CGExprScalar.cpp revision e04d45e05277ee04997fe59b1d194503f484c846
1ddb351dbec246cf1fab5ec20d2d5520909041de1Kristian Monsen//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//
3513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//                     The LLVM Compiler Infrastructure
4513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//
5513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch// This file is distributed under the University of Illinois Open Source
6513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch// License. See LICENSE.TXT for details.
7513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//
8513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//===----------------------------------------------------------------------===//
9513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//
10ddb351dbec246cf1fab5ec20d2d5520909041de1Kristian Monsen// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//
12513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//===----------------------------------------------------------------------===//
13513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
14513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "CodeGenFunction.h"
15513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "CGObjCRuntime.h"
16513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "CodeGenModule.h"
17513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "clang/AST/ASTContext.h"
18513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "clang/AST/DeclObjC.h"
19513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "clang/AST/RecordLayout.h"
20513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "clang/AST/StmtVisitor.h"
21513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "clang/Basic/TargetInfo.h"
22513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/Constants.h"
23513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/Function.h"
24513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/GlobalVariable.h"
25513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/Intrinsics.h"
26513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/Module.h"
27513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/Support/CFG.h"
28513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include "llvm/Target/TargetData.h"
29513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch#include <cstdarg>
30513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
31513209b27ff55e2841eac0e4120199c23acce758Ben Murdochusing namespace clang;
32513209b27ff55e2841eac0e4120199c23acce758Ben Murdochusing namespace CodeGen;
33513209b27ff55e2841eac0e4120199c23acce758Ben Murdochusing llvm::Value;
34513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
35513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//===----------------------------------------------------------------------===//
36513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//                         Scalar Expression Emitter
37513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch//===----------------------------------------------------------------------===//
38513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
39513209b27ff55e2841eac0e4120199c23acce758Ben Murdochstruct BinOpInfo {
40513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *LHS;
41513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *RHS;
42513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  QualType Ty;  // Computation Type.
43513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  const BinaryOperator *E;
44513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch};
45513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
46513209b27ff55e2841eac0e4120199c23acce758Ben Murdochnamespace {
47513209b27ff55e2841eac0e4120199c23acce758Ben Murdochclass ScalarExprEmitter
48513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  : public StmtVisitor<ScalarExprEmitter, Value*> {
49513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  CodeGenFunction &CGF;
50513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  CGBuilderTy &Builder;
51513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  bool IgnoreResultAssign;
52513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  llvm::LLVMContext &VMContext;
53513209b27ff55e2841eac0e4120199c23acce758Ben Murdochpublic:
54513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
55513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch      VMContext(cgf.getLLVMContext()) {
58513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  }
59513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
60513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  //===--------------------------------------------------------------------===//
61513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  //                               Utilities
62513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  //===--------------------------------------------------------------------===//
63513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
64513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  bool TestAndClearIgnoreResultAssign() {
65513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch    bool I = IgnoreResultAssign;
66513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch    IgnoreResultAssign = false;
67513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch    return I;
68513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  }
69513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
70513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
74513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  }
77513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
78513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// value l-value, this method emits the address of the l-value, then loads
80513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// and returns the result.
81513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *EmitLoadOfLValue(const Expr *E) {
82513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  }
84513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
85513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// EmitConversionToBool - Convert the specified expression value to a
86513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
89513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// EmitScalarConversion - Emit a conversion from the specified type to the
90513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// specified destination type, both of which are LLVM scalar types.
91513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
93513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// complex type to the specified destination type, where the destination type
95513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  /// is an LLVM scalar type.
96513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch                                       QualType SrcTy, QualType DstTy);
98513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
99513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  //===--------------------------------------------------------------------===//
100513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  //                            Visitor Methods
101513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  //===--------------------------------------------------------------------===//
102513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch
103513209b27ff55e2841eac0e4120199c23acce758Ben Murdoch  Value *VisitStmt(Stmt *S) {
104    S->dump(CGF.getContext().getSourceManager());
105    assert(0 && "Stmt can't have complex result type!");
106    return 0;
107  }
108  Value *VisitExpr(Expr *S);
109
110  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
111
112  // Leaves.
113  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
114    return llvm::ConstantInt::get(VMContext, E->getValue());
115  }
116  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
117    return llvm::ConstantFP::get(VMContext, E->getValue());
118  }
119  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
120    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
121  }
122  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
126    return llvm::Constant::getNullValue(ConvertType(E->getType()));
127  }
128  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
129    return llvm::Constant::getNullValue(ConvertType(E->getType()));
130  }
131  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
132    return llvm::ConstantInt::get(ConvertType(E->getType()),
133                                  CGF.getContext().typesAreCompatible(
134                                    E->getArgType1(), E->getArgType2()));
135  }
136  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
137  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
138    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
139    return Builder.CreateBitCast(V, ConvertType(E->getType()));
140  }
141
142  // l-values.
143  Value *VisitDeclRefExpr(DeclRefExpr *E) {
144    Expr::EvalResult Result;
145    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
146      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
147      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
148    }
149    return EmitLoadOfLValue(E);
150  }
151  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
152    return CGF.EmitObjCSelectorExpr(E);
153  }
154  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
155    return CGF.EmitObjCProtocolExpr(E);
156  }
157  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
158    return EmitLoadOfLValue(E);
159  }
160  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
161    return EmitLoadOfLValue(E);
162  }
163  Value *VisitObjCImplicitSetterGetterRefExpr(
164                        ObjCImplicitSetterGetterRefExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
168    return CGF.EmitObjCMessageExpr(E).getScalarVal();
169  }
170
171  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
172    LValue LV = CGF.EmitObjCIsaExpr(E);
173    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
174    return V;
175  }
176
177  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
178  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
179  Value *VisitMemberExpr(MemberExpr *E);
180  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
181  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
182    return EmitLoadOfLValue(E);
183  }
184
185  Value *VisitInitListExpr(InitListExpr *E);
186
187  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
188    return llvm::Constant::getNullValue(ConvertType(E->getType()));
189  }
190  Value *VisitCastExpr(CastExpr *E) {
191    // Make sure to evaluate VLA bounds now so that we have them for later.
192    if (E->getType()->isVariablyModifiedType())
193      CGF.EmitVLASize(E->getType());
194
195    return EmitCastExpr(E);
196  }
197  Value *EmitCastExpr(CastExpr *E);
198
199  Value *VisitCallExpr(const CallExpr *E) {
200    if (E->getCallReturnType()->isReferenceType())
201      return EmitLoadOfLValue(E);
202
203    return CGF.EmitCallExpr(E).getScalarVal();
204  }
205
206  Value *VisitStmtExpr(const StmtExpr *E);
207
208  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
209
210  // Unary Operators.
211  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
212    LValue LV = EmitLValue(E->getSubExpr());
213    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
214  }
215  Value *VisitUnaryPostDec(const UnaryOperator *E) {
216    return VisitPrePostIncDec(E, false, false);
217  }
218  Value *VisitUnaryPostInc(const UnaryOperator *E) {
219    return VisitPrePostIncDec(E, true, false);
220  }
221  Value *VisitUnaryPreDec(const UnaryOperator *E) {
222    return VisitPrePostIncDec(E, false, true);
223  }
224  Value *VisitUnaryPreInc(const UnaryOperator *E) {
225    return VisitPrePostIncDec(E, true, true);
226  }
227  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
228    return EmitLValue(E->getSubExpr()).getAddress();
229  }
230  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
231  Value *VisitUnaryPlus(const UnaryOperator *E) {
232    // This differs from gcc, though, most likely due to a bug in gcc.
