CGExprScalar.cpp revision e70ffd631179c15d358838464425e3464cf05a98
1//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenModule.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/GlobalVariable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/Module.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Target/TargetData.h"
29#include <cstdarg>
30
31using namespace clang;
32using namespace CodeGen;
33using llvm::Value;
34
35//===----------------------------------------------------------------------===//
36//                         Scalar Expression Emitter
37//===----------------------------------------------------------------------===//
38
39struct BinOpInfo {
40  Value *LHS;
41  Value *RHS;
42  QualType Ty;  // Computation Type.
43  const BinaryOperator *E;
44};
45
46namespace {
47class ScalarExprEmitter
48  : public StmtVisitor<ScalarExprEmitter, Value*> {
49  CodeGenFunction &CGF;
50  CGBuilderTy &Builder;
51  bool IgnoreResultAssign;
52  llvm::LLVMContext &VMContext;
53public:
54
55  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57      VMContext(cgf.getLLVMContext()) {
58  }
59
60  //===--------------------------------------------------------------------===//
61  //                               Utilities
62  //===--------------------------------------------------------------------===//
63
64  bool TestAndClearIgnoreResultAssign() {
65    bool I = IgnoreResultAssign;
66    IgnoreResultAssign = false;
67    return I;
68  }
69
70  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73
74  Value *EmitLoadOfLValue(LValue LV, QualType T) {
75    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76  }
77
78  /// EmitLoadOfLValue - Given an expression with complex type that represents a
79  /// value l-value, this method emits the address of the l-value, then loads
80  /// and returns the result.
81  Value *EmitLoadOfLValue(const Expr *E) {
82    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83  }
84
85  /// EmitConversionToBool - Convert the specified expression value to a
86  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87  Value *EmitConversionToBool(Value *Src, QualType DstTy);
88
89  /// EmitScalarConversion - Emit a conversion from the specified type to the
90  /// specified destination type, both of which are LLVM scalar types.
91  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92
93  /// EmitComplexToScalarConversion - Emit a conversion from the specified
94  /// complex type to the specified destination type, where the destination type
95  /// is an LLVM scalar type.
96  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                       QualType SrcTy, QualType DstTy);
98
99  /// EmitNullValue - Emit a value that corresponds to null for the given type.
100  Value *EmitNullValue(QualType Ty);
101
102  //===--------------------------------------------------------------------===//
103  //                            Visitor Methods
104  //===--------------------------------------------------------------------===//
105
106  Value *VisitStmt(Stmt *S) {
107    S->dump(CGF.getContext().getSourceManager());
108    assert(0 && "Stmt can't have complex result type!");
109    return 0;
110  }
111  Value *VisitExpr(Expr *S);
112
113  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
114
115  // Leaves.
116  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
117    return llvm::ConstantInt::get(VMContext, E->getValue());
118  }
119  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
120    return llvm::ConstantFP::get(VMContext, E->getValue());
121  }
122  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
123    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124  }
125  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
126    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
127  }
128  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
129    return EmitNullValue(E->getType());
130  }
131  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
132    return EmitNullValue(E->getType());
133  }
134  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
135    return llvm::ConstantInt::get(ConvertType(E->getType()),
136                                  CGF.getContext().typesAreCompatible(
137                                    E->getArgType1(), E->getArgType2()));
138  }
139  Value *VisitOffsetOfExpr(const OffsetOfExpr *E);
140  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
141  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
142    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
143    return Builder.CreateBitCast(V, ConvertType(E->getType()));
144  }
145
146  // l-values.
147  Value *VisitDeclRefExpr(DeclRefExpr *E) {
148    Expr::EvalResult Result;
149    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
150      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
151      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
152    }
153    return EmitLoadOfLValue(E);
154  }
155  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
156    return CGF.EmitObjCSelectorExpr(E);
157  }
158  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
159    return CGF.EmitObjCProtocolExpr(E);
160  }
161  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
162    return EmitLoadOfLValue(E);
163  }
164  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
165    return EmitLoadOfLValue(E);
166  }
167  Value *VisitObjCImplicitSetterGetterRefExpr(
168                        ObjCImplicitSetterGetterRefExpr *E) {
169    return EmitLoadOfLValue(E);
170  }
171  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
172    return CGF.EmitObjCMessageExpr(E).getScalarVal();
173  }
174
175  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
176    LValue LV = CGF.EmitObjCIsaExpr(E);
177    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
178    return V;
179  }
180
181  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
182  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
183  Value *VisitMemberExpr(MemberExpr *E);
184  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
185  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
186    return EmitLoadOfLValue(E);
187  }
188
189  Value *VisitInitListExpr(InitListExpr *E);
190
191  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
192    return CGF.CGM.EmitNullConstant(E->getType());
193  }
194  Value *VisitCastExpr(CastExpr *E) {
195    // Make sure to evaluate VLA bounds now so that we have them for later.
196    if (E->getType()->isVariablyModifiedType())
197      CGF.EmitVLASize(E->getType());
198
199    return EmitCastExpr(E);
200  }
201  Value *EmitCastExpr(CastExpr *E);
202
203  Value *VisitCallExpr(const CallExpr *E) {
204    if (E->getCallReturnType()->isReferenceType())
205      return EmitLoadOfLValue(E);
206
207    return CGF.EmitCallExpr(E).getScalarVal();
208  }
209
210  Value *VisitStmtExpr(const StmtExpr *E);
211
212  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
213
214  // Unary Operators.
215  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
216    LValue LV = EmitLValue(E->getSubExpr());
217    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
218  }
219  Value *VisitUnaryPostDec(const UnaryOperator *E) {
220    return VisitPrePostIncDec(E, false, false);
221  }
222  Value *VisitUnaryPostInc(const UnaryOperator *E) {
223    return VisitPrePostIncDec(E, true, false);
224  }
225  Value *VisitUnaryPreDec(const UnaryOperator *E) {
226    return VisitPrePostIncDec(E, false, true);
227  }
228  Value *VisitUnaryPreInc(const UnaryOperator *E) {
229    return VisitPrePostIncDec(E, true, true);
230  }
231  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
232    return EmitLValue(E->getSubExpr()).getAddress();
233  }
234  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
235  Value *VisitUnaryPlus(const UnaryOperator *E) {
236    // This differs from gcc, though, most likely due to a bug in gcc.
237    TestAndClearIgnoreResultAssign();
238    return Visit(E->getSubExpr());
239  }
240  Value *VisitUnaryMinus    (const UnaryOperator *E);
241  Value *VisitUnaryNot      (const UnaryOperator *E);
242  Value *VisitUnaryLNot     (const UnaryOperator *E);
243  Value *VisitUnaryReal     (const UnaryOperator *E);
244  Value *VisitUnaryImag     (const UnaryOperator *E);
245  Value *VisitUnaryExtension(const UnaryOperator *E) {
246    return Visit(E->getSubExpr());
247  }
248  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
249
250  // C++
251  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
252    return Visit(DAE->getExpr());
253  }
254  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
255    return CGF.LoadCXXThis();
256  }
257
258  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
259    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
260  }
261  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
262    return CGF.EmitCXXNewExpr(E);
263  }
264  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
265    CGF.EmitCXXDeleteExpr(E);
266    return 0;
267  }
268  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
269    return llvm::ConstantInt::get(Builder.getInt1Ty(),
270                                  E->EvaluateTrait(CGF.getContext()));
271  }
272
273  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
274    // C++ [expr.pseudo]p1:
275    //   The result shall only be used as the operand for the function call
276    //   operator (), and the result of such a call has type void. The only
277    //   effect is the evaluation of the postfix-expression before the dot or
278    //   arrow.
279    CGF.EmitScalarExpr(E->getBase());
280    return 0;
281  }
282
283  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
284    return EmitNullValue(E->getType());
285  }
286
287  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
288    CGF.EmitCXXThrowExpr(E);
289    return 0;
290  }
291
292  // Binary Operators.
293  Value *EmitMul(const BinOpInfo &Ops) {
294    if (CGF.getContext().getLangOptions().OverflowChecking
295        && Ops.Ty->isSignedIntegerType())
296      return EmitOverflowCheckedBinOp(Ops);
297    if (Ops.LHS->getType()->isFPOrFPVectorTy())
298      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
299    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
300  }
301  /// Create a binary op that checks for overflow.
