CGExprScalar.cpp revision a3cac5b76a5243d8fca812d3a276950b0cfc56b6
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    llvm_unreachable("Stmt can't have complex result type!");
157  }
158  Value *VisitExpr(Expr *S);
159
160  Value *VisitParenExpr(ParenExpr *PE) {
161    return Visit(PE->getSubExpr());
162  }
163  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164    return Visit(E->getReplacement());
165  }
166  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167    return Visit(GE->getResultExpr());
168  }
169
170  // Leaves.
171  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172    return Builder.getInt(E->getValue());
173  }
174  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175    return llvm::ConstantFP::get(VMContext, E->getValue());
176  }
177  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182  }
183  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187    return EmitNullValue(E->getType());
188  }
189  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193    return Builder.CreateBitCast(V, ConvertType(E->getType()));
194  }
195
196  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198  }
199
200  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202  }
203
204  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205    if (E->isGLValue())
206      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207
208    // Otherwise, assume the mapping is the scalar directly.
209    return CGF.getOpaqueRValueMapping(E).getScalarVal();
210  }
211
212  // l-values.
213  Value *VisitDeclRefExpr(DeclRefExpr *E) {
214    Expr::EvalResult Result;
215    bool IsReferenceConstant = false;
216    QualType EvalTy = E->getType();
217    if (!E->EvaluateAsRValue(Result, CGF.getContext())) {
218      // If this is a reference, try to determine what it is bound to.
219      if (!E->getDecl()->getType()->isReferenceType() ||
220          !E->EvaluateAsLValue(Result, CGF.getContext()))
221        return EmitLoadOfLValue(E);
222
223      IsReferenceConstant = true;
224      EvalTy = E->getDecl()->getType();
225    }
226
227    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
228
229    llvm::Constant *C = CGF.CGM.EmitConstantValue(Result.Val, EvalTy, &CGF);
230
231    // Make sure we emit a debug reference to the global variable.
232    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
233      if (!CGF.getContext().DeclMustBeEmitted(VD))
234        CGF.EmitDeclRefExprDbgValue(E, C);
235    } else if (isa<EnumConstantDecl>(E->getDecl())) {
236      CGF.EmitDeclRefExprDbgValue(E, C);
237    }
238
239    if (IsReferenceConstant)
240      return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(C, E->getType()));
241
242    return C;
243  }
244  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
245    return CGF.EmitObjCSelectorExpr(E);
246  }
247  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
248    return CGF.EmitObjCProtocolExpr(E);
249  }
250  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
251    return EmitLoadOfLValue(E);
252  }
253  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
254    if (E->getMethodDecl() &&
255        E->getMethodDecl()->getResultType()->isReferenceType())
256      return EmitLoadOfLValue(E);
257    return CGF.EmitObjCMessageExpr(E).getScalarVal();
258  }
259
260  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
261    LValue LV = CGF.EmitObjCIsaExpr(E);
262    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
263    return V;
264  }
265
266  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
267  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
268  Value *VisitMemberExpr(MemberExpr *E);
269  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
270  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
271    return EmitLoadOfLValue(E);
272  }
273
274  Value *VisitInitListExpr(InitListExpr *E);
275
276  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
277    return CGF.CGM.EmitNullConstant(E->getType());
278  }
279  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
280    if (E->getType()->isVariablyModifiedType())
281      CGF.EmitVariablyModifiedType(E->getType());
282    return VisitCastExpr(E);
283  }
284  Value *VisitCastExpr(CastExpr *E);
285
286  Value *VisitCallExpr(const CallExpr *E) {
287    if (E->getCallReturnType()->isReferenceType())
288      return EmitLoadOfLValue(E);
289
290    return CGF.EmitCallExpr(E).getScalarVal();
291  }
292
293  Value *VisitStmtExpr(const StmtExpr *E);
294
295  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
296
297  // Unary Operators.
298  Value *VisitUnaryPostDec(const UnaryOperator *E) {
299    LValue LV = EmitLValue(E->getSubExpr());
300    return EmitScalarPrePostIncDec(E, LV, false, false);
301  }
302  Value *VisitUnaryPostInc(const UnaryOperator *E) {
303    LValue LV = EmitLValue(E->getSubExpr());
304    return EmitScalarPrePostIncDec(E, LV, true, false);
305  }
306  Value *VisitUnaryPreDec(const UnaryOperator *E) {
307    LValue LV = EmitLValue(E->getSubExpr());
308    return EmitScalarPrePostIncDec(E, LV, false, true);
309  }
310  Value *VisitUnaryPreInc(const UnaryOperator *E) {
311    LValue LV = EmitLValue(E->getSubExpr());
312    return EmitScalarPrePostIncDec(E, LV, true, true);
313  }
314
315  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
316                                               llvm::Value *InVal,
317                                               llvm::Value *NextVal,
318                                               bool IsInc);
319
320  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
321                                       bool isInc, bool isPre);
322
323
324  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
325    if (isa<MemberPointerType>(E->getType())) // never sugared
326      return CGF.CGM.getMemberPointerConstant(E);
327
328    return EmitLValue(E->getSubExpr()).getAddress();
329  }
330  Value *VisitUnaryDeref(const UnaryOperator *E) {
331    if (E->getType()->isVoidType())
332      return Visit(E->getSubExpr()); // the actual value should be unused
333    return EmitLoadOfLValue(E);
334  }
335  Value *VisitUnaryPlus(const UnaryOperator *E) {
336    // This differs from gcc, though, most likely due to a bug in gcc.
337    TestAndClearIgnoreResultAssign();
338    return Visit(E->getSubExpr());
339  }
340  Value *VisitUnaryMinus    (const UnaryOperator *E);
341  Value *VisitUnaryNot      (const UnaryOperator *E);
342  Value *VisitUnaryLNot     (const UnaryOperator *E);
343  Value *VisitUnaryReal     (const UnaryOperator *E);
344  Value *VisitUnaryImag     (const UnaryOperator *E);
345  Value *VisitUnaryExtension(const UnaryOperator *E) {
346    return Visit(E->getSubExpr());
347  }
348
349  // C++
350  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
351    return EmitLoadOfLValue(E);
352  }
353
354  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
355    return Visit(DAE->getExpr());
356  }
357  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
358    return CGF.LoadCXXThis();
359  }
360
361  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
362    CGF.enterFullExpression(E);
363    CodeGenFunction::RunCleanupsScope Scope(CGF);
364    return Visit(E->getSubExpr());
365  }
366  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
367    return CGF.EmitCXXNewExpr(E);
368  }
369  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
370    CGF.EmitCXXDeleteExpr(E);
371    return 0;
372  }
373  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
374    return Builder.getInt1(E->getValue());
375  }
376
377  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
378    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
379  }
380
381  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
382    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
383  }
384
385  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
386    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
387  }
388
389  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
390    // C++ [expr.pseudo]p1:
391    //   The result shall only be used as the operand for the function call
392    //   operator (), and the result of such a call has type void. The only
393    //   effect is the evaluation of the postfix-expression before the dot or
394    //   arrow.
395    CGF.EmitScalarExpr(E->getBase());
396    return 0;
397  }
398
399  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
400    return EmitNullValue(E->getType());
401  }
402
403  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
404    CGF.EmitCXXThrowExpr(E);
405    return 0;
406  }
407
408  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
409    return Builder.getInt1(E->getValue());
410  }
411
412  // Binary Operators.
413  Value *EmitMul(const BinOpInfo &Ops) {
414    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
415      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
416      case LangOptions::SOB_Undefined:
417        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
418      case LangOptions::SOB_Defined:
419        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
420      case LangOptions::SOB_Trapping:
421        return EmitOverflowCheckedBinOp(Ops);
422      }
423    }
424
425    if (Ops.LHS->getType()->isFPOrFPVectorTy())
426      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
427    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
428  }
429  bool isTrapvOverflowBehavior() {
430    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
431               == LangOptions::SOB_Trapping;
432  }
433  /// Create a binary op that checks for overflow.
434  /// Currently only supports +, - and *.
435  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
436  // Emit the overflow BB when -ftrapv option is activated.
437  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
438    Builder.SetInsertPoint(overflowBB);
439    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
440    Builder.CreateCall(Trap);
441    Builder.CreateUnreachable();
442  }
443  // Check for undefined division and modulus behaviors.
444  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
445                                                  llvm::Value *Zero,bool isDiv);
446  Value *EmitDiv(const BinOpInfo &Ops);
447  Value *EmitRem(const BinOpInfo &Ops);
448  Value *EmitAdd(const BinOpInfo &Ops);
449  Value *EmitSub(const BinOpInfo &Ops);
450  Value *EmitShl(const BinOpInfo &Ops);
451  Value *EmitShr(const BinOpInfo &Ops);
452  Value *EmitAnd(const BinOpInfo &Ops) {
453    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
454  }
455  Value *EmitXor(const BinOpInfo &Ops) {
456    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
457  }
458  Value *EmitOr (const BinOpInfo &Ops) {
459    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
460  }
461
462  BinOpInfo EmitBinOps(const BinaryOperator *E);
463  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
464                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
465                                  Value *&Result);
466
467  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
468                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
469
470  // Binary operators and binary compound assignment operators.
471#define HANDLEBINOP(OP) \
472  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
473    return Emit ## OP(EmitBinOps(E));                                      \
474  }                                                                        \
475  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
476    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
477  }
478  HANDLEBINOP(Mul)
479  HANDLEBINOP(Div)
480  HANDLEBINOP(Rem)
481  HANDLEBINOP(Add)
482  HANDLEBINOP(Sub)
483  HANDLEBINOP(Shl)
484  HANDLEBINOP(Shr)
485  HANDLEBINOP(And)
486  HANDLEBINOP(Xor)
487  HANDLEBINOP(Or)
488#undef HANDLEBINOP
489
490  // Comparisons.
