CGExprScalar.cpp revision ac1303eca6cbe3e623fb5ec6fe7ec184ef4b0dfa
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Frontend/CodeGenOptions.h"
15#include "CodeGenFunction.h"
16#include "CGCXXABI.h"
17#include "CGObjCRuntime.h"
18#include "CodeGenModule.h"
19#include "CGDebugInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Module.h"
30#include "llvm/Support/CFG.h"
31#include "llvm/Target/TargetData.h"
32#include <cstdarg>
33
34using namespace clang;
35using namespace CodeGen;
36using llvm::Value;
37
38//===----------------------------------------------------------------------===//
39//                         Scalar Expression Emitter
40//===----------------------------------------------------------------------===//
41
42namespace {
43struct BinOpInfo {
44  Value *LHS;
45  Value *RHS;
46  QualType Ty;  // Computation Type.
47  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49};
50
51static bool MustVisitNullValue(const Expr *E) {
52  // If a null pointer expression's type is the C++0x nullptr_t, then
53  // it's not necessarily a simple constant and it must be evaluated
54  // for its potential side effects.
55  return E->getType()->isNullPtrType();
56}
57
58class ScalarExprEmitter
59  : public StmtVisitor<ScalarExprEmitter, Value*> {
60  CodeGenFunction &CGF;
61  CGBuilderTy &Builder;
62  bool IgnoreResultAssign;
63  llvm::LLVMContext &VMContext;
64public:
65
66  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68      VMContext(cgf.getLLVMContext()) {
69  }
70
71  //===--------------------------------------------------------------------===//
72  //                               Utilities
73  //===--------------------------------------------------------------------===//
74
75  bool TestAndClearIgnoreResultAssign() {
76    bool I = IgnoreResultAssign;
77    IgnoreResultAssign = false;
78    return I;
79  }
80
81  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84
85  Value *EmitLoadOfLValue(LValue LV) {
86    return CGF.EmitLoadOfLValue(LV).getScalarVal();
87  }
88
89  /// EmitLoadOfLValue - Given an expression with complex type that represents a
90  /// value l-value, this method emits the address of the l-value, then loads
91  /// and returns the result.
92  Value *EmitLoadOfLValue(const Expr *E) {
93    return EmitLoadOfLValue(EmitCheckedLValue(E));
94  }
95
96  /// EmitConversionToBool - Convert the specified expression value to a
97  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98  Value *EmitConversionToBool(Value *Src, QualType DstTy);
99
100  /// EmitScalarConversion - Emit a conversion from the specified type to the
101  /// specified destination type, both of which are LLVM scalar types.
102  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103
104  /// EmitComplexToScalarConversion - Emit a conversion from the specified
105  /// complex type to the specified destination type, where the destination type
106  /// is an LLVM scalar type.
107  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                       QualType SrcTy, QualType DstTy);
109
110  /// EmitNullValue - Emit a value that corresponds to null for the given type.
111  Value *EmitNullValue(QualType Ty);
112
113  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114  Value *EmitFloatToBoolConversion(Value *V) {
115    // Compare against 0.0 for fp scalars.
116    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117    return Builder.CreateFCmpUNE(V, Zero, "tobool");
118  }
119
120  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121  Value *EmitPointerToBoolConversion(Value *V) {
122    Value *Zero = llvm::ConstantPointerNull::get(
123                                      cast<llvm::PointerType>(V->getType()));
124    return Builder.CreateICmpNE(V, Zero, "tobool");
125  }
126
127  Value *EmitIntToBoolConversion(Value *V) {
128    // Because of the type rules of C, we often end up computing a
129    // logical value, then zero extending it to int, then wanting it
130    // as a logical value again.  Optimize this common case.
131    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133        Value *Result = ZI->getOperand(0);
134        // If there aren't any more uses, zap the instruction to save space.
135        // Note that there can be more uses, for example if this
136        // is the result of an assignment.
137        if (ZI->use_empty())
138          ZI->eraseFromParent();
139        return Result;
140      }
141    }
142
143    return Builder.CreateIsNotNull(V, "tobool");
144  }
145
146  //===--------------------------------------------------------------------===//
147  //                            Visitor Methods
148  //===--------------------------------------------------------------------===//
149
150  Value *Visit(Expr *E) {
151    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152  }
153
154  Value *VisitStmt(Stmt *S) {
155    S->dump(CGF.getContext().getSourceManager());
156    llvm_unreachable("Stmt can't have complex result type!");
157  }
158  Value *VisitExpr(Expr *S);
159
160  Value *VisitParenExpr(ParenExpr *PE) {
161    return Visit(PE->getSubExpr());
162  }
163  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
164    return Visit(E->getReplacement());
165  }
166  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
167    return Visit(GE->getResultExpr());
168  }
169
170  // Leaves.
171  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
172    return Builder.getInt(E->getValue());
173  }
174  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
175    return llvm::ConstantFP::get(VMContext, E->getValue());
176  }
177  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
178    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
179  }
180  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
181    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
182  }
183  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
184    return EmitNullValue(E->getType());
185  }
186  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
187    return EmitNullValue(E->getType());
188  }
189  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
190  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
191  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
192    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
193    return Builder.CreateBitCast(V, ConvertType(E->getType()));
194  }
195
196  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
197    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
198  }
199
200  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
201    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
202  }
203
204  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
205    if (E->isGLValue())
206      return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
207
208    // Otherwise, assume the mapping is the scalar directly.
209    return CGF.getOpaqueRValueMapping(E).getScalarVal();
210  }
211
212  // l-values.
213  Value *VisitDeclRefExpr(DeclRefExpr *E) {
214    Expr::EvalResult Result;
215    if (!E->EvaluateAsRValue(Result, CGF.getContext()))
216      return EmitLoadOfLValue(E);
217
218    assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
219
220    llvm::Constant *C;
221    if (Result.Val.isInt())
222      C = Builder.getInt(Result.Val.getInt());
223    else if (Result.Val.isFloat())
224      C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
225    else
226      return EmitLoadOfLValue(E);
227
228    // Make sure we emit a debug reference to the global variable.
229    if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
230      if (!CGF.getContext().DeclMustBeEmitted(VD))
231        CGF.EmitDeclRefExprDbgValue(E, C);
232    } else if (isa<EnumConstantDecl>(E->getDecl())) {
233      CGF.EmitDeclRefExprDbgValue(E, C);
234    }
235
236    return C;
237  }
238  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239    return CGF.EmitObjCSelectorExpr(E);
240  }
241  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242    return CGF.EmitObjCProtocolExpr(E);
243  }
244  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245    return EmitLoadOfLValue(E);
246  }
247  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248    if (E->getMethodDecl() &&
249        E->getMethodDecl()->getResultType()->isReferenceType())
250      return EmitLoadOfLValue(E);
251    return CGF.EmitObjCMessageExpr(E).getScalarVal();
252  }
253
254  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255    LValue LV = CGF.EmitObjCIsaExpr(E);
256    Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
257    return V;
258  }
259
260  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262  Value *VisitMemberExpr(MemberExpr *E);
263  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
264  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
265    return EmitLoadOfLValue(E);
266  }
267
268  Value *VisitInitListExpr(InitListExpr *E);
269
270  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
271    return CGF.CGM.EmitNullConstant(E->getType());
272  }
273  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
274    if (E->getType()->isVariablyModifiedType())
275      CGF.EmitVariablyModifiedType(E->getType());
276    return VisitCastExpr(E);
277  }
278  Value *VisitCastExpr(CastExpr *E);
279
280  Value *VisitCallExpr(const CallExpr *E) {
281    if (E->getCallReturnType()->isReferenceType())
282      return EmitLoadOfLValue(E);
283
284    return CGF.EmitCallExpr(E).getScalarVal();
285  }
286
287  Value *VisitStmtExpr(const StmtExpr *E);
288
289  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
290
291  // Unary Operators.
292  Value *VisitUnaryPostDec(const UnaryOperator *E) {
293    LValue LV = EmitLValue(E->getSubExpr());
294    return EmitScalarPrePostIncDec(E, LV, false, false);
295  }
296  Value *VisitUnaryPostInc(const UnaryOperator *E) {
297    LValue LV = EmitLValue(E->getSubExpr());
298    return EmitScalarPrePostIncDec(E, LV, true, false);
299  }
300  Value *VisitUnaryPreDec(const UnaryOperator *E) {
301    LValue LV = EmitLValue(E->getSubExpr());
302    return EmitScalarPrePostIncDec(E, LV, false, true);
303  }
304  Value *VisitUnaryPreInc(const UnaryOperator *E) {
305    LValue LV = EmitLValue(E->getSubExpr());
306    return EmitScalarPrePostIncDec(E, LV, true, true);
307  }
308
309  llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
310                                               llvm::Value *InVal,
311                                               llvm::Value *NextVal,
312                                               bool IsInc);
313
314  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
315                                       bool isInc, bool isPre);
316
317
318  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
319    if (isa<MemberPointerType>(E->getType())) // never sugared
320      return CGF.CGM.getMemberPointerConstant(E);
321
322    return EmitLValue(E->getSubExpr()).getAddress();
323  }
324  Value *VisitUnaryDeref(const UnaryOperator *E) {
325    if (E->getType()->isVoidType())
326      return Visit(E->getSubExpr()); // the actual value should be unused
327    return EmitLoadOfLValue(E);
328  }
329  Value *VisitUnaryPlus(const UnaryOperator *E) {
330    // This differs from gcc, though, most likely due to a bug in gcc.
331    TestAndClearIgnoreResultAssign();
332    return Visit(E->getSubExpr());
333  }
334  Value *VisitUnaryMinus    (const UnaryOperator *E);
335  Value *VisitUnaryNot      (const UnaryOperator *E);
336  Value *VisitUnaryLNot     (const UnaryOperator *E);
337  Value *VisitUnaryReal     (const UnaryOperator *E);
338  Value *VisitUnaryImag     (const UnaryOperator *E);
339  Value *VisitUnaryExtension(const UnaryOperator *E) {
340    return Visit(E->getSubExpr());
341  }
342
343  // C++
344  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
345    return EmitLoadOfLValue(E);
346  }
347
348  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
349    return Visit(DAE->getExpr());
350  }
351  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352    return CGF.LoadCXXThis();
353  }
354
355  Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356    CGF.enterFullExpression(E);
357    CodeGenFunction::RunCleanupsScope Scope(CGF);
358    return Visit(E->getSubExpr());
359  }
360  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361    return CGF.EmitCXXNewExpr(E);
362  }
363  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364    CGF.EmitCXXDeleteExpr(E);
365    return 0;
366  }
367  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368    return Builder.getInt1(E->getValue());
369  }
370
371  Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373  }
374
375  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377  }
378
379  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381  }
382
383  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384    // C++ [expr.pseudo]p1:
385    //   The result shall only be used as the operand for the function call
386    //   operator (), and the result of such a call has type void. The only
387    //   effect is the evaluation of the postfix-expression before the dot or
388    //   arrow.
