expression emitter, but it's a tad
1689    // complicated to do that... I'm leaving it out for now.  (Note that we do
1690    // actually need the imaginary part of the RHS for multiplication and
1691    // division.)
1692    CGF.ErrorUnsupported(E, "complex compound assignment");
1693    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1694    return LValue();
1695  }
1696
1697  // Emit the RHS first.  __block variables need to have the rhs evaluated
1698  // first, plus this should improve codegen a little.
1699  OpInfo.RHS = Visit(E->getRHS());
1700  OpInfo.Ty = E->getComputationResultType();
1701  OpInfo.Opcode = E->getOpcode();
1702  OpInfo.E = E;
1703  // Load/convert the LHS.
1704  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1705  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1706  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1707                                    E->getComputationLHSType());
1708
1709  llvm::PHINode *atomicPHI = 0;
1710  if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1711    // FIXME: For floating point types, we should be saving and restoring the
1712    // floating point environment in the loop.
1713    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1714    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1715    Builder.CreateBr(opBB);
1716    Builder.SetInsertPoint(opBB);
1717    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1718    atomicPHI->addIncoming(OpInfo.LHS, startBB);
1719    OpInfo.Ty = atomicTy->getValueType();
1720    OpInfo.LHS = atomicPHI;
1721  }
1722
1723  // Expand the binary operator.
1724  Result = (this->*Func)(OpInfo);
1725
1726  // Convert the result back to the LHS type.
1727  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1728
1729  if (atomicPHI) {
1730    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1731    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1732    llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1733        Result, llvm::SequentiallyConsistent);
1734    atomicPHI->addIncoming(old, opBB);
1735    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1736    Builder.CreateCondBr(success, contBB, opBB);
1737    Builder.SetInsertPoint(contBB);
1738    return LHSLV;
1739  }
1740
1741  // Store the result value into the LHS lvalue. Bit-fields are handled
1742  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1743  // 'An assignment expression has the value of the left operand after the
1744  // assignment...'.
1745  if (LHSLV.isBitField())
1746    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1747  else
1748    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1749
1750  return LHSLV;
1751}
1752
1753Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1754                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1755  bool Ignore = TestAndClearIgnoreResultAssign();
1756  Value *RHS;
1757  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1758
1759  // If the result is clearly ignored, return now.
1760  if (Ignore)
1761    return 0;
1762
1763  // The result of an assignment in C is the assigned r-value.
1764  if (!CGF.getContext().getLangOptions().CPlusPlus)
1765    return RHS;
1766
1767  // If the lvalue is non-volatile, return the computed value of the assignment.
1768  if (!LHS.isVolatileQualified())
1769    return RHS;
1770
1771  // Otherwise, reload the value.
1772  return EmitLoadOfLValue(LHS);
1773}
1774
1775void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1776     					    const BinOpInfo &Ops,
1777				     	    llvm::Value *Zero, bool isDiv) {
1778  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1779  llvm::BasicBlock *contBB =
1780    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1781                         llvm::next(insertPt));
1782  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1783
1784  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1785
1786  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1787    llvm::Value *IntMin =
1788      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1789    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1790
1791    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1792    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1793    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1794    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1795    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1796                         overflowBB, contBB);
1797  } else {
1798    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1799                             overflowBB, contBB);
1800  }
1801  EmitOverflowBB(overflowBB);
1802  Builder.SetInsertPoint(contBB);
1803}
1804
1805Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1806  if (isTrapvOverflowBehavior()) {
1807    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1808
1809    if (Ops.Ty->isIntegerType())
1810      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1811    else if (Ops.Ty->isRealFloatingType()) {
1812      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1813      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1814                                                       llvm::next(insertPt));
1815      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1816                                                          CGF.CurFn);
1817      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1818                               overflowBB, DivCont);
1819      EmitOverflowBB(overflowBB);
1820      Builder.SetInsertPoint(DivCont);
1821    }
1822  }
1823  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1824    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1825    if (CGF.getContext().getLangOptions().OpenCL) {
1826      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1827      llvm::Type *ValTy = Val->getType();
1828      if (ValTy->isFloatTy() ||
1829          (isa<llvm::VectorType>(ValTy) &&
1830           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1831        CGF.SetFPAccuracy(Val, 5, 2);
1832    }
1833    return Val;
1834  }
1835  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1836    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1837  else
1838    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1839}
1840
1841Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1842  // Rem in C can't be a floating point type: C99 6.5.5p2.
