CGExprScalar.cpp revision 662174c82ef46b19a2329c7d37208e1d12dfb7b3
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/Constants.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/Support/Compiler.h"
25#include <cstdarg>
26
27using namespace clang;
28using namespace CodeGen;
29using llvm::Value;
30
31//===----------------------------------------------------------------------===//
32//                         Scalar Expression Emitter
33//===----------------------------------------------------------------------===//
34
35struct BinOpInfo {
36  Value *LHS;
37  Value *RHS;
38  QualType Ty;  // Computation Type.
39  const BinaryOperator *E;
40};
41
42namespace {
43class VISIBILITY_HIDDEN ScalarExprEmitter
44  : public StmtVisitor<ScalarExprEmitter, Value*> {
45  CodeGenFunction &CGF;
46  llvm::IRBuilder<> &Builder;
47
48public:
49
50  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
51    Builder(CGF.Builder) {
52  }
53
54  //===--------------------------------------------------------------------===//
55  //                               Utilities
56  //===--------------------------------------------------------------------===//
57
58  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
59  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
60
61  Value *EmitLoadOfLValue(LValue LV, QualType T) {
62    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
63  }
64
65  /// EmitLoadOfLValue - Given an expression with complex type that represents a
66  /// value l-value, this method emits the address of the l-value, then loads
67  /// and returns the result.
68  Value *EmitLoadOfLValue(const Expr *E) {
69    // FIXME: Volatile
70    return EmitLoadOfLValue(EmitLValue(E), E->getType());
71  }
72
73  /// EmitConversionToBool - Convert the specified expression value to a
74  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
75  Value *EmitConversionToBool(Value *Src, QualType DstTy);
76
77  /// EmitScalarConversion - Emit a conversion from the specified type to the
78  /// specified destination type, both of which are LLVM scalar types.
79  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
80
81  /// EmitComplexToScalarConversion - Emit a conversion from the specified
82  /// complex type to the specified destination type, where the destination
83  /// type is an LLVM scalar type.
84  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
85                                       QualType SrcTy, QualType DstTy);
86
87  //===--------------------------------------------------------------------===//
88  //                            Visitor Methods
89  //===--------------------------------------------------------------------===//
90
91  Value *VisitStmt(Stmt *S) {
92    S->dump(CGF.getContext().getSourceManager());
93    assert(0 && "Stmt can't have complex result type!");
94    return 0;
95  }
96  Value *VisitExpr(Expr *S);
97  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
98
99  // Leaves.
100  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
101    return llvm::ConstantInt::get(E->getValue());
102  }
103  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
104    return llvm::ConstantFP::get(E->getValue());
105  }
106  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
107    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
108  }
109  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
110    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
111  }
112  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
113    return llvm::Constant::getNullValue(ConvertType(E->getType()));
114  }
115  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
116    return llvm::ConstantInt::get(ConvertType(E->getType()),
117                                  CGF.getContext().typesAreCompatible(
118                                    E->getArgType1(), E->getArgType2()));
119  }
120  Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
121    return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
122  }
123  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
124    llvm::Value *V =
125      llvm::ConstantInt::get(llvm::Type::Int32Ty,
126                             CGF.GetIDForAddrOfLabel(E->getLabel()));
127
128    return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
129  }
130
131  // l-values.
132  Value *VisitDeclRefExpr(DeclRefExpr *E) {
133    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
134      return llvm::ConstantInt::get(EC->getInitVal());
135    return EmitLoadOfLValue(E);
136  }
137  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
138    return CGF.EmitObjCSelectorExpr(E);
139  }
140  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
141    return CGF.EmitObjCProtocolExpr(E);
142  }
143  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
144    return EmitLoadOfLValue(E);
145  }
146  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
147    return EmitLoadOfLValue(E);
148  }
149  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
150    return CGF.EmitObjCMessageExpr(E).getScalarVal();
151  }
152
153  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
154  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
155  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
156  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
157  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return EmitLoadOfLValue(E); }
158  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
159  Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
160
161  Value *VisitInitListExpr(InitListExpr *E) {
162    unsigned NumInitElements = E->getNumInits();
163
164    const llvm::VectorType *VType =
165      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
166
167    // We have a scalar in braces. Just use the first element.
168    if (!VType)
169      return Visit(E->getInit(0));
170
171    unsigned NumVectorElements = VType->getNumElements();
172    const llvm::Type *ElementType = VType->getElementType();
173
174    // Emit individual vector element stores.
