CGExprScalar.cpp revision 7a66d7b6c0d84f8c9c74c687a338cf3cf6b9c808
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "clang/AST/AST.h"
17#include "clang/Basic/TargetInfo.h"
18#include "llvm/Constants.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/Support/Compiler.h"
23#include <cstdarg>
24
25using namespace clang;
26using namespace CodeGen;
27using llvm::Value;
28
29//===----------------------------------------------------------------------===//
30//                         Scalar Expression Emitter
31//===----------------------------------------------------------------------===//
32
33struct BinOpInfo {
34  Value *LHS;
35  Value *RHS;
36  QualType Ty;  // Computation Type.
37  const BinaryOperator *E;
38};
39
40namespace {
41class VISIBILITY_HIDDEN ScalarExprEmitter
42  : public StmtVisitor<ScalarExprEmitter, Value*> {
43  CodeGenFunction &CGF;
44  llvm::IRBuilder &Builder;
45  CGObjCRuntime *Runtime;
46
47public:
48
49  ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
50    Builder(CGF.Builder),
51    Runtime(CGF.CGM.getObjCRuntime()) {
52  }
53
54  //===--------------------------------------------------------------------===//
55  //                               Utilities
56  //===--------------------------------------------------------------------===//
57
58  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
59  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
60
61  Value *EmitLoadOfLValue(LValue LV, QualType T) {
62    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
63  }
64
65  /// EmitLoadOfLValue - Given an expression with complex type that represents a
66  /// value l-value, this method emits the address of the l-value, then loads
67  /// and returns the result.
68  Value *EmitLoadOfLValue(const Expr *E) {
69    // FIXME: Volatile
70    return EmitLoadOfLValue(EmitLValue(E), E->getType());
71  }
72
73  /// EmitConversionToBool - Convert the specified expression value to a
74  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
75  Value *EmitConversionToBool(Value *Src, QualType DstTy);
76
77  /// EmitScalarConversion - Emit a conversion from the specified type to the
78  /// specified destination type, both of which are LLVM scalar types.
79  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
80
81  /// EmitComplexToScalarConversion - Emit a conversion from the specified
82  /// complex type to the specified destination type, where the destination
83  /// type is an LLVM scalar type.
84  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
85                                       QualType SrcTy, QualType DstTy);
86
87  //===--------------------------------------------------------------------===//
88  //                            Visitor Methods
89  //===--------------------------------------------------------------------===//
90
91  Value *VisitStmt(Stmt *S) {
92    S->dump(CGF.getContext().getSourceManager());
93    assert(0 && "Stmt can't have complex result type!");
94    return 0;
95  }
96  Value *VisitExpr(Expr *S);
97  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
98
99  // Leaves.
100  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
101    return llvm::ConstantInt::get(E->getValue());
102  }
103  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
104    return llvm::ConstantFP::get(E->getValue());
105  }
106  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
107    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
108  }
109  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
110    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
111  }
112  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
113    return llvm::ConstantInt::get(ConvertType(E->getType()),
114                                  CGF.getContext().typesAreCompatible(
115                                    E->getArgType1(), E->getArgType2()));
116  }
117  Value *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
118    return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
119  }
120
121  // l-values.
122  Value *VisitDeclRefExpr(DeclRefExpr *E) {
123    if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
124      return llvm::ConstantInt::get(EC->getInitVal());
125    return EmitLoadOfLValue(E);
126  }
127  Value *VisitObjCMessageExpr(ObjCMessageExpr *E);
128  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { return EmitLoadOfLValue(E);}
129  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
130  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
131  Value *VisitMemberExpr(Expr *E)           { return EmitLoadOfLValue(E); }
132  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
133  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return EmitLoadOfLValue(E); }
134  Value *VisitStringLiteral(Expr *E)  { return EmitLValue(E).getAddress(); }
135  Value *VisitPreDefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
136
137  Value *VisitInitListExpr(InitListExpr *E) {
138    unsigned NumInitElements = E->getNumInits();
139
140    const llvm::VectorType *VType =
141      dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
142
143    // We have a scalar in braces. Just use the first element.
144    if (!VType)
145      return Visit(E->getInit(0));
146
147    unsigned NumVectorElements = VType->getNumElements();
148    const llvm::Type *ElementType = VType->getElementType();
149
150    // Emit individual vector element stores.
151    llvm::Value *V = llvm::UndefValue::get(VType);
152
153    // Emit initializers
154    unsigned i;
155    for (i = 0; i < NumInitElements; ++i) {
156      Value *NewV = Visit(E->getInit(i));
157      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
158      V = Builder.CreateInsertElement(V, NewV, Idx);
159    }
160
161    // Emit remaining default initializers
162    for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
163      Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
164      llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
165      V = Builder.CreateInsertElement(V, NewV, Idx);
166    }
167
168    return V;
169  }
170
171  Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
172  Value *VisitCastExpr(const CastExpr *E) {
173    return EmitCastExpr(E->getSubExpr(), E->getType());
174  }
175  Value *EmitCastExpr(const Expr *E, QualType T);
176
177  Value *VisitCallExpr(const CallExpr *E) {
178    return CGF.EmitCallExpr(E).getScalarVal();
179  }
180
181  Value *VisitStmtExpr(const StmtExpr *E);
182
183  // Unary Operators.