491  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
492                     unsigned SICmpOpc, unsigned FCmpOpc);
493#define VISITCOMP(CODE, UI, SI, FP) \
494    Value *VisitBin##CODE(const BinaryOperator *E) { \
495      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
496                         llvm::FCmpInst::FP); }
497  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
498  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
499  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
500  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
501  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
502  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
503#undef VISITCOMP
504
505  Value *VisitBinAssign     (const BinaryOperator *E);
506
507  Value *VisitBinLAnd       (const BinaryOperator *E);
508  Value *VisitBinLOr        (const BinaryOperator *E);
509  Value *VisitBinComma      (const BinaryOperator *E);
510
511  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
512  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
513
514  // Other Operators.
515  Value *VisitBlockExpr(const BlockExpr *BE);
516  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
517  Value *VisitChooseExpr(ChooseExpr *CE);
518  Value *VisitVAArgExpr(VAArgExpr *VE);
519  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
520    return CGF.EmitObjCStringLiteral(E);
521  }
522  Value *VisitAsTypeExpr(AsTypeExpr *CE);
523  Value *VisitAtomicExpr(AtomicExpr *AE);
524};
525}  // end anonymous namespace.
526
527//===----------------------------------------------------------------------===//
528//                                Utilities
529//===----------------------------------------------------------------------===//
530
531/// EmitConversionToBool - Convert the specified expression value to a
532/// boolean (i1) truth value.  This is equivalent to "Val != 0".
533Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
534  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
535
536  if (SrcType->isRealFloatingType())
537    return EmitFloatToBoolConversion(Src);
538
539  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
540    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
541
542  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
543         "Unknown scalar type to convert");
544
545  if (isa<llvm::IntegerType>(Src->getType()))
546    return EmitIntToBoolConversion(Src);
547
548  assert(isa<llvm::PointerType>(Src->getType()));
549  return EmitPointerToBoolConversion(Src);
550}
551
552/// EmitScalarConversion - Emit a conversion from the specified type to the
553/// specified destination type, both of which are LLVM scalar types.
554Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
555                                               QualType DstType) {
556  SrcType = CGF.getContext().getCanonicalType(SrcType);
557  DstType = CGF.getContext().getCanonicalType(DstType);
558  if (SrcType == DstType) return Src;
559
560  if (DstType->isVoidType()) return 0;
561
562  llvm::Type *SrcTy = Src->getType();
563
564  // Floating casts might be a bit special: if we're doing casts to / from half
565  // FP, we should go via special intrinsics.
566  if (SrcType->isHalfType()) {
567    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
568    SrcType = CGF.getContext().FloatTy;
569    SrcTy = CGF.FloatTy;
570  }
571
572  // Handle conversions to bool first, they are special: comparisons against 0.
573  if (DstType->isBooleanType())
574    return EmitConversionToBool(Src, SrcType);
575
576  llvm::Type *DstTy = ConvertType(DstType);
577
578  // Ignore conversions like int -> uint.
579  if (SrcTy == DstTy)
580    return Src;
581
582  // Handle pointer conversions next: pointers can only be converted to/from
583  // other pointers and integers. Check for pointer types in terms of LLVM, as
584  // some native types (like Obj-C id) may map to a pointer type.
585  if (isa<llvm::PointerType>(DstTy)) {
586    // The source value may be an integer, or a pointer.
587    if (isa<llvm::PointerType>(SrcTy))
588      return Builder.CreateBitCast(Src, DstTy, "conv");
589
590    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
591    // First, convert to the correct width so that we control the kind of
592    // extension.
593    llvm::Type *MiddleTy = CGF.IntPtrTy;
594    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
595    llvm::Value* IntResult =
596        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
597    // Then, cast to pointer.
598    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
599  }
600
601  if (isa<llvm::PointerType>(SrcTy)) {
602    // Must be an ptr to int cast.
603    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
604    return Builder.CreatePtrToInt(Src, DstTy, "conv");
605  }
606
607  // A scalar can be splatted to an extended vector of the same element type
608  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
609    // Cast the scalar to element type
610    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
611    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
612
613    // Insert the element in element zero of an undef vector
614    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
615    llvm::Value *Idx = Builder.getInt32(0);
616    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
617
618    // Splat the element across to all elements
619    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
620    llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
621                                                          Builder.getInt32(0));
622    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
623    return Yay;
624  }
625
626  // Allow bitcast from vector to integer/fp of the same size.
627  if (isa<llvm::VectorType>(SrcTy) ||
628      isa<llvm::VectorType>(DstTy))
629    return Builder.CreateBitCast(Src, DstTy, "conv");
630
631  // Finally, we have the arithmetic types: real int/float.
632  Value *Res = NULL;
633  llvm::Type *ResTy = DstTy;
634
635  // Cast to half via float
636  if (DstType->isHalfType())
637    DstTy = CGF.FloatTy;
638
639  if (isa<llvm::IntegerType>(SrcTy)) {
640    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
641    if (isa<llvm::IntegerType>(DstTy))
642      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
643    else if (InputSigned)
644      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
645    else
646      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
647  } else if (isa<llvm::IntegerType>(DstTy)) {
648    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
649    if (DstType->isSignedIntegerOrEnumerationType())
650      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
651    else
652      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
653  } else {
654    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
655           "Unknown real conversion");
656    if (DstTy->getTypeID() < SrcTy->getTypeID())
657      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
658    else
659      Res = Builder.CreateFPExt(Src, DstTy, "conv");
660  }
661
662  if (DstTy != ResTy) {
663    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
664    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
665  }
666
667  return Res;
668}
669
670/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
671/// type to the specified destination type, where the destination type is an
672/// LLVM scalar type.
673Value *ScalarExprEmitter::
674EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
675                              QualType SrcTy, QualType DstTy) {
676  // Get the source element type.
677  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
678
679  // Handle conversions to bool first, they are special: comparisons against 0.
680  if (DstTy->isBooleanType()) {
681    //  Complex != 0  -> (Real != 0) | (Imag != 0)
682    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
683    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
684    return Builder.CreateOr(Src.first, Src.second, "tobool");
685  }
686
687  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
688  // the imaginary part of the complex value is discarded and the value of the
689  // real part is converted according to the conversion rules for the
690  // corresponding real type.
691  return EmitScalarConversion(Src.first, SrcTy, DstTy);
692}
693
694Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
695  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
696    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
697
698  return llvm::Constant::getNullValue(ConvertType(Ty));
699}
700
701//===----------------------------------------------------------------------===//
702//                            Visitor Methods
703//===----------------------------------------------------------------------===//
704
705Value *ScalarExprEmitter::VisitExpr(Expr *E) {
706  CGF.ErrorUnsupported(E, "scalar expression");
707  if (E->getType()->isVoidType())
708    return 0;
709  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
710}
711
712Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
713  // Vector Mask Case
714  if (E->getNumSubExprs() == 2 ||
715      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
716    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
717    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
718    Value *Mask;
719
720    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
721    unsigned LHSElts = LTy->getNumElements();
722
723    if (E->getNumSubExprs() == 3) {
724      Mask = CGF.EmitScalarExpr(E->getExpr(2));
725
726      // Shuffle LHS & RHS into one input vector.
727      SmallVector<llvm::Constant*, 32> concat;
728      for (unsigned i = 0; i != LHSElts; ++i) {
729        concat.push_back(Builder.getInt32(2*i));
730        concat.push_back(Builder.getInt32(2*i+1));
731      }
732
733      Value* CV = llvm::ConstantVector::get(concat);
734      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
735      LHSElts *= 2;
736    } else {
737      Mask = RHS;
738    }
739
740    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
741    llvm::Constant* EltMask;
742
743    // Treat vec3 like vec4.
744    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
745      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                       (1 << llvm::Log2_32(LHSElts+2))-1);
747    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
748      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
749                                       (1 << llvm::Log2_32(LHSElts+1))-1);
750    else
751      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
752                                       (1 << llvm::Log2_32(LHSElts))-1);
753
754    // Mask off the high bits of each shuffle index.
755    Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
756                                                     EltMask);
757    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
758
759    // newv = undef
760    // mask = mask & maskbits
761    // for each elt
762    //   n = extract mask i
763    //   x = extract val n
764    //   newv = insert newv, x, i
765    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
766                                                        MTy->getNumElements());
767    Value* NewV = llvm::UndefValue::get(RTy);
768    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
769      Value *Indx = Builder.getInt32(i);
770      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
771      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
772
773      // Handle vec3 special since the index will be off by one for the RHS.
774      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
775        Value *cmpIndx, *newIndx;
776        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
777                                        "cmp_shuf_idx");
778        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
779        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
780      }
781      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
782      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
783    }
784    return NewV;
785  }
786
787  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
788  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
789
790  // Handle vec3 special since the index will be off by one for the RHS.
791  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
792  SmallVector<llvm::Constant*, 32> indices;
793  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
794    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
795    if (VTy->getNumElements() == 3 && Idx > 3)
796      Idx -= 1;
797    indices.push_back(Builder.getInt32(Idx));
798  }
799
800  Value *SV = llvm::ConstantVector::get(indices);
801  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
802}
803Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
804  llvm::APSInt Value;
805  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
806    if (E->isArrow())
807      CGF.EmitScalarExpr(E->getBase());
808    else
809      EmitLValue(E->getBase());
810    return Builder.getInt(Value);
811  }
812
813  // Emit debug info for aggregate now, if it was delayed to reduce
814  // debug info size.
815  CGDebugInfo *DI = CGF.getDebugInfo();
816  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
817    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
818    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
819      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
820        DI->getOrCreateRecordType(PTy->getPointeeType(),
821                                  M->getParent()->getLocation());
822  }
823  return EmitLoadOfLValue(E);
824}
825
826Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
827  TestAndClearIgnoreResultAssign();
828
829  // Emit subscript expressions in rvalue context's.  For most cases, this just
830  // loads the lvalue formed by the subscript expr.  However, we have to be
831  // careful, because the base of a vector subscript is occasionally an rvalue,
832  // so we can't get it as an lvalue.
833  if (!E->getBase()->getType()->isVectorType())
834    return EmitLoadOfLValue(E);
835
836  // Handle the vector case.  The base must be a vector, the index must be an
837  // integer value.