175    llvm::Value *V = llvm::UndefValue::get(VType);
176
177    // Emit initializers
178    unsigned i;
179    for (i = 0; i < NumInitElements; ++i) {
180      Value *NewV = Visit(E->getInit(i));
181      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
182      V = Builder.CreateInsertElement(V, NewV, Idx);
183    }
184
185    // Emit remaining default initializers
186    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
187      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
188      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
189      V = Builder.CreateInsertElement(V, NewV, Idx);
190    }
191
192    return V;
193  }
194
195  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
196  Value *VisitCastExpr(const CastExpr *E) {
197    return EmitCastExpr(E->getSubExpr(), E->getType());
198  }
199  Value *EmitCastExpr(const Expr *E, QualType T);
200
201  Value *VisitCallExpr(const CallExpr *E) {
202    return CGF.EmitCallExpr(E).getScalarVal();
203  }
204
205  Value *VisitStmtExpr(const StmtExpr *E);
206
207  // Unary Operators.
208  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
209  Value *VisitUnaryPostDec(const UnaryOperator *E) {
210    return VisitPrePostIncDec(E, false, false);
211  }
212  Value *VisitUnaryPostInc(const UnaryOperator *E) {
213    return VisitPrePostIncDec(E, true, false);
214  }
215  Value *VisitUnaryPreDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, true);
217  }
218  Value *VisitUnaryPreInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, true);
220  }
221  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
222    return EmitLValue(E->getSubExpr()).getAddress();
223  }
224  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
225  Value *VisitUnaryPlus(const UnaryOperator *E) {
226    return Visit(E->getSubExpr());
227  }
228  Value *VisitUnaryMinus    (const UnaryOperator *E);
229  Value *VisitUnaryNot      (const UnaryOperator *E);
230  Value *VisitUnaryLNot     (const UnaryOperator *E);
231  Value *VisitUnarySizeOf   (const UnaryOperator *E) {
232    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
233  }
234  Value *VisitUnaryAlignOf  (const UnaryOperator *E) {
235    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
236  }
237  Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
238                         bool isSizeOf);
239  Value *VisitUnaryReal     (const UnaryOperator *E);
240  Value *VisitUnaryImag     (const UnaryOperator *E);
241  Value *VisitUnaryExtension(const UnaryOperator *E) {
242    return Visit(E->getSubExpr());
243  }
244  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
245  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
246    return Visit(DAE->getExpr());
247  }
248
249  // Binary Operators.
250  Value *EmitMul(const BinOpInfo &Ops) {
251    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
252  }
253  Value *EmitDiv(const BinOpInfo &Ops);
254  Value *EmitRem(const BinOpInfo &Ops);
255  Value *EmitAdd(const BinOpInfo &Ops);
256  Value *EmitSub(const BinOpInfo &Ops);
257  Value *EmitShl(const BinOpInfo &Ops);
258  Value *EmitShr(const BinOpInfo &Ops);
259  Value *EmitAnd(const BinOpInfo &Ops) {
260    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
261  }
262  Value *EmitXor(const BinOpInfo &Ops) {
263    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
264  }
265  Value *EmitOr (const BinOpInfo &Ops) {
266    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
267  }
268
269  BinOpInfo EmitBinOps(const BinaryOperator *E);
270  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
271                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
272
273  // Binary operators and binary compound assignment operators.
274#define HANDLEBINOP(OP) \
275  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
276    return Emit ## OP(EmitBinOps(E));                                      \
277  }                                                                        \
278  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
279    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
280  }
281  HANDLEBINOP(Mul);
282  HANDLEBINOP(Div);
283  HANDLEBINOP(Rem);
284  HANDLEBINOP(Add);
285  HANDLEBINOP(Sub);
286  HANDLEBINOP(Shl);
287  HANDLEBINOP(Shr);
288  HANDLEBINOP(And);
289  HANDLEBINOP(Xor);
290  HANDLEBINOP(Or);
291#undef HANDLEBINOP
292
293  // Comparisons.
294  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
295                     unsigned SICmpOpc, unsigned FCmpOpc);
296#define VISITCOMP(CODE, UI, SI, FP) \
297    Value *VisitBin##CODE(const BinaryOperator *E) { \
298      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
299                         llvm::FCmpInst::FP); }
300  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
301  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
302  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
303  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
304  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
305  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
306#undef VISITCOMP
307
308  Value *VisitBinAssign     (const BinaryOperator *E);
309
310  Value *VisitBinLAnd       (const BinaryOperator *E);
311  Value *VisitBinLOr        (const BinaryOperator *E);
312  Value *VisitBinComma      (const BinaryOperator *E);
313
314  // Other Operators.