1843  if (isTrapvOverflowBehavior()) {
1844    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1845
1846    if (Ops.Ty->isIntegerType())
1847      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1848  }
1849
1850  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1851    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1852  else
1853    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1854}
1855
1856Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1857  unsigned IID;
1858  unsigned OpID = 0;
1859
1860  switch (Ops.Opcode) {
1861  case BO_Add:
1862  case BO_AddAssign:
1863    OpID = 1;
1864    IID = llvm::Intrinsic::sadd_with_overflow;
1865    break;
1866  case BO_Sub:
1867  case BO_SubAssign:
1868    OpID = 2;
1869    IID = llvm::Intrinsic::ssub_with_overflow;
1870    break;
1871  case BO_Mul:
1872  case BO_MulAssign:
1873    OpID = 3;
1874    IID = llvm::Intrinsic::smul_with_overflow;
1875    break;
1876  default:
1877    llvm_unreachable("Unsupported operation for overflow detection");
1878    IID = 0;
1879  }
1880  OpID <<= 1;
1881  OpID |= 1;
1882
1883  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1884
1885  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1886
1887  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1888  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1889  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1890
1891  // Branch in case of overflow.
1892  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1893  llvm::Function::iterator insertPt = initialBB;
1894  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1895                                                      llvm::next(insertPt));
1896  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1897
1898  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1899
1900  // Handle overflow with llvm.trap.
1901  const std::string *handlerName =
1902    &CGF.getContext().getLangOptions().OverflowHandler;
1903  if (handlerName->empty()) {
1904    EmitOverflowBB(overflowBB);
1905    Builder.SetInsertPoint(continueBB);
1906    return result;
1907  }
1908
1909  // If an overflow handler is set, then we want to call it and then use its
1910  // result, if it returns.
1911  Builder.SetInsertPoint(overflowBB);
1912
1913  // Get the overflow handler.
1914  llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1915  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1916  llvm::FunctionType *handlerTy =
1917      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1918  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1919
1920  // Sign extend the args to 64-bit, so that we can use the same handler for
1921  // all types of overflow.
1922  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1923  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1924
1925  // Call the handler with the two arguments, the operation, and the size of
1926  // the result.
1927  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1928      Builder.getInt8(OpID),
1929      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1930
1931  // Truncate the result back to the desired size.
1932  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1933  Builder.CreateBr(continueBB);
1934
1935  Builder.SetInsertPoint(continueBB);
1936  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1937  phi->addIncoming(result, initialBB);
1938  phi->addIncoming(handlerResult, overflowBB);
1939
1940  return phi;
1941}
1942
1943/// Emit pointer + index arithmetic.
1944static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1945                                    const BinOpInfo &op,
1946                                    bool isSubtraction) {
1947  // Must have binary (not unary) expr here.  Unary pointer
1948  // increment/decrement doesn't use this path.
1949  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1950
1951  Value *pointer = op.LHS;
1952  Expr *pointerOperand = expr->getLHS();
1953  Value *index = op.RHS;
1954  Expr *indexOperand = expr->getRHS();
1955
1956  // In a subtraction, the LHS is always the pointer.
1957  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1958    std::swap(pointer, index);
1959    std::swap(pointerOperand, indexOperand);
1960  }
1961
1962  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1963  if (width != CGF.PointerWidthInBits) {
1964    // Zero-extend or sign-extend the pointer value according to
1965    // whether the index is signed or not.
1966    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1967    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1968                                      "idx.ext");
1969  }
1970
1971  // If this is subtraction, negate the index.
1972  if (isSubtraction)
1973    index = CGF.Builder.CreateNeg(index, "idx.neg");
1974
1975  const PointerType *pointerType
1976    = pointerOperand->getType()->getAs<PointerType>();
1977  if (!pointerType) {
1978    QualType objectType = pointerOperand->getType()
1979                                        ->castAs<ObjCObjectPointerType>()
1980                                        ->getPointeeType();
1981    llvm::Value *objectSize
1982      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1983
1984    index = CGF.Builder.CreateMul(index, objectSize);
1985
1986    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1987    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1988    return CGF.Builder.CreateBitCast(result, pointer->getType());
1989  }
1990
1991  QualType elementType = pointerType->getPointeeType();
1992  if (const VariableArrayType *vla
1993        = CGF.getContext().getAsVariableArrayType(elementType)) {
1994    // The element count here is the total number of non-VLA elements.