302  /// Currently only supports +, - and *.
303  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
304  Value *EmitDiv(const BinOpInfo &Ops);
305  Value *EmitRem(const BinOpInfo &Ops);
306  Value *EmitAdd(const BinOpInfo &Ops);
307  Value *EmitSub(const BinOpInfo &Ops);
308  Value *EmitShl(const BinOpInfo &Ops);
309  Value *EmitShr(const BinOpInfo &Ops);
310  Value *EmitAnd(const BinOpInfo &Ops) {
311    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
312  }
313  Value *EmitXor(const BinOpInfo &Ops) {
314    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
315  }
316  Value *EmitOr (const BinOpInfo &Ops) {
317    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
318  }
319
320  BinOpInfo EmitBinOps(const BinaryOperator *E);
321  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
322                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
323                                  Value *&BitFieldResult);
324
325  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
326                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
327
328  // Binary operators and binary compound assignment operators.
329#define HANDLEBINOP(OP) \
330  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
331    return Emit ## OP(EmitBinOps(E));                                      \
332  }                                                                        \
333  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
334    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
335  }
336  HANDLEBINOP(Mul)
337  HANDLEBINOP(Div)
338  HANDLEBINOP(Rem)
339  HANDLEBINOP(Add)
340  HANDLEBINOP(Sub)
341  HANDLEBINOP(Shl)
342  HANDLEBINOP(Shr)
343  HANDLEBINOP(And)
344  HANDLEBINOP(Xor)
345  HANDLEBINOP(Or)
346#undef HANDLEBINOP
347
348  // Comparisons.
349  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
350                     unsigned SICmpOpc, unsigned FCmpOpc);
351#define VISITCOMP(CODE, UI, SI, FP) \
352    Value *VisitBin##CODE(const BinaryOperator *E) { \
353      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
354                         llvm::FCmpInst::FP); }
355  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
356  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
357  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
358  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
359  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
360  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
361#undef VISITCOMP
362
363  Value *VisitBinAssign     (const BinaryOperator *E);
364
365  Value *VisitBinLAnd       (const BinaryOperator *E);
366  Value *VisitBinLOr        (const BinaryOperator *E);
367  Value *VisitBinComma      (const BinaryOperator *E);
368
369  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
370  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
371
372  // Other Operators.
373  Value *VisitBlockExpr(const BlockExpr *BE);
374  Value *VisitConditionalOperator(const ConditionalOperator *CO);
375  Value *VisitChooseExpr(ChooseExpr *CE);
376  Value *VisitVAArgExpr(VAArgExpr *VE);
377  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
378    return CGF.EmitObjCStringLiteral(E);
379  }
380};
381}  // end anonymous namespace.
382
383//===----------------------------------------------------------------------===//
384//                                Utilities
385//===----------------------------------------------------------------------===//
386
387/// EmitConversionToBool - Convert the specified expression value to a
388/// boolean (i1) truth value.  This is equivalent to "Val != 0".
389Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
390  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
391
392  if (SrcType->isRealFloatingType()) {
393    // Compare against 0.0 for fp scalars.
394    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
395    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
396  }
397
398  if (SrcType->isMemberPointerType()) {
399    // Compare against -1.
400    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
401    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
402  }
403
404  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
405         "Unknown scalar type to convert");
406
407  // Because of the type rules of C, we often end up computing a logical value,
408  // then zero extending it to int, then wanting it as a logical value again.
409  // Optimize this common case.
410  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
411    if (ZI->getOperand(0)->getType() ==
412        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
413      Value *Result = ZI->getOperand(0);
414      // If there aren't any more uses, zap the instruction to save space.
415      // Note that there can be more uses, for example if this
416      // is the result of an assignment.
417      if (ZI->use_empty())
418        ZI->eraseFromParent();
419      return Result;
420    }
421  }
422
423  // Compare against an integer or pointer null.
424  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
425  return Builder.CreateICmpNE(Src, Zero, "tobool");
426}
427
428/// EmitScalarConversion - Emit a conversion from the specified type to the
429/// specified destination type, both of which are LLVM scalar types.
430Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
431                                               QualType DstType) {
432  SrcType = CGF.getContext().getCanonicalType(SrcType);
433  DstType = CGF.getContext().getCanonicalType(DstType);
434  if (SrcType == DstType) return Src;
435
436  if (DstType->isVoidType()) return 0;
437
438  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
439
440  // Handle conversions to bool first, they are special: comparisons against 0.
441  if (DstType->isBooleanType())
442    return EmitConversionToBool(Src, SrcType);
443
444  const llvm::Type *DstTy = ConvertType(DstType);
445
446  // Ignore conversions like int -> uint.
447  if (Src->getType() == DstTy)
448    return Src;
449
450  // Handle pointer conversions next: pointers can only be converted to/from
451  // other pointers and integers. Check for pointer types in terms of LLVM, as
452  // some native types (like Obj-C id) may map to a pointer type.
453  if (isa<llvm::PointerType>(DstTy)) {
454    // The source value may be an integer, or a pointer.
455    if (isa<llvm::PointerType>(Src->getType()))
456      return Builder.CreateBitCast(Src, DstTy, "conv");
457
458    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
459    // First, convert to the correct width so that we control the kind of
460    // extension.
461    const llvm::Type *MiddleTy =
462          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
463    bool InputSigned = SrcType->isSignedIntegerType();
464    llvm::Value* IntResult =
465        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
466    // Then, cast to pointer.
467    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
468  }
469
470  if (isa<llvm::PointerType>(Src->getType())) {
471    // Must be an ptr to int cast.
472    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
473    return Builder.CreatePtrToInt(Src, DstTy, "conv");
474  }
475
476  // A scalar can be splatted to an extended vector of the same element type
477  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
478    // Cast the scalar to element type
479    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
480    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
481
482    // Insert the element in element zero of an undef vector
483    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
484    llvm::Value *Idx =
485        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
486    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
487
488    // Splat the element across to all elements
489    llvm::SmallVector<llvm::Constant*, 16> Args;
490    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
491    for (unsigned i = 0; i < NumElements; i++)
492      Args.push_back(llvm::ConstantInt::get(
493                                        llvm::Type::getInt32Ty(VMContext), 0));
494
495    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
496    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
497    return Yay;
498  }
499
500  // Allow bitcast from vector to integer/fp of the same size.
501  if (isa<llvm::VectorType>(Src->getType()) ||
502      isa<llvm::VectorType>(DstTy))
503    return Builder.CreateBitCast(Src, DstTy, "conv");
504
505  // Finally, we have the arithmetic types: real int/float.
506  if (isa<llvm::IntegerType>(Src->getType())) {
507    bool InputSigned = SrcType->isSignedIntegerType();
508    if (isa<llvm::IntegerType>(DstTy))
509      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
510    else if (InputSigned)
511      return Builder.CreateSIToFP(Src, DstTy, "conv");
512    else
513      return Builder.CreateUIToFP(Src, DstTy, "conv");
514  }
515
516  assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
517  if (isa<llvm::IntegerType>(DstTy)) {
518    if (DstType->isSignedIntegerType())
519      return Builder.CreateFPToSI(Src, DstTy, "conv");
520    else
521      return Builder.CreateFPToUI(Src, DstTy, "conv");
522  }
523
524  assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
525  if (DstTy->getTypeID() < Src->getType()->getTypeID())
526    return Builder.CreateFPTrunc(Src, DstTy, "conv");
527  else
528    return Builder.CreateFPExt(Src, DstTy, "conv");
529}
530
531/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
532/// type to the specified destination type, where the destination type is an
533/// LLVM scalar type.
534Value *ScalarExprEmitter::
535EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
536                              QualType SrcTy, QualType DstTy) {
537  // Get the source element type.
538  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
539
540  // Handle conversions to bool first, they are special: comparisons against 0.
541  if (DstTy->isBooleanType()) {
542    //  Complex != 0  -> (Real != 0) | (Imag != 0)
543    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
544    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
545    return Builder.CreateOr(Src.first, Src.second, "tobool");
546  }
547
548  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
549  // the imaginary part of the complex value is discarded and the value of the
550  // real part is converted according to the conversion rules for the
551  // corresponding real type.