184  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
185  Value *VisitUnaryPostDec(const UnaryOperator *E) {
186    return VisitPrePostIncDec(E, false, false);
187  }
188  Value *VisitUnaryPostInc(const UnaryOperator *E) {
189    return VisitPrePostIncDec(E, true, false);
190  }
191  Value *VisitUnaryPreDec(const UnaryOperator *E) {
192    return VisitPrePostIncDec(E, false, true);
193  }
194  Value *VisitUnaryPreInc(const UnaryOperator *E) {
195    return VisitPrePostIncDec(E, true, true);
196  }
197  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
198    return EmitLValue(E->getSubExpr()).getAddress();
199  }
200  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
201  Value *VisitUnaryPlus(const UnaryOperator *E) {
202    return Visit(E->getSubExpr());
203  }
204  Value *VisitUnaryMinus    (const UnaryOperator *E);
205  Value *VisitUnaryNot      (const UnaryOperator *E);
206  Value *VisitUnaryLNot     (const UnaryOperator *E);
207  Value *VisitUnarySizeOf   (const UnaryOperator *E) {
208    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
209  }
210  Value *VisitUnaryAlignOf  (const UnaryOperator *E) {
211    return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
212  }
213  Value *EmitSizeAlignOf(QualType TypeToSize, QualType RetType,
214                         bool isSizeOf);
215  Value *VisitUnaryReal     (const UnaryOperator *E);
216  Value *VisitUnaryImag     (const UnaryOperator *E);
217  Value *VisitUnaryExtension(const UnaryOperator *E) {
218    return Visit(E->getSubExpr());
219  }
220  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
221  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
222    return Visit(DAE->getExpr());
223  }
224
225  // Binary Operators.
226  Value *EmitMul(const BinOpInfo &Ops) {
227    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
228  }
229  Value *EmitDiv(const BinOpInfo &Ops);
230  Value *EmitRem(const BinOpInfo &Ops);
231  Value *EmitAdd(const BinOpInfo &Ops);
232  Value *EmitSub(const BinOpInfo &Ops);
233  Value *EmitShl(const BinOpInfo &Ops);
234  Value *EmitShr(const BinOpInfo &Ops);
235  Value *EmitAnd(const BinOpInfo &Ops) {
236    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
237  }
238  Value *EmitXor(const BinOpInfo &Ops) {
239    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
240  }
241  Value *EmitOr (const BinOpInfo &Ops) {
242    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
243  }
244
245  BinOpInfo EmitBinOps(const BinaryOperator *E);
246  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
247                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
248
249  // Binary operators and binary compound assignment operators.
250#define HANDLEBINOP(OP) \
251  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
252    return Emit ## OP(EmitBinOps(E));                                      \
253  }                                                                        \
254  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
255    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
256  }
257  HANDLEBINOP(Mul);
258  HANDLEBINOP(Div);
259  HANDLEBINOP(Rem);
260  HANDLEBINOP(Add);
261  //         (Sub) - Sub is handled specially below for ptr-ptr subtract.
262  HANDLEBINOP(Shl);
263  HANDLEBINOP(Shr);
264  HANDLEBINOP(And);
265  HANDLEBINOP(Xor);
266  HANDLEBINOP(Or);
267#undef HANDLEBINOP
268  Value *VisitBinSub(const BinaryOperator *E);
269  Value *VisitBinSubAssign(const CompoundAssignOperator *E) {
270    return EmitCompoundAssign(E, &ScalarExprEmitter::EmitSub);
271  }
272
273  // Comparisons.
274  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
275                     unsigned SICmpOpc, unsigned FCmpOpc);
276#define VISITCOMP(CODE, UI, SI, FP) \
277    Value *VisitBin##CODE(const BinaryOperator *E) { \
278      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
279                         llvm::FCmpInst::FP); }
280  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
281  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
282  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
283  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
284  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
285  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
286#undef VISITCOMP
287
288  Value *VisitBinAssign     (const BinaryOperator *E);
289
290  Value *VisitBinLAnd       (const BinaryOperator *E);
291  Value *VisitBinLOr        (const BinaryOperator *E);
292  Value *VisitBinComma      (const BinaryOperator *E);
293
294  // Other Operators.
295  Value *VisitConditionalOperator(const ConditionalOperator *CO);
296  Value *VisitChooseExpr(ChooseExpr *CE);
297  Value *VisitOverloadExpr(OverloadExpr *OE);
298  Value *VisitVAArgExpr(VAArgExpr *VE);
299  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
300    return CGF.EmitObjCStringLiteral(E);
301  }
302  Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
303};
304}  // end anonymous namespace.
305
306//===----------------------------------------------------------------------===//
307//                                Utilities
308//===----------------------------------------------------------------------===//
309
310/// EmitConversionToBool - Convert the specified expression value to a
311/// boolean (i1) truth value.  This is equivalent to "Val != 0".
312Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
313  assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
314
315  if (SrcType->isRealFloatingType()) {
316    // Compare against 0.0 for fp scalars.
317    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
318    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
319  }
320
321  assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
322         "Unknown scalar type to convert");
323
324  // Because of the type rules of C, we often end up computing a logical value,
325  // then zero extending it to int, then wanting it as a logical value again.
326  // Optimize this common case.
327  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
328    if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
329      Value *Result = ZI->getOperand(0);
330      // If there aren't any more uses, zap the instruction to save space.
331      // Note that there can be more uses, for example if this
332      // is the result of an assignment.
333      if (ZI->use_empty())
334        ZI->eraseFromParent();
335      return Result;
336    }
337  }
338
339  // Compare against an integer or pointer null.
340  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
341  return Builder.CreateICmpNE(Src, Zero, "tobool");
342}
343
344/// EmitScalarConversion - Emit a conversion from the specified type to the
345/// specified destination type, both of which are LLVM scalar types.
346Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
347                                               QualType DstType) {
348  SrcType = SrcType.getCanonicalType();
349  DstType = DstType.getCanonicalType();
350  if (SrcType == DstType) return Src;
351
352  if (DstType->isVoidType()) return 0;
353
354  // Handle conversions to bool first, they are special: comparisons against 0.
355  if (DstType->isBooleanType())
356    return EmitConversionToBool(Src, SrcType);
357
358  const llvm::Type *DstTy = ConvertType(DstType);
359
360  // Ignore conversions like int -> uint.
361  if (Src->getType() == DstTy)
362    return Src;
363
364  // Handle pointer conversions next: pointers can only be converted to/from
365  // other pointers and integers.
366  if (isa<PointerType>(DstType)) {
367    // The source value may be an integer, or a pointer.
368    if (isa<llvm::PointerType>(Src->getType()))
369      return Builder.CreateBitCast(Src, DstTy, "conv");
370    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
371    return Builder.CreateIntToPtr(Src, DstTy, "conv");
372  }
373
374  if (isa<PointerType>(SrcType)) {
375    // Must be an ptr to int cast.
376    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
377    return Builder.CreatePtrToInt(Src, DstTy, "conv");
378  }
379
380  // A scalar can be splatted to an extended vector of the same element type
381  if (DstType->isExtVectorType() && !isa<VectorType>(SrcType) &&
382      cast<llvm::VectorType>(DstTy)->getElementType() == Src->getType())
383    return CGF.EmitVector(&Src, DstType->getAsVectorType()->getNumElements(),
384                          true);
385
386  // Allow bitcast from vector to integer/fp of the same size.
387  if (isa<llvm::VectorType>(Src->getType()) ||
388      isa<llvm::VectorType>(DstTy))
389    return Builder.CreateBitCast(Src, DstTy, "conv");
390
391  // Finally, we have the arithmetic types: real int/float.
392  if (isa<llvm::IntegerType>(Src->getType())) {
393    bool InputSigned = SrcType->isSignedIntegerType();
394    if (isa<llvm::IntegerType>(DstTy))
395      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
396    else if (InputSigned)
397      return Builder.CreateSIToFP(Src, DstTy, "conv");
398    else
399      return Builder.CreateUIToFP(Src, DstTy, "conv");
400  }
401
402  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
403  if (isa<llvm::IntegerType>(DstTy)) {
404    if (DstType->isSignedIntegerType())
405      return Builder.CreateFPToSI(Src, DstTy, "conv");
406    else
407      return Builder.CreateFPToUI(Src, DstTy, "conv");
408  }
409
410  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
411  if (DstTy->getTypeID() < Src->getType()->getTypeID())
412    return Builder.CreateFPTrunc(Src, DstTy, "conv");
413  else
414    return Builder.CreateFPExt(Src, DstTy, "conv");
415}
416
417/// EmitComplexToScalarConversion - Emit a conversion from the specified
418/// complex type to the specified destination type, where the destination
419/// type is an LLVM scalar type.
420Value *ScalarExprEmitter::
421EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
422                              QualType SrcTy, QualType DstTy) {
423  // Get the source element type.
424  SrcTy = cast<ComplexType>(SrcTy.getCanonicalType())->getElementType();
425
426  // Handle conversions to bool first, they are special: comparisons against 0.
427  if (DstTy->isBooleanType()) {
428    //  Complex != 0  -> (Real != 0) | (Imag != 0)
429    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
430    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
431    return Builder.CreateOr(Src.first, Src.second, "tobool");
432  }
433
434  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
435  // the imaginary part of the complex value is discarded and the value of the
436  // real part is converted according to the conversion rules for the
437  // corresponding real type.