389    CGF.EmitScalarExpr(E->getBase());
390    return 0;
391  }
392
393  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394    return EmitNullValue(E->getType());
395  }
396
397  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398    CGF.EmitCXXThrowExpr(E);
399    return 0;
400  }
401
402  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403    return Builder.getInt1(E->getValue());
404  }
405
406  // Binary Operators.
407  Value *EmitMul(const BinOpInfo &Ops) {
408    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
410      case LangOptions::SOB_Undefined:
411        return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
412      case LangOptions::SOB_Defined:
413        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
414      case LangOptions::SOB_Trapping:
415        return EmitOverflowCheckedBinOp(Ops);
416      }
417    }
418
419    if (Ops.LHS->getType()->isFPOrFPVectorTy())
420      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
421    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
422  }
423  bool isTrapvOverflowBehavior() {
424    return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
425               == LangOptions::SOB_Trapping;
426  }
427  /// Create a binary op that checks for overflow.
428  /// Currently only supports +, - and *.
429  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
430  // Emit the overflow BB when -ftrapv option is activated.
431  void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
432    Builder.SetInsertPoint(overflowBB);
433    llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
434    Builder.CreateCall(Trap);
435    Builder.CreateUnreachable();
436  }
437  // Check for undefined division and modulus behaviors.
438  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
439                                                  llvm::Value *Zero,bool isDiv);
440  Value *EmitDiv(const BinOpInfo &Ops);
441  Value *EmitRem(const BinOpInfo &Ops);
442  Value *EmitAdd(const BinOpInfo &Ops);
443  Value *EmitSub(const BinOpInfo &Ops);
444  Value *EmitShl(const BinOpInfo &Ops);
445  Value *EmitShr(const BinOpInfo &Ops);
446  Value *EmitAnd(const BinOpInfo &Ops) {
447    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448  }
449  Value *EmitXor(const BinOpInfo &Ops) {
450    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451  }
452  Value *EmitOr (const BinOpInfo &Ops) {
453    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454  }
455
456  BinOpInfo EmitBinOps(const BinaryOperator *E);
457  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                  Value *&Result);
460
461  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463
464  // Binary operators and binary compound assignment operators.
465#define HANDLEBINOP(OP) \
466  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467    return Emit ## OP(EmitBinOps(E));                                      \
468  }                                                                        \
469  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471  }
472  HANDLEBINOP(Mul)
473  HANDLEBINOP(Div)
474  HANDLEBINOP(Rem)
475  HANDLEBINOP(Add)
476  HANDLEBINOP(Sub)
477  HANDLEBINOP(Shl)
478  HANDLEBINOP(Shr)
479  HANDLEBINOP(And)
480  HANDLEBINOP(Xor)
481  HANDLEBINOP(Or)
482#undef HANDLEBINOP
483
484  // Comparisons.
485  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                     unsigned SICmpOpc, unsigned FCmpOpc);
487#define VISITCOMP(CODE, UI, SI, FP) \
488    Value *VisitBin##CODE(const BinaryOperator *E) { \
489      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                         llvm::FCmpInst::FP); }
491  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497#undef VISITCOMP
498
499  Value *VisitBinAssign     (const BinaryOperator *E);
500
501  Value *VisitBinLAnd       (const BinaryOperator *E);
502  Value *VisitBinLOr        (const BinaryOperator *E);
503  Value *VisitBinComma      (const BinaryOperator *E);
504
505  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
506  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507
508  // Other Operators.
509  Value *VisitBlockExpr(const BlockExpr *BE);
510  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511  Value *VisitChooseExpr(ChooseExpr *CE);
512  Value *VisitVAArgExpr(VAArgExpr *VE);
513  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514    return CGF.EmitObjCStringLiteral(E);
515  }
516  Value *VisitAsTypeExpr(AsTypeExpr *CE);
517  Value *VisitAtomicExpr(AtomicExpr *AE);
518};
519}  // end anonymous namespace.
520
521//===----------------------------------------------------------------------===//
522//                                Utilities
523//===----------------------------------------------------------------------===//
524
525/// EmitConversionToBool - Convert the specified expression value to a
526/// boolean (i1) truth value.  This is equivalent to "Val != 0".
527Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
528  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
529
530  if (SrcType->isRealFloatingType())
531    return EmitFloatToBoolConversion(Src);
532
533  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
534    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
535
536  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
537         "Unknown scalar type to convert");
538
539  if (isa<llvm::IntegerType>(Src->getType()))
540    return EmitIntToBoolConversion(Src);
541
542  assert(isa<llvm::PointerType>(Src->getType()));
543  return EmitPointerToBoolConversion(Src);
544}
545
546/// EmitScalarConversion - Emit a conversion from the specified type to the
547/// specified destination type, both of which are LLVM scalar types.
548Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
549                                               QualType DstType) {
550  SrcType = CGF.getContext().getCanonicalType(SrcType);
551  DstType = CGF.getContext().getCanonicalType(DstType);
552  if (SrcType == DstType) return Src;
553
554  if (DstType->isVoidType()) return 0;
555
556  llvm::Type *SrcTy = Src->getType();
557
558  // Floating casts might be a bit special: if we're doing casts to / from half
559  // FP, we should go via special intrinsics.
560  if (SrcType->isHalfType()) {
561    Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
562    SrcType = CGF.getContext().FloatTy;
563    SrcTy = CGF.FloatTy;
564  }
565
566  // Handle conversions to bool first, they are special: comparisons against 0.
567  if (DstType->isBooleanType())
568    return EmitConversionToBool(Src, SrcType);
569
570  llvm::Type *DstTy = ConvertType(DstType);
571
572  // Ignore conversions like int -> uint.
573  if (SrcTy == DstTy)
574    return Src;
575
576  // Handle pointer conversions next: pointers can only be converted to/from
577  // other pointers and integers. Check for pointer types in terms of LLVM, as
578  // some native types (like Obj-C id) may map to a pointer type.
579  if (isa<llvm::PointerType>(DstTy)) {
580    // The source value may be an integer, or a pointer.
581    if (isa<llvm::PointerType>(SrcTy))
582      return Builder.CreateBitCast(Src, DstTy, "conv");
583
584    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
585    // First, convert to the correct width so that we control the kind of
586    // extension.
587    llvm::Type *MiddleTy = CGF.IntPtrTy;
588    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
589    llvm::Value* IntResult =
590        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
591    // Then, cast to pointer.
592    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
593  }
594
595  if (isa<llvm::PointerType>(SrcTy)) {
596    // Must be an ptr to int cast.
597    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
598    return Builder.CreatePtrToInt(Src, DstTy, "conv");
599  }
600
601  // A scalar can be splatted to an extended vector of the same element type
602  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
603    // Cast the scalar to element type
604    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
605    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
606
607    // Insert the element in element zero of an undef vector
608    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
609    llvm::Value *Idx = Builder.getInt32(0);
610    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
611
612    // Splat the element across to all elements
613    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
614    llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements,
615                                                          Builder.getInt32(0));
616    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
617    return Yay;
618  }
619
620  // Allow bitcast from vector to integer/fp of the same size.
621  if (isa<llvm::VectorType>(SrcTy) ||
622      isa<llvm::VectorType>(DstTy))
623    return Builder.CreateBitCast(Src, DstTy, "conv");
624
625  // Finally, we have the arithmetic types: real int/float.
626  Value *Res = NULL;
627  llvm::Type *ResTy = DstTy;
628
629  // Cast to half via float
630  if (DstType->isHalfType())
631    DstTy = CGF.FloatTy;
632
633  if (isa<llvm::IntegerType>(SrcTy)) {
634    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
635    if (isa<llvm::IntegerType>(DstTy))
636      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
637    else if (InputSigned)
638      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
639    else
640      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
641  } else if (isa<llvm::IntegerType>(DstTy)) {
642    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
643    if (DstType->isSignedIntegerOrEnumerationType())
644      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
645    else
646      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
647  } else {
648    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
649           "Unknown real conversion");
650    if (DstTy->getTypeID() < SrcTy->getTypeID())
651      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
652    else
653      Res = Builder.CreateFPExt(Src, DstTy, "conv");
654  }
655
656  if (DstTy != ResTy) {
657    assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
658    Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
659  }
660
661  return Res;
662}
663
664/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
665/// type to the specified destination type, where the destination type is an
666/// LLVM scalar type.
667Value *ScalarExprEmitter::
668EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
669                              QualType SrcTy, QualType DstTy) {
670  // Get the source element type.
671  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
672
673  // Handle conversions to bool first, they are special: comparisons against 0.
674  if (DstTy->isBooleanType()) {
675    //  Complex != 0  -> (Real != 0) | (Imag != 0)
676    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
677    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
678    return Builder.CreateOr(Src.first, Src.second, "tobool");
679  }
680
681  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
682  // the imaginary part of the complex value is discarded and the value of the
683  // real part is converted according to the conversion rules for the
684  // corresponding real type.
685  return EmitScalarConversion(Src.first, SrcTy, DstTy);
686}
687
688Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
689  if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
690    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
691
692  return llvm::Constant::getNullValue(ConvertType(Ty));
693}
694
695//===----------------------------------------------------------------------===//
696//                            Visitor Methods
697//===----------------------------------------------------------------------===//
698
699Value *ScalarExprEmitter::VisitExpr(Expr *E) {
700  CGF.ErrorUnsupported(E, "scalar expression");
701  if (E->getType()->isVoidType())
702    return 0;
703  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
704}
705
706Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
707  // Vector Mask Case
708  if (E->getNumSubExprs() == 2 ||
709      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
710    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
711    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
712    Value *Mask;
713
714    llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
715    unsigned LHSElts = LTy->getNumElements();
716
717    if (E->getNumSubExprs() == 3) {
718      Mask = CGF.EmitScalarExpr(E->getExpr(2));
719
720      // Shuffle LHS & RHS into one input vector.
721      SmallVector<llvm::Constant*, 32> concat;
722      for (unsigned i = 0; i != LHSElts; ++i) {
723        concat.push_back(Builder.getInt32(2*i));
724        concat.push_back(Builder.getInt32(2*i+1));
725      }
726
727      Value* CV = llvm::ConstantVector::get(concat);
728      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
729      LHSElts *= 2;
730    } else {
731      Mask = RHS;
732    }
733
734    llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
735    llvm::Constant* EltMask;
736
737    // Treat vec3 like vec4.
738    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
739      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
740                                       (1 << llvm::Log2_32(LHSElts+2))-1);
741    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
742      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
743                                       (1 << llvm::Log2_32(LHSElts+1))-1);
744    else
745      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
746                                       (1 << llvm::Log2_32(LHSElts))-1);
747
748    // Mask off the high bits of each shuffle index.