838  Value *Base = Visit(E->getBase());
839  Value *Idx  = Visit(E->getIdx());
840  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
841  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
842  return Builder.CreateExtractElement(Base, Idx, "vecext");
843}
844
845static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
846                                  unsigned Off, llvm::Type *I32Ty) {
847  int MV = SVI->getMaskValue(Idx);
848  if (MV == -1)
849    return llvm::UndefValue::get(I32Ty);
850  return llvm::ConstantInt::get(I32Ty, Off+MV);
851}
852
853Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
854  bool Ignore = TestAndClearIgnoreResultAssign();
855  (void)Ignore;
856  assert (Ignore == false && "init list ignored");
857  unsigned NumInitElements = E->getNumInits();
858
859  if (E->hadArrayRangeDesignator())
860    CGF.ErrorUnsupported(E, "GNU array range designator extension");
861
862  llvm::VectorType *VType =
863    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
864
865  if (!VType) {
866    if (NumInitElements == 0) {
867      // C++11 value-initialization for the scalar.
868      return EmitNullValue(E->getType());
869    }
870    // We have a scalar in braces. Just use the first element.
871    return Visit(E->getInit(0));
872  }
873
874  unsigned ResElts = VType->getNumElements();
875
876  // Loop over initializers collecting the Value for each, and remembering
877  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
878  // us to fold the shuffle for the swizzle into the shuffle for the vector
879  // initializer, since LLVM optimizers generally do not want to touch
880  // shuffles.
881  unsigned CurIdx = 0;
882  bool VIsUndefShuffle = false;
883  llvm::Value *V = llvm::UndefValue::get(VType);
884  for (unsigned i = 0; i != NumInitElements; ++i) {
885    Expr *IE = E->getInit(i);
886    Value *Init = Visit(IE);
887    SmallVector<llvm::Constant*, 16> Args;
888
889    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
890
891    // Handle scalar elements.  If the scalar initializer is actually one
892    // element of a different vector of the same width, use shuffle instead of
893    // extract+insert.
894    if (!VVT) {
895      if (isa<ExtVectorElementExpr>(IE)) {
896        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
897
898        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
899          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
900          Value *LHS = 0, *RHS = 0;
901          if (CurIdx == 0) {
902            // insert into undef -> shuffle (src, undef)
903            Args.push_back(C);
904            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
905
906            LHS = EI->getVectorOperand();
907            RHS = V;
908            VIsUndefShuffle = true;
909          } else if (VIsUndefShuffle) {
910            // insert into undefshuffle && size match -> shuffle (v, src)
911            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
912            for (unsigned j = 0; j != CurIdx; ++j)
913              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
914            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
915            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
916
917            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
918            RHS = EI->getVectorOperand();
919            VIsUndefShuffle = false;
920          }
921          if (!Args.empty()) {
922            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
923            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
924            ++CurIdx;
925            continue;
926          }
927        }
928      }
929      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
930                                      "vecinit");
931      VIsUndefShuffle = false;
932      ++CurIdx;
933      continue;
934    }
935
936    unsigned InitElts = VVT->getNumElements();
937
938    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
939    // input is the same width as the vector being constructed, generate an
940    // optimized shuffle of the swizzle input into the result.
941    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
942    if (isa<ExtVectorElementExpr>(IE)) {
943      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
944      Value *SVOp = SVI->getOperand(0);
945      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
946
947      if (OpTy->getNumElements() == ResElts) {
948        for (unsigned j = 0; j != CurIdx; ++j) {
949          // If the current vector initializer is a shuffle with undef, merge
950          // this shuffle directly into it.
951          if (VIsUndefShuffle) {
952            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
953                                      CGF.Int32Ty));
954          } else {
955            Args.push_back(Builder.getInt32(j));
956          }
957        }
958        for (unsigned j = 0, je = InitElts; j != je; ++j)
959          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
960        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
961
962        if (VIsUndefShuffle)
963          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
964
965        Init = SVOp;
966      }
967    }
968
969    // Extend init to result vector length, and then shuffle its contribution
970    // to the vector initializer into V.
971    if (Args.empty()) {
972      for (unsigned j = 0; j != InitElts; ++j)
973        Args.push_back(Builder.getInt32(j));
974      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
975      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
976      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
977                                         Mask, "vext");
978
979      Args.clear();
980      for (unsigned j = 0; j != CurIdx; ++j)
981        Args.push_back(Builder.getInt32(j));
982      for (unsigned j = 0; j != InitElts; ++j)
983        Args.push_back(Builder.getInt32(j+Offset));
984      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
985    }
986
987    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
988    // merging subsequent shuffles into this one.
989    if (CurIdx == 0)
990      std::swap(V, Init);
991    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
992    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
993    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
994    CurIdx += InitElts;
995  }
996
997  // FIXME: evaluate codegen vs. shuffling against constant null vector.
998  // Emit remaining default initializers.
999  llvm::Type *EltTy = VType->getElementType();
1000
1001  // Emit remaining default initializers
1002  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1003    Value *Idx = Builder.getInt32(CurIdx);
1004    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1005    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1006  }
1007  return V;
1008}
1009
1010static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1011  const Expr *E = CE->getSubExpr();
1012
1013  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1014    return false;
1015
1016  if (isa<CXXThisExpr>(E)) {
1017    // We always assume that 'this' is never null.
1018    return false;
1019  }
1020
1021  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1022    // And that glvalue casts are never null.
1023    if (ICE->getValueKind() != VK_RValue)
1024      return false;
1025  }
1026
1027  return true;
1028}
1029
1030// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1031// have to handle a more broad range of conversions than explicit casts, as they
1032// handle things like function to ptr-to-function decay etc.
1033Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1034  Expr *E = CE->getSubExpr();
1035  QualType DestTy = CE->getType();
1036  CastKind Kind = CE->getCastKind();
1037
1038  if (!DestTy->isVoidType())
1039    TestAndClearIgnoreResultAssign();
1040
1041  // Since almost all cast kinds apply to scalars, this switch doesn't have
1042  // a default case, so the compiler will warn on a missing case.  The cases
1043  // are in the same order as in the CastKind enum.
1044  switch (Kind) {
1045  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1046
1047  case CK_LValueBitCast:
1048  case CK_ObjCObjectLValueCast: {
1049    Value *V = EmitLValue(E).getAddress();
1050    V = Builder.CreateBitCast(V,
1051                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1052    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1053  }
1054
1055  case CK_CPointerToObjCPointerCast:
1056  case CK_BlockPointerToObjCPointerCast:
1057  case CK_AnyPointerToBlockPointerCast:
1058  case CK_BitCast: {
1059    Value *Src = Visit(const_cast<Expr*>(E));
1060    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1061  }
1062  case CK_AtomicToNonAtomic:
1063  case CK_NonAtomicToAtomic:
1064  case CK_NoOp:
1065  case CK_UserDefinedConversion:
1066    return Visit(const_cast<Expr*>(E));
1067
1068  case CK_BaseToDerived: {
1069    const CXXRecordDecl *DerivedClassDecl =
1070      DestTy->getCXXRecordDeclForPointerType();
1071
1072    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1073                                        CE->path_begin(), CE->path_end(),
1074                                        ShouldNullCheckClassCastValue(CE));
1075  }
1076  case CK_UncheckedDerivedToBase:
1077  case CK_DerivedToBase: {
1078    const RecordType *DerivedClassTy =
1079      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1080    CXXRecordDecl *DerivedClassDecl =
1081      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1082
1083    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1084                                     CE->path_begin(), CE->path_end(),
1085                                     ShouldNullCheckClassCastValue(CE));
1086  }
1087  case CK_Dynamic: {
1088    Value *V = Visit(const_cast<Expr*>(E));
1089    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1090    return CGF.EmitDynamicCast(V, DCE);
1091  }
1092
1093  case CK_ArrayToPointerDecay: {
1094    assert(E->getType()->isArrayType() &&
1095           "Array to pointer decay must have array source type!");
1096
1097    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1098
1099    // Note that VLA pointers are always decayed, so we don't need to do
1100    // anything here.
1101    if (!E->getType()->isVariableArrayType()) {
1102      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1103      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1104                                 ->getElementType()) &&
1105             "Expected pointer to array");
1106      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1107    }
1108
1109    // Make sure the array decay ends up being the right type.  This matters if
1110    // the array type was of an incomplete type.
1111    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1112  }
1113  case CK_FunctionToPointerDecay:
1114    return EmitLValue(E).getAddress();
1115
1116  case CK_NullToPointer:
1117    if (MustVisitNullValue(E))
1118      (void) Visit(E);
1119
1120    return llvm::ConstantPointerNull::get(
1121                               cast<llvm::PointerType>(ConvertType(DestTy)));
1122
1123  case CK_NullToMemberPointer: {
1124    if (MustVisitNullValue(E))
1125      (void) Visit(E);
1126
1127    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1128    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1129  }
1130
1131  case CK_ReinterpretMemberPointer:
1132  case CK_BaseToDerivedMemberPointer:
1133  case CK_DerivedToBaseMemberPointer: {
1134    Value *Src = Visit(E);
1135
1136    // Note that the AST doesn't distinguish between checked and
1137    // unchecked member pointer conversions, so we always have to
1138    // implement checked conversions here.  This is inefficient when
1139    // actual control flow may be required in order to perform the
1140    // check, which it is for data member pointers (but not member
1141    // function pointers on Itanium and ARM).