552  return EmitScalarConversion(Src.first, SrcTy, DstTy);
553}
554
555Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
556  const llvm::Type *LTy = ConvertType(Ty);
557
558  if (!Ty->isMemberPointerType())
559    return llvm::Constant::getNullValue(LTy);
560
561  assert(!Ty->isMemberFunctionPointerType() &&
562         "member function pointers are not scalar!");
563
564  // Itanium C++ ABI 2.3:
565  //   A NULL pointer is represented as -1.
566  return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);
567}
568
569//===----------------------------------------------------------------------===//
570//                            Visitor Methods
571//===----------------------------------------------------------------------===//
572
573Value *ScalarExprEmitter::VisitExpr(Expr *E) {
574  CGF.ErrorUnsupported(E, "scalar expression");
575  if (E->getType()->isVoidType())
576    return 0;
577  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
578}
579
580Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
581  // Vector Mask Case
582  if (E->getNumSubExprs() == 2 ||
583      (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
584    Value* LHS = CGF.EmitScalarExpr(E->getExpr(0));
585    Value* RHS = CGF.EmitScalarExpr(E->getExpr(1));
586    Value* Mask;
587
588    const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
589    const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
590    unsigned LHSElts = LTy->getNumElements();
591
592    if (E->getNumSubExprs() == 3) {
593      Mask = CGF.EmitScalarExpr(E->getExpr(2));
594
595      // Shuffle LHS & RHS into one input vector.
596      llvm::SmallVector<llvm::Constant*, 32> concat;
597      for (unsigned i = 0; i != LHSElts; ++i) {
598        concat.push_back(llvm::ConstantInt::get(I32Ty, 2*i));
599        concat.push_back(llvm::ConstantInt::get(I32Ty, 2*i+1));
600      }
601
602      Value* CV = llvm::ConstantVector::get(concat.begin(), concat.size());
603      LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
604      LHSElts *= 2;
605    } else {
606      Mask = RHS;
607    }
608
609    const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
610    llvm::Constant* EltMask;
611
612    // Treat vec3 like vec4.
613    if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
614      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
615                                       (1 << llvm::Log2_32(LHSElts+2))-1);
616    else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
617      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
618                                       (1 << llvm::Log2_32(LHSElts+1))-1);
619    else
620      EltMask = llvm::ConstantInt::get(MTy->getElementType(),
621                                       (1 << llvm::Log2_32(LHSElts))-1);
622
623    // Mask off the high bits of each shuffle index.
624    llvm::SmallVector<llvm::Constant *, 32> MaskV;
625    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
626      MaskV.push_back(EltMask);
627
628    Value* MaskBits = llvm::ConstantVector::get(MaskV.begin(), MaskV.size());
629    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
630
631    // newv = undef
632    // mask = mask & maskbits
633    // for each elt
634    //   n = extract mask i
635    //   x = extract val n
636    //   newv = insert newv, x, i
637    const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
638                                                        MTy->getNumElements());
639    Value* NewV = llvm::UndefValue::get(RTy);
640    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
641      Value *Indx = llvm::ConstantInt::get(I32Ty, i);
642      Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
643      Indx = Builder.CreateZExt(Indx, I32Ty, "idx_zext");
644
645      // Handle vec3 special since the index will be off by one for the RHS.
646      if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
647        Value *cmpIndx, *newIndx;
648        cmpIndx = Builder.CreateICmpUGT(Indx, llvm::ConstantInt::get(I32Ty, 3),
649                                        "cmp_shuf_idx");
650        newIndx = Builder.CreateSub(Indx, llvm::ConstantInt::get(I32Ty, 1),
651                                    "shuf_idx_adj");
652        Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
653      }
654      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
655      NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
656    }
657    return NewV;
658  }
659
660  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
661  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
662
663  // Handle vec3 special since the index will be off by one for the RHS.
664  llvm::SmallVector<llvm::Constant*, 32> indices;
665  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
666    llvm::Constant *C = cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i)));
667    const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
668    if (VTy->getNumElements() == 3) {
669      if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C)) {
670        uint64_t cVal = CI->getZExtValue();
671        if (cVal > 3) {
672          C = llvm::ConstantInt::get(C->getType(), cVal-1);
673        }
674      }
675    }
676    indices.push_back(C);
677  }
678
679  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
680  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
681}
682Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
683  Expr::EvalResult Result;
684  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
685    if (E->isArrow())
686      CGF.EmitScalarExpr(E->getBase());
687    else
688      EmitLValue(E->getBase());
689    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
690  }
691  return EmitLoadOfLValue(E);
692}
693
694Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
695  TestAndClearIgnoreResultAssign();
696
697  // Emit subscript expressions in rvalue context's.  For most cases, this just
698  // loads the lvalue formed by the subscript expr.  However, we have to be
699  // careful, because the base of a vector subscript is occasionally an rvalue,
700  // so we can't get it as an lvalue.
701  if (!E->getBase()->getType()->isVectorType())
702    return EmitLoadOfLValue(E);
703
704  // Handle the vector case.  The base must be a vector, the index must be an
705  // integer value.
706  Value *Base = Visit(E->getBase());
707  Value *Idx  = Visit(E->getIdx());
708  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
709  Idx = Builder.CreateIntCast(Idx,
710                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
711                              IdxSigned,
712                              "vecidxcast");
713  return Builder.CreateExtractElement(Base, Idx, "vecext");
714}
715
716static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
717                                  unsigned Off, const llvm::Type *I32Ty) {
718  int MV = SVI->getMaskValue(Idx);
719  if (MV == -1)
720    return llvm::UndefValue::get(I32Ty);
721  return llvm::ConstantInt::get(I32Ty, Off+MV);
722}
723
724Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
725  bool Ignore = TestAndClearIgnoreResultAssign();
726  (void)Ignore;
727  assert (Ignore == false && "init list ignored");
728  unsigned NumInitElements = E->getNumInits();
729
730  if (E->hadArrayRangeDesignator())
731    CGF.ErrorUnsupported(E, "GNU array range designator extension");
732
733  const llvm::VectorType *VType =
734    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
735
736  // We have a scalar in braces. Just use the first element.
737  if (!VType)
738    return Visit(E->getInit(0));
739
740  unsigned ResElts = VType->getNumElements();
741  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
742
743  // Loop over initializers collecting the Value for each, and remembering
744  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
745  // us to fold the shuffle for the swizzle into the shuffle for the vector
746  // initializer, since LLVM optimizers generally do not want to touch
747  // shuffles.
748  unsigned CurIdx = 0;
749  bool VIsUndefShuffle = false;
750  llvm::Value *V = llvm::UndefValue::get(VType);
751  for (unsigned i = 0; i != NumInitElements; ++i) {
752    Expr *IE = E->getInit(i);
753    Value *Init = Visit(IE);
754    llvm::SmallVector<llvm::Constant*, 16> Args;
755
756    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
757
758    // Handle scalar elements.  If the scalar initializer is actually one
759    // element of a different vector of the same width, use shuffle instead of
760    // extract+insert.
761    if (!VVT) {
762      if (isa<ExtVectorElementExpr>(IE)) {
763        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
764
765        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
766          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
767          Value *LHS = 0, *RHS = 0;
768          if (CurIdx == 0) {
769            // insert into undef -> shuffle (src, undef)
770            Args.push_back(C);
771            for (unsigned j = 1; j != ResElts; ++j)
772              Args.push_back(llvm::UndefValue::get(I32Ty));
773
774            LHS = EI->getVectorOperand();
775            RHS = V;
776            VIsUndefShuffle = true;
777          } else if (VIsUndefShuffle) {
778            // insert into undefshuffle && size match -> shuffle (v, src)
779            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
780            for (unsigned j = 0; j != CurIdx; ++j)
781              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
782            Args.push_back(llvm::ConstantInt::get(I32Ty,
783                                                  ResElts + C->getZExtValue()));
784            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
785              Args.push_back(llvm::UndefValue::get(I32Ty));
786
787            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
788            RHS = EI->getVectorOperand();
789            VIsUndefShuffle = false;
790          }
791          if (!Args.empty()) {
792            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
793            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
794            ++CurIdx;
795            continue;
796          }
797        }
798      }
799      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
800      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
801      VIsUndefShuffle = false;
802      ++CurIdx;
803      continue;
804    }
805
806    unsigned InitElts = VVT->getNumElements();
807
808    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
809    // input is the same width as the vector being constructed, generate an
810    // optimized shuffle of the swizzle input into the result.