749    Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
750                                                     EltMask);
751    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
752
753    // newv = undef
754    // mask = mask & maskbits
755    // for each elt
756    //   n = extract mask i
757    //   x = extract val n
758    //   newv = insert newv, x, i
759    llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
760                                                        MTy->getNumElements());
761    Value* NewV = llvm::UndefValue::get(RTy);
762    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
763      Value *Indx = Builder.getInt32(i);
764      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
765      Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
766
767      // Handle vec3 special since the index will be off by one for the RHS.
768      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
769        Value *cmpIndx, *newIndx;
770        cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
771                                        "cmp_shuf_idx");
772        newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
773        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
774      }
775      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
776      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
777    }
778    return NewV;
779  }
780
781  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
782  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
783
784  // Handle vec3 special since the index will be off by one for the RHS.
785  llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
786  SmallVector<llvm::Constant*, 32> indices;
787  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
788    unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
789    if (VTy->getNumElements() == 3 && Idx > 3)
790      Idx -= 1;
791    indices.push_back(Builder.getInt32(Idx));
792  }
793
794  Value *SV = llvm::ConstantVector::get(indices);
795  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
796}
797Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
798  llvm::APSInt Value;
799  if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
800    if (E->isArrow())
801      CGF.EmitScalarExpr(E->getBase());
802    else
803      EmitLValue(E->getBase());
804    return Builder.getInt(Value);
805  }
806
807  // Emit debug info for aggregate now, if it was delayed to reduce
808  // debug info size.
809  CGDebugInfo *DI = CGF.getDebugInfo();
810  if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
811    QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
812    if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
813      if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
814        DI->getOrCreateRecordType(PTy->getPointeeType(),
815                                  M->getParent()->getLocation());
816  }
817  return EmitLoadOfLValue(E);
818}
819
820Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
821  TestAndClearIgnoreResultAssign();
822
823  // Emit subscript expressions in rvalue context's.  For most cases, this just
824  // loads the lvalue formed by the subscript expr.  However, we have to be
825  // careful, because the base of a vector subscript is occasionally an rvalue,
826  // so we can't get it as an lvalue.
827  if (!E->getBase()->getType()->isVectorType())
828    return EmitLoadOfLValue(E);
829
830  // Handle the vector case.  The base must be a vector, the index must be an
831  // integer value.
832  Value *Base = Visit(E->getBase());
833  Value *Idx  = Visit(E->getIdx());
834  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
835  Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
836  return Builder.CreateExtractElement(Base, Idx, "vecext");
837}
838
839static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
840                                  unsigned Off, llvm::Type *I32Ty) {
841  int MV = SVI->getMaskValue(Idx);
842  if (MV == -1)
843    return llvm::UndefValue::get(I32Ty);
844  return llvm::ConstantInt::get(I32Ty, Off+MV);
845}
846
847Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
848  bool Ignore = TestAndClearIgnoreResultAssign();
849  (void)Ignore;
850  assert (Ignore == false && "init list ignored");
851  unsigned NumInitElements = E->getNumInits();
852
853  if (E->hadArrayRangeDesignator())
854    CGF.ErrorUnsupported(E, "GNU array range designator extension");
855
856  llvm::VectorType *VType =
857    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
858
859  if (!VType) {
860    if (NumInitElements == 0) {
861      // C++11 value-initialization for the scalar.
862      return EmitNullValue(E->getType());
863    }
864    // We have a scalar in braces. Just use the first element.
865    return Visit(E->getInit(0));
866  }
867
868  unsigned ResElts = VType->getNumElements();
869
870  // Loop over initializers collecting the Value for each, and remembering
871  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
872  // us to fold the shuffle for the swizzle into the shuffle for the vector
873  // initializer, since LLVM optimizers generally do not want to touch
874  // shuffles.
875  unsigned CurIdx = 0;
876  bool VIsUndefShuffle = false;
877  llvm::Value *V = llvm::UndefValue::get(VType);
878  for (unsigned i = 0; i != NumInitElements; ++i) {
879    Expr *IE = E->getInit(i);
880    Value *Init = Visit(IE);
881    SmallVector<llvm::Constant*, 16> Args;
882
883    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
884
885    // Handle scalar elements.  If the scalar initializer is actually one
886    // element of a different vector of the same width, use shuffle instead of
887    // extract+insert.
888    if (!VVT) {
889      if (isa<ExtVectorElementExpr>(IE)) {
890        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
891
892        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
893          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
894          Value *LHS = 0, *RHS = 0;
895          if (CurIdx == 0) {
896            // insert into undef -> shuffle (src, undef)
897            Args.push_back(C);
898            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
899
900            LHS = EI->getVectorOperand();
901            RHS = V;
902            VIsUndefShuffle = true;
903          } else if (VIsUndefShuffle) {
904            // insert into undefshuffle && size match -> shuffle (v, src)
905            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
906            for (unsigned j = 0; j != CurIdx; ++j)
907              Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
908            Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
909            Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
910
911            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
912            RHS = EI->getVectorOperand();
913            VIsUndefShuffle = false;
914          }
915          if (!Args.empty()) {
916            llvm::Constant *Mask = llvm::ConstantVector::get(Args);
917            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
918            ++CurIdx;
919            continue;
920          }
921        }
922      }
923      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
924                                      "vecinit");
925      VIsUndefShuffle = false;
926      ++CurIdx;
927      continue;
928    }
929
930    unsigned InitElts = VVT->getNumElements();
931
932    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
933    // input is the same width as the vector being constructed, generate an
934    // optimized shuffle of the swizzle input into the result.
935    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
936    if (isa<ExtVectorElementExpr>(IE)) {
937      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
938      Value *SVOp = SVI->getOperand(0);
939      llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
940
941      if (OpTy->getNumElements() == ResElts) {
942        for (unsigned j = 0; j != CurIdx; ++j) {
943          // If the current vector initializer is a shuffle with undef, merge
944          // this shuffle directly into it.
945          if (VIsUndefShuffle) {
946            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
947                                      CGF.Int32Ty));
948          } else {
949            Args.push_back(Builder.getInt32(j));
950          }
951        }
952        for (unsigned j = 0, je = InitElts; j != je; ++j)
953          Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
954        Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
955
956        if (VIsUndefShuffle)
957          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
958
959        Init = SVOp;
960      }
961    }
962
963    // Extend init to result vector length, and then shuffle its contribution
964    // to the vector initializer into V.
965    if (Args.empty()) {
966      for (unsigned j = 0; j != InitElts; ++j)
967        Args.push_back(Builder.getInt32(j));
968      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
969      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
970      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
971                                         Mask, "vext");
972
973      Args.clear();
974      for (unsigned j = 0; j != CurIdx; ++j)
975        Args.push_back(Builder.getInt32(j));
976      for (unsigned j = 0; j != InitElts; ++j)
977        Args.push_back(Builder.getInt32(j+Offset));
978      Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
979    }
980
981    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
982    // merging subsequent shuffles into this one.
983    if (CurIdx == 0)
984      std::swap(V, Init);
985    llvm::Constant *Mask = llvm::ConstantVector::get(Args);
986    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
987    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
988    CurIdx += InitElts;
989  }
990
991  // FIXME: evaluate codegen vs. shuffling against constant null vector.
992  // Emit remaining default initializers.
993  llvm::Type *EltTy = VType->getElementType();
994
995  // Emit remaining default initializers
996  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
997    Value *Idx = Builder.getInt32(CurIdx);
998    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
999    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1000  }
1001  return V;
1002}
1003
1004static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1005  const Expr *E = CE->getSubExpr();
1006
1007  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1008    return false;
1009
1010  if (isa<CXXThisExpr>(E)) {
1011    // We always assume that 'this' is never null.
1012    return false;
1013  }
1014
1015  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1016    // And that glvalue casts are never null.
1017    if (ICE->getValueKind() != VK_RValue)
1018      return false;
1019  }
1020
1021  return true;
1022}
1023
1024// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1025// have to handle a more broad range of conversions than explicit casts, as they
1026// handle things like function to ptr-to-function decay etc.
1027Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1028  Expr *E = CE->getSubExpr();
1029  QualType DestTy = CE->getType();
1030  CastKind Kind = CE->getCastKind();
1031
1032  if (!DestTy->isVoidType())
1033    TestAndClearIgnoreResultAssign();
1034
1035  // Since almost all cast kinds apply to scalars, this switch doesn't have
1036  // a default case, so the compiler will warn on a missing case.  The cases
1037  // are in the same order as in the CastKind enum.
1038  switch (Kind) {
1039  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1040
1041  case CK_LValueBitCast:
1042  case CK_ObjCObjectLValueCast: {
1043    Value *V = EmitLValue(E).getAddress();
1044    V = Builder.CreateBitCast(V,
1045                          ConvertType(CGF.getContext().getPointerType(DestTy)));
1046    return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1047  }
1048
1049  case CK_CPointerToObjCPointerCast:
1050  case CK_BlockPointerToObjCPointerCast:
1051  case CK_AnyPointerToBlockPointerCast:
1052  case CK_BitCast: {
1053    Value *Src = Visit(const_cast<Expr*>(E));
1054    return Builder.CreateBitCast(Src, ConvertType(DestTy));
1055  }
1056  case CK_AtomicToNonAtomic:
1057  case CK_NonAtomicToAtomic:
1058  case CK_NoOp:
1059  case CK_UserDefinedConversion:
1060    return Visit(const_cast<Expr*>(E));
1061
1062  case CK_BaseToDerived: {
1063    const CXXRecordDecl *DerivedClassDecl =
1064      DestTy->getCXXRecordDeclForPointerType();
1065
1066    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1067                                        CE->path_begin(), CE->path_end(),
1068                                        ShouldNullCheckClassCastValue(CE));
1069  }
1070  case CK_UncheckedDerivedToBase:
1071  case CK_DerivedToBase: {
1072    const RecordType *DerivedClassTy =
1073      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1074    CXXRecordDecl *DerivedClassDecl =
1075      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1076
1077    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1078                                     CE->path_begin(), CE->path_end(),
1079                                     ShouldNullCheckClassCastValue(CE));
1080  }
1081  case CK_Dynamic: {
1082    Value *V = Visit(const_cast<Expr*>(E));
1083    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1084    return CGF.EmitDynamicCast(V, DCE);
1085  }
1086
1087  case CK_ArrayToPointerDecay: {
1088    assert(E->getType()->isArrayType() &&
1089           "Array to pointer decay must have array source type!");
1090
1091    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1092
1093    // Note that VLA pointers are always decayed, so we don't need to do
1094    // anything here.
1095    if (!E->getType()->isVariableArrayType()) {
1096      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1097      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1098                                 ->getElementType()) &&
1099             "Expected pointer to array");
1100      V = Builder.CreateStructGEP(V, 0, "arraydecay");
1101    }
1102
1103    // Make sure the array decay ends up being the right type.  This matters if
1104    // the array type was of an incomplete type.