1142    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1143  }
1144
1145  case CK_ARCProduceObject:
1146    return CGF.EmitARCRetainScalarExpr(E);
1147  case CK_ARCConsumeObject:
1148    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1149  case CK_ARCReclaimReturnedObject: {
1150    llvm::Value *value = Visit(E);
1151    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1152    return CGF.EmitObjCConsumeObject(E->getType(), value);
1153  }
1154  case CK_ARCExtendBlockObject:
1155    return CGF.EmitARCExtendBlockObject(E);
1156
1157  case CK_CopyAndAutoreleaseBlockObject:
1158    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1159
1160  case CK_FloatingRealToComplex:
1161  case CK_FloatingComplexCast:
1162  case CK_IntegralRealToComplex:
1163  case CK_IntegralComplexCast:
1164  case CK_IntegralComplexToFloatingComplex:
1165  case CK_FloatingComplexToIntegralComplex:
1166  case CK_ConstructorConversion:
1167  case CK_ToUnion:
1168    llvm_unreachable("scalar cast to non-scalar value");
1169
1170  case CK_LValueToRValue:
1171    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1172    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1173    return Visit(const_cast<Expr*>(E));
1174
1175  case CK_IntegralToPointer: {
1176    Value *Src = Visit(const_cast<Expr*>(E));
1177
1178    // First, convert to the correct width so that we control the kind of
1179    // extension.
1180    llvm::Type *MiddleTy = CGF.IntPtrTy;
1181    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1182    llvm::Value* IntResult =
1183      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1184
1185    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1186  }
1187  case CK_PointerToIntegral:
1188    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1189    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1190
1191  case CK_ToVoid: {
1192    CGF.EmitIgnoredExpr(E);
1193    return 0;
1194  }
1195  case CK_VectorSplat: {
1196    llvm::Type *DstTy = ConvertType(DestTy);
1197    Value *Elt = Visit(const_cast<Expr*>(E));
1198    Elt = EmitScalarConversion(Elt, E->getType(),
1199                               DestTy->getAs<VectorType>()->getElementType());
1200
1201    // Insert the element in element zero of an undef vector
1202    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1203    llvm::Value *Idx = Builder.getInt32(0);
1204    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1205
1206    // Splat the element across to all elements
1207    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1208    llvm::Constant *Zero = Builder.getInt32(0);
1209    llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1210    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1211    return Yay;
1212  }
1213
1214  case CK_IntegralCast:
1215  case CK_IntegralToFloating:
1216  case CK_FloatingToIntegral:
1217  case CK_FloatingCast:
1218    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1219  case CK_IntegralToBoolean:
1220    return EmitIntToBoolConversion(Visit(E));
1221  case CK_PointerToBoolean:
1222    return EmitPointerToBoolConversion(Visit(E));
1223  case CK_FloatingToBoolean:
1224    return EmitFloatToBoolConversion(Visit(E));
1225  case CK_MemberPointerToBoolean: {
1226    llvm::Value *MemPtr = Visit(E);
1227    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1228    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1229  }
1230
1231  case CK_FloatingComplexToReal:
1232  case CK_IntegralComplexToReal:
1233    return CGF.EmitComplexExpr(E, false, true).first;
1234
1235  case CK_FloatingComplexToBoolean:
1236  case CK_IntegralComplexToBoolean: {
1237    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1238
1239    // TODO: kill this function off, inline appropriate case here
1240    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1241  }
1242
1243  }
1244
1245  llvm_unreachable("unknown scalar cast");
1246}
1247
1248Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1249  CodeGenFunction::StmtExprEvaluation eval(CGF);
1250  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1251    .getScalarVal();
1252}
1253
1254Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1255  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1256  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1257}
1258
1259//===----------------------------------------------------------------------===//
1260//                             Unary Operators
1261//===----------------------------------------------------------------------===//
1262
1263llvm::Value *ScalarExprEmitter::
1264EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1265                                llvm::Value *InVal,
1266                                llvm::Value *NextVal, bool IsInc) {
1267  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1268  case LangOptions::SOB_Undefined:
1269    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1270  case LangOptions::SOB_Defined:
1271    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1272  case LangOptions::SOB_Trapping:
1273    BinOpInfo BinOp;
1274    BinOp.LHS = InVal;
1275    BinOp.RHS = NextVal;
1276    BinOp.Ty = E->getType();
1277    BinOp.Opcode = BO_Add;
1278    BinOp.E = E;
1279    return EmitOverflowCheckedBinOp(BinOp);
1280  }
1281  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1282}
1283
1284llvm::Value *
1285ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1286                                           bool isInc, bool isPre) {
1287
1288  QualType type = E->getSubExpr()->getType();
1289  llvm::Value *value = EmitLoadOfLValue(LV);
1290  llvm::Value *input = value;
1291  llvm::PHINode *atomicPHI = 0;
1292
1293  int amount = (isInc ? 1 : -1);
1294
1295  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1296    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1297    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1298    Builder.CreateBr(opBB);
1299    Builder.SetInsertPoint(opBB);
1300    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1301    atomicPHI->addIncoming(value, startBB);
1302    type = atomicTy->getValueType();
1303    value = atomicPHI;
1304  }
1305
1306  // Special case of integer increment that we have to check first: bool++.
1307  // Due to promotion rules, we get:
1308  //   bool++ -> bool = bool + 1
1309  //          -> bool = (int)bool + 1
1310  //          -> bool = ((int)bool + 1 != 0)
1311  // An interesting aspect of this is that increment is always true.
1312  // Decrement does not have this property.
1313  if (isInc && type->isBooleanType()) {
1314    value = Builder.getTrue();
1315
1316  // Most common case by far: integer increment.
1317  } else if (type->isIntegerType()) {
1318
1319    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1320
1321    // Note that signed integer inc/dec with width less than int can't
1322    // overflow because of promotion rules; we're just eliding a few steps here.
1323    if (type->isSignedIntegerOrEnumerationType() &&
1324        value->getType()->getPrimitiveSizeInBits() >=
1325            CGF.IntTy->getBitWidth())
1326      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1327    else
1328      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1329
1330  // Next most common: pointer increment.
1331  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1332    QualType type = ptr->getPointeeType();
1333
1334    // VLA types don't have constant size.
1335    if (const VariableArrayType *vla
1336          = CGF.getContext().getAsVariableArrayType(type)) {
1337      llvm::Value *numElts = CGF.getVLASize(vla).first;
1338      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1339      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1340        value = Builder.CreateGEP(value, numElts, "vla.inc");
1341      else
1342        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1343
1344    // Arithmetic on function pointers (!) is just +-1.
1345    } else if (type->isFunctionType()) {
1346      llvm::Value *amt = Builder.getInt32(amount);
1347
1348      value = CGF.EmitCastToVoidPtr(value);
1349      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1350        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1351      else
1352        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1353      value = Builder.CreateBitCast(value, input->getType());
1354
1355    // For everything else, we can just do a simple increment.
1356    } else {
1357      llvm::Value *amt = Builder.getInt32(amount);
1358      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1359        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1360      else
1361        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1362    }
1363
1364  // Vector increment/decrement.
1365  } else if (type->isVectorType()) {
1366    if (type->hasIntegerRepresentation()) {
1367      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1368
1369      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1370    } else {
1371      value = Builder.CreateFAdd(
1372                  value,
1373                  llvm::ConstantFP::get(value->getType(), amount),
1374                  isInc ? "inc" : "dec");
1375    }
1376
1377  // Floating point.
1378  } else if (type->isRealFloatingType()) {
1379    // Add the inc/dec to the real part.
1380    llvm::Value *amt;
1381
1382    if (type->isHalfType()) {
1383      // Another special case: half FP increment should be done via float
1384      value =
1385    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1386                       input);
1387    }
1388
1389    if (value->getType()->isFloatTy())
1390      amt = llvm::ConstantFP::get(VMContext,
1391                                  llvm::APFloat(static_cast<float>(amount)));
1392    else if (value->getType()->isDoubleTy())
1393      amt = llvm::ConstantFP::get(VMContext,
1394                                  llvm::APFloat(static_cast<double>(amount)));
1395    else {
1396      llvm::APFloat F(static_cast<float>(amount));
1397      bool ignored;
1398      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1399                &ignored);
1400      amt = llvm::ConstantFP::get(VMContext, F);
1401    }
1402    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1403
1404    if (type->isHalfType())
1405      value =
1406       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1407                          value);
1408
1409  // Objective-C pointer types.
1410  } else {
1411    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1412    value = CGF.EmitCastToVoidPtr(value);
1413
1414    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1415    if (!isInc) size = -size;
1416    llvm::Value *sizeValue =
1417      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1418
1419    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1420      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1421    else
1422      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1423    value = Builder.CreateBitCast(value, input->getType());
1424  }
1425
1426  if (atomicPHI) {
1427    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1428    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1429    llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1430        value, llvm::SequentiallyConsistent);
1431    atomicPHI->addIncoming(old, opBB);
1432    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1433    Builder.CreateCondBr(success, contBB, opBB);
1434    Builder.SetInsertPoint(contBB);
1435    return isPre ? value : input;
1436  }
1437
1438  // Store the updated result through the lvalue.
1439  if (LV.isBitField())
1440    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1441  else
1442    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1443
1444  // If this is a postinc, return the value read from memory, otherwise use the
1445  // updated value.
1446  return isPre ? value : input;
1447}
1448
1449
1450
1451Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1452  TestAndClearIgnoreResultAssign();
1453  // Emit unary minus with EmitSub so we handle overflow cases etc.
1454  BinOpInfo BinOp;
1455  BinOp.RHS = Visit(E->getSubExpr());
1456
1457  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1458    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1459  else
1460    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1461  BinOp.Ty = E->getType();
1462  BinOp.Opcode = BO_Sub;
1463  BinOp.E = E;
1464  return EmitSub(BinOp);
1465}
1466
1467Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1468  TestAndClearIgnoreResultAssign();
1469  Value *Op = Visit(E->getSubExpr());
1470  return Builder.CreateNot(Op, "neg");
1471}
1472
1473Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1474
1475  // Perform vector logical not on comparison with zero vector.
1476  if (E->getType()->isExtVectorType()) {
1477    Value *Oper = Visit(E->getSubExpr());
1478    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1479    Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1480    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1481  }
1482
1483  // Compare operand to zero.
1484  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1485
1486  // Invert value.
1487  // TODO: Could dynamically modify easy computations here.  For example, if
1488  // the operand is an icmp ne, turn into icmp eq.
1489  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1490
1491  // ZExt result to the expr type.
1492  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1493}
1494
1495Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1496  // Try folding the offsetof to a constant.