1995    llvm::Value *numElements = CGF.getVLASize(vla).first;
1996
1997    // Effectively, the multiply by the VLA size is part of the GEP.
1998    // GEP indexes are signed, and scaling an index isn't permitted to
1999    // signed-overflow, so we use the same semantics for our explicit
2000    // multiply.  We suppress this if overflow is not undefined behavior.
2001    if (CGF.getLangOptions().isSignedOverflowDefined()) {
2002      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2003      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2004    } else {
2005      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2006      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2007    }
2008    return pointer;
2009  }
2010
2011  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2012  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2013  // future proof.
2014  if (elementType->isVoidType() || elementType->isFunctionType()) {
2015    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2016    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2017    return CGF.Builder.CreateBitCast(result, pointer->getType());
2018  }
2019
2020  if (CGF.getLangOptions().isSignedOverflowDefined())
2021    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2022
2023  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2024}
2025
2026Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2027  if (op.LHS->getType()->isPointerTy() ||
2028      op.RHS->getType()->isPointerTy())
2029    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2030
2031  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2032    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2033    case LangOptions::SOB_Undefined:
2034      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2035    case LangOptions::SOB_Defined:
2036      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2037    case LangOptions::SOB_Trapping:
2038      return EmitOverflowCheckedBinOp(op);
2039    }
2040  }
2041
2042  if (op.LHS->getType()->isFPOrFPVectorTy())
2043    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2044
2045  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2046}
2047
2048Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2049  // The LHS is always a pointer if either side is.
2050  if (!op.LHS->getType()->isPointerTy()) {
2051    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2052      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2053      case LangOptions::SOB_Undefined:
2054        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2055      case LangOptions::SOB_Defined:
2056        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2057      case LangOptions::SOB_Trapping:
2058        return EmitOverflowCheckedBinOp(op);
2059      }
2060    }
2061
2062    if (op.LHS->getType()->isFPOrFPVectorTy())
2063      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2064
2065    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2066  }
2067
2068  // If the RHS is not a pointer, then we have normal pointer
2069  // arithmetic.
2070  if (!op.RHS->getType()->isPointerTy())
2071    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2072
2073  // Otherwise, this is a pointer subtraction.
2074
2075  // Do the raw subtraction part.
2076  llvm::Value *LHS
2077    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2078  llvm::Value *RHS
2079    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2080  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2081
2082  // Okay, figure out the element size.
2083  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2084  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2085
2086  llvm::Value *divisor = 0;
2087
2088  // For a variable-length array, this is going to be non-constant.
2089  if (const VariableArrayType *vla
2090        = CGF.getContext().getAsVariableArrayType(elementType)) {
2091    llvm::Value *numElements;
2092    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2093
2094    divisor = numElements;
2095
2096    // Scale the number of non-VLA elements by the non-VLA element size.
2097    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2098    if (!eltSize.isOne())
2099      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2100
2101  // For everything elese, we can just compute it, safe in the
2102  // assumption that Sema won't let anything through that we can't
2103  // safely compute the size of.
2104  } else {
2105    CharUnits elementSize;
2106    // Handle GCC extension for pointer arithmetic on void* and
2107    // function pointer types.
2108    if (elementType->isVoidType() || elementType->isFunctionType())
2109      elementSize = CharUnits::One();
2110    else
2111      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2112
2113    // Don't even emit the divide for element size of 1.
2114    if (elementSize.isOne())
2115      return diffInChars;
2116
2117    divisor = CGF.CGM.getSize(elementSize);
2118  }
2119
2120  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2121  // pointer difference in C is only defined in the case where both operands
2122  // are pointing to elements of an array.
2123  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2124}
2125
2126Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2127  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2128  // RHS to the same size as the LHS.
2129  Value *RHS = Ops.RHS;
2130  if (Ops.LHS->getType() != RHS->getType())
2131    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2132
2133  if (CGF.CatchUndefined
2134      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2135    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2136    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2137    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2138                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2139                             Cont, CGF.getTrapBB());
2140    CGF.EmitBlock(Cont);
2141  }
2142
2143  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2144}
2145
2146Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2147  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2148  // RHS to the same size as the LHS.
