CodeGenFunction.cpp revision 0e88aa7100da32acc63bc8a4dcb946ed517868f1
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGException.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Intrinsics.h"
28using namespace clang;
29using namespace CodeGen;
30
31static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                   llvm::SwitchInst *Switch,
33                                   llvm::BasicBlock *CleanupEntry);
34
35CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36  : BlockFunction(cgm, *this, Builder), CGM(cgm),
37    Target(CGM.getContext().Target),
38    Builder(cgm.getModule().getContext()),
39    NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40    ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41    SwitchInsn(0), CaseRangeBlock(0),
42    DidCallStackSave(false), UnreachableBlock(0),
43    CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44    ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
45    TrapBB(0) {
46
47  // Get some frequently used types.
48  LLVMPointerWidth = Target.getPointerWidth(0);
49  llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50  IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51  Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52  Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53
54  Exceptions = getContext().getLangOptions().Exceptions;
55  CatchUndefined = getContext().getLangOptions().CatchUndefined;
56  CGM.getCXXABI().getMangleContext().startNewFunction();
57}
58
59ASTContext &CodeGenFunction::getContext() const {
60  return CGM.getContext();
61}
62
63
64const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65  return CGM.getTypes().ConvertTypeForMem(T);
66}
67
68const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69  return CGM.getTypes().ConvertType(T);
70}
71
72bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73  return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74    T->isObjCObjectType();
75}
76
77void CodeGenFunction::EmitReturnBlock() {
78  // For cleanliness, we try to avoid emitting the return block for
79  // simple cases.
80  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81
82  if (CurBB) {
83    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84
85    // We have a valid insert point, reuse it if it is empty or there are no
86    // explicit jumps to the return block.
87    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89      delete ReturnBlock.getBlock();
90    } else
91      EmitBlock(ReturnBlock.getBlock());
92    return;
93  }
94
95  // Otherwise, if the return block is the target of a single direct
96  // branch then we can just put the code in that block instead. This
97  // cleans up functions which started with a unified return block.
98  if (ReturnBlock.getBlock()->hasOneUse()) {
99    llvm::BranchInst *BI =
100      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101    if (BI && BI->isUnconditional() &&
102        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103      // Reset insertion point and delete the branch.
104      Builder.SetInsertPoint(BI->getParent());
105      BI->eraseFromParent();
106      delete ReturnBlock.getBlock();
107      return;
108    }
109  }
110
111  // FIXME: We are at an unreachable point, there is no reason to emit the block
112  // unless it has uses. However, we still need a place to put the debug
113  // region.end for now.
114
115  EmitBlock(ReturnBlock.getBlock());
116}
117
118static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119  if (!BB) return;
120  if (!BB->use_empty())
121    return CGF.CurFn->getBasicBlockList().push_back(BB);
122  delete BB;
123}
124
125void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126  assert(BreakContinueStack.empty() &&
127         "mismatched push/pop in break/continue stack!");
128
129  // Emit function epilog (to return).
130  EmitReturnBlock();
131
132  EmitFunctionInstrumentation("__cyg_profile_func_exit");
133
134  // Emit debug descriptor for function end.
135  if (CGDebugInfo *DI = getDebugInfo()) {
136    DI->setLocation(EndLoc);
137    DI->EmitFunctionEnd(Builder);
138  }
139
140  EmitFunctionEpilog(*CurFnInfo);
141  EmitEndEHSpec(CurCodeDecl);
142
143  assert(EHStack.empty() &&
144         "did not remove all scopes from cleanup stack!");
145
146  // If someone did an indirect goto, emit the indirect goto block at the end of
147  // the function.
148  if (IndirectBranch) {
149    EmitBlock(IndirectBranch->getParent());
150    Builder.ClearInsertionPoint();
151  }
152
153  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154  llvm::Instruction *Ptr = AllocaInsertPt;
155  AllocaInsertPt = 0;
156  Ptr->eraseFromParent();
157
158  // If someone took the address of a label but never did an indirect goto, we
159  // made a zero entry PHI node, which is illegal, zap it now.
160  if (IndirectBranch) {
161    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162    if (PN->getNumIncomingValues() == 0) {
163      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164      PN->eraseFromParent();
165    }
166  }
167
168  EmitIfUsed(*this, RethrowBlock.getBlock());
169  EmitIfUsed(*this, TerminateLandingPad);
170  EmitIfUsed(*this, TerminateHandler);
171  EmitIfUsed(*this, UnreachableBlock);
172
173  if (CGM.getCodeGenOpts().EmitDeclMetadata)
174    EmitDeclMetadata();
175}
176
177/// ShouldInstrumentFunction - Return true if the current function should be
178/// instrumented with __cyg_profile_func_* calls
179bool CodeGenFunction::ShouldInstrumentFunction() {
180  if (!CGM.getCodeGenOpts().InstrumentFunctions)
181    return false;
182  if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183    return false;
184  return true;
185}
186
187/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188/// instrumentation function with the current function and the call site, if
189/// function instrumentation is enabled.