1497  llvm::APSInt Value;
1498  if (E->EvaluateAsInt(Value, CGF.getContext()))
1499    return Builder.getInt(Value);
1500
1501  // Loop over the components of the offsetof to compute the value.
1502  unsigned n = E->getNumComponents();
1503  llvm::Type* ResultType = ConvertType(E->getType());
1504  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1505  QualType CurrentType = E->getTypeSourceInfo()->getType();
1506  for (unsigned i = 0; i != n; ++i) {
1507    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1508    llvm::Value *Offset = 0;
1509    switch (ON.getKind()) {
1510    case OffsetOfExpr::OffsetOfNode::Array: {
1511      // Compute the index
1512      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1513      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1514      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1515      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1516
1517      // Save the element type
1518      CurrentType =
1519          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1520
1521      // Compute the element size
1522      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1523          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1524
1525      // Multiply out to compute the result
1526      Offset = Builder.CreateMul(Idx, ElemSize);
1527      break;
1528    }
1529
1530    case OffsetOfExpr::OffsetOfNode::Field: {
1531      FieldDecl *MemberDecl = ON.getField();
1532      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1533      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1534
1535      // Compute the index of the field in its parent.
1536      unsigned i = 0;
1537      // FIXME: It would be nice if we didn't have to loop here!
1538      for (RecordDecl::field_iterator Field = RD->field_begin(),
1539                                      FieldEnd = RD->field_end();
1540           Field != FieldEnd; (void)++Field, ++i) {
1541        if (*Field == MemberDecl)
1542          break;
1543      }
1544      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1545
1546      // Compute the offset to the field
1547      int64_t OffsetInt = RL.getFieldOffset(i) /
1548                          CGF.getContext().getCharWidth();
1549      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1550
1551      // Save the element type.
1552      CurrentType = MemberDecl->getType();
1553      break;
1554    }
1555
1556    case OffsetOfExpr::OffsetOfNode::Identifier:
1557      llvm_unreachable("dependent __builtin_offsetof");
1558
1559    case OffsetOfExpr::OffsetOfNode::Base: {
1560      if (ON.getBase()->isVirtual()) {
1561        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1562        continue;
1563      }
1564
1565      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1566      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1567
1568      // Save the element type.
1569      CurrentType = ON.getBase()->getType();
1570
1571      // Compute the offset to the base.
1572      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1573      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1574      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1575                          CGF.getContext().getCharWidth();
1576      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1577      break;
1578    }
1579    }
1580    Result = Builder.CreateAdd(Result, Offset);
1581  }
1582  return Result;
1583}
1584
1585/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1586/// argument of the sizeof expression as an integer.
1587Value *
1588ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1589                              const UnaryExprOrTypeTraitExpr *E) {
1590  QualType TypeToSize = E->getTypeOfArgument();
1591  if (E->getKind() == UETT_SizeOf) {
1592    if (const VariableArrayType *VAT =
1593          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1594      if (E->isArgumentType()) {
1595        // sizeof(type) - make sure to emit the VLA size.
1596        CGF.EmitVariablyModifiedType(TypeToSize);
1597      } else {
1598        // C99 6.5.3.4p2: If the argument is an expression of type
1599        // VLA, it is evaluated.
1600        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1601      }
1602
1603      QualType eltType;
1604      llvm::Value *numElts;
1605      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1606
1607      llvm::Value *size = numElts;
1608
1609      // Scale the number of non-VLA elements by the non-VLA element size.
1610      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1611      if (!eltSize.isOne())
1612        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1613
1614      return size;
1615    }
1616  }
1617
1618  // If this isn't sizeof(vla), the result must be constant; use the constant
1619  // folding logic so we don't have to duplicate it here.
1620  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1621}
1622
1623Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1624  Expr *Op = E->getSubExpr();
1625  if (Op->getType()->isAnyComplexType()) {
1626    // If it's an l-value, load through the appropriate subobject l-value.
1627    // Note that we have to ask E because Op might be an l-value that
1628    // this won't work for, e.g. an Obj-C property.
1629    if (E->isGLValue())
1630      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1631
1632    // Otherwise, calculate and project.
1633    return CGF.EmitComplexExpr(Op, false, true).first;
1634  }
1635
1636  return Visit(Op);
1637}
1638
1639Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1640  Expr *Op = E->getSubExpr();
1641  if (Op->getType()->isAnyComplexType()) {
1642    // If it's an l-value, load through the appropriate subobject l-value.
1643    // Note that we have to ask E because Op might be an l-value that
1644    // this won't work for, e.g. an Obj-C property.
1645    if (Op->isGLValue())
1646      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1647
1648    // Otherwise, calculate and project.
1649    return CGF.EmitComplexExpr(Op, true, false).second;
1650  }
1651
1652  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1653  // effects are evaluated, but not the actual value.
1654  if (Op->isGLValue())
1655    CGF.EmitLValue(Op);
1656  else
1657    CGF.EmitScalarExpr(Op, true);
1658  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1659}
1660
1661//===----------------------------------------------------------------------===//
1662//                           Binary Operators
1663//===----------------------------------------------------------------------===//
1664
1665BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1666  TestAndClearIgnoreResultAssign();
1667  BinOpInfo Result;
1668  Result.LHS = Visit(E->getLHS());
1669  Result.RHS = Visit(E->getRHS());
1670  Result.Ty  = E->getType();
1671  Result.Opcode = E->getOpcode();
1672  Result.E = E;
1673  return Result;
1674}
1675
1676LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1677                                              const CompoundAssignOperator *E,
1678                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1679                                                   Value *&Result) {
1680  QualType LHSTy = E->getLHS()->getType();
1681  BinOpInfo OpInfo;
1682
1683  if (E->getComputationResultType()->isAnyComplexType()) {
1684    // This needs to go through the complex expression emitter, but it's a tad
1685    // complicated to do that... I'm leaving it out for now.  (Note that we do
1686    // actually need the imaginary part of the RHS for multiplication and
1687    // division.)
1688    CGF.ErrorUnsupported(E, "complex compound assignment");
1689    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1690    return LValue();
1691  }
1692
1693  // Emit the RHS first.  __block variables need to have the rhs evaluated
1694  // first, plus this should improve codegen a little.
1695  OpInfo.RHS = Visit(E->getRHS());
1696  OpInfo.Ty = E->getComputationResultType();
1697  OpInfo.Opcode = E->getOpcode();
1698  OpInfo.E = E;
1699  // Load/convert the LHS.
1700  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1701  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1702  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1703                                    E->getComputationLHSType());
1704
1705  llvm::PHINode *atomicPHI = 0;
1706  if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1707    // FIXME: For floating point types, we should be saving and restoring the
1708    // floating point environment in the loop.
1709    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1710    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1711    Builder.CreateBr(opBB);
1712    Builder.SetInsertPoint(opBB);
1713    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1714    atomicPHI->addIncoming(OpInfo.LHS, startBB);
1715    OpInfo.Ty = atomicTy->getValueType();
1716    OpInfo.LHS = atomicPHI;
1717  }
1718
1719  // Expand the binary operator.
1720  Result = (this->*Func)(OpInfo);
1721
1722  // Convert the result back to the LHS type.
1723  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1724
1725  if (atomicPHI) {
1726    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1727    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1728    llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1729        Result, llvm::SequentiallyConsistent);
1730    atomicPHI->addIncoming(old, opBB);
1731    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1732    Builder.CreateCondBr(success, contBB, opBB);
1733    Builder.SetInsertPoint(contBB);
1734    return LHSLV;
1735  }
1736
1737  // Store the result value into the LHS lvalue. Bit-fields are handled
1738  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1739  // 'An assignment expression has the value of the left operand after the
1740  // assignment...'.
1741  if (LHSLV.isBitField())
1742    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1743  else
1744    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1745
1746  return LHSLV;
1747}
1748
1749Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1750                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1751  bool Ignore = TestAndClearIgnoreResultAssign();
1752  Value *RHS;
1753  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1754
1755  // If the result is clearly ignored, return now.
1756  if (Ignore)
1757    return 0;
1758
1759  // The result of an assignment in C is the assigned r-value.
1760  if (!CGF.getContext().getLangOptions().CPlusPlus)
1761    return RHS;
1762
1763  // If the lvalue is non-volatile, return the computed value of the assignment.
1764  if (!LHS.isVolatileQualified())
1765    return RHS;
1766
1767  // Otherwise, reload the value.
1768  return EmitLoadOfLValue(LHS);
1769}
1770
1771void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1772     					    const BinOpInfo &Ops,
1773				     	    llvm::Value *Zero, bool isDiv) {
1774  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1775  llvm::BasicBlock *contBB =
1776    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1777                         llvm::next(insertPt));
1778  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1779
1780  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1781
1782  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1783    llvm::Value *IntMin =
1784      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1785    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1786
1787    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1788    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1789    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1790    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1791    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1792                         overflowBB, contBB);
1793  } else {
1794    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1795                             overflowBB, contBB);
1796  }
1797  EmitOverflowBB(overflowBB);
1798  Builder.SetInsertPoint(contBB);
1799}
1800
1801Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1802  if (isTrapvOverflowBehavior()) {
1803    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1804
1805    if (Ops.Ty->isIntegerType())
1806      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1807    else if (Ops.Ty->isRealFloatingType()) {
1808      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1809      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1810                                                       llvm::next(insertPt));
1811      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1812                                                          CGF.CurFn);
1813      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1814                               overflowBB, DivCont);
1815      EmitOverflowBB(overflowBB);
1816      Builder.SetInsertPoint(DivCont);
1817    }
1818  }
1819  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1820    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1821    if (CGF.getContext().getLangOptions().OpenCL) {
1822      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1823      llvm::Type *ValTy = Val->getType();
1824      if (ValTy->isFloatTy() ||
1825          (isa<llvm::VectorType>(ValTy) &&
1826           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1827        CGF.SetFPAccuracy(Val, 5, 2);
1828    }
1829    return Val;
1830  }
1831  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1832    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1833  else
1834    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1835}
1836
1837Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1838  // Rem in C can't be a floating point type: C99 6.5.5p2.