2149  Value *RHS = Ops.RHS;
2150  if (Ops.LHS->getType() != RHS->getType())
2151    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2152
2153  if (CGF.CatchUndefined
2154      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2155    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2156    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2157    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2158                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2159                             Cont, CGF.getTrapBB());
2160    CGF.EmitBlock(Cont);
2161  }
2162
2163  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2164    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2165  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2166}
2167
2168enum IntrinsicType { VCMPEQ, VCMPGT };
2169// return corresponding comparison intrinsic for given vector type
2170static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2171                                        BuiltinType::Kind ElemKind) {
2172  switch (ElemKind) {
2173  default: llvm_unreachable("unexpected element type");
2174  case BuiltinType::Char_U:
2175  case BuiltinType::UChar:
2176    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2177                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2178    break;
2179  case BuiltinType::Char_S:
2180  case BuiltinType::SChar:
2181    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2182                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2183    break;
2184  case BuiltinType::UShort:
2185    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2186                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2187    break;
2188  case BuiltinType::Short:
2189    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2190                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2191    break;
2192  case BuiltinType::UInt:
2193  case BuiltinType::ULong:
2194    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2195                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2196    break;
2197  case BuiltinType::Int:
2198  case BuiltinType::Long:
2199    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2200                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2201    break;
2202  case BuiltinType::Float:
2203    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2204                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2205    break;
2206  }
2207  return llvm::Intrinsic::not_intrinsic;
2208}
2209
2210Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2211                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2212  TestAndClearIgnoreResultAssign();
2213  Value *Result;
2214  QualType LHSTy = E->getLHS()->getType();
2215  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2216    assert(E->getOpcode() == BO_EQ ||
2217           E->getOpcode() == BO_NE);
2218    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2219    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2220    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2221                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2222  } else if (!LHSTy->isAnyComplexType()) {
2223    Value *LHS = Visit(E->getLHS());
2224    Value *RHS = Visit(E->getRHS());
2225
2226    // If AltiVec, the comparison results in a numeric type, so we use
2227    // intrinsics comparing vectors and giving 0 or 1 as a result
2228    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2229      // constants for mapping CR6 register bits to predicate result
2230      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2231
2232      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2233
2234      // in several cases vector arguments order will be reversed
2235      Value *FirstVecArg = LHS,
2236            *SecondVecArg = RHS;
2237
2238      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2239      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2240      BuiltinType::Kind ElementKind = BTy->getKind();
2241
2242      switch(E->getOpcode()) {
2243      default: llvm_unreachable("is not a comparison operation");
2244      case BO_EQ:
2245        CR6 = CR6_LT;
2246        ID = GetIntrinsic(VCMPEQ, ElementKind);
2247        break;
2248      case BO_NE:
2249        CR6 = CR6_EQ;
2250        ID = GetIntrinsic(VCMPEQ, ElementKind);
2251        break;
2252      case BO_LT:
2253        CR6 = CR6_LT;
2254        ID = GetIntrinsic(VCMPGT, ElementKind);
2255        std::swap(FirstVecArg, SecondVecArg);
2256        break;
2257      case BO_GT:
2258        CR6 = CR6_LT;
2259        ID = GetIntrinsic(VCMPGT, ElementKind);
2260        break;
2261      case BO_LE:
2262        if (ElementKind == BuiltinType::Float) {
2263          CR6 = CR6_LT;
2264          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2265          std::swap(FirstVecArg, SecondVecArg);
2266        }
2267        else {
2268          CR6 = CR6_EQ;
2269          ID = GetIntrinsic(VCMPGT, ElementKind);
2270        }
2271        break;
2272      case BO_GE:
2273        if (ElementKind == BuiltinType::Float) {
2274          CR6 = CR6_LT;
2275          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2276        }
2277        else {
2278          CR6 = CR6_EQ;
2279          ID = GetIntrinsic(VCMPGT, ElementKind);
2280          std::swap(FirstVecArg, SecondVecArg);
2281        }
2282        break;
2283      }
2284
2285      Value *CR6Param = Builder.getInt32(CR6);
2286      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2287      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2288      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2289    }
2290
2291    if (LHS->getType()->isFPOrFPVectorTy()) {
2292      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2293                                  LHS, RHS, "cmp");
2294    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2295      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2296                                  LHS, RHS, "cmp");
2297    } else {
2298      // Unsigned integers and pointers.
2299      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2300                                  LHS, RHS, "cmp");
2301    }
2302
2303    // If this is a vector comparison, sign extend the result to the appropriate
2304    // vector integer type and return it (don't convert to bool).
2305    if (LHSTy->isVectorType())
2306      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2307
2308  } else {
2309    // Complex Comparison: can only be an equality comparison.