315  Value *VisitConditionalOperator(const ConditionalOperator *CO);
316  Value *VisitChooseExpr(ChooseExpr *CE);
317  Value *VisitOverloadExpr(OverloadExpr *OE);
318  Value *VisitVAArgExpr(VAArgExpr *VE);
319  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
320    return CGF.EmitObjCStringLiteral(E);
321  }
322  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
323};
324}  // end anonymous namespace.
325
326//===----------------------------------------------------------------------===//
327//                                Utilities
328//===----------------------------------------------------------------------===//
329
330/// EmitConversionToBool - Convert the specified expression value to a
331/// boolean (i1) truth value.  This is equivalent to "Val != 0".
332Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
333  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
334
335  if (SrcType->isRealFloatingType()) {
336    // Compare against 0.0 for fp scalars.
337    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
338    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
339  }
340
341  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
342         "Unknown scalar type to convert");
343
344  // Because of the type rules of C, we often end up computing a logical value,
345  // then zero extending it to int, then wanting it as a logical value again.
346  // Optimize this common case.
347  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
348    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
349      Value *Result = ZI->getOperand(0);
350      // If there aren't any more uses, zap the instruction to save space.
351      // Note that there can be more uses, for example if this
352      // is the result of an assignment.
353      if (ZI->use_empty())
354        ZI->eraseFromParent();
355      return Result;
356    }
357  }
358
359  // Compare against an integer or pointer null.
360  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
361  return Builder.CreateICmpNE(Src, Zero, "tobool");
362}
363
364/// EmitScalarConversion - Emit a conversion from the specified type to the
365/// specified destination type, both of which are LLVM scalar types.
366Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
367                                               QualType DstType) {
368  SrcType = CGF.getContext().getCanonicalType(SrcType);
369  DstType = CGF.getContext().getCanonicalType(DstType);
370  if (SrcType == DstType) return Src;
371
372  if (DstType->isVoidType()) return 0;
373
374  // Handle conversions to bool first, they are special: comparisons against 0.
375  if (DstType->isBooleanType())
376    return EmitConversionToBool(Src, SrcType);
377
378  const llvm::Type *DstTy = ConvertType(DstType);
379
380  // Ignore conversions like int -> uint.
381  if (Src->getType() == DstTy)
382    return Src;
383
384  // Handle pointer conversions next: pointers can only be converted
385  // to/from other pointers and integers. Check for pointer types in
386  // terms of LLVM, as some native types (like Obj-C id) may map to a
387  // pointer type.
388  if (isa<llvm::PointerType>(DstTy)) {
389    // The source value may be an integer, or a pointer.
390    if (isa<llvm::PointerType>(Src->getType()))
391      return Builder.CreateBitCast(Src, DstTy, "conv");
392    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
393    return Builder.CreateIntToPtr(Src, DstTy, "conv");
394  }
395
396  if (isa<llvm::PointerType>(Src->getType())) {
397    // Must be an ptr to int cast.
398    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
399    return Builder.CreatePtrToInt(Src, DstTy, "conv");
400  }
401
402  // A scalar can be splatted to an extended vector of the same element type
403  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
404      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
405    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
406                          true);
407
408  // Allow bitcast from vector to integer/fp of the same size.
409  if (isa<llvm::VectorType>(Src->getType()) ||
410      isa<llvm::VectorType>(DstTy))
411    return Builder.CreateBitCast(Src, DstTy, "conv");
412
413  // Finally, we have the arithmetic types: real int/float.
414  if (isa<llvm::IntegerType>(Src->getType())) {
415    bool InputSigned = SrcType->isSignedIntegerType();
416    if (isa<llvm::IntegerType>(DstTy))
417      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
418    else if (InputSigned)
419      return Builder.CreateSIToFP(Src, DstTy, "conv");
420    else
421      return Builder.CreateUIToFP(Src, DstTy, "conv");
422  }
423
424  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
425  if (isa<llvm::IntegerType>(DstTy)) {
426    if (DstType->isSignedIntegerType())
427      return Builder.CreateFPToSI(Src, DstTy, "conv");
428    else
429      return Builder.CreateFPToUI(Src, DstTy, "conv");
430  }
431
432  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
433  if (DstTy->getTypeID() < Src->getType()->getTypeID())
434    return Builder.CreateFPTrunc(Src, DstTy, "conv");
435  else
436    return Builder.CreateFPExt(Src, DstTy, "conv");
437}
438
439/// EmitComplexToScalarConversion - Emit a conversion from the specified
440/// complex type to the specified destination type, where the destination
441/// type is an LLVM scalar type.