1839  if (isTrapvOverflowBehavior()) {
1840    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1841
1842    if (Ops.Ty->isIntegerType())
1843      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1844  }
1845
1846  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1847    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1848  else
1849    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1850}
1851
1852Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1853  unsigned IID;
1854  unsigned OpID = 0;
1855
1856  switch (Ops.Opcode) {
1857  case BO_Add:
1858  case BO_AddAssign:
1859    OpID = 1;
1860    IID = llvm::Intrinsic::sadd_with_overflow;
1861    break;
1862  case BO_Sub:
1863  case BO_SubAssign:
1864    OpID = 2;
1865    IID = llvm::Intrinsic::ssub_with_overflow;
1866    break;
1867  case BO_Mul:
1868  case BO_MulAssign:
1869    OpID = 3;
1870    IID = llvm::Intrinsic::smul_with_overflow;
1871    break;
1872  default:
1873    llvm_unreachable("Unsupported operation for overflow detection");
1874  }
1875  OpID <<= 1;
1876  OpID |= 1;
1877
1878  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1879
1880  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1881
1882  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1883  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1884  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1885
1886  // Branch in case of overflow.
1887  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1888  llvm::Function::iterator insertPt = initialBB;
1889  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1890                                                      llvm::next(insertPt));
1891  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1892
1893  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1894
1895  // Handle overflow with llvm.trap.
1896  const std::string *handlerName =
1897    &CGF.getContext().getLangOptions().OverflowHandler;
1898  if (handlerName->empty()) {
1899    EmitOverflowBB(overflowBB);
1900    Builder.SetInsertPoint(continueBB);
1901    return result;
1902  }
1903
1904  // If an overflow handler is set, then we want to call it and then use its
1905  // result, if it returns.
1906  Builder.SetInsertPoint(overflowBB);
1907
1908  // Get the overflow handler.
1909  llvm::Type *Int8Ty = CGF.Int8Ty;
1910  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1911  llvm::FunctionType *handlerTy =
1912      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1913  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1914
1915  // Sign extend the args to 64-bit, so that we can use the same handler for
1916  // all types of overflow.
1917  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1918  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1919
1920  // Call the handler with the two arguments, the operation, and the size of
1921  // the result.
1922  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1923      Builder.getInt8(OpID),
1924      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1925
1926  // Truncate the result back to the desired size.
1927  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1928  Builder.CreateBr(continueBB);
1929
1930  Builder.SetInsertPoint(continueBB);
1931  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1932  phi->addIncoming(result, initialBB);
1933  phi->addIncoming(handlerResult, overflowBB);
1934
1935  return phi;
1936}
1937
1938/// Emit pointer + index arithmetic.
1939static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1940                                    const BinOpInfo &op,
1941                                    bool isSubtraction) {
1942  // Must have binary (not unary) expr here.  Unary pointer
1943  // increment/decrement doesn't use this path.
1944  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1945
1946  Value *pointer = op.LHS;
1947  Expr *pointerOperand = expr->getLHS();
1948  Value *index = op.RHS;
1949  Expr *indexOperand = expr->getRHS();
1950
1951  // In a subtraction, the LHS is always the pointer.
1952  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1953    std::swap(pointer, index);
1954    std::swap(pointerOperand, indexOperand);
1955  }
1956
1957  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1958  if (width != CGF.PointerWidthInBits) {
1959    // Zero-extend or sign-extend the pointer value according to
1960    // whether the index is signed or not.
1961    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1962    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1963                                      "idx.ext");
1964  }
1965
1966  // If this is subtraction, negate the index.
1967  if (isSubtraction)
1968    index = CGF.Builder.CreateNeg(index, "idx.neg");
1969
1970  const PointerType *pointerType
1971    = pointerOperand->getType()->getAs<PointerType>();
1972  if (!pointerType) {
1973    QualType objectType = pointerOperand->getType()
1974                                        ->castAs<ObjCObjectPointerType>()
1975                                        ->getPointeeType();
1976    llvm::Value *objectSize
1977      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1978
1979    index = CGF.Builder.CreateMul(index, objectSize);
1980
1981    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1982    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1983    return CGF.Builder.CreateBitCast(result, pointer->getType());
1984  }
1985
1986  QualType elementType = pointerType->getPointeeType();
1987  if (const VariableArrayType *vla
1988        = CGF.getContext().getAsVariableArrayType(elementType)) {
1989    // The element count here is the total number of non-VLA elements.
1990    llvm::Value *numElements = CGF.getVLASize(vla).first;
1991
1992    // Effectively, the multiply by the VLA size is part of the GEP.
1993    // GEP indexes are signed, and scaling an index isn't permitted to
1994    // signed-overflow, so we use the same semantics for our explicit
1995    // multiply.  We suppress this if overflow is not undefined behavior.
1996    if (CGF.getLangOptions().isSignedOverflowDefined()) {
1997      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1998      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1999    } else {
2000      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2001      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2002    }
2003    return pointer;
2004  }
2005
2006  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2007  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2008  // future proof.
2009  if (elementType->isVoidType() || elementType->isFunctionType()) {
2010    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2011    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2012    return CGF.Builder.CreateBitCast(result, pointer->getType());
2013  }
2014
2015  if (CGF.getLangOptions().isSignedOverflowDefined())
2016    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2017
2018  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2019}
2020
2021Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2022  if (op.LHS->getType()->isPointerTy() ||
2023      op.RHS->getType()->isPointerTy())
2024    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2025
2026  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2027    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2028    case LangOptions::SOB_Undefined:
2029      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2030    case LangOptions::SOB_Defined:
2031      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2032    case LangOptions::SOB_Trapping:
2033      return EmitOverflowCheckedBinOp(op);
2034    }
2035  }
2036
2037  if (op.LHS->getType()->isFPOrFPVectorTy())
2038    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2039
2040  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2041}
2042
2043Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2044  // The LHS is always a pointer if either side is.
2045  if (!op.LHS->getType()->isPointerTy()) {
2046    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2047      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2048      case LangOptions::SOB_Undefined:
2049        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2050      case LangOptions::SOB_Defined:
2051        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2052      case LangOptions::SOB_Trapping:
2053        return EmitOverflowCheckedBinOp(op);
2054      }
2055    }
2056
2057    if (op.LHS->getType()->isFPOrFPVectorTy())
2058      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2059
2060    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2061  }
2062
2063  // If the RHS is not a pointer, then we have normal pointer
2064  // arithmetic.
2065  if (!op.RHS->getType()->isPointerTy())
2066    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2067
2068  // Otherwise, this is a pointer subtraction.
2069
2070  // Do the raw subtraction part.
2071  llvm::Value *LHS
2072    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2073  llvm::Value *RHS
2074    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2075  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2076
2077  // Okay, figure out the element size.
2078  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2079  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2080
2081  llvm::Value *divisor = 0;
2082
2083  // For a variable-length array, this is going to be non-constant.
2084  if (const VariableArrayType *vla
2085        = CGF.getContext().getAsVariableArrayType(elementType)) {
2086    llvm::Value *numElements;
2087    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2088
2089    divisor = numElements;
2090
2091    // Scale the number of non-VLA elements by the non-VLA element size.
2092    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2093    if (!eltSize.isOne())
2094      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2095
2096  // For everything elese, we can just compute it, safe in the
2097  // assumption that Sema won't let anything through that we can't
2098  // safely compute the size of.
2099  } else {
2100    CharUnits elementSize;
2101    // Handle GCC extension for pointer arithmetic on void* and
2102    // function pointer types.
2103    if (elementType->isVoidType() || elementType->isFunctionType())
2104      elementSize = CharUnits::One();
2105    else
2106      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2107
2108    // Don't even emit the divide for element size of 1.
2109    if (elementSize.isOne())
2110      return diffInChars;
2111
2112    divisor = CGF.CGM.getSize(elementSize);
2113  }
2114
2115  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2116  // pointer difference in C is only defined in the case where both operands
2117  // are pointing to elements of an array.
2118  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2119}
2120
2121Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2122  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2123  // RHS to the same size as the LHS.
2124  Value *RHS = Ops.RHS;
2125  if (Ops.LHS->getType() != RHS->getType())
2126    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2127
2128  if (CGF.CatchUndefined
2129      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2130    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2131    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2132    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2133                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2134                             Cont, CGF.getTrapBB());
2135    CGF.EmitBlock(Cont);
2136  }
2137
2138  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2139}
2140
2141Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2142  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2143  // RHS to the same size as the LHS.