811    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
812    if (isa<ExtVectorElementExpr>(IE)) {
813      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
814      Value *SVOp = SVI->getOperand(0);
815      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
816
817      if (OpTy->getNumElements() == ResElts) {
818        for (unsigned j = 0; j != CurIdx; ++j) {
819          // If the current vector initializer is a shuffle with undef, merge
820          // this shuffle directly into it.
821          if (VIsUndefShuffle) {
822            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
823                                      I32Ty));
824          } else {
825            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
826          }
827        }
828        for (unsigned j = 0, je = InitElts; j != je; ++j)
829          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
830        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
831          Args.push_back(llvm::UndefValue::get(I32Ty));
832
833        if (VIsUndefShuffle)
834          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
835
836        Init = SVOp;
837      }
838    }
839
840    // Extend init to result vector length, and then shuffle its contribution
841    // to the vector initializer into V.
842    if (Args.empty()) {
843      for (unsigned j = 0; j != InitElts; ++j)
844        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
845      for (unsigned j = InitElts; j != ResElts; ++j)
846        Args.push_back(llvm::UndefValue::get(I32Ty));
847      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
848      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
849                                         Mask, "vext");
850
851      Args.clear();
852      for (unsigned j = 0; j != CurIdx; ++j)
853        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
854      for (unsigned j = 0; j != InitElts; ++j)
855        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
856      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
857        Args.push_back(llvm::UndefValue::get(I32Ty));
858    }
859
860    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
861    // merging subsequent shuffles into this one.
862    if (CurIdx == 0)
863      std::swap(V, Init);
864    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
865    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
866    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
867    CurIdx += InitElts;
868  }
869
870  // FIXME: evaluate codegen vs. shuffling against constant null vector.
871  // Emit remaining default initializers.
872  const llvm::Type *EltTy = VType->getElementType();
873
874  // Emit remaining default initializers
875  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
876    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
877    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
878    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
879  }
880  return V;
881}
882
883static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
884  const Expr *E = CE->getSubExpr();
885
886  if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
887    return false;
888
889  if (isa<CXXThisExpr>(E)) {
890    // We always assume that 'this' is never null.
891    return false;
892  }
893
894  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
895    // And that lvalue casts are never null.
896    if (ICE->isLvalueCast())
897      return false;
898  }
899
900  return true;
901}
902
903// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
904// have to handle a more broad range of conversions than explicit casts, as they
905// handle things like function to ptr-to-function decay etc.
906Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
907  Expr *E = CE->getSubExpr();
908  QualType DestTy = CE->getType();
909  CastExpr::CastKind Kind = CE->getCastKind();
910
911  if (!DestTy->isVoidType())
912    TestAndClearIgnoreResultAssign();
913
914  // Since almost all cast kinds apply to scalars, this switch doesn't have
915  // a default case, so the compiler will warn on a missing case.  The cases
916  // are in the same order as in the CastKind enum.
917  switch (Kind) {
918  case CastExpr::CK_Unknown:
919    // FIXME: All casts should have a known kind!
920    //assert(0 && "Unknown cast kind!");
921    break;
922
923  case CastExpr::CK_AnyPointerToObjCPointerCast:
924  case CastExpr::CK_AnyPointerToBlockPointerCast:
925  case CastExpr::CK_BitCast: {
926    Value *Src = Visit(const_cast<Expr*>(E));
927    return Builder.CreateBitCast(Src, ConvertType(DestTy));
928  }
929  case CastExpr::CK_NoOp:
930  case CastExpr::CK_UserDefinedConversion:
931    return Visit(const_cast<Expr*>(E));
932
933  case CastExpr::CK_BaseToDerived: {
934    const CXXRecordDecl *DerivedClassDecl =
935      DestTy->getCXXRecordDeclForPointerType();
936
937    return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
938                                        CE->getBasePath(),
939                                        ShouldNullCheckClassCastValue(CE));
940  }
941  case CastExpr::CK_UncheckedDerivedToBase:
942  case CastExpr::CK_DerivedToBase: {
943    const RecordType *DerivedClassTy =
944      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
945    CXXRecordDecl *DerivedClassDecl =
946      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
947
948    return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
949                                     CE->getBasePath(),
950                                     ShouldNullCheckClassCastValue(CE));
951  }
952  case CastExpr::CK_Dynamic: {
953    Value *V = Visit(const_cast<Expr*>(E));
954    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
955    return CGF.EmitDynamicCast(V, DCE);
956  }
957  case CastExpr::CK_ToUnion:
958    assert(0 && "Should be unreachable!");
959    break;
960
961  case CastExpr::CK_ArrayToPointerDecay: {
962    assert(E->getType()->isArrayType() &&
963           "Array to pointer decay must have array source type!");
964
965    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
966
967    // Note that VLA pointers are always decayed, so we don't need to do
968    // anything here.
969    if (!E->getType()->isVariableArrayType()) {
970      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
971      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
972                                 ->getElementType()) &&
973             "Expected pointer to array");
974      V = Builder.CreateStructGEP(V, 0, "arraydecay");
975    }
976
977    return V;
978  }
979  case CastExpr::CK_FunctionToPointerDecay:
980    return EmitLValue(E).getAddress();
981
982  case CastExpr::CK_NullToMemberPointer:
983    return CGF.CGM.EmitNullConstant(DestTy);
984
985  case CastExpr::CK_BaseToDerivedMemberPointer:
986  case CastExpr::CK_DerivedToBaseMemberPointer: {
987    Value *Src = Visit(E);
988
989    // See if we need to adjust the pointer.
990    const CXXRecordDecl *BaseDecl =
991      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
992                          getClass()->getAs<RecordType>()->getDecl());
993    const CXXRecordDecl *DerivedDecl =
994      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
995                          getClass()->getAs<RecordType>()->getDecl());
996    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
997      std::swap(DerivedDecl, BaseDecl);
998
999    if (llvm::Constant *Adj =
1000          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, CE->getBasePath())){
1001      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
1002        Src = Builder.CreateNSWSub(Src, Adj, "adj");
1003      else
1004        Src = Builder.CreateNSWAdd(Src, Adj, "adj");
1005    }
1006
1007    return Src;
1008  }
1009
1010  case CastExpr::CK_ConstructorConversion:
1011    assert(0 && "Should be unreachable!");
1012    break;
1013
1014  case CastExpr::CK_IntegralToPointer: {
1015    Value *Src = Visit(const_cast<Expr*>(E));
1016
1017    // First, convert to the correct width so that we control the kind of
1018    // extension.
1019    const llvm::Type *MiddleTy =
1020      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1021    bool InputSigned = E->getType()->isSignedIntegerType();
1022    llvm::Value* IntResult =
1023      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1024
1025    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1026  }
1027  case CastExpr::CK_PointerToIntegral: {
1028    Value *Src = Visit(const_cast<Expr*>(E));
1029    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1030  }
1031  case CastExpr::CK_ToVoid: {
1032    CGF.EmitAnyExpr(E, 0, false, true);
1033    return 0;
1034  }
1035  case CastExpr::CK_VectorSplat: {
1036    const llvm::Type *DstTy = ConvertType(DestTy);
1037    Value *Elt = Visit(const_cast<Expr*>(E));
1038
1039    // Insert the element in element zero of an undef vector
1040    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1041    llvm::Value *Idx =
1042        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
1043    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1044
1045    // Splat the element across to all elements
1046    llvm::SmallVector<llvm::Constant*, 16> Args;
1047    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1048    for (unsigned i = 0; i < NumElements; i++)
1049      Args.push_back(llvm::ConstantInt::get(
1050                                        llvm::Type::getInt32Ty(VMContext), 0));
1051
1052    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1053    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1054    return Yay;
1055  }
1056  case CastExpr::CK_IntegralCast:
1057  case CastExpr::CK_IntegralToFloating:
1058  case CastExpr::CK_FloatingToIntegral:
1059  case CastExpr::CK_FloatingCast:
1060    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1061
1062  case CastExpr::CK_MemberPointerToBoolean:
1063    return CGF.EvaluateExprAsBool(E);
1064  }
1065
1066  // Handle cases where the source is an non-complex type.