2310    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2311    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2312
2313    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2314
2315    Value *ResultR, *ResultI;
2316    if (CETy->isRealFloatingType()) {
2317      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2318                                   LHS.first, RHS.first, "cmp.r");
2319      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2320                                   LHS.second, RHS.second, "cmp.i");
2321    } else {
2322      // Complex comparisons can only be equality comparisons.  As such, signed
2323      // and unsigned opcodes are the same.
2324      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2325                                   LHS.first, RHS.first, "cmp.r");
2326      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2327                                   LHS.second, RHS.second, "cmp.i");
2328    }
2329
2330    if (E->getOpcode() == BO_EQ) {
2331      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2332    } else {
2333      assert(E->getOpcode() == BO_NE &&
2334             "Complex comparison other than == or != ?");
2335      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2336    }
2337  }
2338
2339  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2340}
2341
2342Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2343  bool Ignore = TestAndClearIgnoreResultAssign();
2344
2345  Value *RHS;
2346  LValue LHS;
2347
2348  switch (E->getLHS()->getType().getObjCLifetime()) {
2349  case Qualifiers::OCL_Strong:
2350    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2351    break;
2352
2353  case Qualifiers::OCL_Autoreleasing:
2354    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2355    break;
2356
2357  case Qualifiers::OCL_Weak:
2358    RHS = Visit(E->getRHS());
2359    LHS = EmitCheckedLValue(E->getLHS());
2360    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2361    break;
2362
2363  // No reason to do any of these differently.
2364  case Qualifiers::OCL_None:
2365  case Qualifiers::OCL_ExplicitNone:
2366    // __block variables need to have the rhs evaluated first, plus
2367    // this should improve codegen just a little.
2368    RHS = Visit(E->getRHS());
2369    LHS = EmitCheckedLValue(E->getLHS());
2370
2371    // Store the value into the LHS.  Bit-fields are handled specially
2372    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2373    // 'An assignment expression has the value of the left operand after
2374    // the assignment...'.
2375    if (LHS.isBitField())
2376      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2377    else
2378      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2379  }
2380
2381  // If the result is clearly ignored, return now.
2382  if (Ignore)
2383    return 0;
2384
2385  // The result of an assignment in C is the assigned r-value.
2386  if (!CGF.getContext().getLangOptions().CPlusPlus)
2387    return RHS;
2388
2389  // If the lvalue is non-volatile, return the computed value of the assignment.
2390  if (!LHS.isVolatileQualified())
2391    return RHS;
2392
2393  // Otherwise, reload the value.
2394  return EmitLoadOfLValue(LHS);
2395}
2396
2397Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2398
2399  // Perform vector logical and on comparisons with zero vectors.
2400  if (E->getType()->isVectorType()) {
2401    Value *LHS = Visit(E->getLHS());
2402    Value *RHS = Visit(E->getRHS());
2403    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2404    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2405    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2406    Value *And = Builder.CreateAnd(LHS, RHS);
2407    return Builder.CreateSExt(And, Zero->getType(), "sext");
2408  }
2409
2410  llvm::Type *ResTy = ConvertType(E->getType());
2411
2412  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2413  // If we have 1 && X, just emit X without inserting the control flow.
2414  bool LHSCondVal;
2415  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2416    if (LHSCondVal) { // If we have 1 && X, just emit X.
2417      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2418      // ZExt result to int or bool.
2419      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2420    }
2421
2422    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2423    if (!CGF.ContainsLabel(E->getRHS()))
2424      return llvm::Constant::getNullValue(ResTy);
2425  }
2426
2427  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2428  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2429
2430  CodeGenFunction::ConditionalEvaluation eval(CGF);
2431
2432  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2433  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2434
2435  // Any edges into the ContBlock are now from an (indeterminate number of)
2436  // edges from this first condition.  All of these values will be false.  Start
2437  // setting up the PHI node in the Cont Block for this.
2438  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2439                                            "", ContBlock);
2440  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2441       PI != PE; ++PI)
2442    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2443
2444  eval.begin(CGF);
2445  CGF.EmitBlock(RHSBlock);
2446  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2447  eval.end(CGF);
2448
2449  // Reaquire the RHS block, as there may be subblocks inserted.
2450  RHSBlock = Builder.GetInsertBlock();
2451
2452  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2453  // into the phi node for the edge with the value of RHSCond.
2454  if (CGF.getDebugInfo())
2455    // There is no need to emit line number for unconditional branch.