190void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191  if (!ShouldInstrumentFunction())
192    return;
193
194  const llvm::PointerType *PointerTy;
195  const llvm::FunctionType *FunctionTy;
196  std::vector<const llvm::Type*> ProfileFuncArgs;
197
198  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199  PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200  ProfileFuncArgs.push_back(PointerTy);
201  ProfileFuncArgs.push_back(PointerTy);
202  FunctionTy = llvm::FunctionType::get(
203    llvm::Type::getVoidTy(VMContext),
204    ProfileFuncArgs, false);
205
206  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207  llvm::CallInst *CallSite = Builder.CreateCall(
208    CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209    llvm::ConstantInt::get(Int32Ty, 0),
210    "callsite");
211
212  Builder.CreateCall2(F,
213                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                      CallSite);
215}
216
217void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                    llvm::Function *Fn,
219                                    const FunctionArgList &Args,
220                                    SourceLocation StartLoc) {
221  const Decl *D = GD.getDecl();
222
223  DidCallStackSave = false;
224  CurCodeDecl = CurFuncDecl = D;
225  FnRetTy = RetTy;
226  CurFn = Fn;
227  assert(CurFn->isDeclaration() && "Function already has body?");
228
229  // Pass inline keyword to optimizer if it appears explicitly on any
230  // declaration.
231  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233           RE = FD->redecls_end(); RI != RE; ++RI)
234      if (RI->isInlineSpecified()) {
235        Fn->addFnAttr(llvm::Attribute::InlineHint);
236        break;
237      }
238
239  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240
241  // Create a marker to make it easy to insert allocas into the entryblock
242  // later.  Don't create this with the builder, because we don't want it
243  // folded.
244  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246  if (Builder.isNamePreserving())
247    AllocaInsertPt->setName("allocapt");
248
249  ReturnBlock = getJumpDestInCurrentScope("return");
250
251  Builder.SetInsertPoint(EntryBB);
252
253  // Emit subprogram debug descriptor.
254  if (CGDebugInfo *DI = getDebugInfo()) {
255    // FIXME: what is going on here and why does it ignore all these
256    // interesting type properties?
257    QualType FnType =
258      getContext().getFunctionType(RetTy, 0, 0,
259                                   FunctionProtoType::ExtProtoInfo());
260
261    DI->setLocation(StartLoc);
262    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
263  }
264
265  EmitFunctionInstrumentation("__cyg_profile_func_enter");
266
267  // FIXME: Leaked.
268  // CC info is ignored, hopefully?
269  CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
270                                              FunctionType::ExtInfo());
271
272  if (RetTy->isVoidType()) {
273    // Void type; nothing to return.
274    ReturnValue = 0;
275  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
276             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
277    // Indirect aggregate return; emit returned value directly into sret slot.
278    // This reduces code size, and affects correctness in C++.
279    ReturnValue = CurFn->arg_begin();
280  } else {
281    ReturnValue = CreateIRTemp(RetTy, "retval");
282  }
283
284  EmitStartEHSpec(CurCodeDecl);
285  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
286
287  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
288    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
289
290  // If any of the arguments have a variably modified type, make sure to
291  // emit the type size.
292  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
293       i != e; ++i) {
294    QualType Ty = i->second;
295
296    if (Ty->isVariablyModifiedType())
297      EmitVLASize(Ty);
298  }
299}
300
301void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
302  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
303  assert(FD->getBody());
304  EmitStmt(FD->getBody());
305}
306
307/// Tries to mark the given function nounwind based on the
308/// non-existence of any throwing calls within it.  We believe this is
309/// lightweight enough to do at -O0.
310static void TryMarkNoThrow(llvm::Function *F) {
311  // LLVM treats 'nounwind' on a function as part of the type, so we
312  // can't do this on functions that can be overwritten.
313  if (F->mayBeOverridden()) return;
314
315  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
316    for (llvm::BasicBlock::iterator
317           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
318      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
319        if (!Call->doesNotThrow())
320          return;
321  F->setDoesNotThrow(true);
322}
323
324void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
325  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326
327  // Check if we should generate debug info for this function.