1067
1068  if (!CGF.hasAggregateLLVMType(E->getType())) {
1069    Value *Src = Visit(const_cast<Expr*>(E));
1070
1071    // Use EmitScalarConversion to perform the conversion.
1072    return EmitScalarConversion(Src, E->getType(), DestTy);
1073  }
1074
1075  if (E->getType()->isAnyComplexType()) {
1076    // Handle cases where the source is a complex type.
1077    bool IgnoreImag = true;
1078    bool IgnoreImagAssign = true;
1079    bool IgnoreReal = IgnoreResultAssign;
1080    bool IgnoreRealAssign = IgnoreResultAssign;
1081    if (DestTy->isBooleanType())
1082      IgnoreImagAssign = IgnoreImag = false;
1083    else if (DestTy->isVoidType()) {
1084      IgnoreReal = IgnoreImag = false;
1085      IgnoreRealAssign = IgnoreImagAssign = true;
1086    }
1087    CodeGenFunction::ComplexPairTy V
1088      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
1089                            IgnoreImagAssign);
1090    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1091  }
1092
1093  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1094  // evaluate the result and return.
1095  CGF.EmitAggExpr(E, 0, false, true);
1096  return 0;
1097}
1098
1099Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1100  return CGF.EmitCompoundStmt(*E->getSubStmt(),
1101                              !E->getType()->isVoidType()).getScalarVal();
1102}
1103
1104Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1105  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1106  if (E->getType().isObjCGCWeak())
1107    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1108  return Builder.CreateLoad(V, "tmp");
1109}
1110
1111//===----------------------------------------------------------------------===//
1112//                             Unary Operators
1113//===----------------------------------------------------------------------===//
1114
1115Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1116  TestAndClearIgnoreResultAssign();
1117  Value *Op = Visit(E->getSubExpr());
1118  if (Op->getType()->isFPOrFPVectorTy())
1119    return Builder.CreateFNeg(Op, "neg");
1120
1121  // Signed integer overflow is undefined behavior.
1122  if (E->getType()->isSignedIntegerType())
1123    return Builder.CreateNSWNeg(Op, "neg");
1124
1125  return Builder.CreateNeg(Op, "neg");
1126}
1127
1128Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1129  TestAndClearIgnoreResultAssign();
1130  Value *Op = Visit(E->getSubExpr());
1131  return Builder.CreateNot(Op, "neg");
1132}
1133
1134Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1135  // Compare operand to zero.
1136  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1137
1138  // Invert value.
1139  // TODO: Could dynamically modify easy computations here.  For example, if
1140  // the operand is an icmp ne, turn into icmp eq.
1141  BoolVal = Builder.CreateNot(BoolVal, "lnot");
1142
1143  // ZExt result to the expr type.
1144  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1145}
1146
1147Value *ScalarExprEmitter::VisitOffsetOfExpr(const OffsetOfExpr *E) {
1148  Expr::EvalResult Result;
1149  if(E->Evaluate(Result, CGF.getContext()))
1150    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1151
1152  // FIXME: Cannot support code generation for non-constant offsetof.
1153  unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID(Diagnostic::Error,
1154                             "cannot compile non-constant __builtin_offsetof");
1155  CGF.CGM.getDiags().Report(CGF.getContext().getFullLoc(E->getLocStart()),
1156                            DiagID)
1157    << E->getSourceRange();
1158
1159  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1160}
1161
1162/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1163/// argument of the sizeof expression as an integer.
1164Value *
1165ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1166  QualType TypeToSize = E->getTypeOfArgument();
1167  if (E->isSizeOf()) {
1168    if (const VariableArrayType *VAT =
1169          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1170      if (E->isArgumentType()) {
1171        // sizeof(type) - make sure to emit the VLA size.
1172        CGF.EmitVLASize(TypeToSize);
1173      } else {
1174        // C99 6.5.3.4p2: If the argument is an expression of type
1175        // VLA, it is evaluated.
1176        CGF.EmitAnyExpr(E->getArgumentExpr());
1177      }
1178
1179      return CGF.GetVLASize(VAT);
1180    }
1181  }
1182
1183  // If this isn't sizeof(vla), the result must be constant; use the constant
1184  // folding logic so we don't have to duplicate it here.
1185  Expr::EvalResult Result;
1186  E->Evaluate(Result, CGF.getContext());
1187  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1188}
1189
1190Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1191  Expr *Op = E->getSubExpr();
1192  if (Op->getType()->isAnyComplexType())
1193    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1194  return Visit(Op);
1195}
1196Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1197  Expr *Op = E->getSubExpr();
1198  if (Op->getType()->isAnyComplexType())
1199    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1200
1201  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1202  // effects are evaluated, but not the actual value.
1203  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1204    CGF.EmitLValue(Op);
1205  else
1206    CGF.EmitScalarExpr(Op, true);
1207  return llvm::Constant::getNullValue(ConvertType(E->getType()));
1208}
1209
1210Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1211  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1212  const llvm::Type* ResultType = ConvertType(E->getType());
1213  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1214}
1215
1216//===----------------------------------------------------------------------===//
1217//                           Binary Operators
1218//===----------------------------------------------------------------------===//
1219
1220BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1221  TestAndClearIgnoreResultAssign();
1222  BinOpInfo Result;
1223  Result.LHS = Visit(E->getLHS());
1224  Result.RHS = Visit(E->getRHS());
1225  Result.Ty  = E->getType();
1226  Result.E = E;
1227  return Result;
1228}
1229
1230LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1231                                              const CompoundAssignOperator *E,
1232                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1233                                                   Value *&BitFieldResult) {
1234  QualType LHSTy = E->getLHS()->getType();
1235  BitFieldResult = 0;
1236  BinOpInfo OpInfo;
1237
1238  if (E->getComputationResultType()->isAnyComplexType()) {
1239    // This needs to go through the complex expression emitter, but it's a tad
1240    // complicated to do that... I'm leaving it out for now.  (Note that we do
1241    // actually need the imaginary part of the RHS for multiplication and
1242    // division.)
1243    CGF.ErrorUnsupported(E, "complex compound assignment");
1244    llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1245    return LValue();
1246  }
1247
1248  // Emit the RHS first.  __block variables need to have the rhs evaluated
1249  // first, plus this should improve codegen a little.
1250  OpInfo.RHS = Visit(E->getRHS());
1251  OpInfo.Ty = E->getComputationResultType();
1252  OpInfo.E = E;
1253  // Load/convert the LHS.
1254  LValue LHSLV = EmitCheckedLValue(E->getLHS());
1255  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1256  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1257                                    E->getComputationLHSType());
1258
1259  // Expand the binary operator.
1260  Value *Result = (this->*Func)(OpInfo);
1261
1262  // Convert the result back to the LHS type.
1263  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1264
1265  // Store the result value into the LHS lvalue. Bit-fields are handled
1266  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1267  // 'An assignment expression has the value of the left operand after the
1268  // assignment...'.
1269  if (LHSLV.isBitField()) {
1270    if (!LHSLV.isVolatileQualified()) {
1271      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1272                                         &Result);
1273      BitFieldResult = Result;
1274      return LHSLV;
1275    } else
1276      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1277  } else
1278    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1279  return LHSLV;
1280}
1281
1282Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1283                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1284  bool Ignore = TestAndClearIgnoreResultAssign();
1285  Value *BitFieldResult;
1286  LValue LHSLV = EmitCompoundAssignLValue(E, Func, BitFieldResult);
1287  if (BitFieldResult)
1288    return BitFieldResult;
1289
1290  if (Ignore)
1291    return 0;
1292  return EmitLoadOfLValue(LHSLV, E->getType());
1293}
1294
1295
1296Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1297  if (Ops.LHS->getType()->isFPOrFPVectorTy())
1298    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1299  else if (Ops.Ty->isUnsignedIntegerType())
1300    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1301  else
1302    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1303}
1304
1305Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1306  // Rem in C can't be a floating point type: C99 6.5.5p2.