1105    return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1106  }
1107  case CK_FunctionToPointerDecay:
1108    return EmitLValue(E).getAddress();
1109
1110  case CK_NullToPointer:
1111    if (MustVisitNullValue(E))
1112      (void) Visit(E);
1113
1114    return llvm::ConstantPointerNull::get(
1115                               cast<llvm::PointerType>(ConvertType(DestTy)));
1116
1117  case CK_NullToMemberPointer: {
1118    if (MustVisitNullValue(E))
1119      (void) Visit(E);
1120
1121    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1122    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1123  }
1124
1125  case CK_ReinterpretMemberPointer:
1126  case CK_BaseToDerivedMemberPointer:
1127  case CK_DerivedToBaseMemberPointer: {
1128    Value *Src = Visit(E);
1129
1130    // Note that the AST doesn't distinguish between checked and
1131    // unchecked member pointer conversions, so we always have to
1132    // implement checked conversions here.  This is inefficient when
1133    // actual control flow may be required in order to perform the
1134    // check, which it is for data member pointers (but not member
1135    // function pointers on Itanium and ARM).
1136    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1137  }
1138
1139  case CK_ARCProduceObject:
1140    return CGF.EmitARCRetainScalarExpr(E);
1141  case CK_ARCConsumeObject:
1142    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1143  case CK_ARCReclaimReturnedObject: {
1144    llvm::Value *value = Visit(E);
1145    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1146    return CGF.EmitObjCConsumeObject(E->getType(), value);
1147  }
1148  case CK_ARCExtendBlockObject:
1149    return CGF.EmitARCExtendBlockObject(E);
1150
1151  case CK_CopyAndAutoreleaseBlockObject:
1152    CGF.ErrorUnsupported(E, "copy/autorelease block object");
1153    return 0;
1154
1155  case CK_FloatingRealToComplex:
1156  case CK_FloatingComplexCast:
1157  case CK_IntegralRealToComplex:
1158  case CK_IntegralComplexCast:
1159  case CK_IntegralComplexToFloatingComplex:
1160  case CK_FloatingComplexToIntegralComplex:
1161  case CK_ConstructorConversion:
1162  case CK_ToUnion:
1163    llvm_unreachable("scalar cast to non-scalar value");
1164
1165  case CK_LValueToRValue:
1166    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1167    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1168    return Visit(const_cast<Expr*>(E));
1169
1170  case CK_IntegralToPointer: {
1171    Value *Src = Visit(const_cast<Expr*>(E));
1172
1173    // First, convert to the correct width so that we control the kind of
1174    // extension.
1175    llvm::Type *MiddleTy = CGF.IntPtrTy;
1176    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1177    llvm::Value* IntResult =
1178      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1179
1180    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1181  }
1182  case CK_PointerToIntegral:
1183    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1184    return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1185
1186  case CK_ToVoid: {
1187    CGF.EmitIgnoredExpr(E);
1188    return 0;
1189  }
1190  case CK_VectorSplat: {
1191    llvm::Type *DstTy = ConvertType(DestTy);
1192    Value *Elt = Visit(const_cast<Expr*>(E));
1193    Elt = EmitScalarConversion(Elt, E->getType(),
1194                               DestTy->getAs<VectorType>()->getElementType());
1195
1196    // Insert the element in element zero of an undef vector
1197    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1198    llvm::Value *Idx = Builder.getInt32(0);
1199    UnV = Builder.CreateInsertElement(UnV, Elt, Idx);
1200
1201    // Splat the element across to all elements
1202    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1203    llvm::Constant *Zero = Builder.getInt32(0);
1204    llvm::Constant *Mask = llvm::ConstantVector::getSplat(NumElements, Zero);
1205    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1206    return Yay;
1207  }
1208
1209  case CK_IntegralCast:
1210  case CK_IntegralToFloating:
1211  case CK_FloatingToIntegral:
1212  case CK_FloatingCast:
1213    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1214  case CK_IntegralToBoolean:
1215    return EmitIntToBoolConversion(Visit(E));
1216  case CK_PointerToBoolean:
1217    return EmitPointerToBoolConversion(Visit(E));
1218  case CK_FloatingToBoolean:
1219    return EmitFloatToBoolConversion(Visit(E));
1220  case CK_MemberPointerToBoolean: {
1221    llvm::Value *MemPtr = Visit(E);
1222    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1223    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1224  }
1225
1226  case CK_FloatingComplexToReal:
1227  case CK_IntegralComplexToReal:
1228    return CGF.EmitComplexExpr(E, false, true).first;
1229
1230  case CK_FloatingComplexToBoolean:
1231  case CK_IntegralComplexToBoolean: {
1232    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1233
1234    // TODO: kill this function off, inline appropriate case here
1235    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1236  }
1237
1238  }
1239
1240  llvm_unreachable("unknown scalar cast");
1241}
1242
1243Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1244  CodeGenFunction::StmtExprEvaluation eval(CGF);
1245  return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1246    .getScalarVal();
1247}
1248
1249Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1250  LValue LV = CGF.EmitBlockDeclRefLValue(E);
1251  return CGF.EmitLoadOfLValue(LV).getScalarVal();
1252}
1253
1254//===----------------------------------------------------------------------===//
1255//                             Unary Operators
1256//===----------------------------------------------------------------------===//
1257
1258llvm::Value *ScalarExprEmitter::
1259EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1260                                llvm::Value *InVal,
1261                                llvm::Value *NextVal, bool IsInc) {
1262  switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1263  case LangOptions::SOB_Undefined:
1264    return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1265  case LangOptions::SOB_Defined:
1266    return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1267  case LangOptions::SOB_Trapping:
1268    BinOpInfo BinOp;
1269    BinOp.LHS = InVal;
1270    BinOp.RHS = NextVal;
1271    BinOp.Ty = E->getType();
1272    BinOp.Opcode = BO_Add;
1273    BinOp.E = E;
1274    return EmitOverflowCheckedBinOp(BinOp);
1275  }
1276  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1277}
1278
1279llvm::Value *
1280ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1281                                           bool isInc, bool isPre) {
1282
1283  QualType type = E->getSubExpr()->getType();
1284  llvm::Value *value = EmitLoadOfLValue(LV);
1285  llvm::Value *input = value;
1286  llvm::PHINode *atomicPHI = 0;
1287
1288  int amount = (isInc ? 1 : -1);
1289
1290  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1291    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1292    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1293    Builder.CreateBr(opBB);
1294    Builder.SetInsertPoint(opBB);
1295    atomicPHI = Builder.CreatePHI(value->getType(), 2);
1296    atomicPHI->addIncoming(value, startBB);
1297    type = atomicTy->getValueType();
1298    value = atomicPHI;
1299  }
1300
1301  // Special case of integer increment that we have to check first: bool++.
1302  // Due to promotion rules, we get:
1303  //   bool++ -> bool = bool + 1
1304  //          -> bool = (int)bool + 1
1305  //          -> bool = ((int)bool + 1 != 0)
1306  // An interesting aspect of this is that increment is always true.
1307  // Decrement does not have this property.
1308  if (isInc && type->isBooleanType()) {
1309    value = Builder.getTrue();
1310
1311  // Most common case by far: integer increment.
1312  } else if (type->isIntegerType()) {
1313
1314    llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1315
1316    // Note that signed integer inc/dec with width less than int can't
1317    // overflow because of promotion rules; we're just eliding a few steps here.
1318    if (type->isSignedIntegerOrEnumerationType() &&
1319        value->getType()->getPrimitiveSizeInBits() >=
1320            CGF.IntTy->getBitWidth())
1321      value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1322    else
1323      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1324
1325  // Next most common: pointer increment.
1326  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1327    QualType type = ptr->getPointeeType();
1328
1329    // VLA types don't have constant size.
1330    if (const VariableArrayType *vla
1331          = CGF.getContext().getAsVariableArrayType(type)) {
1332      llvm::Value *numElts = CGF.getVLASize(vla).first;
1333      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1334      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1335        value = Builder.CreateGEP(value, numElts, "vla.inc");
1336      else
1337        value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1338
1339    // Arithmetic on function pointers (!) is just +-1.
1340    } else if (type->isFunctionType()) {
1341      llvm::Value *amt = Builder.getInt32(amount);
1342
1343      value = CGF.EmitCastToVoidPtr(value);
1344      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1345        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1346      else
1347        value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1348      value = Builder.CreateBitCast(value, input->getType());
1349
1350    // For everything else, we can just do a simple increment.
1351    } else {
1352      llvm::Value *amt = Builder.getInt32(amount);
1353      if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1354        value = Builder.CreateGEP(value, amt, "incdec.ptr");
1355      else
1356        value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1357    }
1358
1359  // Vector increment/decrement.
1360  } else if (type->isVectorType()) {
1361    if (type->hasIntegerRepresentation()) {
1362      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1363
1364      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1365    } else {
1366      value = Builder.CreateFAdd(
1367                  value,
1368                  llvm::ConstantFP::get(value->getType(), amount),
1369                  isInc ? "inc" : "dec");
1370    }
1371
1372  // Floating point.
1373  } else if (type->isRealFloatingType()) {
1374    // Add the inc/dec to the real part.
1375    llvm::Value *amt;
1376
1377    if (type->isHalfType()) {
1378      // Another special case: half FP increment should be done via float
1379      value =
1380    Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1381                       input);
1382    }
1383
1384    if (value->getType()->isFloatTy())
1385      amt = llvm::ConstantFP::get(VMContext,
1386                                  llvm::APFloat(static_cast<float>(amount)));
1387    else if (value->getType()->isDoubleTy())
1388      amt = llvm::ConstantFP::get(VMContext,
1389                                  llvm::APFloat(static_cast<double>(amount)));
1390    else {
1391      llvm::APFloat F(static_cast<float>(amount));
1392      bool ignored;
1393      F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1394                &ignored);
1395      amt = llvm::ConstantFP::get(VMContext, F);
1396    }
1397    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1398
1399    if (type->isHalfType())
1400      value =
1401       Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1402                          value);
1403
1404  // Objective-C pointer types.
1405  } else {
1406    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1407    value = CGF.EmitCastToVoidPtr(value);
1408
1409    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1410    if (!isInc) size = -size;
1411    llvm::Value *sizeValue =
1412      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1413
1414    if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1415      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1416    else
1417      value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1418    value = Builder.CreateBitCast(value, input->getType());
1419  }
1420
1421  if (atomicPHI) {
1422    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1423    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1424    llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1425        value, llvm::SequentiallyConsistent);
1426    atomicPHI->addIncoming(old, opBB);
1427    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1428    Builder.CreateCondBr(success, contBB, opBB);
1429    Builder.SetInsertPoint(contBB);
1430    return isPre ? value : input;
1431  }
1432
1433  // Store the updated result through the lvalue.
1434  if (LV.isBitField())
1435    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1436  else
1437    CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1438
1439  // If this is a postinc, return the value read from memory, otherwise use the
1440  // updated value.