233    TestAndClearIgnoreResultAssign();
234    return Visit(E->getSubExpr());
235  }
236  Value *VisitUnaryMinus    (const UnaryOperator *E);
237  Value *VisitUnaryNot      (const UnaryOperator *E);
238  Value *VisitUnaryLNot     (const UnaryOperator *E);
239  Value *VisitUnaryReal     (const UnaryOperator *E);
240  Value *VisitUnaryImag     (const UnaryOperator *E);
241  Value *VisitUnaryExtension(const UnaryOperator *E) {
242    return Visit(E->getSubExpr());
243  }
244  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
245
246  // C++
247  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
248    return Visit(DAE->getExpr());
249  }
250  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
251    return CGF.LoadCXXThis();
252  }
253
254  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
255    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
256  }
257  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
258    return CGF.EmitCXXNewExpr(E);
259  }
260  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
261    CGF.EmitCXXDeleteExpr(E);
262    return 0;
263  }
264  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
265    return llvm::ConstantInt::get(Builder.getInt1Ty(),
266                                  E->EvaluateTrait(CGF.getContext()));
267  }
268
269  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
270    // C++ [expr.pseudo]p1:
271    //   The result shall only be used as the operand for the function call
272    //   operator (), and the result of such a call has type void. The only
273    //   effect is the evaluation of the postfix-expression before the dot or
274    //   arrow.
275    CGF.EmitScalarExpr(E->getBase());
276    return 0;
277  }
278
279  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
280    return llvm::Constant::getNullValue(ConvertType(E->getType()));
281  }
282
283  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
284    CGF.EmitCXXThrowExpr(E);
285    return 0;
286  }
287
288  // Binary Operators.
289  Value *EmitMul(const BinOpInfo &Ops) {
290    if (CGF.getContext().getLangOptions().OverflowChecking
291        && Ops.Ty->isSignedIntegerType())
292      return EmitOverflowCheckedBinOp(Ops);
293    if (Ops.LHS->getType()->isFPOrFPVectorTy())
294      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
295    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
296  }
297  /// Create a binary op that checks for overflow.
298  /// Currently only supports +, - and *.
299  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
300  Value *EmitDiv(const BinOpInfo &Ops);
301  Value *EmitRem(const BinOpInfo &Ops);
302  Value *EmitAdd(const BinOpInfo &Ops);
303  Value *EmitSub(const BinOpInfo &Ops);
304  Value *EmitShl(const BinOpInfo &Ops);
305  Value *EmitShr(const BinOpInfo &Ops);
306  Value *EmitAnd(const BinOpInfo &Ops) {
307    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
308  }
309  Value *EmitXor(const BinOpInfo &Ops) {
310    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
311  }
312  Value *EmitOr (const BinOpInfo &Ops) {
313    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
314  }
315
316  BinOpInfo EmitBinOps(const BinaryOperator *E);
317  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
318                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
319                                  Value *&BitFieldResult);
320
321  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
322                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
323
324  // Binary operators and binary compound assignment operators.
325#define HANDLEBINOP(OP) \
326  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
327    return Emit ## OP(EmitBinOps(E));                                      \
328  }                                                                        \
329  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
330    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
331  }
332  HANDLEBINOP(Mul)
333  HANDLEBINOP(Div)
334  HANDLEBINOP(Rem)
335  HANDLEBINOP(Add)
336  HANDLEBINOP(Sub)
337  HANDLEBINOP(Shl)
338  HANDLEBINOP(Shr)
339  HANDLEBINOP(And)
340  HANDLEBINOP(Xor)
341  HANDLEBINOP(Or)
342#undef HANDLEBINOP
343
344  // Comparisons.
345  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
346                     unsigned SICmpOpc, unsigned FCmpOpc);
347#define VISITCOMP(CODE, UI, SI, FP) \
348    Value *VisitBin##CODE(const BinaryOperator *E) { \
349      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
350                         llvm::FCmpInst::FP); }
351  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
352  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
353  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
354  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
355  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
356  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
357#undef VISITCOMP
358
359  Value *VisitBinAssign     (const BinaryOperator *E);
360
361  Value *VisitBinLAnd       (const BinaryOperator *E);
362  Value *VisitBinLOr        (const BinaryOperator *E);
363  Value *VisitBinComma      (const BinaryOperator *E);
364
365  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
366  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
367
368  // Other Operators.
369  Value *VisitBlockExpr(const BlockExpr *BE);
370  Value *VisitConditionalOperator(const ConditionalOperator *CO);
371  Value *VisitChooseExpr(ChooseExpr *CE);
372  Value *VisitVAArgExpr(VAArgExpr *VE);
373  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
374    return CGF.EmitObjCStringLiteral(E);
375  }
376};
377}  // end anonymous namespace.
378
379//===----------------------------------------------------------------------===//
380//                                Utilities
381//===----------------------------------------------------------------------===//
382
383/// EmitConversionToBool - Convert the specified expression value to a
384/// boolean (i1) truth value.  This is equivalent to "Val != 0".
385Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
386  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
387
388  if (SrcType->isRealFloatingType()) {
389    // Compare against 0.0 for fp scalars.
390    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
391    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
392  }
393
394  if (SrcType->isMemberPointerType()) {
395    // Compare against -1.
396    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
397    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
398  }
399
400  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
401         "Unknown scalar type to convert");
402
403  // Because of the type rules of C, we often end up computing a logical value,
404  // then zero extending it to int, then wanting it as a logical value again.
405  // Optimize this common case.
406  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
407    if (ZI->getOperand(0)->getType() ==
408        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
409      Value *Result = ZI->getOperand(0);
410      // If there aren't any more uses, zap the instruction to save space.
411      // Note that there can be more uses, for example if this
412      // is the result of an assignment.
413      if (ZI->use_empty())
414        ZI->eraseFromParent();
415      return Result;
416    }
417  }
418
419  // Compare against an integer or pointer null.
420  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
421  return Builder.CreateICmpNE(Src, Zero, "tobool");
422}
423
424/// EmitScalarConversion - Emit a conversion from the specified type to the
425/// specified destination type, both of which are LLVM scalar types.
426Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
427                                               QualType DstType) {
428  SrcType = CGF.getContext().getCanonicalType(SrcType);
429  DstType = CGF.getContext().getCanonicalType(DstType);
430  if (SrcType == DstType) return Src;
431
432  if (DstType->isVoidType()) return 0;
433
434  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
435
436  // Handle conversions to bool first, they are special: comparisons against 0.
437  if (DstType->isBooleanType())
438    return EmitConversionToBool(Src, SrcType);
439
440  const llvm::Type *DstTy = ConvertType(DstType);
441
442  // Ignore conversions like int -> uint.
443  if (Src->getType() == DstTy)
444    return Src;
445
446  // Handle pointer conversions next: pointers can only be converted to/from
447  // other pointers and integers. Check for pointer types in terms of LLVM, as
448  // some native types (like Obj-C id) may map to a pointer type.
449  if (isa<llvm::PointerType>(DstTy)) {
450    // The source value may be an integer, or a pointer.
451    if (isa<llvm::PointerType>(Src->getType()))
452      return Builder.CreateBitCast(Src, DstTy, "conv");
453
454    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
455    // First, convert to the correct width so that we control the kind of
456    // extension.
457    const llvm::Type *MiddleTy =
458          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
459    bool InputSigned = SrcType->isSignedIntegerType();
460    llvm::Value* IntResult =
461        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
462    // Then, cast to pointer.
463    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
464  }
465
466  if (isa<llvm::PointerType>(Src->getType())) {
467    // Must be an ptr to int cast.