438  return EmitScalarConversion(Src.first, SrcTy, DstTy);
439}
440
441
442//===----------------------------------------------------------------------===//
443//                            Visitor Methods
444//===----------------------------------------------------------------------===//
445
446Value *ScalarExprEmitter::VisitExpr(Expr *E) {
447  CGF.WarnUnsupported(E, "scalar expression");
448  if (E->getType()->isVoidType())
449    return 0;
450  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
451}
452
453Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
454  llvm::SmallVector<llvm::Constant*, 32> indices;
455  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
456    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
457  }
458  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
459  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
460  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
461  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
462}
463
464Value *ScalarExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
465  // Only the lookup mechanism and first two arguments of the method
466  // implementation vary between runtimes.  We can get the receiver and
467  // arguments in generic code.
468
469  // Find the receiver
470  llvm::Value *Receiver = CGF.EmitScalarExpr(E->getReceiver());
471
472  // Process the arguments
473  unsigned ArgC = E->getNumArgs();
474  llvm::SmallVector<llvm::Value*, 16> Args;
475  for (unsigned i = 0; i != ArgC; ++i) {
476    Expr *ArgExpr = E->getArg(i);
477    QualType ArgTy = ArgExpr->getType();
478    if (!CGF.hasAggregateLLVMType(ArgTy)) {
479      // Scalar argument is passed by-value.
480      Args.push_back(CGF.EmitScalarExpr(ArgExpr));
481    } else if (ArgTy->isAnyComplexType()) {
482      // Make a temporary alloca to pass the argument.
483      llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy));
484      CGF.EmitComplexExprIntoAddr(ArgExpr, DestMem, false);
485      Args.push_back(DestMem);
486    } else {
487      llvm::Value *DestMem = CGF.CreateTempAlloca(ConvertType(ArgTy));
488      CGF.EmitAggExpr(ArgExpr, DestMem, false);
489      Args.push_back(DestMem);
490    }
491  }
492
493  return Runtime->GenerateMessageSend(Builder, ConvertType(E->getType()),
494                                      CGF.LoadObjCSelf(),
495                                      Receiver, E->getSelector(),
496                                      &Args[0], Args.size());
497}
498
499Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
500  // Emit subscript expressions in rvalue context's.  For most cases, this just
501  // loads the lvalue formed by the subscript expr.  However, we have to be
502  // careful, because the base of a vector subscript is occasionally an rvalue,
503  // so we can't get it as an lvalue.
504  if (!E->getBase()->getType()->isVectorType())
505    return EmitLoadOfLValue(E);
506
507  // Handle the vector case.  The base must be a vector, the index must be an
508  // integer value.
509  Value *Base = Visit(E->getBase());
510  Value *Idx  = Visit(E->getIdx());
511
512  // FIXME: Convert Idx to i32 type.
513  return Builder.CreateExtractElement(Base, Idx, "vecext");
514}
515
516/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
517/// also handle things like function to pointer-to-function decay, and array to
518/// pointer decay.
519Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
520  const Expr *Op = E->getSubExpr();
521
522  // If this is due to array->pointer conversion, emit the array expression as
523  // an l-value.
524  if (Op->getType()->isArrayType()) {
525    // FIXME: For now we assume that all source arrays map to LLVM arrays.  This
526    // will not true when we add support for VLAs.
527    Value *V = EmitLValue(Op).getAddress();  // Bitfields can't be arrays.
528
529    assert(isa<llvm::PointerType>(V->getType()) &&
530           isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
531                                ->getElementType()) &&
532           "Doesn't support VLAs yet!");
533    V = Builder.CreateStructGEP(V, 0, "arraydecay");
534
535    // The resultant pointer type can be implicitly casted to other pointer
536    // types as well (e.g. void*) and can be implicitly converted to integer.
537    const llvm::Type *DestTy = ConvertType(E->getType());
538    if (V->getType() != DestTy) {
539      if (isa<llvm::PointerType>(DestTy))
540        V = Builder.CreateBitCast(V, DestTy, "ptrconv");
541      else {
542        assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
543        V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
544      }
545    }
546    return V;
547
548  } else if (E->getType()->isReferenceType()) {
549    assert(cast<ReferenceType>(E->getType().getCanonicalType())->
550           getPointeeType() ==
551           Op->getType().getCanonicalType() && "Incompatible types!");
552
553    return EmitLValue(Op).getAddress();
554  }
555
556  return EmitCastExpr(Op, E->getType());
557}
558
559
560// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
561// have to handle a more broad range of conversions than explicit casts, as they
562// handle things like function to ptr-to-function decay etc.
563Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
564  // Handle cases where the source is an non-complex type.
565
566  if (!CGF.hasAggregateLLVMType(E->getType())) {
567    Value *Src = Visit(const_cast<Expr*>(E));
568
569    // Use EmitScalarConversion to perform the conversion.
570    return EmitScalarConversion(Src, E->getType(), DestTy);
571  }
572
573  if (E->getType()->isAnyComplexType()) {
574    // Handle cases where the source is a complex type.
575    return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
576                                         DestTy);
577  }
578
579  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
580  // evaluate the result and return.