1441  return isPre ? value : input;
1442}
1443
1444
1445
1446Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1447  TestAndClearIgnoreResultAssign();
1448  // Emit unary minus with EmitSub so we handle overflow cases etc.
1449  BinOpInfo BinOp;
1450  BinOp.RHS = Visit(E->getSubExpr());
1451
1452  if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1453    BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1454  else
1455    BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1456  BinOp.Ty = E->getType();
1457  BinOp.Opcode = BO_Sub;
1458  BinOp.E = E;
1459  return EmitSub(BinOp);
1460}
1461
1462Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1463  TestAndClearIgnoreResultAssign();
1464  Value *Op = Visit(E->getSubExpr());
1465  return Builder.CreateNot(Op, "neg");
1466}
1467
1468Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1469
1470  // Perform vector logical not on comparison with zero vector.
1471  if (E->getType()->isExtVectorType()) {
1472    Value *Oper = Visit(E->getSubExpr());
1473    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1474    Value *Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1475    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1476  }
1477
1478  // Compare operand to zero.
1479  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1480
1481  // Invert value.
1482  // TODO: Could dynamically modify easy computations here.  For example, if
1483  // the operand is an icmp ne, turn into icmp eq.
1484  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1485
1486  // ZExt result to the expr type.
1487  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1488}
1489
1490Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1491  // Try folding the offsetof to a constant.
1492  llvm::APSInt Value;
1493  if (E->EvaluateAsInt(Value, CGF.getContext()))
1494    return Builder.getInt(Value);
1495
1496  // Loop over the components of the offsetof to compute the value.
1497  unsigned n = E->getNumComponents();
1498  llvm::Type* ResultType = ConvertType(E->getType());
1499  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1500  QualType CurrentType = E->getTypeSourceInfo()->getType();
1501  for (unsigned i = 0; i != n; ++i) {
1502    OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1503    llvm::Value *Offset = 0;
1504    switch (ON.getKind()) {
1505    case OffsetOfExpr::OffsetOfNode::Array: {
1506      // Compute the index
1507      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1508      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1509      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1510      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1511
1512      // Save the element type
1513      CurrentType =
1514          CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1515
1516      // Compute the element size
1517      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1518          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1519
1520      // Multiply out to compute the result
1521      Offset = Builder.CreateMul(Idx, ElemSize);
1522      break;
1523    }
1524
1525    case OffsetOfExpr::OffsetOfNode::Field: {
1526      FieldDecl *MemberDecl = ON.getField();
1527      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1528      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1529
1530      // Compute the index of the field in its parent.
1531      unsigned i = 0;
1532      // FIXME: It would be nice if we didn't have to loop here!
1533      for (RecordDecl::field_iterator Field = RD->field_begin(),
1534                                      FieldEnd = RD->field_end();
1535           Field != FieldEnd; (void)++Field, ++i) {
1536        if (*Field == MemberDecl)
1537          break;
1538      }
1539      assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1540
1541      // Compute the offset to the field
1542      int64_t OffsetInt = RL.getFieldOffset(i) /
1543                          CGF.getContext().getCharWidth();
1544      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1545
1546      // Save the element type.
1547      CurrentType = MemberDecl->getType();
1548      break;
1549    }
1550
1551    case OffsetOfExpr::OffsetOfNode::Identifier:
1552      llvm_unreachable("dependent __builtin_offsetof");
1553
1554    case OffsetOfExpr::OffsetOfNode::Base: {
1555      if (ON.getBase()->isVirtual()) {
1556        CGF.ErrorUnsupported(E, "virtual base in offsetof");
1557        continue;
1558      }
1559
1560      RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1561      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1562
1563      // Save the element type.
1564      CurrentType = ON.getBase()->getType();
1565
1566      // Compute the offset to the base.
1567      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1568      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1569      int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1570                          CGF.getContext().getCharWidth();
1571      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1572      break;
1573    }
1574    }
1575    Result = Builder.CreateAdd(Result, Offset);
1576  }
1577  return Result;
1578}
1579
1580/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1581/// argument of the sizeof expression as an integer.
1582Value *
1583ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1584                              const UnaryExprOrTypeTraitExpr *E) {
1585  QualType TypeToSize = E->getTypeOfArgument();
1586  if (E->getKind() == UETT_SizeOf) {
1587    if (const VariableArrayType *VAT =
1588          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1589      if (E->isArgumentType()) {
1590        // sizeof(type) - make sure to emit the VLA size.
1591        CGF.EmitVariablyModifiedType(TypeToSize);
1592      } else {
1593        // C99 6.5.3.4p2: If the argument is an expression of type
1594        // VLA, it is evaluated.
1595        CGF.EmitIgnoredExpr(E->getArgumentExpr());
1596      }
1597
1598      QualType eltType;
1599      llvm::Value *numElts;
1600      llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1601
1602      llvm::Value *size = numElts;
1603
1604      // Scale the number of non-VLA elements by the non-VLA element size.
1605      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1606      if (!eltSize.isOne())
1607        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1608
1609      return size;
1610    }
1611  }
1612
1613  // If this isn't sizeof(vla), the result must be constant; use the constant
1614  // folding logic so we don't have to duplicate it here.
1615  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1616}
1617
1618Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1619  Expr *Op = E->getSubExpr();
1620  if (Op->getType()->isAnyComplexType()) {
1621    // If it's an l-value, load through the appropriate subobject l-value.
1622    // Note that we have to ask E because Op might be an l-value that
1623    // this won't work for, e.g. an Obj-C property.
1624    if (E->isGLValue())
1625      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1626
1627    // Otherwise, calculate and project.
1628    return CGF.EmitComplexExpr(Op, false, true).first;
1629  }
1630
1631  return Visit(Op);
1632}
1633
1634Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1635  Expr *Op = E->getSubExpr();
1636  if (Op->getType()->isAnyComplexType()) {
1637    // If it's an l-value, load through the appropriate subobject l-value.
1638    // Note that we have to ask E because Op might be an l-value that
1639    // this won't work for, e.g. an Obj-C property.
1640    if (Op->isGLValue())
1641      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1642
1643    // Otherwise, calculate and project.
1644    return CGF.EmitComplexExpr(Op, true, false).second;
1645  }
1646
1647  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1648  // effects are evaluated, but not the actual value.
1649  if (Op->isGLValue())
1650    CGF.EmitLValue(Op);
1651  else
1652    CGF.EmitScalarExpr(Op, true);
1653  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1654}
1655
1656//===----------------------------------------------------------------------===//
1657//                           Binary Operators
1658//===----------------------------------------------------------------------===//
1659
1660BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1661  TestAndClearIgnoreResultAssign();
1662  BinOpInfo Result;
1663  Result.LHS = Visit(E->getLHS());
1664  Result.RHS = Visit(E->getRHS());
1665  Result.Ty  = E->getType();
1666  Result.Opcode = E->getOpcode();
1667  Result.E = E;
1668  return Result;
1669}
1670
1671LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1672                                              const CompoundAssignOperator *E,
1673                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1674                                                   Value *&Result) {
1675  QualType LHSTy = E->getLHS()->getType();
1676  BinOpInfo OpInfo;
1677
1678  if (E->getComputationResultType()->isAnyComplexType()) {
1679    // This needs to go through the complex expression emitter, but it's a tad
1680    // complicated to do that... I'm leaving it out for now.  (Note that we do
1681    // actually need the imaginary part of the RHS for multiplication and
1682    // division.)
1683    CGF.ErrorUnsupported(E, "complex compound assignment");
1684    Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1685    return LValue();
1686  }
1687
1688  // Emit the RHS first.  __block variables need to have the rhs evaluated
1689  // first, plus this should improve codegen a little.
1690  OpInfo.RHS = Visit(E->getRHS());
1691  OpInfo.Ty = E->getComputationResultType();
1692  OpInfo.Opcode = E->getOpcode();
1693  OpInfo.E = E;
1694  // Load/convert the LHS.
1695  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1696  OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1697  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1698                                    E->getComputationLHSType());
1699
1700  llvm::PHINode *atomicPHI = 0;
1701  if (const AtomicType *atomicTy = OpInfo.Ty->getAs<AtomicType>()) {
1702    // FIXME: For floating point types, we should be saving and restoring the
1703    // floating point environment in the loop.
1704    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1705    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1706    Builder.CreateBr(opBB);
1707    Builder.SetInsertPoint(opBB);
1708    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1709    atomicPHI->addIncoming(OpInfo.LHS, startBB);
1710    OpInfo.Ty = atomicTy->getValueType();
1711    OpInfo.LHS = atomicPHI;
1712  }
1713
1714  // Expand the binary operator.
1715  Result = (this->*Func)(OpInfo);
1716
1717  // Convert the result back to the LHS type.
1718  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1719
1720  if (atomicPHI) {
1721    llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1722    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1723    llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1724        Result, llvm::SequentiallyConsistent);
1725    atomicPHI->addIncoming(old, opBB);
1726    llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1727    Builder.CreateCondBr(success, contBB, opBB);
1728    Builder.SetInsertPoint(contBB);
1729    return LHSLV;
1730  }
1731
1732  // Store the result value into the LHS lvalue. Bit-fields are handled
1733  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1734  // 'An assignment expression has the value of the left operand after the
1735  // assignment...'.
1736  if (LHSLV.isBitField())
1737    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
1738  else
1739    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
1740
1741  return LHSLV;
1742}
1743
1744Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1745                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1746  bool Ignore = TestAndClearIgnoreResultAssign();
1747  Value *RHS;
1748  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1749
1750  // If the result is clearly ignored, return now.
1751  if (Ignore)
1752    return 0;
1753
1754  // The result of an assignment in C is the assigned r-value.
1755  if (!CGF.getContext().getLangOptions().CPlusPlus)
1756    return RHS;
1757
1758  // If the lvalue is non-volatile, return the computed value of the assignment.
1759  if (!LHS.isVolatileQualified())
1760    return RHS;
1761
1762  // Otherwise, reload the value.