1307  if (Ops.Ty->isUnsignedIntegerType())
1308    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1309  else
1310    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1311}
1312
1313Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1314  unsigned IID;
1315  unsigned OpID = 0;
1316
1317  switch (Ops.E->getOpcode()) {
1318  case BinaryOperator::Add:
1319  case BinaryOperator::AddAssign:
1320    OpID = 1;
1321    IID = llvm::Intrinsic::sadd_with_overflow;
1322    break;
1323  case BinaryOperator::Sub:
1324  case BinaryOperator::SubAssign:
1325    OpID = 2;
1326    IID = llvm::Intrinsic::ssub_with_overflow;
1327    break;
1328  case BinaryOperator::Mul:
1329  case BinaryOperator::MulAssign:
1330    OpID = 3;
1331    IID = llvm::Intrinsic::smul_with_overflow;
1332    break;
1333  default:
1334    assert(false && "Unsupported operation for overflow detection");
1335    IID = 0;
1336  }
1337  OpID <<= 1;
1338  OpID |= 1;
1339
1340  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1341
1342  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1343
1344  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1345  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1346  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1347
1348  // Branch in case of overflow.
1349  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1350  llvm::BasicBlock *overflowBB =
1351    CGF.createBasicBlock("overflow", CGF.CurFn);
1352  llvm::BasicBlock *continueBB =
1353    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1354
1355  Builder.CreateCondBr(overflow, overflowBB, continueBB);
1356
1357  // Handle overflow
1358
1359  Builder.SetInsertPoint(overflowBB);
1360
1361  // Handler is:
1362  // long long *__overflow_handler)(long long a, long long b, char op,
1363  // char width)
1364  std::vector<const llvm::Type*> handerArgTypes;
1365  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1366  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1367  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1368  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1369  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1370      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1371  llvm::Value *handlerFunction =
1372    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1373        llvm::PointerType::getUnqual(handlerTy));
1374  handlerFunction = Builder.CreateLoad(handlerFunction);
1375
1376  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1377      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1378      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1379      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1380      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1381        cast<llvm::IntegerType>(opTy)->getBitWidth()));
1382
1383  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1384
1385  Builder.CreateBr(continueBB);
1386
1387  // Set up the continuation
1388  Builder.SetInsertPoint(continueBB);
1389  // Get the correct result
1390  llvm::PHINode *phi = Builder.CreatePHI(opTy);
1391  phi->reserveOperandSpace(2);
1392  phi->addIncoming(result, initialBB);
1393  phi->addIncoming(handlerResult, overflowBB);
1394
1395  return phi;
1396}
1397
1398Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1399  if (!Ops.Ty->isAnyPointerType()) {
1400    if (CGF.getContext().getLangOptions().OverflowChecking &&
1401        Ops.Ty->isSignedIntegerType())
1402      return EmitOverflowCheckedBinOp(Ops);
1403
1404    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1405      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1406
1407    // Signed integer overflow is undefined behavior.
1408    if (Ops.Ty->isSignedIntegerType())
1409      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1410
1411    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1412  }
1413
1414  if (Ops.Ty->isPointerType() &&
1415      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1416    // The amount of the addition needs to account for the VLA size
1417    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1418  }
1419  Value *Ptr, *Idx;
1420  Expr *IdxExp;
1421  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1422  const ObjCObjectPointerType *OPT =
1423    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1424  if (PT || OPT) {
1425    Ptr = Ops.LHS;
1426    Idx = Ops.RHS;
1427    IdxExp = Ops.E->getRHS();
1428  } else {  // int + pointer
1429    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1430    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1431    assert((PT || OPT) && "Invalid add expr");
1432    Ptr = Ops.RHS;
1433    Idx = Ops.LHS;
1434    IdxExp = Ops.E->getLHS();
1435  }
1436
1437  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1438  if (Width < CGF.LLVMPointerWidth) {
1439    // Zero or sign extend the pointer value based on whether the index is
1440    // signed or not.
1441    const llvm::Type *IdxType =
1442        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1443    if (IdxExp->getType()->isSignedIntegerType())
1444      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1445    else
1446      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1447  }
1448  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1449  // Handle interface types, which are not represented with a concrete type.
1450  if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1451    llvm::Value *InterfaceSize =
1452      llvm::ConstantInt::get(Idx->getType(),
1453          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1454    Idx = Builder.CreateMul(Idx, InterfaceSize);
1455    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1456    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1457    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1458    return Builder.CreateBitCast(Res, Ptr->getType());
1459  }
1460
1461  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1462  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1463  // future proof.
1464  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1465    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1466    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1467    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1468    return Builder.CreateBitCast(Res, Ptr->getType());
1469  }
1470
1471  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1472}
1473
1474Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1475  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1476    if (CGF.getContext().getLangOptions().OverflowChecking
1477        && Ops.Ty->isSignedIntegerType())
1478      return EmitOverflowCheckedBinOp(Ops);
1479
1480    if (Ops.LHS->getType()->isFPOrFPVectorTy())
1481      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1482
1483    // Signed integer overflow is undefined behavior.
1484    if (Ops.Ty->isSignedIntegerType())
1485      return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1486
1487    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1488  }
1489
1490  if (Ops.E->getLHS()->getType()->isPointerType() &&
1491      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1492    // The amount of the addition needs to account for the VLA size for
1493    // ptr-int
1494    // The amount of the division needs to account for the VLA size for
1495    // ptr-ptr.
1496    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1497  }
1498
1499  const QualType LHSType = Ops.E->getLHS()->getType();
1500  const QualType LHSElementType = LHSType->getPointeeType();
1501  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1502    // pointer - int
1503    Value *Idx = Ops.RHS;
1504    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1505    if (Width < CGF.LLVMPointerWidth) {
1506      // Zero or sign extend the pointer value based on whether the index is
1507      // signed or not.
1508      const llvm::Type *IdxType =
1509          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1510      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1511        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1512      else
1513        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1514    }
1515    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1516
1517    // Handle interface types, which are not represented with a concrete type.
1518    if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1519      llvm::Value *InterfaceSize =
1520        llvm::ConstantInt::get(Idx->getType(),
1521                               CGF.getContext().
1522                                 getTypeSizeInChars(OIT).getQuantity());
1523      Idx = Builder.CreateMul(Idx, InterfaceSize);
1524      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1525      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1526      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1527      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1528    }
1529
1530    // Explicitly handle GNU void* and function pointer arithmetic
1531    // extensions. The GNU void* casts amount to no-ops since our void* type is
1532    // i8*, but this is future proof.
1533    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1534      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1535      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1536      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1537      return Builder.CreateBitCast(Res, Ops.LHS->getType());
1538    }
1539
1540    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1541  } else {
1542    // pointer - pointer
1543    Value *LHS = Ops.LHS;
1544    Value *RHS = Ops.RHS;
1545
1546    CharUnits ElementSize;
1547
1548    // Handle GCC extension for pointer arithmetic on void* and function pointer
1549    // types.
1550    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1551      ElementSize = CharUnits::One();
1552    } else {
1553      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1554    }
1555
1556    const llvm::Type *ResultType = ConvertType(Ops.Ty);
1557    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1558    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1559    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1560
1561    // Optimize out the shift for element size of 1.
1562    if (ElementSize.isOne())
1563      return BytesBetween;
1564
1565    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1566    // pointer difference in C is only defined in the case where both operands
1567    // are pointing to elements of an array.
1568    Value *BytesPerElt =
1569        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1570    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1571  }
1572}
1573
1574Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1575  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1576  // RHS to the same size as the LHS.
1577  Value *RHS = Ops.RHS;
1578  if (Ops.LHS->getType() != RHS->getType())
1579    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1580
1581  if (CGF.CatchUndefined
1582      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1583    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1584    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1585    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1586                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1587                             Cont, CGF.getTrapBB());
1588    CGF.EmitBlock(Cont);
1589  }
1590
1591  return Builder.CreateShl(Ops.LHS, RHS, "shl");
1592}
1593
1594Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1595  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1596  // RHS to the same size as the LHS.