468    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
469    return Builder.CreatePtrToInt(Src, DstTy, "conv");
470  }
471
472  // A scalar can be splatted to an extended vector of the same element type
473  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
474    // Cast the scalar to element type
475    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
476    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
477
478    // Insert the element in element zero of an undef vector
479    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
480    llvm::Value *Idx =
481        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
482    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
483
484    // Splat the element across to all elements
485    llvm::SmallVector<llvm::Constant*, 16> Args;
486    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
487    for (unsigned i = 0; i < NumElements; i++)
488      Args.push_back(llvm::ConstantInt::get(
489                                        llvm::Type::getInt32Ty(VMContext), 0));
490
491    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
492    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
493    return Yay;
494  }
495
496  // Allow bitcast from vector to integer/fp of the same size.
497  if (isa<llvm::VectorType>(Src->getType()) ||
498      isa<llvm::VectorType>(DstTy))
499    return Builder.CreateBitCast(Src, DstTy, "conv");
500
501  // Finally, we have the arithmetic types: real int/float.
502  if (isa<llvm::IntegerType>(Src->getType())) {
503    bool InputSigned = SrcType->isSignedIntegerType();
504    if (isa<llvm::IntegerType>(DstTy))
505      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
506    else if (InputSigned)
507      return Builder.CreateSIToFP(Src, DstTy, "conv");
508    else
509      return Builder.CreateUIToFP(Src, DstTy, "conv");
510  }
511
512  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
513  if (isa<llvm::IntegerType>(DstTy)) {
514    if (DstType->isSignedIntegerType())
515      return Builder.CreateFPToSI(Src, DstTy, "conv");
516    else
517      return Builder.CreateFPToUI(Src, DstTy, "conv");
518  }
519
520  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
521  if (DstTy->getTypeID() < Src->getType()->getTypeID())
522    return Builder.CreateFPTrunc(Src, DstTy, "conv");
523  else
524    return Builder.CreateFPExt(Src, DstTy, "conv");
525}
526
527/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
528/// type to the specified destination type, where the destination type is an
529/// LLVM scalar type.
530Value *ScalarExprEmitter::
531EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
532                              QualType SrcTy, QualType DstTy) {
533  // Get the source element type.
534  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
535
536  // Handle conversions to bool first, they are special: comparisons against 0.
537  if (DstTy->isBooleanType()) {
538    //  Complex != 0  -> (Real != 0) | (Imag != 0)
539    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
540    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
541    return Builder.CreateOr(Src.first, Src.second, "tobool");
542  }
543
544  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
545  // the imaginary part of the complex value is discarded and the value of the
546  // real part is converted according to the conversion rules for the
547  // corresponding real type.
548  return EmitScalarConversion(Src.first, SrcTy, DstTy);
549}
550
551
552//===----------------------------------------------------------------------===//
553//                            Visitor Methods
554//===----------------------------------------------------------------------===//
555
556Value *ScalarExprEmitter::VisitExpr(Expr *E) {
557  CGF.ErrorUnsupported(E, "scalar expression");
558  if (E->getType()->isVoidType())
559    return 0;
560  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
561}
562
563Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
564  llvm::SmallVector<llvm::Constant*, 32> indices;
565  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
566    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
567  }
568  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
569  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
570  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
571  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
572}
573Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
574  Expr::EvalResult Result;
575  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
576    if (E->isArrow())
577      CGF.EmitScalarExpr(E->getBase());
578    else
579      EmitLValue(E->getBase());
580    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
581  }
582  return EmitLoadOfLValue(E);
583}
584
585Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
586  TestAndClearIgnoreResultAssign();
587
588  // Emit subscript expressions in rvalue context's.  For most cases, this just
589  // loads the lvalue formed by the subscript expr.  However, we have to be
590  // careful, because the base of a vector subscript is occasionally an rvalue,
591  // so we can't get it as an lvalue.
592  if (!E->getBase()->getType()->isVectorType())
593    return EmitLoadOfLValue(E);
594
595  // Handle the vector case.  The base must be a vector, the index must be an
596  // integer value.
597  Value *Base = Visit(E->getBase());
598  Value *Idx  = Visit(E->getIdx());
599  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
600  Idx = Builder.CreateIntCast(Idx,
601                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
602                              IdxSigned,
603                              "vecidxcast");
604  return Builder.CreateExtractElement(Base, Idx, "vecext");
605}
606
607static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
608                                  unsigned Off, const llvm::Type *I32Ty) {
609  int MV = SVI->getMaskValue(Idx);
610  if (MV == -1)
611    return llvm::UndefValue::get(I32Ty);
612  return llvm::ConstantInt::get(I32Ty, Off+MV);
613}
614
615Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
616  bool Ignore = TestAndClearIgnoreResultAssign();
617  (void)Ignore;
618  assert (Ignore == false && "init list ignored");
619  unsigned NumInitElements = E->getNumInits();
620
621  if (E->hadArrayRangeDesignator())
622    CGF.ErrorUnsupported(E, "GNU array range designator extension");
623
624  const llvm::VectorType *VType =
625    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
626
627  // We have a scalar in braces. Just use the first element.
628  if (!VType)
629    return Visit(E->getInit(0));
630
631  unsigned ResElts = VType->getNumElements();
632  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
633
634  // Loop over initializers collecting the Value for each, and remembering
635  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
636  // us to fold the shuffle for the swizzle into the shuffle for the vector
637  // initializer, since LLVM optimizers generally do not want to touch
638  // shuffles.
639  unsigned CurIdx = 0;
640  bool VIsUndefShuffle = false;
641  llvm::Value *V = llvm::UndefValue::get(VType);
642  for (unsigned i = 0; i != NumInitElements; ++i) {
643    Expr *IE = E->getInit(i);
644    Value *Init = Visit(IE);
645    llvm::SmallVector<llvm::Constant*, 16> Args;
646
647    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
648
649    // Handle scalar elements.  If the scalar initializer is actually one
650    // element of a different vector of the same width, use shuffle instead of
651    // extract+insert.
652    if (!VVT) {
653      if (isa<ExtVectorElementExpr>(IE)) {
654        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
655
656        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
657          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
658          Value *LHS = 0, *RHS = 0;
659          if (CurIdx == 0) {
660            // insert into undef -> shuffle (src, undef)
661            Args.push_back(C);
662            for (unsigned j = 1; j != ResElts; ++j)
663              Args.push_back(llvm::UndefValue::get(I32Ty));
664
665            LHS = EI->getVectorOperand();
666            RHS = V;
667            VIsUndefShuffle = true;
668          } else if (VIsUndefShuffle) {
669            // insert into undefshuffle && size match -> shuffle (v, src)
670            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
671            for (unsigned j = 0; j != CurIdx; ++j)
672              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
673            Args.push_back(llvm::ConstantInt::get(I32Ty,
674                                                  ResElts + C->getZExtValue()));
675            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
676              Args.push_back(llvm::UndefValue::get(I32Ty));
677
678            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
679            RHS = EI->getVectorOperand();
680            VIsUndefShuffle = false;
681          }
682          if (!Args.empty()) {
683            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
684            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
685            ++CurIdx;
686            continue;
687          }
688        }
689      }
690      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
691      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
692      VIsUndefShuffle = false;
693      ++CurIdx;
694      continue;
695    }
696
697    unsigned InitElts = VVT->getNumElements();
698
699    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
700    // input is the same width as the vector being constructed, generate an
701    // optimized shuffle of the swizzle input into the result.