1763  return EmitLoadOfLValue(LHS);
1764}
1765
1766void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1767     					    const BinOpInfo &Ops,
1768				     	    llvm::Value *Zero, bool isDiv) {
1769  llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1770  llvm::BasicBlock *contBB =
1771    CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn,
1772                         llvm::next(insertPt));
1773  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1774
1775  llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1776
1777  if (Ops.Ty->hasSignedIntegerRepresentation()) {
1778    llvm::Value *IntMin =
1779      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1780    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1781
1782    llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1783    llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1784    llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1785    llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1786    Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1787                         overflowBB, contBB);
1788  } else {
1789    CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1790                             overflowBB, contBB);
1791  }
1792  EmitOverflowBB(overflowBB);
1793  Builder.SetInsertPoint(contBB);
1794}
1795
1796Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1797  if (isTrapvOverflowBehavior()) {
1798    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1799
1800    if (Ops.Ty->isIntegerType())
1801      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1802    else if (Ops.Ty->isRealFloatingType()) {
1803      llvm::Function::iterator insertPt = Builder.GetInsertBlock();
1804      llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn,
1805                                                       llvm::next(insertPt));
1806      llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1807                                                          CGF.CurFn);
1808      CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1809                               overflowBB, DivCont);
1810      EmitOverflowBB(overflowBB);
1811      Builder.SetInsertPoint(DivCont);
1812    }
1813  }
1814  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
1815    llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1816    if (CGF.getContext().getLangOptions().OpenCL) {
1817      // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
1818      llvm::Type *ValTy = Val->getType();
1819      if (ValTy->isFloatTy() ||
1820          (isa<llvm::VectorType>(ValTy) &&
1821           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
1822        CGF.SetFPAccuracy(Val, 5, 2);
1823    }
1824    return Val;
1825  }
1826  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1827    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1828  else
1829    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1830}
1831
1832Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1833  // Rem in C can't be a floating point type: C99 6.5.5p2.
1834  if (isTrapvOverflowBehavior()) {
1835    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1836
1837    if (Ops.Ty->isIntegerType())
1838      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1839  }
1840
1841  if (Ops.Ty->hasUnsignedIntegerRepresentation())
1842    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1843  else
1844    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1845}
1846
1847Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1848  unsigned IID;
1849  unsigned OpID = 0;
1850
1851  switch (Ops.Opcode) {
1852  case BO_Add:
1853  case BO_AddAssign:
1854    OpID = 1;
1855    IID = llvm::Intrinsic::sadd_with_overflow;
1856    break;
1857  case BO_Sub:
1858  case BO_SubAssign:
1859    OpID = 2;
1860    IID = llvm::Intrinsic::ssub_with_overflow;
1861    break;
1862  case BO_Mul:
1863  case BO_MulAssign:
1864    OpID = 3;
1865    IID = llvm::Intrinsic::smul_with_overflow;
1866    break;
1867  default:
1868    llvm_unreachable("Unsupported operation for overflow detection");
1869  }
1870  OpID <<= 1;
1871  OpID |= 1;
1872
1873  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1874
1875  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
1876
1877  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1878  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1879  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1880
1881  // Branch in case of overflow.
1882  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1883  llvm::Function::iterator insertPt = initialBB;
1884  llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
1885                                                      llvm::next(insertPt));
1886  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1887
1888  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1889
1890  // Handle overflow with llvm.trap.
1891  const std::string *handlerName =
1892    &CGF.getContext().getLangOptions().OverflowHandler;
1893  if (handlerName->empty()) {
1894    EmitOverflowBB(overflowBB);
1895    Builder.SetInsertPoint(continueBB);
1896    return result;
1897  }
1898
1899  // If an overflow handler is set, then we want to call it and then use its
1900  // result, if it returns.
1901  Builder.SetInsertPoint(overflowBB);
1902
1903  // Get the overflow handler.
1904  llvm::Type *Int8Ty = CGF.Int8Ty;
1905  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1906  llvm::FunctionType *handlerTy =
1907      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1908  llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1909
1910  // Sign extend the args to 64-bit, so that we can use the same handler for
1911  // all types of overflow.
1912  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1913  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1914
1915  // Call the handler with the two arguments, the operation, and the size of
1916  // the result.
1917  llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1918      Builder.getInt8(OpID),
1919      Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1920
1921  // Truncate the result back to the desired size.
1922  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1923  Builder.CreateBr(continueBB);
1924
1925  Builder.SetInsertPoint(continueBB);
1926  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1927  phi->addIncoming(result, initialBB);
1928  phi->addIncoming(handlerResult, overflowBB);
1929
1930  return phi;
1931}
1932
1933/// Emit pointer + index arithmetic.
1934static Value *emitPointerArithmetic(CodeGenFunction &CGF,
1935                                    const BinOpInfo &op,
1936                                    bool isSubtraction) {
1937  // Must have binary (not unary) expr here.  Unary pointer
1938  // increment/decrement doesn't use this path.
1939  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
1940
1941  Value *pointer = op.LHS;
1942  Expr *pointerOperand = expr->getLHS();
1943  Value *index = op.RHS;
1944  Expr *indexOperand = expr->getRHS();
1945
1946  // In a subtraction, the LHS is always the pointer.
1947  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
1948    std::swap(pointer, index);
1949    std::swap(pointerOperand, indexOperand);
1950  }
1951
1952  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
1953  if (width != CGF.PointerWidthInBits) {
1954    // Zero-extend or sign-extend the pointer value according to
1955    // whether the index is signed or not.
1956    bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
1957    index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
1958                                      "idx.ext");
1959  }
1960
1961  // If this is subtraction, negate the index.
1962  if (isSubtraction)
1963    index = CGF.Builder.CreateNeg(index, "idx.neg");
1964
1965  const PointerType *pointerType
1966    = pointerOperand->getType()->getAs<PointerType>();
1967  if (!pointerType) {
1968    QualType objectType = pointerOperand->getType()
1969                                        ->castAs<ObjCObjectPointerType>()
1970                                        ->getPointeeType();
1971    llvm::Value *objectSize
1972      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
1973
1974    index = CGF.Builder.CreateMul(index, objectSize);
1975
1976    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
1977    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
1978    return CGF.Builder.CreateBitCast(result, pointer->getType());
1979  }
1980
1981  QualType elementType = pointerType->getPointeeType();
1982  if (const VariableArrayType *vla
1983        = CGF.getContext().getAsVariableArrayType(elementType)) {
1984    // The element count here is the total number of non-VLA elements.
1985    llvm::Value *numElements = CGF.getVLASize(vla).first;
1986
1987    // Effectively, the multiply by the VLA size is part of the GEP.
1988    // GEP indexes are signed, and scaling an index isn't permitted to
1989    // signed-overflow, so we use the same semantics for our explicit
1990    // multiply.  We suppress this if overflow is not undefined behavior.
1991    if (CGF.getLangOptions().isSignedOverflowDefined()) {
1992      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
1993      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
1994    } else {
1995      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
1996      pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
1997    }
1998    return pointer;
1999  }
2000
2001  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2002  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2003  // future proof.
2004  if (elementType->isVoidType() || elementType->isFunctionType()) {
2005    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2006    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2007    return CGF.Builder.CreateBitCast(result, pointer->getType());
2008  }
2009
2010  if (CGF.getLangOptions().isSignedOverflowDefined())
2011    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2012
2013  return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2014}
2015
2016Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2017  if (op.LHS->getType()->isPointerTy() ||
2018      op.RHS->getType()->isPointerTy())
2019    return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2020
2021  if (op.Ty->isSignedIntegerOrEnumerationType()) {
2022    switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2023    case LangOptions::SOB_Undefined:
2024      return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2025    case LangOptions::SOB_Defined:
2026      return Builder.CreateAdd(op.LHS, op.RHS, "add");
2027    case LangOptions::SOB_Trapping:
2028      return EmitOverflowCheckedBinOp(op);
2029    }
2030  }
2031
2032  if (op.LHS->getType()->isFPOrFPVectorTy())
2033    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2034
2035  return Builder.CreateAdd(op.LHS, op.RHS, "add");
2036}
2037
2038Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2039  // The LHS is always a pointer if either side is.
2040  if (!op.LHS->getType()->isPointerTy()) {
2041    if (op.Ty->isSignedIntegerOrEnumerationType()) {
2042      switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
2043      case LangOptions::SOB_Undefined:
2044        return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2045      case LangOptions::SOB_Defined:
2046        return Builder.CreateSub(op.LHS, op.RHS, "sub");
2047      case LangOptions::SOB_Trapping:
2048        return EmitOverflowCheckedBinOp(op);
2049      }
2050    }
2051
2052    if (op.LHS->getType()->isFPOrFPVectorTy())
2053      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2054
2055    return Builder.CreateSub(op.LHS, op.RHS, "sub");
2056  }
2057
2058  // If the RHS is not a pointer, then we have normal pointer
2059  // arithmetic.
2060  if (!op.RHS->getType()->isPointerTy())
2061    return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2062
2063  // Otherwise, this is a pointer subtraction.
2064
2065  // Do the raw subtraction part.
2066  llvm::Value *LHS
2067    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2068  llvm::Value *RHS
2069    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2070  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2071
2072  // Okay, figure out the element size.
2073  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2074  QualType elementType = expr->getLHS()->getType()->getPointeeType();
2075
2076  llvm::Value *divisor = 0;
2077
2078  // For a variable-length array, this is going to be non-constant.
2079  if (const VariableArrayType *vla
2080        = CGF.getContext().getAsVariableArrayType(elementType)) {
2081    llvm::Value *numElements;
2082    llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2083
2084    divisor = numElements;
2085
2086    // Scale the number of non-VLA elements by the non-VLA element size.
2087    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2088    if (!eltSize.isOne())
2089      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2090
2091  // For everything elese, we can just compute it, safe in the
2092  // assumption that Sema won't let anything through that we can't
2093  // safely compute the size of.
2094  } else {
2095    CharUnits elementSize;
2096    // Handle GCC extension for pointer arithmetic on void* and
2097    // function pointer types.
2098    if (elementType->isVoidType() || elementType->isFunctionType())
2099      elementSize = CharUnits::One();
2100    else
2101      elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2102
2103    // Don't even emit the divide for element size of 1.
2104    if (elementSize.isOne())
2105      return diffInChars;
2106
2107    divisor = CGF.CGM.getSize(elementSize);
2108  }
2109
2110  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2111  // pointer difference in C is only defined in the case where both operands
2112  // are pointing to elements of an array.
2113  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2114}
2115
2116Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2117  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2118  // RHS to the same size as the LHS.
2119  Value *RHS = Ops.RHS;
2120  if (Ops.LHS->getType() != RHS->getType())
2121    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2122
2123  if (CGF.CatchUndefined
2124      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2125    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2126    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2127    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2128                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2129                             Cont, CGF.getTrapBB());
2130    CGF.EmitBlock(Cont);
2131  }
2132
2133  return Builder.CreateShl(Ops.LHS, RHS, "shl");
2134}
2135
2136Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2137  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2138  // RHS to the same size as the LHS.