442Value *ScalarExprEmitter::
443EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
444                              QualType SrcTy, QualType DstTy) {
445  // Get the source element type.
446  SrcTy = SrcTy->getAsComplexType()->getElementType();
447
448  // Handle conversions to bool first, they are special: comparisons against 0.
449  if (DstTy->isBooleanType()) {
450    //  Complex != 0  -> (Real != 0) | (Imag != 0)
451    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
452    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
453    return Builder.CreateOr(Src.first, Src.second, "tobool");
454  }
455
456  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
457  // the imaginary part of the complex value is discarded and the value of the
458  // real part is converted according to the conversion rules for the
459  // corresponding real type.
460  return EmitScalarConversion(Src.first, SrcTy, DstTy);
461}
462
463
464//===----------------------------------------------------------------------===//
465//                            Visitor Methods
466//===----------------------------------------------------------------------===//
467
468Value *ScalarExprEmitter::VisitExpr(Expr *E) {
469  CGF.ErrorUnsupported(E, "scalar expression");
470  if (E->getType()->isVoidType())
471    return 0;
472  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
473}
474
475Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
476  llvm::SmallVector<llvm::Constant*, 32> indices;
477  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
478    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
479  }
480  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
481  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
482  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
483  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
484}
485
486Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
487  // Emit subscript expressions in rvalue context's.  For most cases, this just
488  // loads the lvalue formed by the subscript expr.  However, we have to be
489  // careful, because the base of a vector subscript is occasionally an rvalue,
490  // so we can't get it as an lvalue.
491  if (!E->getBase()->getType()->isVectorType())
492    return EmitLoadOfLValue(E);
493
494  // Handle the vector case.  The base must be a vector, the index must be an
495  // integer value.
496  Value *Base = Visit(E->getBase());
497  Value *Idx  = Visit(E->getIdx());
498
499  // FIXME: Convert Idx to i32 type.
500  return Builder.CreateExtractElement(Base, Idx, "vecext");
501}
502
503/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
504/// also handle things like function to pointer-to-function decay, and array to
505/// pointer decay.
506Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
507  const Expr *Op = E->getSubExpr();
508
509  // If this is due to array->pointer conversion, emit the array expression as
510  // an l-value.
511  if (Op->getType()->isArrayType()) {
512    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
513    // will not true when we add support for VLAs.
514    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
515
516    if (!(isa<llvm::PointerType>(V->getType()) &&
517          isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
518                               ->getElementType()))) {
519      CGF.ErrorUnsupported(E, "variable-length array cast");
520      if (E->getType()->isVoidType())
521        return 0;
522      return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
523    }
524    V = Builder.CreateStructGEP(V, 0, "arraydecay");
525
526    // The resultant pointer type can be implicitly casted to other pointer
527    // types as well (e.g. void*) and can be implicitly converted to integer.
528    const llvm::Type *DestTy = ConvertType(E->getType());
529    if (V->getType() != DestTy) {
530      if (isa<llvm::PointerType>(DestTy))
531        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
532      else {
533        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
534        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
535      }
536    }
537    return V;
538
539  } else if (E->getType()->isReferenceType()) {
540    return EmitLValue(Op).getAddress();
541  }
542
543  return EmitCastExpr(Op, E->getType());
544}
545
546
547// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
548// have to handle a more broad range of conversions than explicit casts, as they
549// handle things like function to ptr-to-function decay etc.
550Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
551  // Handle cases where the source is an non-complex type.
552
553  if (!CGF.hasAggregateLLVMType(E->getType())) {
554    Value *Src = Visit(const_cast<Expr*>(E));
555
556    // Use EmitScalarConversion to perform the conversion.
557    return EmitScalarConversion(Src, E->getType(), DestTy);
558  }
559
560  if (E->getType()->isAnyComplexType()) {
561    // Handle cases where the source is a complex type.
562    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
563                                         DestTy);
564  }
565
566  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
567  // evaluate the result and return.
568  CGF.EmitAggExpr(E, 0, false);
569  return 0;
570}
571
572Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
573  return CGF.EmitCompoundStmt(*E->getSubStmt(),
574                              !E->getType()->isVoidType()).getScalarVal();
575}
576
577
578//===----------------------------------------------------------------------===//
579//                             Unary Operators
580//===----------------------------------------------------------------------===//
581
582Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
583                                             bool isInc, bool isPre) {
584  LValue LV = EmitLValue(E->getSubExpr());
585  // FIXME: Handle volatile!
586  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
587                                     E->getSubExpr()->getType()).getScalarVal();
588
589  int AmountVal = isInc ? 1 : -1;
590
591  Value *NextVal;
592  if (isa<llvm::PointerType>(InVal->getType())) {
593    // FIXME: This isn't right for VLAs.