702    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
703    if (isa<ExtVectorElementExpr>(IE)) {
704      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
705      Value *SVOp = SVI->getOperand(0);
706      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
707
708      if (OpTy->getNumElements() == ResElts) {
709        for (unsigned j = 0; j != CurIdx; ++j) {
710          // If the current vector initializer is a shuffle with undef, merge
711          // this shuffle directly into it.
712          if (VIsUndefShuffle) {
713            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
714                                      I32Ty));
715          } else {
716            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
717          }
718        }
719        for (unsigned j = 0, je = InitElts; j != je; ++j)
720          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
721        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
722          Args.push_back(llvm::UndefValue::get(I32Ty));
723
724        if (VIsUndefShuffle)
725          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
726
727        Init = SVOp;
728      }
729    }
730
731    // Extend init to result vector length, and then shuffle its contribution
732    // to the vector initializer into V.
733    if (Args.empty()) {
734      for (unsigned j = 0; j != InitElts; ++j)
735        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
736      for (unsigned j = InitElts; j != ResElts; ++j)
737        Args.push_back(llvm::UndefValue::get(I32Ty));
738      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
739      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
740                                         Mask, "vext");
741
742      Args.clear();
743      for (unsigned j = 0; j != CurIdx; ++j)
744        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
745      for (unsigned j = 0; j != InitElts; ++j)
746        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
747      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
748        Args.push_back(llvm::UndefValue::get(I32Ty));
749    }
750
751    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
752    // merging subsequent shuffles into this one.
753    if (CurIdx == 0)
754      std::swap(V, Init);
755    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
756    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
757    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
758    CurIdx += InitElts;
759  }
760
761  // FIXME: evaluate codegen vs. shuffling against constant null vector.
762  // Emit remaining default initializers.
763  const llvm::Type *EltTy = VType->getElementType();
764
765  // Emit remaining default initializers
766  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
767    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
768    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
769    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
770  }
771  return V;
772}
773
774static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
775  const Expr *E = CE->getSubExpr();
776
777  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
778    return false;
779
780  if (isa<CXXThisExpr>(E)) {
781    // We always assume that 'this' is never null.
782    return false;
783  }
784
785  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
786    // And that lvalue casts are never null.
787    if (ICE->isLvalueCast())
788      return false;
789  }
790
791  return true;
792}
793
794// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
795// have to handle a more broad range of conversions than explicit casts, as they
796// handle things like function to ptr-to-function decay etc.
797Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
798  Expr *E = CE->getSubExpr();
799  QualType DestTy = CE->getType();
800  CastExpr::CastKind Kind = CE->getCastKind();
801
802  if (!DestTy->isVoidType())
803    TestAndClearIgnoreResultAssign();
804
805  // Since almost all cast kinds apply to scalars, this switch doesn't have
806  // a default case, so the compiler will warn on a missing case.  The cases
807  // are in the same order as in the CastKind enum.
808  switch (Kind) {
809  case CastExpr::CK_Unknown:
810    // FIXME: All casts should have a known kind!
811    //assert(0 && "Unknown cast kind!");
812    break;
813
814  case CastExpr::CK_AnyPointerToObjCPointerCast:
815  case CastExpr::CK_AnyPointerToBlockPointerCast:
816  case CastExpr::CK_BitCast: {
817    Value *Src = Visit(const_cast<Expr*>(E));
818    return Builder.CreateBitCast(Src, ConvertType(DestTy));
819  }
820  case CastExpr::CK_NoOp:
821  case CastExpr::CK_UserDefinedConversion:
822    return Visit(const_cast<Expr*>(E));
823
824  case CastExpr::CK_BaseToDerived: {
825    const CXXRecordDecl *DerivedClassDecl =
826      DestTy->getCXXRecordDeclForPointerType();
827
828    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
829                                        CE->getBasePath(),
830                                        ShouldNullCheckClassCastValue(CE));
831  }
832  case CastExpr::CK_UncheckedDerivedToBase:
833  case CastExpr::CK_DerivedToBase: {
834    const RecordType *DerivedClassTy =
835      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
836    CXXRecordDecl *DerivedClassDecl =
837      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
838
839    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
840                                     CE->getBasePath(),
841                                     ShouldNullCheckClassCastValue(CE));
842  }
843  case CastExpr::CK_Dynamic: {
844    Value *V = Visit(const_cast<Expr*>(E));
845    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
846    return CGF.EmitDynamicCast(V, DCE);
847  }
848  case CastExpr::CK_ToUnion:
849    assert(0 && "Should be unreachable!");
850    break;
851
852  case CastExpr::CK_ArrayToPointerDecay: {
853    assert(E->getType()->isArrayType() &&
854           "Array to pointer decay must have array source type!");
855
856    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
857
858    // Note that VLA pointers are always decayed, so we don't need to do
859    // anything here.
860    if (!E->getType()->isVariableArrayType()) {
861      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
862      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
863                                 ->getElementType()) &&
864             "Expected pointer to array");
865      V = Builder.CreateStructGEP(V, 0, "arraydecay");
866    }
867
868    return V;
869  }
870  case CastExpr::CK_FunctionToPointerDecay:
871    return EmitLValue(E).getAddress();
872
873  case CastExpr::CK_NullToMemberPointer:
874    return CGF.CGM.EmitNullConstant(DestTy);
875
876  case CastExpr::CK_BaseToDerivedMemberPointer:
877  case CastExpr::CK_DerivedToBaseMemberPointer: {
878    Value *Src = Visit(E);
879
880    // See if we need to adjust the pointer.
881    const CXXRecordDecl *BaseDecl =
882      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
883                          getClass()->getAs<RecordType>()->getDecl());
884    const CXXRecordDecl *DerivedDecl =
885      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
886                          getClass()->getAs<RecordType>()->getDecl());
887    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
888      std::swap(DerivedDecl, BaseDecl);
889
890    if (llvm::Constant *Adj =
891          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
892                                               CE->getBasePath())) {
893      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
894        Src = Builder.CreateSub(Src, Adj, "adj");
895      else
896        Src = Builder.CreateAdd(Src, Adj, "adj");
897    }
898    return Src;
899  }
900
901  case CastExpr::CK_ConstructorConversion:
902    assert(0 && "Should be unreachable!");
903    break;
904
905  case CastExpr::CK_IntegralToPointer: {
906    Value *Src = Visit(const_cast<Expr*>(E));
907
908    // First, convert to the correct width so that we control the kind of
909    // extension.
910    const llvm::Type *MiddleTy =
911      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
912    bool InputSigned = E->getType()->isSignedIntegerType();
913    llvm::Value* IntResult =
914      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
915
916    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
917  }
918  case CastExpr::CK_PointerToIntegral: {
919    Value *Src = Visit(const_cast<Expr*>(E));
920    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
921  }
922  case CastExpr::CK_ToVoid: {
923    CGF.EmitAnyExpr(E, 0, false, true);
924    return 0;
925  }
926  case CastExpr::CK_VectorSplat: {
927    const llvm::Type *DstTy = ConvertType(DestTy);
928    Value *Elt = Visit(const_cast<Expr*>(E));
929
930    // Insert the element in element zero of an undef vector
931    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
932    llvm::Value *Idx =
933        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
934    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
935
936    // Splat the element across to all elements
937    llvm::SmallVector<llvm::Constant*, 16> Args;
938    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
939    for (unsigned i = 0; i < NumElements; i++)
940      Args.push_back(llvm::ConstantInt::get(
941                                        llvm::Type::getInt32Ty(VMContext), 0));
942
943    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
944    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
945    return Yay;
946  }
947  case CastExpr::CK_IntegralCast:
948  case CastExpr::CK_IntegralToFloating:
949  case CastExpr::CK_FloatingToIntegral:
950  case CastExpr::CK_FloatingCast:
951    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
952
953  case CastExpr::CK_MemberPointerToBoolean:
954    return CGF.EvaluateExprAsBool(E);
955  }
956
957  // Handle cases where the source is an non-complex type.