2139  Value *RHS = Ops.RHS;
2140  if (Ops.LHS->getType() != RHS->getType())
2141    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2142
2143  if (CGF.CatchUndefined
2144      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2145    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2146    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2147    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2148                                 llvm::ConstantInt::get(RHS->getType(), Width)),
2149                             Cont, CGF.getTrapBB());
2150    CGF.EmitBlock(Cont);
2151  }
2152
2153  if (Ops.Ty->hasUnsignedIntegerRepresentation())
2154    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2155  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2156}
2157
2158enum IntrinsicType { VCMPEQ, VCMPGT };
2159// return corresponding comparison intrinsic for given vector type
2160static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2161                                        BuiltinType::Kind ElemKind) {
2162  switch (ElemKind) {
2163  default: llvm_unreachable("unexpected element type");
2164  case BuiltinType::Char_U:
2165  case BuiltinType::UChar:
2166    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2167                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2168  case BuiltinType::Char_S:
2169  case BuiltinType::SChar:
2170    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2171                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2172  case BuiltinType::UShort:
2173    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2174                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2175  case BuiltinType::Short:
2176    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2177                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2178  case BuiltinType::UInt:
2179  case BuiltinType::ULong:
2180    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2181                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2182  case BuiltinType::Int:
2183  case BuiltinType::Long:
2184    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2185                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2186  case BuiltinType::Float:
2187    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2188                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2189  }
2190}
2191
2192Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2193                                      unsigned SICmpOpc, unsigned FCmpOpc) {
2194  TestAndClearIgnoreResultAssign();
2195  Value *Result;
2196  QualType LHSTy = E->getLHS()->getType();
2197  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2198    assert(E->getOpcode() == BO_EQ ||
2199           E->getOpcode() == BO_NE);
2200    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2201    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2202    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2203                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2204  } else if (!LHSTy->isAnyComplexType()) {
2205    Value *LHS = Visit(E->getLHS());
2206    Value *RHS = Visit(E->getRHS());
2207
2208    // If AltiVec, the comparison results in a numeric type, so we use
2209    // intrinsics comparing vectors and giving 0 or 1 as a result
2210    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2211      // constants for mapping CR6 register bits to predicate result
2212      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2213
2214      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2215
2216      // in several cases vector arguments order will be reversed
2217      Value *FirstVecArg = LHS,
2218            *SecondVecArg = RHS;
2219
2220      QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2221      const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2222      BuiltinType::Kind ElementKind = BTy->getKind();
2223
2224      switch(E->getOpcode()) {
2225      default: llvm_unreachable("is not a comparison operation");
2226      case BO_EQ:
2227        CR6 = CR6_LT;
2228        ID = GetIntrinsic(VCMPEQ, ElementKind);
2229        break;
2230      case BO_NE:
2231        CR6 = CR6_EQ;
2232        ID = GetIntrinsic(VCMPEQ, ElementKind);
2233        break;
2234      case BO_LT:
2235        CR6 = CR6_LT;
2236        ID = GetIntrinsic(VCMPGT, ElementKind);
2237        std::swap(FirstVecArg, SecondVecArg);
2238        break;
2239      case BO_GT:
2240        CR6 = CR6_LT;
2241        ID = GetIntrinsic(VCMPGT, ElementKind);
2242        break;
2243      case BO_LE:
2244        if (ElementKind == BuiltinType::Float) {
2245          CR6 = CR6_LT;
2246          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2247          std::swap(FirstVecArg, SecondVecArg);
2248        }
2249        else {
2250          CR6 = CR6_EQ;
2251          ID = GetIntrinsic(VCMPGT, ElementKind);
2252        }
2253        break;
2254      case BO_GE:
2255        if (ElementKind == BuiltinType::Float) {
2256          CR6 = CR6_LT;
2257          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2258        }
2259        else {
2260          CR6 = CR6_EQ;
2261          ID = GetIntrinsic(VCMPGT, ElementKind);
2262          std::swap(FirstVecArg, SecondVecArg);
2263        }
2264        break;
2265      }
2266
2267      Value *CR6Param = Builder.getInt32(CR6);
2268      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2269      Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2270      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2271    }
2272
2273    if (LHS->getType()->isFPOrFPVectorTy()) {
2274      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2275                                  LHS, RHS, "cmp");
2276    } else if (LHSTy->hasSignedIntegerRepresentation()) {
2277      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2278                                  LHS, RHS, "cmp");
2279    } else {
2280      // Unsigned integers and pointers.
2281      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2282                                  LHS, RHS, "cmp");
2283    }
2284
2285    // If this is a vector comparison, sign extend the result to the appropriate
2286    // vector integer type and return it (don't convert to bool).
2287    if (LHSTy->isVectorType())
2288      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2289
2290  } else {
2291    // Complex Comparison: can only be an equality comparison.
2292    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2293    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2294
2295    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2296
2297    Value *ResultR, *ResultI;
2298    if (CETy->isRealFloatingType()) {
2299      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2300                                   LHS.first, RHS.first, "cmp.r");
2301      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2302                                   LHS.second, RHS.second, "cmp.i");
2303    } else {
2304      // Complex comparisons can only be equality comparisons.  As such, signed
2305      // and unsigned opcodes are the same.
2306      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2307                                   LHS.first, RHS.first, "cmp.r");
2308      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2309                                   LHS.second, RHS.second, "cmp.i");
2310    }
2311
2312    if (E->getOpcode() == BO_EQ) {
2313      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2314    } else {
2315      assert(E->getOpcode() == BO_NE &&
2316             "Complex comparison other than == or != ?");
2317      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2318    }
2319  }
2320
2321  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2322}
2323
2324Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2325  bool Ignore = TestAndClearIgnoreResultAssign();
2326
2327  Value *RHS;
2328  LValue LHS;
2329
2330  switch (E->getLHS()->getType().getObjCLifetime()) {
2331  case Qualifiers::OCL_Strong:
2332    llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2333    break;
2334
2335  case Qualifiers::OCL_Autoreleasing:
2336    llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2337    break;
2338
2339  case Qualifiers::OCL_Weak:
2340    RHS = Visit(E->getRHS());
2341    LHS = EmitCheckedLValue(E->getLHS());
2342    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2343    break;
2344
2345  // No reason to do any of these differently.
2346  case Qualifiers::OCL_None:
2347  case Qualifiers::OCL_ExplicitNone:
2348    // __block variables need to have the rhs evaluated first, plus
2349    // this should improve codegen just a little.
2350    RHS = Visit(E->getRHS());
2351    LHS = EmitCheckedLValue(E->getLHS());
2352
2353    // Store the value into the LHS.  Bit-fields are handled specially
2354    // because the result is altered by the store, i.e., [C99 6.5.16p1]
2355    // 'An assignment expression has the value of the left operand after
2356    // the assignment...'.
2357    if (LHS.isBitField())
2358      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2359    else
2360      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2361  }
2362
2363  // If the result is clearly ignored, return now.
2364  if (Ignore)
2365    return 0;
2366
2367  // The result of an assignment in C is the assigned r-value.
2368  if (!CGF.getContext().getLangOptions().CPlusPlus)
2369    return RHS;
2370
2371  // If the lvalue is non-volatile, return the computed value of the assignment.
2372  if (!LHS.isVolatileQualified())
2373    return RHS;
2374
2375  // Otherwise, reload the value.
2376  return EmitLoadOfLValue(LHS);
2377}
2378
2379Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2380
2381  // Perform vector logical and on comparisons with zero vectors.
2382  if (E->getType()->isVectorType()) {
2383    Value *LHS = Visit(E->getLHS());
2384    Value *RHS = Visit(E->getRHS());
2385    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2386    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2387    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2388    Value *And = Builder.CreateAnd(LHS, RHS);
2389    return Builder.CreateSExt(And, Zero->getType(), "sext");
2390  }
2391
2392  llvm::Type *ResTy = ConvertType(E->getType());
2393
2394  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2395  // If we have 1 && X, just emit X without inserting the control flow.
2396  bool LHSCondVal;
2397  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2398    if (LHSCondVal) { // If we have 1 && X, just emit X.
2399      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2400      // ZExt result to int or bool.
2401      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2402    }
2403
2404    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2405    if (!CGF.ContainsLabel(E->getRHS()))
2406      return llvm::Constant::getNullValue(ResTy);
2407  }
2408
2409  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2410  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2411
2412  CodeGenFunction::ConditionalEvaluation eval(CGF);
2413
2414  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2415  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2416
2417  // Any edges into the ContBlock are now from an (indeterminate number of)
2418  // edges from this first condition.  All of these values will be false.  Start
2419  // setting up the PHI node in the Cont Block for this.
2420  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2421                                            "", ContBlock);
2422  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2423       PI != PE; ++PI)
2424    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2425
2426  eval.begin(CGF);
2427  CGF.EmitBlock(RHSBlock);
2428  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2429  eval.end(CGF);
2430
2431  // Reaquire the RHS block, as there may be subblocks inserted.
2432  RHSBlock = Builder.GetInsertBlock();
2433
2434  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2435  // into the phi node for the edge with the value of RHSCond.
2436  if (CGF.getDebugInfo())
2437    // There is no need to emit line number for unconditional branch.
2438    Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2439  CGF.EmitBlock(ContBlock);
2440  PN->addIncoming(RHSCond, RHSBlock);
2441
2442  // ZExt result to int.
2443  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2444}
2445
2446Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2447
2448  // Perform vector logical or on comparisons with zero vectors.
2449  if (E->getType()->isVectorType()) {
2450    Value *LHS = Visit(E->getLHS());
2451    Value *RHS = Visit(E->getRHS());
2452    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2453    LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2454    RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2455    Value *Or = Builder.CreateOr(LHS, RHS);
2456    return Builder.CreateSExt(Or, Zero->getType(), "sext");
2457  }
2458
2459  llvm::Type *ResTy = ConvertType(E->getType());
2460
2461  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2462  // If we have 0 || X, just emit X without inserting the control flow.
2463  bool LHSCondVal;
2464  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2465    if (!LHSCondVal) { // If we have 0 || X, just emit X.
2466      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2467      // ZExt result to int or bool.
2468      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2469    }
2470
2471    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2472    if (!CGF.ContainsLabel(E->getRHS()))
2473      return llvm::ConstantInt::get(ResTy, 1);
2474  }
2475
2476  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2477  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2478
2479  CodeGenFunction::ConditionalEvaluation eval(CGF);
2480
2481  // Branch on the LHS first.  If it is true, go to the success (cont) block.
2482  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2483
2484  // Any edges into the ContBlock are now from an (indeterminate number of)
2485  // edges from this first condition.  All of these values will be true.  Start
2486  // setting up the PHI node in the Cont Block for this.
2487  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2488                                            "", ContBlock);
2489  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2490       PI != PE; ++PI)
2491    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2492
2493  eval.begin(CGF);
2494
2495  // Emit the RHS condition as a bool value.
2496  CGF.EmitBlock(RHSBlock);
2497  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2498
2499  eval.end(CGF);
2500
2501  // Reaquire the RHS block, as there may be subblocks inserted.
2502  RHSBlock = Builder.GetInsertBlock();
2503
2504  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2505  // into the phi node for the edge with the value of RHSCond.
2506  CGF.EmitBlock(ContBlock);
2507  PN->addIncoming(RHSCond, RHSBlock);
2508
2509  // ZExt result to int.