594    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
595    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
596  } else {
597    // Add the inc/dec to the real part.
598    if (isa<llvm::IntegerType>(InVal->getType()))
599      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
600    else if (InVal->getType() == llvm::Type::FloatTy)
601      NextVal =
602        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
603    else if (InVal->getType() == llvm::Type::DoubleTy)
604      NextVal =
605        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
606    else {
607      llvm::APFloat F(static_cast<float>(AmountVal));
608      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero);
609      NextVal = llvm::ConstantFP::get(F);
610    }
611    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
612  }
613
614  // Store the updated result through the lvalue.
615  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
616                             E->getSubExpr()->getType());
617
618  // If this is a postinc, return the value read from memory, otherwise use the
619  // updated value.
620  return isPre ? NextVal : InVal;
621}
622
623
624Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
625  Value *Op = Visit(E->getSubExpr());
626  return Builder.CreateNeg(Op, "neg");
627}
628
629Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
630  Value *Op = Visit(E->getSubExpr());
631  return Builder.CreateNot(Op, "neg");
632}
633
634Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
635  // Compare operand to zero.
636  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
637
638  // Invert value.
639  // TODO: Could dynamically modify easy computations here.  For example, if
640  // the operand is an icmp ne, turn into icmp eq.
641  BoolVal = Builder.CreateNot(BoolVal, "lnot");
642
643  // ZExt result to int.
644  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
645}
646
647/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
648/// an integer (RetType).
649Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
650                                          QualType RetType,bool isSizeOf){
651  assert(RetType->isIntegerType() && "Result type must be an integer!");
652  uint32_t ResultWidth =
653    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
654
655  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
656  // for function types.
657  // FIXME: what is alignof a function type in gcc?
658  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
659    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
660
661  /// FIXME: This doesn't handle VLAs yet!
662  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
663
664  uint64_t Val = isSizeOf ? Info.first : Info.second;
665  Val /= 8;  // Return size in bytes, not bits.
666
667  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
668}
669
670Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
671  Expr *Op = E->getSubExpr();
672  if (Op->getType()->isAnyComplexType())
673    return CGF.EmitComplexExpr(Op).first;
674  return Visit(Op);
675}
676Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
677  Expr *Op = E->getSubExpr();
678  if (Op->getType()->isAnyComplexType())
679    return CGF.EmitComplexExpr(Op).second;
680
681  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
682  // effects are evaluated.
683  CGF.EmitScalarExpr(Op);
684  return llvm::Constant::getNullValue(ConvertType(E->getType()));
685}
686
687Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
688{
689  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
690
691  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
692
693  uint32_t ResultWidth =
694    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
695  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
696}
697
698//===----------------------------------------------------------------------===//
699//                           Binary Operators
700//===----------------------------------------------------------------------===//
701
702BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
703  BinOpInfo Result;
704  Result.LHS = Visit(E->getLHS());
705  Result.RHS = Visit(E->getRHS());
706  Result.Ty  = E->getType();
707  Result.E = E;
708  return Result;
709}
710
711Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
712                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
713  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
714
715  BinOpInfo OpInfo;
716
717  // Load the LHS and RHS operands.
718  LValue LHSLV = EmitLValue(E->getLHS());
719  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
720
721  // Determine the computation type.  If the RHS is complex, then this is one of
722  // the add/sub/mul/div operators.  All of these operators can be computed in
723  // with just their real component even though the computation domain really is
724  // complex.
725  QualType ComputeType = E->getComputationType();
726
727  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
728  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
729    ComputeType = CT->getElementType();
730
731    // Emit the RHS, only keeping the real component.
732    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
733    RHSTy = RHSTy->getAsComplexType()->getElementType();
734  } else {
735    // Otherwise the RHS is a simple scalar value.
736    OpInfo.RHS = Visit(E->getRHS());
737  }
738
739  QualType LComputeTy, RComputeTy, ResultTy;
740
741  // Compound assignment does not contain enough information about all
742  // the types involved for pointer arithmetic cases. Figure it out
743  // here for now.
744  if (E->getLHS()->getType()->isPointerType()) {
745    // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
746    assert((E->getOpcode() == BinaryOperator::AddAssign ||
747            E->getOpcode() == BinaryOperator::SubAssign) &&
748           "Invalid compound assignment operator on pointer type.");
749    LComputeTy = E->getLHS()->getType();
750
751    if (E->getRHS()->getType()->isPointerType()) {
752      // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
753      // extension, the conversion from the pointer difference back to
754      // the LHS type is handled at the end.