958
959  if (!CGF.hasAggregateLLVMType(E->getType())) {
960    Value *Src = Visit(const_cast<Expr*>(E));
961
962    // Use EmitScalarConversion to perform the conversion.
963    return EmitScalarConversion(Src, E->getType(), DestTy);
964  }
965
966  if (E->getType()->isAnyComplexType()) {
967    // Handle cases where the source is a complex type.
968    bool IgnoreImag = true;
969    bool IgnoreImagAssign = true;
970    bool IgnoreReal = IgnoreResultAssign;
971    bool IgnoreRealAssign = IgnoreResultAssign;
972    if (DestTy->isBooleanType())
973      IgnoreImagAssign = IgnoreImag = false;
974    else if (DestTy->isVoidType()) {
975      IgnoreReal = IgnoreImag = false;
976      IgnoreRealAssign = IgnoreImagAssign = true;
977    }
978    CodeGenFunction::ComplexPairTy V
979      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
980                            IgnoreImagAssign);
981    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
982  }
983
984  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
985  // evaluate the result and return.
986  CGF.EmitAggExpr(E, 0, false, true);
987  return 0;
988}
989
990Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
991  return CGF.EmitCompoundStmt(*E->getSubStmt(),
992                              !E->getType()->isVoidType()).getScalarVal();
993}
994
995Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
996  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
997  if (E->getType().isObjCGCWeak())
998    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
999  return Builder.CreateLoad(V, "tmp");
1000}
1001
1002//===----------------------------------------------------------------------===//
1003//                             Unary Operators
1004//===----------------------------------------------------------------------===//
1005
1006Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1007  TestAndClearIgnoreResultAssign();
1008  Value *Op = Visit(E->getSubExpr());
1009  if (Op->getType()->isFPOrFPVectorTy())
1010    return Builder.CreateFNeg(Op, "neg");
1011  return Builder.CreateNeg(Op, "neg");
1012}
1013
1014Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1015  TestAndClearIgnoreResultAssign();
1016  Value *Op = Visit(E->getSubExpr());
1017  return Builder.CreateNot(Op, "neg");
1018}
1019
1020Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1021  // Compare operand to zero.
1022  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1023
1024  // Invert value.
1025  // TODO: Could dynamically modify easy computations here.  For example, if
1026  // the operand is an icmp ne, turn into icmp eq.
1027  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1028
1029  // ZExt result to the expr type.
1030  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1031}
1032
1033/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1034/// argument of the sizeof expression as an integer.
1035Value *
1036ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1037  QualType TypeToSize = E->getTypeOfArgument();
1038  if (E->isSizeOf()) {
1039    if (const VariableArrayType *VAT =
1040          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1041      if (E->isArgumentType()) {
1042        // sizeof(type) - make sure to emit the VLA size.
1043        CGF.EmitVLASize(TypeToSize);
1044      } else {
1045        // C99 6.5.3.4p2: If the argument is an expression of type
1046        // VLA, it is evaluated.
1047        CGF.EmitAnyExpr(E->getArgumentExpr());
1048      }
1049
1050      return CGF.GetVLASize(VAT);
1051    }
1052  }
1053
1054  // If this isn't sizeof(vla), the result must be constant; use the constant
1055  // folding logic so we don't have to duplicate it here.
1056  Expr::EvalResult Result;
1057  E->Evaluate(Result, CGF.getContext());
1058  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1059}
1060
1061Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1062  Expr *Op = E->getSubExpr();
1063  if (Op->getType()->isAnyComplexType())
1064    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1065  return Visit(Op);
1066}
1067Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1068  Expr *Op = E->getSubExpr();
1069  if (Op->getType()->isAnyComplexType())
1070    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1071
1072  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1073  // effects are evaluated, but not the actual value.
1074  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1075    CGF.EmitLValue(Op);
1076  else
1077    CGF.EmitScalarExpr(Op, true);
1078  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1079}
1080
1081Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1082  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1083  const llvm::Type* ResultType = ConvertType(E->getType());
1084  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1085}
1086
1087//===----------------------------------------------------------------------===//
1088//                           Binary Operators
1089//===----------------------------------------------------------------------===//
1090
1091BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1092  TestAndClearIgnoreResultAssign();
1093  BinOpInfo Result;
1094  Result.LHS = Visit(E->getLHS());
1095  Result.RHS = Visit(E->getRHS());
1096  Result.Ty  = E->getType();
1097  Result.E = E;
1098  return Result;
1099}
1100
1101LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1102                                              const CompoundAssignOperator *E,
1103                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1104                                                   Value *&BitFieldResult) {
1105  QualType LHSTy = E->getLHS()->getType();
1106  BitFieldResult = 0;
1107  BinOpInfo OpInfo;
1108
1109  if (E->getComputationResultType()->isAnyComplexType()) {
1110    // This needs to go through the complex expression emitter, but it's a tad
1111    // complicated to do that... I'm leaving it out for now.  (Note that we do
1112    // actually need the imaginary part of the RHS for multiplication and
1113    // division.)
1114    CGF.ErrorUnsupported(E, "complex compound assignment");
1115    llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1116    return LValue();
1117  }
1118
1119  // Emit the RHS first.  __block variables need to have the rhs evaluated
1120  // first, plus this should improve codegen a little.
1121  OpInfo.RHS = Visit(E->getRHS());
1122  OpInfo.Ty = E->getComputationResultType();
1123  OpInfo.E = E;
1124  // Load/convert the LHS.
1125  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1126  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1127  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1128                                    E->getComputationLHSType());
1129
1130  // Expand the binary operator.
1131  Value *Result = (this->*Func)(OpInfo);
1132
1133  // Convert the result back to the LHS type.
1134  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1135
1136  // Store the result value into the LHS lvalue. Bit-fields are handled
1137  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1138  // 'An assignment expression has the value of the left operand after the
1139  // assignment...'.
1140  if (LHSLV.isBitField()) {
1141    if (!LHSLV.isVolatileQualified()) {
1142      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1143                                         &Result);
1144      BitFieldResult = Result;
1145      return LHSLV;
1146    } else
1147      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1148  } else
1149    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1150  return LHSLV;
1151}
1152
1153Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1154                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1155  bool Ignore = TestAndClearIgnoreResultAssign();
1156  Value *BitFieldResult;
1157  LValue LHSLV = EmitCompoundAssignLValue(E, Func, BitFieldResult);
1158  if (BitFieldResult)
1159    return BitFieldResult;
1160
1161  if (Ignore)
1162    return 0;
1163  return EmitLoadOfLValue(LHSLV, E->getType());
1164}
1165
1166
1167Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1168  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1169    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1170  else if (Ops.Ty->isUnsignedIntegerType())
1171    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1172  else
1173    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1174}
1175
1176Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1177  // Rem in C can't be a floating point type: C99 6.5.5p2.