2144  Value *RHS = Ops.RHS;
2145  if (Ops.LHS->getType() != RHS->getType())
2146    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2147
2148  if (CGF.CatchUndefined
2149      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2150    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2151    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2152    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2153                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2154                             Cont, CGF.getTrapBB());
2155    CGF.EmitBlock(Cont);
2156  }
2157
2158  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2159    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2160  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2161}
2162
2163enum IntrinsicType { VCMPEQ, VCMPGT };
2164// return corresponding comparison intrinsic for given vector type
2165static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2166                                        BuiltinType::Kind ElemKind) {
2167  switch (ElemKind) {
2168  default: llvm_unreachable("unexpected element type");
2169  case BuiltinType::Char_U:
2170  case BuiltinType::UChar:
2171    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2172                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2173  case BuiltinType::Char_S:
2174  case BuiltinType::SChar:
2175    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2176                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2177  case BuiltinType::UShort:
2178    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2179                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2180  case BuiltinType::Short:
2181    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2182                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2183  case BuiltinType::UInt:
2184  case BuiltinType::ULong:
2185    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2186                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2187  case BuiltinType::Int:
2188  case BuiltinType::Long:
2189    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2190                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2191  case BuiltinType::Float:
2192    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2193                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2194  }
2195}
2196
2197Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2198                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2199  TestAndClearIgnoreResultAssign();
2200  Value *Result;
2201  QualType LHSTy = E->getLHS()->getType();
2202  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2203    assert(E->getOpcode() == BO_EQ ||
2204           E->getOpcode() == BO_NE);
2205    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2206    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2207    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2208                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2209  } else if (!LHSTy->isAnyComplexType()) {
2210    Value *LHS = Visit(E->getLHS());
2211    Value *RHS = Visit(E->getRHS());
2212
2213    // If AltiVec, the comparison results in a numeric type, so we use
2214    // intrinsics comparing vectors and giving 0 or 1 as a result
2215    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2216      // constants for mapping CR6 register bits to predicate result
2217      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2218
2219      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2220
2221      // in several cases vector arguments order will be reversed
2222      Value *FirstVecArg = LHS,
2223            *SecondVecArg = RHS;
2224
2225      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2226      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2227      BuiltinType::Kind ElementKind = BTy->getKind();
2228
2229      switch(E->getOpcode()) {
2230      default: llvm_unreachable("is not a comparison operation");
2231      case BO_EQ:
2232        CR6 = CR6_LT;
2233        ID = GetIntrinsic(VCMPEQ, ElementKind);
2234        break;
2235      case BO_NE:
2236        CR6 = CR6_EQ;
2237        ID = GetIntrinsic(VCMPEQ, ElementKind);
2238        break;
2239      case BO_LT:
2240        CR6 = CR6_LT;
2241        ID = GetIntrinsic(VCMPGT, ElementKind);
2242        std::swap(FirstVecArg, SecondVecArg);
2243        break;
2244      case BO_GT:
2245        CR6 = CR6_LT;
2246        ID = GetIntrinsic(VCMPGT, ElementKind);
2247        break;
2248      case BO_LE:
2249        if (ElementKind == BuiltinType::Float) {
2250          CR6 = CR6_LT;
2251          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2252          std::swap(FirstVecArg, SecondVecArg);
2253        }
2254        else {
2255          CR6 = CR6_EQ;
2256          ID = GetIntrinsic(VCMPGT, ElementKind);
2257        }
2258        break;
2259      case BO_GE:
2260        if (ElementKind == BuiltinType::Float) {
2261          CR6 = CR6_LT;
2262          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2263        }
2264        else {
2265          CR6 = CR6_EQ;
2266          ID = GetIntrinsic(VCMPGT, ElementKind);
2267          std::swap(FirstVecArg, SecondVecArg);
2268        }
2269        break;
2270      }
2271
2272      Value *CR6Param = Builder.getInt32(CR6);
2273      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2274      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2275      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2276    }
2277
2278    if (LHS->getType()->isFPOrFPVectorTy()) {
2279      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2280                                  LHS, RHS, "cmp");
2281    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2282      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2283                                  LHS, RHS, "cmp");
2284    } else {
2285      // Unsigned integers and pointers.
2286      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2287                                  LHS, RHS, "cmp");
2288    }
2289
2290    // If this is a vector comparison, sign extend the result to the appropriate
2291    // vector integer type and return it (don't convert to bool).
2292    if (LHSTy->isVectorType())
2293      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2294
2295  } else {
2296    // Complex Comparison: can only be an equality comparison.
2297    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2298    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2299
2300    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2301
2302    Value *ResultR, *ResultI;
2303    if (CETy->isRealFloatingType()) {
2304      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2305                                   LHS.first, RHS.first, "cmp.r");
2306      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2307                                   LHS.second, RHS.second, "cmp.i");
2308    } else {
2309      // Complex comparisons can only be equality comparisons.  As such, signed
2310      // and unsigned opcodes are the same.
2311      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2312                                   LHS.first, RHS.first, "cmp.r");
2313      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2314                                   LHS.second, RHS.second, "cmp.i");
2315    }
2316
2317    if (E->getOpcode() == BO_EQ) {
2318      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2319    } else {
2320      assert(E->getOpcode() == BO_NE &&
2321             "Complex comparison other than == or != ?");
2322      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2323    }
2324  }
2325
2326  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2327}
2328
2329Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2330  bool Ignore = TestAndClearIgnoreResultAssign();
2331
2332  Value *RHS;
2333  LValue LHS;
2334
2335  switch (E->getLHS()->getType().getObjCLifetime()) {
2336  case Qualifiers::OCL_Strong:
2337    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2338    break;
2339
2340  case Qualifiers::OCL_Autoreleasing:
2341    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2342    break;
2343
2344  case Qualifiers::OCL_Weak:
2345    RHS = Visit(E->getRHS());
2346    LHS = EmitCheckedLValue(E->getLHS());
2347    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2348    break;
2349
2350  // No reason to do any of these differently.
2351  case Qualifiers::OCL_None:
2352  case Qualifiers::OCL_ExplicitNone:
2353    // __block variables need to have the rhs evaluated first, plus
2354    // this should improve codegen just a little.
2355    RHS = Visit(E->getRHS());
2356    LHS = EmitCheckedLValue(E->getLHS());
2357
2358    // Store the value into the LHS.  Bit-fields are handled specially
2359    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2360    // 'An assignment expression has the value of the left operand after
2361    // the assignment...'.
2362    if (LHS.isBitField())
2363      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2364    else
2365      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2366  }
2367
2368  // If the result is clearly ignored, return now.
2369  if (Ignore)
2370    return 0;
2371
2372  // The result of an assignment in C is the assigned r-value.
2373  if (!CGF.getContext().getLangOptions().CPlusPlus)
2374    return RHS;
2375
2376  // If the lvalue is non-volatile, return the computed value of the assignment.
2377  if (!LHS.isVolatileQualified())
2378    return RHS;
2379
2380  // Otherwise, reload the value.
2381  return EmitLoadOfLValue(LHS);
2382}
2383
2384Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2385
2386  // Perform vector logical and on comparisons with zero vectors.
2387  if (E->getType()->isVectorType()) {
2388    Value *LHS = Visit(E->getLHS());
2389    Value *RHS = Visit(E->getRHS());
2390    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2391    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2392    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2393    Value *And = Builder.CreateAnd(LHS, RHS);
2394    return Builder.CreateSExt(And, Zero->getType(), "sext");
2395  }
2396
2397  llvm::Type *ResTy = ConvertType(E->getType());
2398
2399  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2400  // If we have 1 && X, just emit X without inserting the control flow.
2401  bool LHSCondVal;
2402  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2403    if (LHSCondVal) { // If we have 1 && X, just emit X.
2404      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2405      // ZExt result to int or bool.
2406      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2407    }
2408
2409    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2410    if (!CGF.ContainsLabel(E->getRHS()))
2411      return llvm::Constant::getNullValue(ResTy);
2412  }
2413
2414  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2415  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2416
2417  CodeGenFunction::ConditionalEvaluation eval(CGF);
2418
2419  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2420  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2421
2422  // Any edges into the ContBlock are now from an (indeterminate number of)
2423  // edges from this first condition.  All of these values will be false.  Start
2424  // setting up the PHI node in the Cont Block for this.
2425  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2426                                            "", ContBlock);
2427  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2428       PI != PE; ++PI)
2429    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2430
2431  eval.begin(CGF);
2432  CGF.EmitBlock(RHSBlock);
2433  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2434  eval.end(CGF);
2435
2436  // Reaquire the RHS block, as there may be subblocks inserted.
2437  RHSBlock = Builder.GetInsertBlock();
2438
2439  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2440  // into the phi node for the edge with the value of RHSCond.
2441  if (CGF.getDebugInfo())
2442    // There is no need to emit line number for unconditional branch.
2443    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2444  CGF.EmitBlock(ContBlock);
2445  PN->addIncoming(RHSCond, RHSBlock);
2446
2447  // ZExt result to int.
2448  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2449}
2450
2451Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2452
2453  // Perform vector logical or on comparisons with zero vectors.
2454  if (E->getType()->isVectorType()) {
2455    Value *LHS = Visit(E->getLHS());
2456    Value *RHS = Visit(E->getRHS());
2457    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2458    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2459    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2460    Value *Or = Builder.CreateOr(LHS, RHS);
2461    return Builder.CreateSExt(Or, Zero->getType(), "sext");
2462  }
2463
2464  llvm::Type *ResTy = ConvertType(E->getType());
2465
2466  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2467  // If we have 0 || X, just emit X without inserting the control flow.
2468  bool LHSCondVal;
2469  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2470    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2471      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2472      // ZExt result to int or bool.
2473      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2474    }
2475
2476    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2477    if (!CGF.ContainsLabel(E->getRHS()))
2478      return llvm::ConstantInt::get(ResTy, 1);
2479  }
2480
2481  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2482  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2483
2484  CodeGenFunction::ConditionalEvaluation eval(CGF);
2485
2486  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2487  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2488
2489  // Any edges into the ContBlock are now from an (indeterminate number of)
2490  // edges from this first condition.  All of these values will be true.  Start
2491  // setting up the PHI node in the Cont Block for this.
2492  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2493                                            "", ContBlock);
2494  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2495       PI != PE; ++PI)
2496    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2497
2498  eval.begin(CGF);
2499
2500  // Emit the RHS condition as a bool value.
2501  CGF.EmitBlock(RHSBlock);
2502  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2503
2504  eval.end(CGF);
2505
2506  // Reaquire the RHS block, as there may be subblocks inserted.
2507  RHSBlock = Builder.GetInsertBlock();
2508
2509  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2510  // into the phi node for the edge with the value of RHSCond.
2511  CGF.EmitBlock(ContBlock);
2512  PN->addIncoming(RHSCond, RHSBlock);
2513
2514  // ZExt result to int.
2515  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2516}
2517
2518Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2519  CGF.EmitIgnoredExpr(E->getLHS());
2520  CGF.EnsureInsertPoint();
2521  return Visit(E->getRHS());
2522}
2523
2524//===----------------------------------------------------------------------===//
2525//                             Other Operators
2526//===----------------------------------------------------------------------===//
2527
2528/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2529/// expression is cheap enough and side-effect-free enough to evaluate
2530/// unconditionally instead of conditionally.  This is used to convert control
2531/// flow into selects in some cases.
2532static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2533                                                   CodeGenFunction &CGF) {
2534  E = E->IgnoreParens();
2535
2536  // Anything that is an integer or floating point constant is fine.