1597  Value *RHS = Ops.RHS;
1598  if (Ops.LHS->getType() != RHS->getType())
1599    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1600
1601  if (CGF.CatchUndefined
1602      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1603    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1604    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1605    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1606                                 llvm::ConstantInt::get(RHS->getType(), Width)),
1607                             Cont, CGF.getTrapBB());
1608    CGF.EmitBlock(Cont);
1609  }
1610
1611  if (Ops.Ty->isUnsignedIntegerType())
1612    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1613  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1614}
1615
1616Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1617                                      unsigned SICmpOpc, unsigned FCmpOpc) {
1618  TestAndClearIgnoreResultAssign();
1619  Value *Result;
1620  QualType LHSTy = E->getLHS()->getType();
1621  if (LHSTy->isMemberFunctionPointerType()) {
1622    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1623    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1624    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1625    LHSFunc = Builder.CreateLoad(LHSFunc);
1626    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1627    RHSFunc = Builder.CreateLoad(RHSFunc);
1628    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1629                                        LHSFunc, RHSFunc, "cmp.func");
1630    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1631    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1632                                           LHSFunc, NullPtr, "cmp.null");
1633    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1634    LHSAdj = Builder.CreateLoad(LHSAdj);
1635    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1636    RHSAdj = Builder.CreateLoad(RHSAdj);
1637    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1638                                        LHSAdj, RHSAdj, "cmp.adj");
1639    if (E->getOpcode() == BinaryOperator::EQ) {
1640      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1641      Result = Builder.CreateAnd(Result, ResultF, "and.f");
1642    } else {
1643      assert(E->getOpcode() == BinaryOperator::NE &&
1644             "Member pointer comparison other than == or != ?");
1645      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1646      Result = Builder.CreateOr(Result, ResultF, "or.f");
1647    }
1648  } else if (!LHSTy->isAnyComplexType()) {
1649    Value *LHS = Visit(E->getLHS());
1650    Value *RHS = Visit(E->getRHS());
1651
1652    if (LHS->getType()->isFPOrFPVectorTy()) {
1653      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1654                                  LHS, RHS, "cmp");
1655    } else if (LHSTy->isSignedIntegerType()) {
1656      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1657                                  LHS, RHS, "cmp");
1658    } else {
1659      // Unsigned integers and pointers.
1660      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1661                                  LHS, RHS, "cmp");
1662    }
1663
1664    // If this is a vector comparison, sign extend the result to the appropriate
1665    // vector integer type and return it (don't convert to bool).
1666    if (LHSTy->isVectorType())
1667      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1668
1669  } else {
1670    // Complex Comparison: can only be an equality comparison.
1671    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1672    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1673
1674    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1675
1676    Value *ResultR, *ResultI;
1677    if (CETy->isRealFloatingType()) {
1678      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1679                                   LHS.first, RHS.first, "cmp.r");
1680      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1681                                   LHS.second, RHS.second, "cmp.i");
1682    } else {
1683      // Complex comparisons can only be equality comparisons.  As such, signed
1684      // and unsigned opcodes are the same.
1685      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1686                                   LHS.first, RHS.first, "cmp.r");
1687      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1688                                   LHS.second, RHS.second, "cmp.i");
1689    }
1690
1691    if (E->getOpcode() == BinaryOperator::EQ) {
1692      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1693    } else {
1694      assert(E->getOpcode() == BinaryOperator::NE &&
1695             "Complex comparison other than == or != ?");
1696      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1697    }
1698  }
1699
1700  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1701}
1702
1703Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1704  bool Ignore = TestAndClearIgnoreResultAssign();
1705
1706  // __block variables need to have the rhs evaluated first, plus this should
1707  // improve codegen just a little.
1708  Value *RHS = Visit(E->getRHS());
1709  LValue LHS = EmitCheckedLValue(E->getLHS());
1710
1711  // Store the value into the LHS.  Bit-fields are handled specially
1712  // because the result is altered by the store, i.e., [C99 6.5.16p1]
1713  // 'An assignment expression has the value of the left operand after
1714  // the assignment...'.
1715  if (LHS.isBitField()) {
1716    if (!LHS.isVolatileQualified()) {
1717      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1718                                         &RHS);
1719      return RHS;
1720    } else
1721      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1722  } else
1723    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1724  if (Ignore)
1725    return 0;
1726  return EmitLoadOfLValue(LHS, E->getType());
1727}
1728
1729Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1730  const llvm::Type *ResTy = ConvertType(E->getType());
1731
1732  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1733  // If we have 1 && X, just emit X without inserting the control flow.
1734  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1735    if (Cond == 1) { // If we have 1 && X, just emit X.
1736      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1737      // ZExt result to int or bool.
1738      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1739    }
1740
1741    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1742    if (!CGF.ContainsLabel(E->getRHS()))
1743      return llvm::Constant::getNullValue(ResTy);
1744  }
1745
1746  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1747  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1748
1749  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1750  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1751
1752  // Any edges into the ContBlock are now from an (indeterminate number of)
1753  // edges from this first condition.  All of these values will be false.  Start
1754  // setting up the PHI node in the Cont Block for this.
1755  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1756                                            "", ContBlock);
1757  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1758  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1759       PI != PE; ++PI)
1760    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1761
1762  CGF.BeginConditionalBranch();
1763  CGF.EmitBlock(RHSBlock);
1764  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1765  CGF.EndConditionalBranch();
1766
1767  // Reaquire the RHS block, as there may be subblocks inserted.
1768  RHSBlock = Builder.GetInsertBlock();
1769
1770  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1771  // into the phi node for the edge with the value of RHSCond.
1772  CGF.EmitBlock(ContBlock);
1773  PN->addIncoming(RHSCond, RHSBlock);
1774
1775  // ZExt result to int.
1776  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1777}
1778
1779Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1780  const llvm::Type *ResTy = ConvertType(E->getType());
1781
1782  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1783  // If we have 0 || X, just emit X without inserting the control flow.
1784  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1785    if (Cond == -1) { // If we have 0 || X, just emit X.
1786      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1787      // ZExt result to int or bool.
1788      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1789    }
1790
1791    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1792    if (!CGF.ContainsLabel(E->getRHS()))
1793      return llvm::ConstantInt::get(ResTy, 1);
1794  }
1795
1796  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1797  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1798
1799  // Branch on the LHS first.  If it is true, go to the success (cont) block.
1800  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1801
1802  // Any edges into the ContBlock are now from an (indeterminate number of)
1803  // edges from this first condition.  All of these values will be true.  Start
1804  // setting up the PHI node in the Cont Block for this.
1805  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1806                                            "", ContBlock);
1807  PN->reserveOperandSpace(2);  // Normal case, two inputs.
1808  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1809       PI != PE; ++PI)
1810    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1811
1812  CGF.BeginConditionalBranch();
1813
1814  // Emit the RHS condition as a bool value.
1815  CGF.EmitBlock(RHSBlock);
1816  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1817
1818  CGF.EndConditionalBranch();
1819
1820  // Reaquire the RHS block, as there may be subblocks inserted.
1821  RHSBlock = Builder.GetInsertBlock();
1822
1823  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1824  // into the phi node for the edge with the value of RHSCond.
1825  CGF.EmitBlock(ContBlock);
1826  PN->addIncoming(RHSCond, RHSBlock);
1827
1828  // ZExt result to int.
1829  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1830}
1831
1832Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1833  CGF.EmitStmt(E->getLHS());
1834  CGF.EnsureInsertPoint();
1835  return Visit(E->getRHS());
1836}
1837
1838//===----------------------------------------------------------------------===//
1839//                             Other Operators
1840//===----------------------------------------------------------------------===//
1841
1842/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1843/// expression is cheap enough and side-effect-free enough to evaluate
1844/// unconditionally instead of conditionally.  This is used to convert control
1845/// flow into selects in some cases.
1846static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1847                                                   CodeGenFunction &CGF) {
1848  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1849    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1850
1851  // TODO: Allow anything we can constant fold to an integer or fp constant.
1852  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1853      isa<FloatingLiteral>(E))
1854    return true;
1855
1856  // Non-volatile automatic variables too, to get "cond ? X : Y" where
1857  // X and Y are local variables.