1178  if (Ops.Ty->isUnsignedIntegerType())
1179    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1180  else
1181    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1182}
1183
1184Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1185  unsigned IID;
1186  unsigned OpID = 0;
1187
1188  switch (Ops.E->getOpcode()) {
1189  case BinaryOperator::Add:
1190  case BinaryOperator::AddAssign:
1191    OpID = 1;
1192    IID = llvm::Intrinsic::sadd_with_overflow;
1193    break;
1194  case BinaryOperator::Sub:
1195  case BinaryOperator::SubAssign:
1196    OpID = 2;
1197    IID = llvm::Intrinsic::ssub_with_overflow;
1198    break;
1199  case BinaryOperator::Mul:
1200  case BinaryOperator::MulAssign:
1201    OpID = 3;
1202    IID = llvm::Intrinsic::smul_with_overflow;
1203    break;
1204  default:
1205    assert(false && "Unsupported operation for overflow detection");
1206    IID = 0;
1207  }
1208  OpID <<= 1;
1209  OpID |= 1;
1210
1211  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1212
1213  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1214
1215  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1216  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1217  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1218
1219  // Branch in case of overflow.
1220  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1221  llvm::BasicBlock *overflowBB =
1222    CGF.createBasicBlock("overflow", CGF.CurFn);
1223  llvm::BasicBlock *continueBB =
1224    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1225
1226  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1227
1228  // Handle overflow
1229
1230  Builder.SetInsertPoint(overflowBB);
1231
1232  // Handler is:
1233  // long long *__overflow_handler)(long long a, long long b, char op,
1234  // char width)
1235  std::vector<const llvm::Type*> handerArgTypes;
1236  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1237  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1238  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1239  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1240  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1241      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1242  llvm::Value *handlerFunction =
1243    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1244        llvm::PointerType::getUnqual(handlerTy));
1245  handlerFunction = Builder.CreateLoad(handlerFunction);
1246
1247  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1248      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1249      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1250      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1251      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1252        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1253
1254  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1255
1256  Builder.CreateBr(continueBB);
1257
1258  // Set up the continuation
1259  Builder.SetInsertPoint(continueBB);
1260  // Get the correct result
1261  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1262  phi->reserveOperandSpace(2);
1263  phi->addIncoming(result, initialBB);
1264  phi->addIncoming(handlerResult, overflowBB);
1265
1266  return phi;
1267}
1268
1269Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1270  if (!Ops.Ty->isAnyPointerType()) {
1271    if (CGF.getContext().getLangOptions().OverflowChecking &&
1272        Ops.Ty->isSignedIntegerType())
1273      return EmitOverflowCheckedBinOp(Ops);
1274
1275    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1276      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1277
1278    // Signed integer overflow is undefined behavior.
1279    if (Ops.Ty->isSignedIntegerType())
1280      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1281
1282    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1283  }
1284
1285  if (Ops.Ty->isPointerType() &&
1286      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1287    // The amount of the addition needs to account for the VLA size
1288    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1289  }
1290  Value *Ptr, *Idx;
1291  Expr *IdxExp;
1292  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1293  const ObjCObjectPointerType *OPT =
1294    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1295  if (PT || OPT) {
1296    Ptr = Ops.LHS;
1297    Idx = Ops.RHS;
1298    IdxExp = Ops.E->getRHS();
1299  } else {  // int + pointer
1300    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1301    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1302    assert((PT || OPT) && "Invalid add expr");
1303    Ptr = Ops.RHS;
1304    Idx = Ops.LHS;
1305    IdxExp = Ops.E->getLHS();
1306  }
1307
1308  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1309  if (Width < CGF.LLVMPointerWidth) {
1310    // Zero or sign extend the pointer value based on whether the index is
1311    // signed or not.
1312    const llvm::Type *IdxType =
1313        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1314    if (IdxExp->getType()->isSignedIntegerType())
1315      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1316    else
1317      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1318  }
1319  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1320  // Handle interface types, which are not represented with a concrete type.
1321  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
1322    llvm::Value *InterfaceSize =
1323      llvm::ConstantInt::get(Idx->getType(),
1324          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1325    Idx = Builder.CreateMul(Idx, InterfaceSize);
1326    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1327    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1328    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1329    return Builder.CreateBitCast(Res, Ptr->getType());
1330  }
1331
1332  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1333  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1334  // future proof.
1335  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1336    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1337    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1338    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1339    return Builder.CreateBitCast(Res, Ptr->getType());
1340  }
1341
1342  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1343}
1344
1345Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1346  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1347    if (CGF.getContext().getLangOptions().OverflowChecking
1348        && Ops.Ty->isSignedIntegerType())
1349      return EmitOverflowCheckedBinOp(Ops);
1350
1351    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1352      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1353
1354    // Signed integer overflow is undefined behavior.
1355    if (Ops.Ty->isSignedIntegerType())
1356      return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1357
1358    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1359  }
1360
1361  if (Ops.E->getLHS()->getType()->isPointerType() &&
1362      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1363    // The amount of the addition needs to account for the VLA size for
1364    // ptr-int
1365    // The amount of the division needs to account for the VLA size for
1366    // ptr-ptr.
1367    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1368  }
1369
1370  const QualType LHSType = Ops.E->getLHS()->getType();
1371  const QualType LHSElementType = LHSType->getPointeeType();
1372  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1373    // pointer - int
1374    Value *Idx = Ops.RHS;
1375    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1376    if (Width < CGF.LLVMPointerWidth) {
1377      // Zero or sign extend the pointer value based on whether the index is
1378      // signed or not.
1379      const llvm::Type *IdxType =
1380          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1381      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1382        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1383      else
1384        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1385    }
1386    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1387
1388    // Handle interface types, which are not represented with a concrete type.
1389    if (const ObjCInterfaceType *OIT =
1390        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
1391      llvm::Value *InterfaceSize =
1392        llvm::ConstantInt::get(Idx->getType(),
1393                               CGF.getContext().
1394                                 getTypeSizeInChars(OIT).getQuantity());
1395      Idx = Builder.CreateMul(Idx, InterfaceSize);
1396      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1397      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1398      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1399      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1400    }
1401
1402    // Explicitly handle GNU void* and function pointer arithmetic
1403    // extensions. The GNU void* casts amount to no-ops since our void* type is
1404    // i8*, but this is future proof.
1405    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1406      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1407      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1408      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1409      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1410    }
1411
1412    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1413  } else {
1414    // pointer - pointer
1415    Value *LHS = Ops.LHS;
1416    Value *RHS = Ops.RHS;
1417
1418    CharUnits ElementSize;
1419
1420    // Handle GCC extension for pointer arithmetic on void* and function pointer
1421    // types.
1422    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1423      ElementSize = CharUnits::One();
1424    } else {
1425      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1426    }
1427
1428    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1429    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1430    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1431    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1432
1433    // Optimize out the shift for element size of 1.
1434    if (ElementSize.isOne())
1435      return BytesBetween;
1436
1437    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1438    // pointer difference in C is only defined in the case where both operands
1439    // are pointing to elements of an array.
1440    Value *BytesPerElt =
1441        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1442    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1443  }
1444}
1445
1446Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1447  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1448  // RHS to the same size as the LHS.
1449  Value *RHS = Ops.RHS;
1450  if (Ops.LHS->getType() != RHS->getType())
1451    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1452
1453  if (CGF.CatchUndefined
1454      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1455    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1456    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1457    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1458                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1459                             Cont, CGF.getTrapBB());
1460    CGF.EmitBlock(Cont);
1461  }
1462
1463  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1464}
1465
1466Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1467  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1468  // RHS to the same size as the LHS.