581  CGF.EmitAggExpr(E, 0, false);
582  return 0;
583}
584
585Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
586  return CGF.EmitCompoundStmt(*E->getSubStmt(), true).getScalarVal();
587}
588
589
590//===----------------------------------------------------------------------===//
591//                             Unary Operators
592//===----------------------------------------------------------------------===//
593
594Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
595                                             bool isInc, bool isPre) {
596  LValue LV = EmitLValue(E->getSubExpr());
597  // FIXME: Handle volatile!
598  Value *InVal = CGF.EmitLoadOfLValue(LV, // false
599                                     E->getSubExpr()->getType()).getScalarVal();
600
601  int AmountVal = isInc ? 1 : -1;
602
603  Value *NextVal;
604  if (isa<llvm::PointerType>(InVal->getType())) {
605    // FIXME: This isn't right for VLAs.
606    NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
607    NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
608  } else {
609    // Add the inc/dec to the real part.
610    if (isa<llvm::IntegerType>(InVal->getType()))
611      NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
612    else if (InVal->getType() == llvm::Type::FloatTy)
613      NextVal =
614        llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
615    else if (InVal->getType() == llvm::Type::DoubleTy)
616      NextVal =
617        llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
618    else {
619      llvm::APFloat F(static_cast<float>(AmountVal));
620      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero);
621      NextVal = llvm::ConstantFP::get(F);
622    }
623    NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
624  }
625
626  // Store the updated result through the lvalue.
627  CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
628                             E->getSubExpr()->getType());
629
630  // If this is a postinc, return the value read from memory, otherwise use the
631  // updated value.
632  return isPre ? NextVal : InVal;
633}
634
635
636Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
637  Value *Op = Visit(E->getSubExpr());
638  return Builder.CreateNeg(Op, "neg");
639}
640
641Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
642  Value *Op = Visit(E->getSubExpr());
643  return Builder.CreateNot(Op, "neg");
644}
645
646Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
647  // Compare operand to zero.
648  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
649
650  // Invert value.
651  // TODO: Could dynamically modify easy computations here.  For example, if
652  // the operand is an icmp ne, turn into icmp eq.
653  BoolVal = Builder.CreateNot(BoolVal, "lnot");
654
655  // ZExt result to int.
656  return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
657}
658
659/// EmitSizeAlignOf - Return the size or alignment of the 'TypeToSize' type as
660/// an integer (RetType).
661Value *ScalarExprEmitter::EmitSizeAlignOf(QualType TypeToSize,
662                                          QualType RetType,bool isSizeOf){
663  assert(RetType->isIntegerType() && "Result type must be an integer!");
664  uint32_t ResultWidth =
665    static_cast<uint32_t>(CGF.getContext().getTypeSize(RetType));
666
667  // sizeof(void) and __alignof__(void) = 1 as a gcc extension. Also
668  // for function types.
669  // FIXME: what is alignof a function type in gcc?
670  if (TypeToSize->isVoidType() || TypeToSize->isFunctionType())
671    return llvm::ConstantInt::get(llvm::APInt(ResultWidth, 1));
672
673  /// FIXME: This doesn't handle VLAs yet!
674  std::pair<uint64_t, unsigned> Info = CGF.getContext().getTypeInfo(TypeToSize);
675
676  uint64_t Val = isSizeOf ? Info.first : Info.second;
677  Val /= 8;  // Return size in bytes, not bits.
678
679  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
680}
681
682Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
683  Expr *Op = E->getSubExpr();
684  if (Op->getType()->isAnyComplexType())
685    return CGF.EmitComplexExpr(Op).first;
686  return Visit(Op);
687}
688Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
689  Expr *Op = E->getSubExpr();
690  if (Op->getType()->isAnyComplexType())
691    return CGF.EmitComplexExpr(Op).second;
692
693  // __imag on a scalar returns zero.  Emit it the subexpr to ensure side
694  // effects are evaluated.
695  CGF.EmitScalarExpr(Op);
696  return llvm::Constant::getNullValue(ConvertType(E->getType()));
697}
698
699Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
700{
701  int64_t Val = E->evaluateOffsetOf(CGF.getContext());
702
703  assert(E->getType()->isIntegerType() && "Result type must be an integer!");
704
705  uint32_t ResultWidth =
706    static_cast<uint32_t>(CGF.getContext().getTypeSize(E->getType()));
707  return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
708}
709
710//===----------------------------------------------------------------------===//
711//                           Binary Operators
712//===----------------------------------------------------------------------===//
713
714BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
715  BinOpInfo Result;
716  Result.LHS = Visit(E->getLHS());
717  Result.RHS = Visit(E->getRHS());
718  Result.Ty  = E->getType();
719  Result.E = E;
720  return Result;
721}
722
723Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
724                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
725  QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
726
727  BinOpInfo OpInfo;
728
729  // Load the LHS and RHS operands.
730  LValue LHSLV = EmitLValue(E->getLHS());
731  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
732
733  // Determine the computation type.  If the RHS is complex, then this is one of
734  // the add/sub/mul/div operators.  All of these operators can be computed in
735  // with just their real component even though the computation domain really is
736  // complex.
737  QualType ComputeType = E->getComputationType();
738
739  // If the computation type is complex, then the RHS is complex.  Emit the RHS.