2537  if (E->isConstantInitializer(CGF.getContext(), false))
2538    return true;
2539
2540  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2541  // X and Y are local variables.
2542  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2543    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2544      if (VD->hasLocalStorage() && !(CGF.getContext()
2545                                     .getCanonicalType(VD->getType())
2546                                     .isVolatileQualified()))
2547        return true;
2548
2549  return false;
2550}
2551
2552
2553Value *ScalarExprEmitter::
2554VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2555  TestAndClearIgnoreResultAssign();
2556
2557  // Bind the common expression if necessary.
2558  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2559
2560  Expr *condExpr = E->getCond();
2561  Expr *lhsExpr = E->getTrueExpr();
2562  Expr *rhsExpr = E->getFalseExpr();
2563
2564  // If the condition constant folds and can be elided, try to avoid emitting
2565  // the condition and the dead arm.
2566  bool CondExprBool;
2567  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2568    Expr *live = lhsExpr, *dead = rhsExpr;
2569    if (!CondExprBool) std::swap(live, dead);
2570
2571    // If the dead side doesn't have labels we need, just emit the Live part.
2572    if (!CGF.ContainsLabel(dead)) {
2573      Value *Result = Visit(live);
2574
2575      // If the live part is a throw expression, it acts like it has a void
2576      // type, so evaluating it returns a null Value*.  However, a conditional
2577      // with non-void type must return a non-null Value*.
2578      if (!Result && !E->getType()->isVoidType())
2579        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2580
2581      return Result;
2582    }
2583  }
2584
2585  // OpenCL: If the condition is a vector, we can treat this condition like
2586  // the select function.
2587  if (CGF.getContext().getLangOptions().OpenCL
2588      && condExpr->getType()->isVectorType()) {
2589    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2590    llvm::Value *LHS = Visit(lhsExpr);
2591    llvm::Value *RHS = Visit(rhsExpr);
2592
2593    llvm::Type *condType = ConvertType(condExpr->getType());
2594    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2595
2596    unsigned numElem = vecTy->getNumElements();
2597    llvm::Type *elemType = vecTy->getElementType();
2598
2599    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2600    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2601    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2602                                          llvm::VectorType::get(elemType,
2603                                                                numElem),
2604                                          "sext");
2605    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2606
2607    // Cast float to int to perform ANDs if necessary.
2608    llvm::Value *RHSTmp = RHS;
2609    llvm::Value *LHSTmp = LHS;
2610    bool wasCast = false;
2611    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2612    if (rhsVTy->getElementType()->isFloatTy()) {
2613      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2614      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2615      wasCast = true;
2616    }
2617
2618    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2619    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2620    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2621    if (wasCast)
2622      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2623
2624    return tmp5;
2625  }
2626
2627  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2628  // select instead of as control flow.  We can only do this if it is cheap and
2629  // safe to evaluate the LHS and RHS unconditionally.
2630  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2631      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2632    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2633    llvm::Value *LHS = Visit(lhsExpr);
2634    llvm::Value *RHS = Visit(rhsExpr);
2635    if (!LHS) {
2636      // If the conditional has void type, make sure we return a null Value*.
2637      assert(!RHS && "LHS and RHS types must match");
2638      return 0;
2639    }
2640    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2641  }
2642
2643  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2644  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2645  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2646
2647  CodeGenFunction::ConditionalEvaluation eval(CGF);
2648  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2649
2650  CGF.EmitBlock(LHSBlock);
2651  eval.begin(CGF);
2652  Value *LHS = Visit(lhsExpr);
2653  eval.end(CGF);
2654
2655  LHSBlock = Builder.GetInsertBlock();
2656  Builder.CreateBr(ContBlock);
2657
2658  CGF.EmitBlock(RHSBlock);
2659  eval.begin(CGF);
2660  Value *RHS = Visit(rhsExpr);
2661  eval.end(CGF);
2662
2663  RHSBlock = Builder.GetInsertBlock();
2664  CGF.EmitBlock(ContBlock);
2665
2666  // If the LHS or RHS is a throw expression, it will be legitimately null.
2667  if (!LHS)
2668    return RHS;
2669  if (!RHS)
2670    return LHS;
2671
2672  // Create a PHI node for the real part.
2673  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2674  PN->addIncoming(LHS, LHSBlock);
2675  PN->addIncoming(RHS, RHSBlock);
2676  return PN;
2677}
2678
2679Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2680  return Visit(E->getChosenSubExpr(CGF.getContext()));
2681}
2682
2683Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2684  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2685  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2686
2687  // If EmitVAArg fails, we fall back to the LLVM instruction.
2688  if (!ArgPtr)
2689    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2690
2691  // FIXME Volatility.
2692  return Builder.CreateLoad(ArgPtr);
2693}
2694
2695Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2696  return CGF.EmitBlockLiteral(block);
2697}
2698
2699Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2700  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2701  llvm::Type *DstTy = ConvertType(E->getType());
2702
2703  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2704  // a shuffle vector instead of a bitcast.
2705  llvm::Type *SrcTy = Src->getType();
2706  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2707    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2708    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2709    if ((numElementsDst == 3 && numElementsSrc == 4)
2710        || (numElementsDst == 4 && numElementsSrc == 3)) {
2711
2712
2713      // In the case of going from int4->float3, a bitcast is needed before
2714      // doing a shuffle.
2715      llvm::Type *srcElemTy =
2716      cast<llvm::VectorType>(SrcTy)->getElementType();
2717      llvm::Type *dstElemTy =
2718      cast<llvm::VectorType>(DstTy)->getElementType();
2719
2720      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2721          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2722        // Create a float type of the same size as the source or destination.
2723        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2724                                                                 numElementsSrc);
2725
2726        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2727      }
2728
2729      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2730
2731      SmallVector<llvm::Constant*, 3> Args;
2732      Args.push_back(Builder.getInt32(0));
2733      Args.push_back(Builder.getInt32(1));
2734      Args.push_back(Builder.getInt32(2));
2735
2736      if (numElementsDst == 4)
2737        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2738
2739      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2740
2741      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2742    }
2743  }
2744
2745  return Builder.CreateBitCast(Src, DstTy, "astype");
2746}
2747
2748Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2749  return CGF.EmitAtomicExpr(E).getScalarVal();
2750}
2751
2752//===----------------------------------------------------------------------===//
2753//                         Entry Point into this File
2754//===----------------------------------------------------------------------===//
2755
2756/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2757/// type, ignoring the result.
2758Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2759  assert(E && !hasAggregateLLVMType(E->getType()) &&
2760         "Invalid scalar expression to emit");
2761
2762  if (isa<CXXDefaultArgExpr>(E))
2763    disableDebugInfo();
2764  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2765    .Visit(const_cast<Expr*>(E));
2766  if (isa<CXXDefaultArgExpr>(E))
2767    enableDebugInfo();
2768  return V;
2769}
2770
2771/// EmitScalarConversion - Emit a conversion from the specified type to the
2772/// specified destination type, both of which are LLVM scalar types.
2773Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2774                                             QualType DstTy) {
2775  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2776         "Invalid scalar expression to emit");
2777  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2778}
2779
2780/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2781/// type to the specified destination type, where the destination type is an
2782/// LLVM scalar type.
2783Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2784                                                      QualType SrcTy,
2785                                                      QualType DstTy) {
2786  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2787         "Invalid complex -> scalar conversion");
2788  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2789                                                                DstTy);
2790}
2791
2792
2793llvm::Value *CodeGenFunction::
2794EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2795                        bool isInc, bool isPre) {
2796  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2797}
2798
2799LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2800  llvm::Value *V;
2801  // object->isa or (*object).isa
2802  // Generate code as for: *(Class*)object
2803  // build Class* type
2804  llvm::Type *ClassPtrTy = ConvertType(E->getType());
2805
2806  Expr *BaseExpr = E->getBase();
2807  if (BaseExpr->isRValue()) {
2808    V = CreateMemTemp(E->getType(), "resval");
2809    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2810    Builder.CreateStore(Src, V);
2811    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2812      MakeNaturalAlignAddrLValue(V, E->getType()));
2813  } else {
2814    if (E->isArrow())
2815      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2816    else
2817      V = EmitLValue(BaseExpr).getAddress();
2818  }
2819
2820  // build Class* type
2821  ClassPtrTy = ClassPtrTy->getPointerTo();
2822  V = Builder.CreateBitCast(V, ClassPtrTy);
2823  return MakeNaturalAlignAddrLValue(V, E->getType());
2824}
2825
2826
2827LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2828                                            const CompoundAssignOperator *E) {
2829  ScalarExprEmitter Scalar(*this);
2830  Value *Result = 0;
2831  switch (E->getOpcode()) {
2832#define COMPOUND_OP(Op)                                                       \
2833    case BO_##Op##Assign:                                                     \
2834      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2835                                             Result)
2836  COMPOUND_OP(Mul);
2837  COMPOUND_OP(Div);
2838  COMPOUND_OP(Rem);
2839  COMPOUND_OP(Add);
2840  COMPOUND_OP(Sub);
2841  COMPOUND_OP(Shl);
2842  COMPOUND_OP(Shr);
2843  COMPOUND_OP(And);
2844  COMPOUND_OP(Xor);
2845  COMPOUND_OP(Or);
2846#undef COMPOUND_OP
2847
2848  case BO_PtrMemD:
2849  case BO_PtrMemI:
2850  case BO_Mul:
2851  case BO_Div:
2852  case BO_Rem:
2853  case BO_Add:
2854  case BO_Sub:
2855  case BO_Shl:
2856  case BO_Shr:
2857  case BO_LT:
2858  case BO_GT:
2859  case BO_LE:
2860  case BO_GE:
2861  case BO_EQ:
2862  case BO_NE:
2863  case BO_And:
2864  case BO_Xor:
2865  case BO_Or:
2866  case BO_LAnd:
2867  case BO_LOr:
2868  case BO_Assign:
2869  case BO_Comma:
2870    llvm_unreachable("Not valid compound assignment operators");
2871  }
2872
2873  llvm_unreachable("Unhandled compound assignment operator");
2874}
2875