1469  Value *RHS = Ops.RHS;
1470  if (Ops.LHS->getType() != RHS->getType())
1471    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1472
1473  if (CGF.CatchUndefined
1474      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1475    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1476    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1477    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1478                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1479                             Cont, CGF.getTrapBB());
1480    CGF.EmitBlock(Cont);
1481  }
1482
1483  if (Ops.Ty->isUnsignedIntegerType())
1484    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1485  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1486}
1487
1488Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1489                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1490  TestAndClearIgnoreResultAssign();
1491  Value *Result;
1492  QualType LHSTy = E->getLHS()->getType();
1493  if (LHSTy->isMemberFunctionPointerType()) {
1494    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1495    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1496    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1497    LHSFunc = Builder.CreateLoad(LHSFunc);
1498    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1499    RHSFunc = Builder.CreateLoad(RHSFunc);
1500    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1501                                        LHSFunc, RHSFunc, "cmp.func");
1502    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1503    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1504                                           LHSFunc, NullPtr, "cmp.null");
1505    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1506    LHSAdj = Builder.CreateLoad(LHSAdj);
1507    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1508    RHSAdj = Builder.CreateLoad(RHSAdj);
1509    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1510                                        LHSAdj, RHSAdj, "cmp.adj");
1511    if (E->getOpcode() == BinaryOperator::EQ) {
1512      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1513      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1514    } else {
1515      assert(E->getOpcode() == BinaryOperator::NE &&
1516             "Member pointer comparison other than == or != ?");
1517      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1518      Result = Builder.CreateOr(Result, ResultF, "or.f");
1519    }
1520  } else if (!LHSTy->isAnyComplexType()) {
1521    Value *LHS = Visit(E->getLHS());
1522    Value *RHS = Visit(E->getRHS());
1523
1524    if (LHS->getType()->isFPOrFPVectorTy()) {
1525      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1526                                  LHS, RHS, "cmp");
1527    } else if (LHSTy->isSignedIntegerType()) {
1528      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1529                                  LHS, RHS, "cmp");
1530    } else {
1531      // Unsigned integers and pointers.
1532      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1533                                  LHS, RHS, "cmp");
1534    }
1535
1536    // If this is a vector comparison, sign extend the result to the appropriate
1537    // vector integer type and return it (don't convert to bool).
1538    if (LHSTy->isVectorType())
1539      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1540
1541  } else {
1542    // Complex Comparison: can only be an equality comparison.
1543    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1544    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1545
1546    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1547
1548    Value *ResultR, *ResultI;
1549    if (CETy->isRealFloatingType()) {
1550      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1551                                   LHS.first, RHS.first, "cmp.r");
1552      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1553                                   LHS.second, RHS.second, "cmp.i");
1554    } else {
1555      // Complex comparisons can only be equality comparisons.  As such, signed
1556      // and unsigned opcodes are the same.
1557      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1558                                   LHS.first, RHS.first, "cmp.r");
1559      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1560                                   LHS.second, RHS.second, "cmp.i");
1561    }
1562
1563    if (E->getOpcode() == BinaryOperator::EQ) {
1564      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1565    } else {
1566      assert(E->getOpcode() == BinaryOperator::NE &&
1567             "Complex comparison other than == or != ?");
1568      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1569    }
1570  }
1571
1572  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1573}
1574
1575Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1576  bool Ignore = TestAndClearIgnoreResultAssign();
1577
1578  // __block variables need to have the rhs evaluated first, plus this should
1579  // improve codegen just a little.
1580  Value *RHS = Visit(E->getRHS());
1581  LValue LHS = EmitCheckedLValue(E->getLHS());
1582
1583  // Store the value into the LHS.  Bit-fields are handled specially
1584  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1585  // 'An assignment expression has the value of the left operand after
1586  // the assignment...'.
1587  if (LHS.isBitField()) {
1588    if (!LHS.isVolatileQualified()) {
1589      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1590                                         &RHS);
1591      return RHS;
1592    } else
1593      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1594  } else
1595    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1596  if (Ignore)
1597    return 0;
1598  return EmitLoadOfLValue(LHS, E->getType());
1599}
1600
1601Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1602  const llvm::Type *ResTy = ConvertType(E->getType());
1603
1604  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1605  // If we have 1 && X, just emit X without inserting the control flow.
1606  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1607    if (Cond == 1) { // If we have 1 && X, just emit X.
1608      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1609      // ZExt result to int or bool.
1610      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1611    }
1612
1613    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1614    if (!CGF.ContainsLabel(E->getRHS()))
1615      return llvm::Constant::getNullValue(ResTy);
1616  }
1617
1618  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1619  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1620
1621  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1622  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1623
1624  // Any edges into the ContBlock are now from an (indeterminate number of)
1625  // edges from this first condition.  All of these values will be false.  Start
1626  // setting up the PHI node in the Cont Block for this.
1627  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1628                                            "", ContBlock);
1629  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1630  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1631       PI != PE; ++PI)
1632    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1633
1634  CGF.BeginConditionalBranch();
1635  CGF.EmitBlock(RHSBlock);
1636  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1637  CGF.EndConditionalBranch();
1638
1639  // Reaquire the RHS block, as there may be subblocks inserted.
1640  RHSBlock = Builder.GetInsertBlock();
1641
1642  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1643  // into the phi node for the edge with the value of RHSCond.
1644  CGF.EmitBlock(ContBlock);
1645  PN->addIncoming(RHSCond, RHSBlock);
1646
1647  // ZExt result to int.
1648  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1649}
1650
1651Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1652  const llvm::Type *ResTy = ConvertType(E->getType());
1653
1654  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1655  // If we have 0 || X, just emit X without inserting the control flow.
1656  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1657    if (Cond == -1) { // If we have 0 || X, just emit X.
1658      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1659      // ZExt result to int or bool.
1660      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1661    }
1662
1663    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1664    if (!CGF.ContainsLabel(E->getRHS()))
1665      return llvm::ConstantInt::get(ResTy, 1);
1666  }
1667
1668  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1669  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1670
1671  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1672  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1673
1674  // Any edges into the ContBlock are now from an (indeterminate number of)
1675  // edges from this first condition.  All of these values will be true.  Start
1676  // setting up the PHI node in the Cont Block for this.
1677  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1678                                            "", ContBlock);
1679  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1680  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1681       PI != PE; ++PI)
1682    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1683
1684  CGF.BeginConditionalBranch();
1685
1686  // Emit the RHS condition as a bool value.
1687  CGF.EmitBlock(RHSBlock);
1688  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1689
1690  CGF.EndConditionalBranch();
1691
1692  // Reaquire the RHS block, as there may be subblocks inserted.
1693  RHSBlock = Builder.GetInsertBlock();
1694
1695  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1696  // into the phi node for the edge with the value of RHSCond.
1697  CGF.EmitBlock(ContBlock);
1698  PN->addIncoming(RHSCond, RHSBlock);
1699
1700  // ZExt result to int.
1701  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1702}
1703
1704Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1705  CGF.EmitStmt(E->getLHS());
1706  CGF.EnsureInsertPoint();
1707  return Visit(E->getRHS());
1708}
1709
1710//===----------------------------------------------------------------------===//
1711//                             Other Operators
1712//===----------------------------------------------------------------------===//
1713
1714/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1715/// expression is cheap enough and side-effect-free enough to evaluate
1716/// unconditionally instead of conditionally.  This is used to convert control
1717/// flow into selects in some cases.
1718static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1719                                                   CodeGenFunction &CGF) {
1720  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1721    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1722
1723  // TODO: Allow anything we can constant fold to an integer or fp constant.
1724  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1725      isa<FloatingLiteral>(E))
1726    return true;
1727
1728  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1729  // X and Y are local variables.
1730  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1731    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1732      if (VD->hasLocalStorage() && !(CGF.getContext()
1733                                     .getCanonicalType(VD->getType())
1734                                     .isVolatileQualified()))
1735        return true;
1736
1737  return false;
1738}
1739
1740
1741Value *ScalarExprEmitter::
1742VisitConditionalOperator(const ConditionalOperator *E) {
1743  TestAndClearIgnoreResultAssign();
1744  // If the condition constant folds and can be elided, try to avoid emitting
1745  // the condition and the dead arm.