740  if (const ComplexType *CT = ComputeType->getAsComplexType()) {
741    ComputeType = CT->getElementType();
742
743    // Emit the RHS, only keeping the real component.
744    OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
745    RHSTy = RHSTy->getAsComplexType()->getElementType();
746  } else {
747    // Otherwise the RHS is a simple scalar value.
748    OpInfo.RHS = Visit(E->getRHS());
749  }
750
751  // Convert the LHS/RHS values to the computation type.
752  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, ComputeType);
753
754  // Do not merge types for -= or += where the LHS is a pointer.
755  if (!(E->getOpcode() == BinaryOperator::SubAssign ||
756        E->getOpcode() == BinaryOperator::AddAssign) ||
757      !E->getLHS()->getType()->isPointerType()) {
758    OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, ComputeType);
759  }
760  OpInfo.Ty = ComputeType;
761  OpInfo.E = E;
762
763  // Expand the binary operator.
764  Value *Result = (this->*Func)(OpInfo);
765
766  // Truncate the result back to the LHS type.
767  Result = EmitScalarConversion(Result, ComputeType, LHSTy);
768
769  // Store the result value into the LHS lvalue.
770  CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, E->getType());
771
772  // For bitfields, we need the value in the bitfield
773  // FIXME: This adds an extra bitfield load
774  if (LHSLV.isBitfield())
775    Result = EmitLoadOfLValue(LHSLV, LHSTy);
776
777  return Result;
778}
779
780
781Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
782  if (Ops.LHS->getType()->isFPOrFPVector())
783    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
784  else if (Ops.Ty->isUnsignedIntegerType())
785    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
786  else
787    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
788}
789
790Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
791  // Rem in C can't be a floating point type: C99 6.5.5p2.
792  if (Ops.Ty->isUnsignedIntegerType())
793    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
794  else
795    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
796}
797
798
799Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
800  if (!Ops.Ty->isPointerType())
801    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
802
803  // FIXME: What about a pointer to a VLA?
804  Value *Ptr, *Idx;
805  Expr *IdxExp;
806  if (isa<llvm::PointerType>(Ops.LHS->getType())) {  // pointer + int
807    Ptr = Ops.LHS;
808    Idx = Ops.RHS;
809    IdxExp = Ops.E->getRHS();
810  } else {                                           // int + pointer
811    Ptr = Ops.RHS;
812    Idx = Ops.LHS;
813    IdxExp = Ops.E->getLHS();
814  }
815
816  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
817  if (Width < CGF.LLVMPointerWidth) {
818    // Zero or sign extend the pointer value based on whether the index is
819    // signed or not.
820    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
821    if (IdxExp->getType().getCanonicalType()->isSignedIntegerType())
822      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
823    else
824      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
825  }
826
827  return Builder.CreateGEP(Ptr, Idx, "add.ptr");
828}
829
830Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
831  if (!isa<llvm::PointerType>(Ops.LHS->getType()))
832    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
833
834  // pointer - int
835  assert(!isa<llvm::PointerType>(Ops.RHS->getType()) &&
836         "ptr-ptr shouldn't get here");
837  // FIXME: The pointer could point to a VLA.
838  Value *Idx = Builder.CreateNeg(Ops.RHS, "sub.ptr.neg");
839
840  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
841  if (Width < CGF.LLVMPointerWidth) {
842    // Zero or sign extend the pointer value based on whether the index is
843    // signed or not.
844    const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
845    if (Ops.E->getRHS()->getType().getCanonicalType()->isSignedIntegerType())
846      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
847    else
848      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
849  }
850
851  return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
852}
853
854Value *ScalarExprEmitter::VisitBinSub(const BinaryOperator *E) {
855  // "X - Y" is different from "X -= Y" in one case: when Y is a pointer.  In
856  // the compound assignment case it is invalid, so just handle it here.
857  if (!E->getRHS()->getType()->isPointerType())
858    return EmitSub(EmitBinOps(E));
859
860  // pointer - pointer
861  Value *LHS = Visit(E->getLHS());
862  Value *RHS = Visit(E->getRHS());
863
864  const QualType LHSType = E->getLHS()->getType().getCanonicalType();
865  const QualType LHSElementType = cast<PointerType>(LHSType)->getPointeeType();
866  uint64_t ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
867
868  const llvm::Type *ResultType = ConvertType(E->getType());
869  LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
870  RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
871  Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
872
873  // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
874  // remainder.  As such, we handle common power-of-two cases here to generate
875  // better code.
876  if (llvm::isPowerOf2_64(ElementSize)) {
877    Value *ShAmt =
878    llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
879    return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
880  }
881
882  // Otherwise, do a full sdiv.
883  Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
884  return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
885}
886
887
888Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
889  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
890  // RHS to the same size as the LHS.
891  Value *RHS = Ops.RHS;
892  if (Ops.LHS->getType() != RHS->getType())
893    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
894
895  return Builder.CreateShl(Ops.LHS, RHS, "shl");
896}
897
898Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
899  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
900  // RHS to the same size as the LHS.