755      assert(E->getOpcode() == BinaryOperator::SubAssign &&
756             "Invalid compound assignment operator on pointer type.");
757      RComputeTy = E->getLHS()->getType();
758      ResultTy = CGF.getContext().getPointerDiffType();
759    } else {
760      RComputeTy = E->getRHS()->getType();
761      ResultTy = LComputeTy;
762    }
763  } else if (E->getRHS()->getType()->isPointerType()) {
764    // Degenerate case of (int += ptr) allowed by GCC implicit cast
765    // extension.
766    assert(E->getOpcode() == BinaryOperator::AddAssign &&
767           "Invalid compound assignment operator on pointer type.");
768    LComputeTy = E->getLHS()->getType();
769    RComputeTy = E->getRHS()->getType();
770    ResultTy = RComputeTy;
771  } else {
772    LComputeTy = RComputeTy = ResultTy = ComputeType;
773  }
774
775  // Convert the LHS/RHS values to the computation type.
776  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
777  OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
778  OpInfo.Ty = ResultTy;
779  OpInfo.E = E;
780
781  // Expand the binary operator.
782  Value *Result = (this->*Func)(OpInfo);
783
784  // Convert the result back to the LHS type.
785  Result = EmitScalarConversion(Result, ResultTy, LHSTy);
786
787  // Store the result value into the LHS lvalue.
788  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
789
790  // For bitfields, we need the value in the bitfield. Note that
791  // property references do not reload their value (even though the
792  // setter may have changed it).
793  // FIXME: This adds an extra bitfield load
794  if (LHSLV.isBitfield())
795    Result = EmitLoadOfLValue(LHSLV, LHSTy);
796  return Result;
797}
798
799
800Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
801  if (Ops.LHS->getType()->isFPOrFPVector())
802    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
803  else if (Ops.Ty->isUnsignedIntegerType())
804    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
805  else
806    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
807}
808
809Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
810  // Rem in C can't be a floating point type: C99 6.5.5p2.
811  if (Ops.Ty->isUnsignedIntegerType())
812    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
813  else
814    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
815}
816
817
818Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
819  if (!Ops.Ty->isPointerType())
820    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
821
822  // FIXME: What about a pointer to a VLA?
823  Value *Ptr, *Idx;
824  Expr *IdxExp;
825  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
826    Ptr = Ops.LHS;
827    Idx = Ops.RHS;
828    IdxExp = Ops.E->getRHS();
829  } else {                                           // int + pointer
830    Ptr = Ops.RHS;
831    Idx = Ops.LHS;
832    IdxExp = Ops.E->getLHS();
833  }
834
835  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
836  if (Width < CGF.LLVMPointerWidth) {
837    // Zero or sign extend the pointer value based on whether the index is
838    // signed or not.
839    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
840    if (IdxExp->getType()->isSignedIntegerType())
841      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
842    else
843      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
844  }
845
846  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
847}
848
849Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
850  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
851    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
852
853  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
854    // pointer - int
855    Value *Idx = Ops.RHS;
856    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
857    if (Width < CGF.LLVMPointerWidth) {
858      // Zero or sign extend the pointer value based on whether the index is
859      // signed or not.
860      const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
861      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
862        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
863      else
864        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
865    }
866    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
867
868    // FIXME: The pointer could point to a VLA.
869    // The GNU void* - int case is automatically handled here because
870    // our LLVM type for void* is i8*.
871    return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
872  } else {
873    // pointer - pointer
874    Value *LHS = Ops.LHS;
875    Value *RHS = Ops.RHS;
876
877    const QualType LHSType = Ops.E->getLHS()->getType();
878    const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
879    uint64_t ElementSize;
880
881    // Handle GCC extension for pointer arithmetic on void* types.
882    if (LHSElementType->isVoidType()) {
883      ElementSize = 1;
884    } else {
885      ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
886    }
887
888    const llvm::Type *ResultType = ConvertType(Ops.Ty);
889    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
890    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
891    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
892
893    // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
894    // remainder.  As such, we handle common power-of-two cases here to generate
895    // better code. See PR2247.
896    if (llvm::isPowerOf2_64(ElementSize)) {
897      Value *ShAmt =
898        llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
899      return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
900    }
901
902    // Otherwise, do a full sdiv.
903    Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
904    return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
905  }
906}
907
908Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
909  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
910  // RHS to the same size as the LHS.
911  Value *RHS = Ops.RHS;
912  if (Ops.LHS->getType() != RHS->getType())
913    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
914
915  return Builder.CreateShl(Ops.LHS, RHS, "shl");
916}
917
918Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
919  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
920  // RHS to the same size as the LHS.