1746  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1747    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1748    if (Cond == -1)
1749      std::swap(Live, Dead);
1750
1751    // If the dead side doesn't have labels we need, and if the Live side isn't
1752    // the gnu missing ?: extension (which we could handle, but don't bother
1753    // to), just emit the Live part.
1754    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1755        Live)                                   // Live part isn't missing.
1756      return Visit(Live);
1757  }
1758
1759
1760  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1761  // select instead of as control flow.  We can only do this if it is cheap and
1762  // safe to evaluate the LHS and RHS unconditionally.
1763  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1764                                                            CGF) &&
1765      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1766    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1767    llvm::Value *LHS = Visit(E->getLHS());
1768    llvm::Value *RHS = Visit(E->getRHS());
1769    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1770  }
1771
1772
1773  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1774  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1775  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1776  Value *CondVal = 0;
1777
1778  // If we don't have the GNU missing condition extension, emit a branch on bool
1779  // the normal way.
1780  if (E->getLHS()) {
1781    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1782    // the branch on bool.
1783    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1784  } else {
1785    // Otherwise, for the ?: extension, evaluate the conditional and then
1786    // convert it to bool the hard way.  We do this explicitly because we need
1787    // the unconverted value for the missing middle value of the ?:.
1788    CondVal = CGF.EmitScalarExpr(E->getCond());
1789
1790    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1791    // if there are no extra uses (an optimization).  Inhibit this by making an
1792    // extra dead use, because we're going to add a use of CondVal later.  We
1793    // don't use the builder for this, because we don't want it to get optimized
1794    // away.  This leaves dead code, but the ?: extension isn't common.
1795    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1796                          Builder.GetInsertBlock());
1797
1798    Value *CondBoolVal =
1799      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1800                               CGF.getContext().BoolTy);
1801    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1802  }
1803
1804  CGF.BeginConditionalBranch();
1805  CGF.EmitBlock(LHSBlock);
1806
1807  // Handle the GNU extension for missing LHS.
1808  Value *LHS;
1809  if (E->getLHS())
1810    LHS = Visit(E->getLHS());
1811  else    // Perform promotions, to handle cases like "short ?: int"
1812    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1813
1814  CGF.EndConditionalBranch();
1815  LHSBlock = Builder.GetInsertBlock();
1816  CGF.EmitBranch(ContBlock);
1817
1818  CGF.BeginConditionalBranch();
1819  CGF.EmitBlock(RHSBlock);
1820
1821  Value *RHS = Visit(E->getRHS());
1822  CGF.EndConditionalBranch();
1823  RHSBlock = Builder.GetInsertBlock();
1824  CGF.EmitBranch(ContBlock);
1825
1826  CGF.EmitBlock(ContBlock);
1827
1828  // If the LHS or RHS is a throw expression, it will be legitimately null.
1829  if (!LHS)
1830    return RHS;
1831  if (!RHS)
1832    return LHS;
1833
1834  // Create a PHI node for the real part.
1835  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1836  PN->reserveOperandSpace(2);
1837  PN->addIncoming(LHS, LHSBlock);
1838  PN->addIncoming(RHS, RHSBlock);
1839  return PN;
1840}
1841
1842Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1843  return Visit(E->getChosenSubExpr(CGF.getContext()));
1844}
1845
1846Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1847  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1848  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1849
1850  // If EmitVAArg fails, we fall back to the LLVM instruction.
1851  if (!ArgPtr)
1852    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1853
1854  // FIXME Volatility.
1855  return Builder.CreateLoad(ArgPtr);
1856}
1857
1858Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1859  return CGF.BuildBlockLiteralTmp(BE);
1860}
1861
1862//===----------------------------------------------------------------------===//
1863//                         Entry Point into this File
1864//===----------------------------------------------------------------------===//
1865
1866/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1867/// type, ignoring the result.
1868Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1869  assert(E && !hasAggregateLLVMType(E->getType()) &&
1870         "Invalid scalar expression to emit");
1871
1872  return ScalarExprEmitter(*this, IgnoreResultAssign)
1873    .Visit(const_cast<Expr*>(E));
1874}
1875
1876/// EmitScalarConversion - Emit a conversion from the specified type to the
1877/// specified destination type, both of which are LLVM scalar types.
1878Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1879                                             QualType DstTy) {
1880  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1881         "Invalid scalar expression to emit");
1882  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1883}
1884
1885/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1886/// type to the specified destination type, where the destination type is an
1887/// LLVM scalar type.
1888Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1889                                                      QualType SrcTy,
1890                                                      QualType DstTy) {
1891  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1892         "Invalid complex -> scalar conversion");
1893  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1894                                                                DstTy);
1895}
1896
1897LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
1898  llvm::Value *V;
1899  // object->isa or (*object).isa
1900  // Generate code as for: *(Class*)object
1901  // build Class* type
1902  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
1903
1904  Expr *BaseExpr = E->getBase();
1905  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
1906    V = CreateTempAlloca(ClassPtrTy, "resval");
1907    llvm::Value *Src = EmitScalarExpr(BaseExpr);
1908    Builder.CreateStore(Src, V);
1909    LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1910    V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
1911  }
1912  else {
1913      if (E->isArrow())
1914        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
1915      else
1916        V  = EmitLValue(BaseExpr).getAddress();
1917  }
1918
1919  // build Class* type
1920  ClassPtrTy = ClassPtrTy->getPointerTo();
1921  V = Builder.CreateBitCast(V, ClassPtrTy);
1922  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1923  return LV;
1924}
1925
1926
1927LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
1928                                            const CompoundAssignOperator *E) {
1929  ScalarExprEmitter Scalar(*this);
1930  Value *BitFieldResult = 0;
1931  switch (E->getOpcode()) {
1932#define COMPOUND_OP(Op)                                                       \
1933    case BinaryOperator::Op##Assign:                                          \
1934      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
1935                                             BitFieldResult)
1936  COMPOUND_OP(Mul);
1937  COMPOUND_OP(Div);
1938  COMPOUND_OP(Rem);
1939  COMPOUND_OP(Add);
1940  COMPOUND_OP(Sub);
1941  COMPOUND_OP(Shl);
1942  COMPOUND_OP(Shr);
1943  COMPOUND_OP(And);
1944  COMPOUND_OP(Xor);
1945  COMPOUND_OP(Or);
1946#undef COMPOUND_OP
1947
1948  case BinaryOperator::PtrMemD:
1949  case BinaryOperator::PtrMemI:
1950  case BinaryOperator::Mul:
1951  case BinaryOperator::Div:
1952  case BinaryOperator::Rem:
1953  case BinaryOperator::Add:
1954  case BinaryOperator::Sub:
1955  case BinaryOperator::Shl:
1956  case BinaryOperator::Shr:
1957  case BinaryOperator::LT:
1958  case BinaryOperator::GT:
1959  case BinaryOperator::LE:
1960  case BinaryOperator::GE:
1961  case BinaryOperator::EQ:
1962  case BinaryOperator::NE:
1963  case BinaryOperator::And:
1964  case BinaryOperator::Xor:
1965  case BinaryOperator::Or:
1966  case BinaryOperator::LAnd:
1967  case BinaryOperator::LOr:
1968  case BinaryOperator::Assign:
1969  case BinaryOperator::Comma:
1970    assert(false && "Not valid compound assignment operators");
1971    break;
1972  }
1973
1974  llvm_unreachable("Unhandled compound assignment operator");
1975}
1976