1858  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1859    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1860      if (VD->hasLocalStorage() && !(CGF.getContext()
1861                                     .getCanonicalType(VD->getType())
1862                                     .isVolatileQualified()))
1863        return true;
1864
1865  return false;
1866}
1867
1868
1869Value *ScalarExprEmitter::
1870VisitConditionalOperator(const ConditionalOperator *E) {
1871  TestAndClearIgnoreResultAssign();
1872  // If the condition constant folds and can be elided, try to avoid emitting
1873  // the condition and the dead arm.
1874  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1875    Expr *Live = E->getLHS(), *Dead = E->getRHS();
1876    if (Cond == -1)
1877      std::swap(Live, Dead);
1878
1879    // If the dead side doesn't have labels we need, and if the Live side isn't
1880    // the gnu missing ?: extension (which we could handle, but don't bother
1881    // to), just emit the Live part.
1882    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1883        Live)                                   // Live part isn't missing.
1884      return Visit(Live);
1885  }
1886
1887
1888  // If this is a really simple expression (like x ? 4 : 5), emit this as a
1889  // select instead of as control flow.  We can only do this if it is cheap and
1890  // safe to evaluate the LHS and RHS unconditionally.
1891  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1892                                                            CGF) &&
1893      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1894    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1895    llvm::Value *LHS = Visit(E->getLHS());
1896    llvm::Value *RHS = Visit(E->getRHS());
1897    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1898  }
1899
1900
1901  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1902  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1903  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1904  Value *CondVal = 0;
1905
1906  // If we don't have the GNU missing condition extension, emit a branch on bool
1907  // the normal way.
1908  if (E->getLHS()) {
1909    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1910    // the branch on bool.
1911    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1912  } else {
1913    // Otherwise, for the ?: extension, evaluate the conditional and then
1914    // convert it to bool the hard way.  We do this explicitly because we need
1915    // the unconverted value for the missing middle value of the ?:.
1916    CondVal = CGF.EmitScalarExpr(E->getCond());
1917
1918    // In some cases, EmitScalarConversion will delete the "CondVal" expression
1919    // if there are no extra uses (an optimization).  Inhibit this by making an
1920    // extra dead use, because we're going to add a use of CondVal later.  We
1921    // don't use the builder for this, because we don't want it to get optimized
1922    // away.  This leaves dead code, but the ?: extension isn't common.
1923    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1924                          Builder.GetInsertBlock());
1925
1926    Value *CondBoolVal =
1927      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1928                               CGF.getContext().BoolTy);
1929    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1930  }
1931
1932  CGF.BeginConditionalBranch();
1933  CGF.EmitBlock(LHSBlock);
1934
1935  // Handle the GNU extension for missing LHS.
1936  Value *LHS;
1937  if (E->getLHS())
1938    LHS = Visit(E->getLHS());
1939  else    // Perform promotions, to handle cases like "short ?: int"
1940    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1941
1942  CGF.EndConditionalBranch();
1943  LHSBlock = Builder.GetInsertBlock();
1944  CGF.EmitBranch(ContBlock);
1945
1946  CGF.BeginConditionalBranch();
1947  CGF.EmitBlock(RHSBlock);
1948
1949  Value *RHS = Visit(E->getRHS());
1950  CGF.EndConditionalBranch();
1951  RHSBlock = Builder.GetInsertBlock();
1952  CGF.EmitBranch(ContBlock);
1953
1954  CGF.EmitBlock(ContBlock);
1955
1956  // If the LHS or RHS is a throw expression, it will be legitimately null.
1957  if (!LHS)
1958    return RHS;
1959  if (!RHS)
1960    return LHS;
1961
1962  // Create a PHI node for the real part.
1963  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1964  PN->reserveOperandSpace(2);
1965  PN->addIncoming(LHS, LHSBlock);
1966  PN->addIncoming(RHS, RHSBlock);
1967  return PN;
1968}
1969
1970Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1971  return Visit(E->getChosenSubExpr(CGF.getContext()));
1972}
1973
1974Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1975  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1976  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1977
1978  // If EmitVAArg fails, we fall back to the LLVM instruction.
1979  if (!ArgPtr)
1980    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1981
1982  // FIXME Volatility.
1983  return Builder.CreateLoad(ArgPtr);
1984}
1985
1986Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1987  return CGF.BuildBlockLiteralTmp(BE);
1988}
1989
1990//===----------------------------------------------------------------------===//
1991//                         Entry Point into this File
1992//===----------------------------------------------------------------------===//
1993
1994/// EmitScalarExpr - Emit the computation of the specified expression of scalar
1995/// type, ignoring the result.
1996Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1997  assert(E && !hasAggregateLLVMType(E->getType()) &&
1998         "Invalid scalar expression to emit");
1999
2000  return ScalarExprEmitter(*this, IgnoreResultAssign)
2001    .Visit(const_cast<Expr*>(E));
2002}
2003
2004/// EmitScalarConversion - Emit a conversion from the specified type to the
2005/// specified destination type, both of which are LLVM scalar types.
2006Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2007                                             QualType DstTy) {
2008  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2009         "Invalid scalar expression to emit");
2010  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2011}
2012
2013/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2014/// type to the specified destination type, where the destination type is an
2015/// LLVM scalar type.
2016Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2017                                                      QualType SrcTy,
2018                                                      QualType DstTy) {
2019  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2020         "Invalid complex -> scalar conversion");
2021  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2022                                                                DstTy);
2023}
2024
2025LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2026  llvm::Value *V;
2027  // object->isa or (*object).isa
2028  // Generate code as for: *(Class*)object
2029  // build Class* type
2030  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2031
2032  Expr *BaseExpr = E->getBase();
2033  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
2034    V = CreateTempAlloca(ClassPtrTy, "resval");
2035    llvm::Value *Src = EmitScalarExpr(BaseExpr);
2036    Builder.CreateStore(Src, V);
2037    LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
2038    V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
2039  }
2040  else {
2041      if (E->isArrow())
2042        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2043      else
2044        V  = EmitLValue(BaseExpr).getAddress();
2045  }
2046
2047  // build Class* type
2048  ClassPtrTy = ClassPtrTy->getPointerTo();
2049  V = Builder.CreateBitCast(V, ClassPtrTy);
2050  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
2051  return LV;
2052}
2053
2054
2055LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
2056                                            const CompoundAssignOperator *E) {
2057  ScalarExprEmitter Scalar(*this);
2058  Value *BitFieldResult = 0;
2059  switch (E->getOpcode()) {
2060#define COMPOUND_OP(Op)                                                       \
2061    case BinaryOperator::Op##Assign:                                          \
2062      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2063                                             BitFieldResult)
2064  COMPOUND_OP(Mul);
2065  COMPOUND_OP(Div);
2066  COMPOUND_OP(Rem);
2067  COMPOUND_OP(Add);
2068  COMPOUND_OP(Sub);
2069  COMPOUND_OP(Shl);
2070  COMPOUND_OP(Shr);
2071  COMPOUND_OP(And);
2072  COMPOUND_OP(Xor);
2073  COMPOUND_OP(Or);
2074#undef COMPOUND_OP
2075
2076  case BinaryOperator::PtrMemD:
2077  case BinaryOperator::PtrMemI:
2078  case BinaryOperator::Mul:
2079  case BinaryOperator::Div:
2080  case BinaryOperator::Rem:
2081  case BinaryOperator::Add:
2082  case BinaryOperator::Sub:
2083  case BinaryOperator::Shl:
2084  case BinaryOperator::Shr:
2085  case BinaryOperator::LT:
2086  case BinaryOperator::GT:
2087  case BinaryOperator::LE:
2088  case BinaryOperator::GE:
2089  case BinaryOperator::EQ:
2090  case BinaryOperator::NE:
2091  case BinaryOperator::And:
2092  case BinaryOperator::Xor:
2093  case BinaryOperator::Or:
2094  case BinaryOperator::LAnd:
2095  case BinaryOperator::LOr:
2096  case BinaryOperator::Assign:
2097  case BinaryOperator::Comma:
2098    assert(false && "Not valid compound assignment operators");
2099    break;
2100  }
2101
2102  llvm_unreachable("Unhandled compound assignment operator");
2103}
2104