921  Value *RHS = Ops.RHS;
922  if (Ops.LHS->getType() != RHS->getType())
923    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
924
925  if (Ops.Ty->isUnsignedIntegerType())
926    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
927  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
928}
929
930Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
931                                      unsigned SICmpOpc, unsigned FCmpOpc) {
932  Value *Result;
933  QualType LHSTy = E->getLHS()->getType();
934  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
935    Value *LHS = Visit(E->getLHS());
936    Value *RHS = Visit(E->getRHS());
937
938    if (LHS->getType()->isFloatingPoint()) {
939      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
940                                  LHS, RHS, "cmp");
941    } else if (LHSTy->isSignedIntegerType()) {
942      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
943                                  LHS, RHS, "cmp");
944    } else {
945      // Unsigned integers and pointers.
946      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
947                                  LHS, RHS, "cmp");
948    }
949  } else if (LHSTy->isVectorType()) {
950    Value *LHS = Visit(E->getLHS());
951    Value *RHS = Visit(E->getRHS());
952
953    if (LHS->getType()->isFPOrFPVector()) {
954      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
955                                  LHS, RHS, "cmp");
956    } else if (LHSTy->isUnsignedIntegerType()) {
957      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
958                                  LHS, RHS, "cmp");
959    } else {
960      // Signed integers and pointers.
961      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
962                                  LHS, RHS, "cmp");
963    }
964    return Result;
965  } else {
966    // Complex Comparison: can only be an equality comparison.
967    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
968    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
969
970    QualType CETy = LHSTy->getAsComplexType()->getElementType();
971
972    Value *ResultR, *ResultI;
973    if (CETy->isRealFloatingType()) {
974      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
975                                   LHS.first, RHS.first, "cmp.r");
976      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
977                                   LHS.second, RHS.second, "cmp.i");
978    } else {
979      // Complex comparisons can only be equality comparisons.  As such, signed
980      // and unsigned opcodes are the same.
981      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
982                                   LHS.first, RHS.first, "cmp.r");
983      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
984                                   LHS.second, RHS.second, "cmp.i");
985    }
986
987    if (E->getOpcode() == BinaryOperator::EQ) {
988      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
989    } else {
990      assert(E->getOpcode() == BinaryOperator::NE &&
991             "Complex comparison other than == or != ?");
992      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
993    }
994  }
995
996  // ZExt result to int.
997  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
998}
999
1000Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1001  LValue LHS = EmitLValue(E->getLHS());
1002  Value *RHS = Visit(E->getRHS());
1003
1004  // Store the value into the LHS.
1005  // FIXME: Volatility!
1006  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1007
1008  // For bitfields, we need the value in the bitfield. Note that
1009  // property references do not reload their value (even though the
1010  // setter may have changed it).
1011  // FIXME: This adds an extra bitfield load
1012  if (LHS.isBitfield())
1013    return EmitLoadOfLValue(LHS, E->getLHS()->getType());
1014
1015  // Return the RHS.
1016  return RHS;
1017}
1018
1019Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1020  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1021
1022  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("land_cont");
1023  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("land_rhs");
1024
1025  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1026  Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1027
1028  CGF.EmitBlock(RHSBlock);
1029  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1030
1031  // Reaquire the RHS block, as there may be subblocks inserted.
1032  RHSBlock = Builder.GetInsertBlock();
1033  CGF.EmitBlock(ContBlock);
1034
1035  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1036  // false.  If we evaluated both, the result is the RHS condition.
1037  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1038  PN->reserveOperandSpace(2);
1039  PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1040  PN->addIncoming(RHSCond, RHSBlock);
1041
1042  // ZExt result to int.
1043  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1044}
1045
1046Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1047  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1048
1049  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("lor_cont");
1050  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("lor_rhs");
1051
1052  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1053  Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1054
1055  CGF.EmitBlock(RHSBlock);
1056  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1057
1058  // Reaquire the RHS block, as there may be subblocks inserted.
1059  RHSBlock = Builder.GetInsertBlock();
1060  CGF.EmitBlock(ContBlock);
1061
1062  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1063  // true.  If we evaluated both, the result is the RHS condition.
1064  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1065  PN->reserveOperandSpace(2);
1066  PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1067  PN->addIncoming(RHSCond, RHSBlock);
1068
1069  // ZExt result to int.