2456    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2457  CGF.EmitBlock(ContBlock);
2458  PN->addIncoming(RHSCond, RHSBlock);
2459
2460  // ZExt result to int.
2461  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2462}
2463
2464Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2465
2466  // Perform vector logical or on comparisons with zero vectors.
2467  if (E->getType()->isVectorType()) {
2468    Value *LHS = Visit(E->getLHS());
2469    Value *RHS = Visit(E->getRHS());
2470    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2471    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2472    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2473    Value *Or = Builder.CreateOr(LHS, RHS);
2474    return Builder.CreateSExt(Or, Zero->getType(), "sext");
2475  }
2476
2477  llvm::Type *ResTy = ConvertType(E->getType());
2478
2479  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2480  // If we have 0 || X, just emit X without inserting the control flow.
2481  bool LHSCondVal;
2482  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2483    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2484      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2485      // ZExt result to int or bool.
2486      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2487    }
2488
2489    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2490    if (!CGF.ContainsLabel(E->getRHS()))
2491      return llvm::ConstantInt::get(ResTy, 1);
2492  }
2493
2494  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2495  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2496
2497  CodeGenFunction::ConditionalEvaluation eval(CGF);
2498
2499  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2500  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2501
2502  // Any edges into the ContBlock are now from an (indeterminate number of)
2503  // edges from this first condition.  All of these values will be true.  Start
2504  // setting up the PHI node in the Cont Block for this.
2505  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2506                                            "", ContBlock);
2507  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2508       PI != PE; ++PI)
2509    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2510
2511  eval.begin(CGF);
2512
2513  // Emit the RHS condition as a bool value.
2514  CGF.EmitBlock(RHSBlock);
2515  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2516
2517  eval.end(CGF);
2518
2519  // Reaquire the RHS block, as there may be subblocks inserted.
2520  RHSBlock = Builder.GetInsertBlock();
2521
2522  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2523  // into the phi node for the edge with the value of RHSCond.
2524  CGF.EmitBlock(ContBlock);
2525  PN->addIncoming(RHSCond, RHSBlock);
2526
2527  // ZExt result to int.
2528  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2529}
2530
2531Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2532  CGF.EmitIgnoredExpr(E->getLHS());
2533  CGF.EnsureInsertPoint();
2534  return Visit(E->getRHS());
2535}
2536
2537//===----------------------------------------------------------------------===//
2538//                             Other Operators
2539//===----------------------------------------------------------------------===//
2540
2541/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2542/// expression is cheap enough and side-effect-free enough to evaluate
2543/// unconditionally instead of conditionally.  This is used to convert control
2544/// flow into selects in some cases.
2545static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2546                                                   CodeGenFunction &CGF) {
2547  E = E->IgnoreParens();
2548
2549  // Anything that is an integer or floating point constant is fine.
2550  if (E->isConstantInitializer(CGF.getContext(), false))
2551    return true;
2552
2553  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2554  // X and Y are local variables.
2555  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2556    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2557      if (VD->hasLocalStorage() && !(CGF.getContext()
2558                                     .getCanonicalType(VD->getType())
2559                                     .isVolatileQualified()))
2560        return true;
2561
2562  return false;
2563}
2564
2565
2566Value *ScalarExprEmitter::
2567VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2568  TestAndClearIgnoreResultAssign();
2569
2570  // Bind the common expression if necessary.
2571  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2572
2573  Expr *condExpr = E->getCond();
2574  Expr *lhsExpr = E->getTrueExpr();
2575  Expr *rhsExpr = E->getFalseExpr();
2576
2577  // If the condition constant folds and can be elided, try to avoid emitting
2578  // the condition and the dead arm.
2579  bool CondExprBool;
2580  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2581    Expr *live = lhsExpr, *dead = rhsExpr;
2582    if (!CondExprBool) std::swap(live, dead);
2583
2584    // If the dead side doesn't have labels we need, just emit the Live part.
2585    if (!CGF.ContainsLabel(dead)) {
2586      Value *Result = Visit(live);
2587
2588      // If the live part is a throw expression, it acts like it has a void
2589      // type, so evaluating it returns a null Value*.  However, a conditional
2590      // with non-void type must return a non-null Value*.
2591      if (!Result && !E->getType()->isVoidType())
2592        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2593
2594      return Result;
2595    }
2596  }
2597
2598  // OpenCL: If the condition is a vector, we can treat this condition like
2599  // the select function.