2510  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2511}
2512
2513Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2514  CGF.EmitIgnoredExpr(E->getLHS());
2515  CGF.EnsureInsertPoint();
2516  return Visit(E->getRHS());
2517}
2518
2519//===----------------------------------------------------------------------===//
2520//                             Other Operators
2521//===----------------------------------------------------------------------===//
2522
2523/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2524/// expression is cheap enough and side-effect-free enough to evaluate
2525/// unconditionally instead of conditionally.  This is used to convert control
2526/// flow into selects in some cases.
2527static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2528                                                   CodeGenFunction &CGF) {
2529  E = E->IgnoreParens();
2530
2531  // Anything that is an integer or floating point constant is fine.
2532  if (E->isConstantInitializer(CGF.getContext(), false))
2533    return true;
2534
2535  // Non-volatile automatic variables too, to get "cond ? X : Y" where
2536  // X and Y are local variables.
2537  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2538    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2539      if (VD->hasLocalStorage() && !(CGF.getContext()
2540                                     .getCanonicalType(VD->getType())
2541                                     .isVolatileQualified()))
2542        return true;
2543
2544  return false;
2545}
2546
2547
2548Value *ScalarExprEmitter::
2549VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2550  TestAndClearIgnoreResultAssign();
2551
2552  // Bind the common expression if necessary.
2553  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2554
2555  Expr *condExpr = E->getCond();
2556  Expr *lhsExpr = E->getTrueExpr();
2557  Expr *rhsExpr = E->getFalseExpr();
2558
2559  // If the condition constant folds and can be elided, try to avoid emitting
2560  // the condition and the dead arm.
2561  bool CondExprBool;
2562  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2563    Expr *live = lhsExpr, *dead = rhsExpr;
2564    if (!CondExprBool) std::swap(live, dead);
2565
2566    // If the dead side doesn't have labels we need, just emit the Live part.
2567    if (!CGF.ContainsLabel(dead)) {
2568      Value *Result = Visit(live);
2569
2570      // If the live part is a throw expression, it acts like it has a void
2571      // type, so evaluating it returns a null Value*.  However, a conditional
2572      // with non-void type must return a non-null Value*.
2573      if (!Result && !E->getType()->isVoidType())
2574        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2575
2576      return Result;
2577    }
2578  }
2579
2580  // OpenCL: If the condition is a vector, we can treat this condition like
2581  // the select function.
2582  if (CGF.getContext().getLangOptions().OpenCL
2583      && condExpr->getType()->isVectorType()) {
2584    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2585    llvm::Value *LHS = Visit(lhsExpr);
2586    llvm::Value *RHS = Visit(rhsExpr);
2587
2588    llvm::Type *condType = ConvertType(condExpr->getType());
2589    llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2590
2591    unsigned numElem = vecTy->getNumElements();
2592    llvm::Type *elemType = vecTy->getElementType();
2593
2594    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
2595    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2596    llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2597                                          llvm::VectorType::get(elemType,
2598                                                                numElem),
2599                                          "sext");
2600    llvm::Value *tmp2 = Builder.CreateNot(tmp);
2601
2602    // Cast float to int to perform ANDs if necessary.
2603    llvm::Value *RHSTmp = RHS;
2604    llvm::Value *LHSTmp = LHS;
2605    bool wasCast = false;
2606    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2607    if (rhsVTy->getElementType()->isFloatTy()) {
2608      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2609      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2610      wasCast = true;
2611    }
2612
2613    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2614    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2615    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2616    if (wasCast)
2617      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2618
2619    return tmp5;
2620  }
2621
2622  // If this is a really simple expression (like x ? 4 : 5), emit this as a
2623  // select instead of as control flow.  We can only do this if it is cheap and
2624  // safe to evaluate the LHS and RHS unconditionally.
2625  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2626      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2627    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2628    llvm::Value *LHS = Visit(lhsExpr);
2629    llvm::Value *RHS = Visit(rhsExpr);
2630    if (!LHS) {
2631      // If the conditional has void type, make sure we return a null Value*.
2632      assert(!RHS && "LHS and RHS types must match");
2633      return 0;
2634    }
2635    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2636  }
2637
2638  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2639  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2640  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2641
2642  CodeGenFunction::ConditionalEvaluation eval(CGF);
2643  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2644
2645  CGF.EmitBlock(LHSBlock);
2646  eval.begin(CGF);
2647  Value *LHS = Visit(lhsExpr);
2648  eval.end(CGF);
2649
2650  LHSBlock = Builder.GetInsertBlock();
2651  Builder.CreateBr(ContBlock);
2652
2653  CGF.EmitBlock(RHSBlock);
2654  eval.begin(CGF);
2655  Value *RHS = Visit(rhsExpr);
2656  eval.end(CGF);
2657
2658  RHSBlock = Builder.GetInsertBlock();
2659  CGF.EmitBlock(ContBlock);
2660
2661  // If the LHS or RHS is a throw expression, it will be legitimately null.
2662  if (!LHS)
2663    return RHS;
2664  if (!RHS)
2665    return LHS;
2666
2667  // Create a PHI node for the real part.
2668  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2669  PN->addIncoming(LHS, LHSBlock);
2670  PN->addIncoming(RHS, RHSBlock);
2671  return PN;
2672}
2673
2674Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2675  return Visit(E->getChosenSubExpr(CGF.getContext()));
2676}
2677
2678Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2679  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2680  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2681
2682  // If EmitVAArg fails, we fall back to the LLVM instruction.
2683  if (!ArgPtr)
2684    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2685
2686  // FIXME Volatility.
2687  return Builder.CreateLoad(ArgPtr);
2688}
2689
2690Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2691  return CGF.EmitBlockLiteral(block);
2692}
2693
2694Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2695  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2696  llvm::Type *DstTy = ConvertType(E->getType());
2697
2698  // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2699  // a shuffle vector instead of a bitcast.
2700  llvm::Type *SrcTy = Src->getType();
2701  if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2702    unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2703    unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2704    if ((numElementsDst == 3 && numElementsSrc == 4)
2705        || (numElementsDst == 4 && numElementsSrc == 3)) {
2706
2707
2708      // In the case of going from int4->float3, a bitcast is needed before
2709      // doing a shuffle.
2710      llvm::Type *srcElemTy =
2711      cast<llvm::VectorType>(SrcTy)->getElementType();
2712      llvm::Type *dstElemTy =
2713      cast<llvm::VectorType>(DstTy)->getElementType();
2714
2715      if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2716          || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2717        // Create a float type of the same size as the source or destination.
2718        llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2719                                                                 numElementsSrc);
2720
2721        Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2722      }
2723
2724      llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2725
2726      SmallVector<llvm::Constant*, 3> Args;
2727      Args.push_back(Builder.getInt32(0));
2728      Args.push_back(Builder.getInt32(1));
2729      Args.push_back(Builder.getInt32(2));
2730
2731      if (numElementsDst == 4)
2732        Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
2733
2734      llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2735
2736      return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2737    }
2738  }
2739
2740  return Builder.CreateBitCast(Src, DstTy, "astype");
2741}
2742
2743Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
2744  return CGF.EmitAtomicExpr(E).getScalarVal();
2745}
2746
2747//===----------------------------------------------------------------------===//
2748//                         Entry Point into this File
2749//===----------------------------------------------------------------------===//
2750
2751/// EmitScalarExpr - Emit the computation of the specified expression of scalar
2752/// type, ignoring the result.
2753Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2754  assert(E && !hasAggregateLLVMType(E->getType()) &&
2755         "Invalid scalar expression to emit");
2756
2757  if (isa<CXXDefaultArgExpr>(E))
2758    disableDebugInfo();
2759  Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2760    .Visit(const_cast<Expr*>(E));
2761  if (isa<CXXDefaultArgExpr>(E))
2762    enableDebugInfo();
2763  return V;
2764}
2765
2766/// EmitScalarConversion - Emit a conversion from the specified type to the
2767/// specified destination type, both of which are LLVM scalar types.
2768Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2769                                             QualType DstTy) {
2770  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2771         "Invalid scalar expression to emit");
2772  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2773}
2774
2775/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2776/// type to the specified destination type, where the destination type is an
2777/// LLVM scalar type.
2778Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2779                                                      QualType SrcTy,
2780                                                      QualType DstTy) {
2781  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2782         "Invalid complex -> scalar conversion");
2783  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2784                                                                DstTy);
2785}
2786
2787
2788llvm::Value *CodeGenFunction::
2789EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2790                        bool isInc, bool isPre) {
2791  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2792}
2793
2794LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2795  llvm::Value *V;
2796  // object->isa or (*object).isa
2797  // Generate code as for: *(Class*)object
2798  // build Class* type
2799  llvm::Type *ClassPtrTy = ConvertType(E->getType());
2800
2801  Expr *BaseExpr = E->getBase();
2802  if (BaseExpr->isRValue()) {
2803    V = CreateMemTemp(E->getType(), "resval");
2804    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2805    Builder.CreateStore(Src, V);
2806    V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2807      MakeNaturalAlignAddrLValue(V, E->getType()));
2808  } else {
2809    if (E->isArrow())
2810      V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2811    else
2812      V = EmitLValue(BaseExpr).getAddress();
2813  }
2814
2815  // build Class* type
2816  ClassPtrTy = ClassPtrTy->getPointerTo();
2817  V = Builder.CreateBitCast(V, ClassPtrTy);
2818  return MakeNaturalAlignAddrLValue(V, E->getType());
2819}
2820
2821
2822LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2823                                            const CompoundAssignOperator *E) {
2824  ScalarExprEmitter Scalar(*this);
2825  Value *Result = 0;
2826  switch (E->getOpcode()) {
2827#define COMPOUND_OP(Op)                                                       \
2828    case BO_##Op##Assign:                                                     \
2829      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2830                                             Result)
2831  COMPOUND_OP(Mul);
2832  COMPOUND_OP(Div);
2833  COMPOUND_OP(Rem);
2834  COMPOUND_OP(Add);
2835  COMPOUND_OP(Sub);
2836  COMPOUND_OP(Shl);
2837  COMPOUND_OP(Shr);
2838  COMPOUND_OP(And);
2839  COMPOUND_OP(Xor);
2840  COMPOUND_OP(Or);
2841#undef COMPOUND_OP
2842
2843  case BO_PtrMemD:
2844  case BO_PtrMemI:
2845  case BO_Mul:
2846  case BO_Div:
2847  case BO_Rem:
2848  case BO_Add:
2849  case BO_Sub:
2850  case BO_Shl:
2851  case BO_Shr:
2852  case BO_LT:
2853  case BO_GT:
2854  case BO_LE:
2855  case BO_GE:
2856  case BO_EQ:
2857  case BO_NE:
2858  case BO_And:
2859  case BO_Xor:
2860  case BO_Or:
2861  case BO_LAnd:
2862  case BO_LOr:
2863  case BO_Assign:
2864  case BO_Comma:
2865    llvm_unreachable("Not valid compound assignment operators");
2866  }
2867
2868  llvm_unreachable("Unhandled compound assignment operator");
2869}
2870