1070  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1071}
1072
1073Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1074  CGF.EmitStmt(E->getLHS());
1075  return Visit(E->getRHS());
1076}
1077
1078//===----------------------------------------------------------------------===//
1079//                             Other Operators
1080//===----------------------------------------------------------------------===//
1081
1082Value *ScalarExprEmitter::
1083VisitConditionalOperator(const ConditionalOperator *E) {
1084  llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
1085  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
1086  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
1087
1088  // Evaluate the conditional, then convert it to bool.  We do this explicitly
1089  // because we need the unconverted value if this is a GNU ?: expression with
1090  // missing middle value.
1091  Value *CondVal = CGF.EmitScalarExpr(E->getCond());
1092  Value *CondBoolVal =CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1093                                               CGF.getContext().BoolTy);
1094  Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1095
1096  CGF.EmitBlock(LHSBlock);
1097
1098  // Handle the GNU extension for missing LHS.
1099  Value *LHS;
1100  if (E->getLHS())
1101    LHS = Visit(E->getLHS());
1102  else    // Perform promotions, to handle cases like "short ?: int"
1103    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1104
1105  Builder.CreateBr(ContBlock);
1106  LHSBlock = Builder.GetInsertBlock();
1107
1108  CGF.EmitBlock(RHSBlock);
1109
1110  Value *RHS = Visit(E->getRHS());
1111  Builder.CreateBr(ContBlock);
1112  RHSBlock = Builder.GetInsertBlock();
1113
1114  CGF.EmitBlock(ContBlock);
1115
1116  if (!LHS || !RHS) {
1117    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1118    return 0;
1119  }
1120
1121  // Create a PHI node for the real part.
1122  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1123  PN->reserveOperandSpace(2);
1124  PN->addIncoming(LHS, LHSBlock);
1125  PN->addIncoming(RHS, RHSBlock);
1126  return PN;
1127}
1128
1129Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1130  // Emit the LHS or RHS as appropriate.
1131  return
1132    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1133}
1134
1135Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1136  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1137                          E->arg_end(CGF.getContext())).getScalarVal();
1138}
1139
1140Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1141  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1142
1143  llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1144  return V;
1145}
1146
1147Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1148  std::string str;
1149  llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes;
1150  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str,
1151                                          EncodingRecordTypes);
1152
1153  llvm::Constant *C = llvm::ConstantArray::get(str);
1154  C = new llvm::GlobalVariable(C->getType(), true,
1155                               llvm::GlobalValue::InternalLinkage,
1156                               C, ".str", &CGF.CGM.getModule());
1157  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1158  llvm::Constant *Zeros[] = { Zero, Zero };
1159  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1160
1161  return C;
1162}
1163
1164//===----------------------------------------------------------------------===//
1165//                         Entry Point into this File
1166//===----------------------------------------------------------------------===//
1167
1168/// EmitComplexExpr - Emit the computation of the specified expression of
1169/// complex type, ignoring the result.
1170Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1171  assert(E && !hasAggregateLLVMType(E->getType()) &&
1172         "Invalid scalar expression to emit");
1173
1174  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1175}
1176
1177/// EmitScalarConversion - Emit a conversion from the specified type to the
1178/// specified destination type, both of which are LLVM scalar types.
1179Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1180                                             QualType DstTy) {
1181  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1182         "Invalid scalar expression to emit");
1183  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1184}
1185
1186/// EmitComplexToScalarConversion - Emit a conversion from the specified
1187/// complex type to the specified destination type, where the destination
1188/// type is an LLVM scalar type.
1189Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1190                                                      QualType SrcTy,
1191                                                      QualType DstTy) {
1192  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1193         "Invalid complex -> scalar conversion");
1194  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1195                                                                DstTy);
1196}
1197
1198Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1199  assert(V1->getType() == V2->getType() &&
1200         "Vector operands must be of the same type");
1201  unsigned NumElements =
1202    cast<llvm::VectorType>(V1->getType())->getNumElements();
1203
1204  va_list va;
1205  va_start(va, V2);
1206
1207  llvm::SmallVector<llvm::Constant*, 16> Args;
1208  for (unsigned i = 0; i < NumElements; i++) {
1209    int n = va_arg(va, int);
1210    assert(n >= 0 && n < (int)NumElements * 2 &&
1211           "Vector shuffle index out of bounds!");
1212    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1213  }
1214
1215  const char *Name = va_arg(va, const char *);
1216  va_end(va);
1217
1218  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1219
1220  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1221}
1222
1223llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1224                                         unsigned NumVals, bool isSplat) {
1225  llvm::Value *Vec
1226    = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1227
1228  for (unsigned i = 0, e = NumVals; i != e; ++i) {
1229    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1230    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1231    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1232  }
1233
1234  return Vec;
1235}
1236