2600  if (CGF.getContext().getLangOptions().OpenCL
2601      && condExpr->getType()->isVectorType()) {
2602    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2603    llvm::Value *LHS = Visit(lhsExpr);
2604    llvm::Value *RHS = Visit(rhsExpr);
2605
2606    llvm::Type *condType = ConvertType(condExpr->getType());
2607    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2608
2609    unsigned numElem = vecTy->getNumElements();
2610    llvm::Type *elemType = vecTy->getElementType();
2611
2612    std::vector<llvm::Constant*> Zvals;
2613    for (unsigned i = 0; i < numElem; ++i)
2614      Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2615
2616    llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2617    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2618    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2619                                          llvm::VectorType::get(elemType,
2620                                                                numElem),
2621                                          "sext");
2622    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2623
2624    // Cast float to int to perform ANDs if necessary.
2625    llvm::Value *RHSTmp = RHS;
2626    llvm::Value *LHSTmp = LHS;
2627    bool wasCast = false;
2628    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2629    if (rhsVTy->getElementType()->isFloatTy()) {
2630      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2631      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2632      wasCast = true;
2633    }
2634
2635    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2636    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2637    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2638    if (wasCast)
2639      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2640
2641    return tmp5;
2642  }
2643
2644  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2645  // select instead of as control flow.  We can only do this if it is cheap and
2646  // safe to evaluate the LHS and RHS unconditionally.
2647  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2648      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2649    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2650    llvm::Value *LHS = Visit(lhsExpr);
2651    llvm::Value *RHS = Visit(rhsExpr);
2652    if (!LHS) {
2653      // If the conditional has void type, make sure we return a null Value*.
2654      assert(!RHS && "LHS and RHS types must match");
2655      return 0;
2656    }
2657    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2658  }
2659
2660  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2661  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2662  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2663
2664  CodeGenFunction::ConditionalEvaluation eval(CGF);
2665  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2666
2667  CGF.EmitBlock(LHSBlock);
2668  eval.begin(CGF);
2669  Value *LHS = Visit(lhsExpr);
2670  eval.end(CGF);
2671
2672  LHSBlock = Builder.GetInsertBlock();
2673  Builder.CreateBr(ContBlock);
2674
2675  CGF.EmitBlock(RHSBlock);
2676  eval.begin(CGF);
2677  Value *RHS = Visit(rhsExpr);
2678  eval.end(CGF);
2679
2680  RHSBlock = Builder.GetInsertBlock();
2681  CGF.EmitBlock(ContBlock);
2682
2683  // If the LHS or RHS is a throw expression, it will be legitimately null.
2684  if (!LHS)
2685    return RHS;
2686  if (!RHS)
2687    return LHS;
2688
2689  // Create a PHI node for the real part.
2690  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2691  PN->addIncoming(LHS, LHSBlock);
2692  PN->addIncoming(RHS, RHSBlock);
2693  return PN;
2694}
2695
2696Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2697  return Visit(E->getChosenSubExpr(CGF.getContext()));
2698}
2699
2700Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2701  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2702  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2703
2704  // If EmitVAArg fails, we fall back to the LLVM instruction.
2705  if (!ArgPtr)
2706    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2707
2708  // FIXME Volatility.
2709  return Builder.CreateLoad(ArgPtr);
2710}
2711
2712Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2713  return CGF.EmitBlockLiteral(block);
2714}
2715
2716Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2717  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2718  llvm::Type *DstTy = ConvertType(E->getType());
2719
2720  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2721  // a shuffle vector instead of a bitcast.
2722  llvm::Type *SrcTy = Src->getType();
2723  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2724    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2725    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2726    if ((numElementsDst == 3 && numElementsSrc == 4)
2727        || (numElementsDst == 4 && numElementsSrc == 3)) {
2728
2729
2730      // In the case of going from int4->float3, a bitcast is needed before
2731      // doing a shuffle.
2732      llvm::Type *srcElemTy =
2733      cast<llvm::VectorType>(SrcTy)->getElementType();
2734      llvm::Type *dstElemTy =
2735      cast<llvm::VectorType>(DstTy)->getElementType();
2736
2737      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2738          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2739        // Create a float type of the same size as the source or destination.