901  Value *RHS = Ops.RHS;
902  if (Ops.LHS->getType() != RHS->getType())
903    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
904
905  if (Ops.Ty->isUnsignedIntegerType())
906    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
907  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
908}
909
910Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
911                                      unsigned SICmpOpc, unsigned FCmpOpc) {
912  Value *Result;
913  QualType LHSTy = E->getLHS()->getType();
914  if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
915    Value *LHS = Visit(E->getLHS());
916    Value *RHS = Visit(E->getRHS());
917
918    if (LHS->getType()->isFloatingPoint()) {
919      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
920                                  LHS, RHS, "cmp");
921    } else if (LHSTy->isSignedIntegerType()) {
922      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
923                                  LHS, RHS, "cmp");
924    } else {
925      // Unsigned integers and pointers.
926      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
927                                  LHS, RHS, "cmp");
928    }
929  } else if (LHSTy->isVectorType()) {
930    Value *LHS = Visit(E->getLHS());
931    Value *RHS = Visit(E->getRHS());
932
933    if (LHS->getType()->isFPOrFPVector()) {
934      Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
935                                  LHS, RHS, "cmp");
936    } else if (LHSTy->isUnsignedIntegerType()) {
937      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
938                                  LHS, RHS, "cmp");
939    } else {
940      // Signed integers and pointers.
941      Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
942                                  LHS, RHS, "cmp");
943    }
944    return Result;
945  } else {
946    // Complex Comparison: can only be an equality comparison.
947    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
948    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
949
950    QualType CETy =
951      cast<ComplexType>(LHSTy.getCanonicalType())->getElementType();
952
953    Value *ResultR, *ResultI;
954    if (CETy->isRealFloatingType()) {
955      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
956                                   LHS.first, RHS.first, "cmp.r");
957      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
958                                   LHS.second, RHS.second, "cmp.i");
959    } else {
960      // Complex comparisons can only be equality comparisons.  As such, signed
961      // and unsigned opcodes are the same.
962      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
963                                   LHS.first, RHS.first, "cmp.r");
964      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
965                                   LHS.second, RHS.second, "cmp.i");
966    }
967
968    if (E->getOpcode() == BinaryOperator::EQ) {
969      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
970    } else {
971      assert(E->getOpcode() == BinaryOperator::NE &&
972             "Complex comparison other than == or != ?");
973      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
974    }
975  }
976
977  // ZExt result to int.
978  return Builder.CreateZExt(Result, CGF.LLVMIntTy, "cmp.ext");
979}
980
981Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
982  LValue LHS = EmitLValue(E->getLHS());
983  Value *RHS = Visit(E->getRHS());
984
985  // Store the value into the LHS.
986  // FIXME: Volatility!
987  CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
988
989  // For bitfields, we need the value in the bitfield
990  // FIXME: This adds an extra bitfield load
991  if (LHS.isBitfield())
992    return EmitLoadOfLValue(LHS, E->getLHS()->getType());
993  // Return the RHS.
994  return RHS;
995}
996
997Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
998  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
999
1000  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("land_cont");
1001  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("land_rhs");
1002
1003  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1004  Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
1005
1006  CGF.EmitBlock(RHSBlock);
1007  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1008
1009  // Reaquire the RHS block, as there may be subblocks inserted.
1010  RHSBlock = Builder.GetInsertBlock();
1011  CGF.EmitBlock(ContBlock);
1012
1013  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1014  // false.  If we evaluated both, the result is the RHS condition.
1015  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
1016  PN->reserveOperandSpace(2);
1017  PN->addIncoming(llvm::ConstantInt::getFalse(), OrigBlock);
1018  PN->addIncoming(RHSCond, RHSBlock);
1019
1020  // ZExt result to int.
1021  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1022}
1023
1024Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1025  Value *LHSCond = CGF.EvaluateExprAsBool(E->getLHS());
1026
1027  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("lor_cont");
1028  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("lor_rhs");
1029
1030  llvm::BasicBlock *OrigBlock = Builder.GetInsertBlock();
1031  Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
1032
1033  CGF.EmitBlock(RHSBlock);
1034  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1035
1036  // Reaquire the RHS block, as there may be subblocks inserted.
1037  RHSBlock = Builder.GetInsertBlock();
1038  CGF.EmitBlock(ContBlock);
1039
1040  // Create a PHI node.  If we just evaluted the LHS condition, the result is
1041  // true.  If we evaluated both, the result is the RHS condition.
1042  llvm::PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
1043  PN->reserveOperandSpace(2);
1044  PN->addIncoming(llvm::ConstantInt::getTrue(), OrigBlock);
1045  PN->addIncoming(RHSCond, RHSBlock);
1046
1047  // ZExt result to int.