2740        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2741                                                                 numElementsSrc);
2742
2743        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2744      }
2745
2746      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2747
2748      SmallVector<llvm::Constant*, 3> Args;
2749      Args.push_back(Builder.getInt32(0));
2750      Args.push_back(Builder.getInt32(1));
2751      Args.push_back(Builder.getInt32(2));
2752
2753      if (numElementsDst == 4)
2754        Args.push_back(llvm::UndefValue::get(
2755                                             llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2756
2757      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2758
2759      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2760    }
2761  }
2762
2763  return Builder.CreateBitCast(Src, DstTy, "astype");
2764}
2765
2766Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2767  return CGF.EmitAtomicExpr(E).getScalarVal();
2768}
2769
2770//===----------------------------------------------------------------------===//
2771//                         Entry Point into this File
2772//===----------------------------------------------------------------------===//
2773
2774/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2775/// type, ignoring the result.
2776Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2777  assert(E && !hasAggregateLLVMType(E->getType()) &&
2778         "Invalid scalar expression to emit");
2779
2780  if (isa<CXXDefaultArgExpr>(E))
2781    disableDebugInfo();
2782  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2783    .Visit(const_cast<Expr*>(E));
2784  if (isa<CXXDefaultArgExpr>(E))
2785    enableDebugInfo();
2786  return V;
2787}
2788
2789/// EmitScalarConversion - Emit a conversion from the specified type to the
2790/// specified destination type, both of which are LLVM scalar types.
2791Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2792                                             QualType DstTy) {
2793  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2794         "Invalid scalar expression to emit");
2795  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2796}
2797
2798/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2799/// type to the specified destination type, where the destination type is an
2800/// LLVM scalar type.
2801Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2802                                                      QualType SrcTy,
2803                                                      QualType DstTy) {
2804  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2805         "Invalid complex -> scalar conversion");
2806  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2807                                                                DstTy);
2808}
2809
2810
2811llvm::Value *CodeGenFunction::
2812EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2813                        bool isInc, bool isPre) {
2814  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2815}
2816
2817LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2818  llvm::Value *V;
2819  // object->isa or (*object).isa
2820  // Generate code as for: *(Class*)object
2821  // build Class* type
2822  llvm::Type *ClassPtrTy = ConvertType(E->getType());
2823
2824  Expr *BaseExpr = E->getBase();
2825  if (BaseExpr->isRValue()) {
2826    V = CreateMemTemp(E->getType(), "resval");
2827    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2828    Builder.CreateStore(Src, V);
2829    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2830      MakeNaturalAlignAddrLValue(V, E->getType()));
2831  } else {
2832    if (E->isArrow())
2833      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2834    else
2835      V = EmitLValue(BaseExpr).getAddress();
2836  }
2837
2838  // build Class* type
2839  ClassPtrTy = ClassPtrTy->getPointerTo();
2840  V = Builder.CreateBitCast(V, ClassPtrTy);
2841  return MakeNaturalAlignAddrLValue(V, E->getType());
2842}
2843
2844
2845LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2846                                            const CompoundAssignOperator *E) {
2847  ScalarExprEmitter Scalar(*this);
2848  Value *Result = 0;
2849  switch (E->getOpcode()) {
2850#define COMPOUND_OP(Op)                                                       \
2851    case BO_##Op##Assign:                                                     \
2852      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2853                                             Result)
2854  COMPOUND_OP(Mul);
2855  COMPOUND_OP(Div);
2856  COMPOUND_OP(Rem);
2857  COMPOUND_OP(Add);
2858  COMPOUND_OP(Sub);
2859  COMPOUND_OP(Shl);
2860  COMPOUND_OP(Shr);
2861  COMPOUND_OP(And);
2862  COMPOUND_OP(Xor);
2863  COMPOUND_OP(Or);
2864#undef COMPOUND_OP
2865
2866  case BO_PtrMemD:
2867  case BO_PtrMemI:
2868  case BO_Mul:
2869  case BO_Div:
2870  case BO_Rem:
2871  case BO_Add:
2872  case BO_Sub:
2873  case BO_Shl:
2874  case BO_Shr:
2875  case BO_LT:
2876  case BO_GT:
2877  case BO_LE:
2878  case BO_GE:
2879  case BO_EQ:
2880  case BO_NE:
2881  case BO_And:
2882  case BO_Xor:
2883  case BO_Or:
2884  case BO_LAnd:
2885  case BO_LOr:
2886  case BO_Assign:
2887  case BO_Comma:
2888    llvm_unreachable("Not valid compound assignment operators");
2889  }
2890
2891  llvm_unreachable("Unhandled compound assignment operator");
2892}
2893