1048  return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1049}
1050
1051Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1052  CGF.EmitStmt(E->getLHS());
1053  return Visit(E->getRHS());
1054}
1055
1056//===----------------------------------------------------------------------===//
1057//                             Other Operators
1058//===----------------------------------------------------------------------===//
1059
1060Value *ScalarExprEmitter::
1061VisitConditionalOperator(const ConditionalOperator *E) {
1062  llvm::BasicBlock *LHSBlock = llvm::BasicBlock::Create("cond.?");
1063  llvm::BasicBlock *RHSBlock = llvm::BasicBlock::Create("cond.:");
1064  llvm::BasicBlock *ContBlock = llvm::BasicBlock::Create("cond.cont");
1065
1066  // Evaluate the conditional, then convert it to bool.  We do this explicitly
1067  // because we need the unconverted value if this is a GNU ?: expression with
1068  // missing middle value.
1069  Value *CondVal = CGF.EmitScalarExpr(E->getCond());
1070  Value *CondBoolVal =CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1071                                               CGF.getContext().BoolTy);
1072  Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1073
1074  CGF.EmitBlock(LHSBlock);
1075
1076  // Handle the GNU extension for missing LHS.
1077  Value *LHS;
1078  if (E->getLHS())
1079    LHS = Visit(E->getLHS());
1080  else    // Perform promotions, to handle cases like "short ?: int"
1081    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1082
1083  Builder.CreateBr(ContBlock);
1084  LHSBlock = Builder.GetInsertBlock();
1085
1086  CGF.EmitBlock(RHSBlock);
1087
1088  Value *RHS = Visit(E->getRHS());
1089  Builder.CreateBr(ContBlock);
1090  RHSBlock = Builder.GetInsertBlock();
1091
1092  CGF.EmitBlock(ContBlock);
1093
1094  if (!LHS || !RHS) {
1095    assert(E->getType()->isVoidType() && "Non-void value should have a value");
1096    return 0;
1097  }
1098
1099  // Create a PHI node for the real part.
1100  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1101  PN->reserveOperandSpace(2);
1102  PN->addIncoming(LHS, LHSBlock);
1103  PN->addIncoming(RHS, RHSBlock);
1104  return PN;
1105}
1106
1107Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1108  // Emit the LHS or RHS as appropriate.
1109  return
1110    Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
1111}
1112
1113Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
1114  return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
1115                          E->arg_end(CGF.getContext())).getScalarVal();
1116}
1117
1118Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1119  llvm::Value *ArgValue = EmitLValue(VE->getSubExpr()).getAddress();
1120
1121  llvm::Value *V = Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1122  return V;
1123}
1124
1125Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
1126  std::string str;
1127  llvm::SmallVector<const RecordType *, 8> EncodingRecordTypes;
1128  CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str,
1129                                          EncodingRecordTypes);
1130
1131  llvm::Constant *C = llvm::ConstantArray::get(str);
1132  C = new llvm::GlobalVariable(C->getType(), true,
1133                               llvm::GlobalValue::InternalLinkage,
1134                               C, ".str", &CGF.CGM.getModule());
1135  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1136  llvm::Constant *Zeros[] = { Zero, Zero };
1137  C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1138
1139  return C;
1140}
1141
1142//===----------------------------------------------------------------------===//
1143//                         Entry Point into this File
1144//===----------------------------------------------------------------------===//
1145
1146/// EmitComplexExpr - Emit the computation of the specified expression of
1147/// complex type, ignoring the result.
1148Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1149  assert(E && !hasAggregateLLVMType(E->getType()) &&
1150         "Invalid scalar expression to emit");
1151
1152  return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1153}
1154
1155/// EmitScalarConversion - Emit a conversion from the specified type to the
1156/// specified destination type, both of which are LLVM scalar types.
1157Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1158                                             QualType DstTy) {
1159  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1160         "Invalid scalar expression to emit");
1161  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1162}
1163
1164/// EmitComplexToScalarConversion - Emit a conversion from the specified
1165/// complex type to the specified destination type, where the destination
1166/// type is an LLVM scalar type.
1167Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1168                                                      QualType SrcTy,
1169                                                      QualType DstTy) {
1170  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1171         "Invalid complex -> scalar conversion");
1172  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1173                                                                DstTy);
1174}
1175
1176Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1177  assert(V1->getType() == V2->getType() &&
1178         "Vector operands must be of the same type");
1179
1180  unsigned NumElements =
1181    cast<llvm::VectorType>(V1->getType())->getNumElements();
1182
1183  va_list va;
1184  va_start(va, V2);
1185
1186  llvm::SmallVector<llvm::Constant*, 16> Args;
1187
1188  for (unsigned i = 0; i < NumElements; i++) {
1189    int n = va_arg(va, int);
1190
1191    assert(n >= 0 && n < (int)NumElements * 2 &&
1192           "Vector shuffle index out of bounds!");
1193
1194    Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1195  }
1196
1197  const char *Name = va_arg(va, const char *);
1198  va_end(va);
1199
1200  llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1201
1202  return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1203}
1204
1205llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
1206                                         unsigned NumVals, bool isSplat)
1207{
1208  llvm::Value *Vec
1209  = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
1210
1211  for (unsigned i = 0, e = NumVals ; i != e; ++i) {
1212    llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
1213    llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
1214    Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
1215  }
1216
1217  return Vec;
1218}
1219