328  if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
329    DebugInfo = CGM.getDebugInfo();
330
331  FunctionArgList Args;
332  QualType ResTy = FD->getResultType();
333
334  CurGD = GD;
335  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
336    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
337
338  if (FD->getNumParams()) {
339    const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
340    assert(FProto && "Function def must have prototype!");
341
342    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
343      Args.push_back(std::make_pair(FD->getParamDecl(i),
344                                    FProto->getArgType(i)));
345  }
346
347  SourceRange BodyRange;
348  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
349
350  // Emit the standard function prologue.
351  StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
352
353  // Generate the body of the function.
354  if (isa<CXXDestructorDecl>(FD))
355    EmitDestructorBody(Args);
356  else if (isa<CXXConstructorDecl>(FD))
357    EmitConstructorBody(Args);
358  else
359    EmitFunctionBody(Args);
360
361  // Emit the standard function epilogue.
362  FinishFunction(BodyRange.getEnd());
363
364  // If we haven't marked the function nothrow through other means, do
365  // a quick pass now to see if we can.
366  if (!CurFn->doesNotThrow())
367    TryMarkNoThrow(CurFn);
368}
369
370/// ContainsLabel - Return true if the statement contains a label in it.  If
371/// this statement is not executed normally, it not containing a label means
372/// that we can just remove the code.
373bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
374  // Null statement, not a label!
375  if (S == 0) return false;
376
377  // If this is a label, we have to emit the code, consider something like:
378  // if (0) {  ...  foo:  bar(); }  goto foo;
379  if (isa<LabelStmt>(S))
380    return true;
381
382  // If this is a case/default statement, and we haven't seen a switch, we have
383  // to emit the code.
384  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
385    return true;
386
387  // If this is a switch statement, we want to ignore cases below it.
388  if (isa<SwitchStmt>(S))
389    IgnoreCaseStmts = true;
390
391  // Scan subexpressions for verboten labels.
392  for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
393       I != E; ++I)
394    if (ContainsLabel(*I, IgnoreCaseStmts))
395      return true;
396
397  return false;
398}
399
400
401/// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
402/// a constant, or if it does but contains a label, return 0.  If it constant
403/// folds to 'true' and does not contain a label, return 1, if it constant folds
404/// to 'false' and does not contain a label, return -1.
405int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
406  // FIXME: Rename and handle conversion of other evaluatable things
407  // to bool.
408  Expr::EvalResult Result;
409  if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
410      Result.HasSideEffects)
411    return 0;  // Not foldable, not integer or not fully evaluatable.
412
413  if (CodeGenFunction::ContainsLabel(Cond))
414    return 0;  // Contains a label.
415
416  return Result.Val.getInt().getBoolValue() ? 1 : -1;
417}
418
419
420/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
421/// statement) to the specified blocks.  Based on the condition, this might try
422/// to simplify the codegen of the conditional based on the branch.
423///
424void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
425                                           llvm::BasicBlock *TrueBlock,
426                                           llvm::BasicBlock *FalseBlock) {
427  if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
428    return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
429
430  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
431    // Handle X && Y in a condition.
432    if (CondBOp->getOpcode() == BO_LAnd) {
433      // If we have "1 && X", simplify the code.  "0 && X" would have constant
434      // folded if the case was simple enough.
435      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
436        // br(1 && X) -> br(X).
437        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
438      }
439
440      // If we have "X && 1", simplify the code to use an uncond branch.
441      // "X && 0" would have been constant folded to 0.
442      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
443        // br(X && 1) -> br(X).
444        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
445      }
446
447      // Emit the LHS as a conditional.  If the LHS conditional is false, we
448      // want to jump to the FalseBlock.
449      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
450      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
451      EmitBlock(LHSTrue);
452
453      // Any temporaries created here are conditional.
454      BeginConditionalBranch();
455      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
456      EndConditionalBranch();
457
458      return;
459    } else if (CondBOp->getOpcode() == BO_LOr) {
460      // If we have "0 || X", simplify the code.  "1 || X" would have constant
461      // folded if the case was simple enough.
462      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
463        // br(0 || X) -> br(X).
464        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
465      }
466
467      // If we have "X || 0", simplify the code to use an uncond branch.
468      // "X || 1" would have been constant folded to 1.
469      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
470        // br(X || 0) -> br(X).
471        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
472      }
473
474      // Emit the LHS as a conditional.  If the LHS conditional is true, we
475      // want to jump to the TrueBlock.
476      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
477      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
478      EmitBlock(LHSFalse);
479
480      // Any temporaries created here are conditional.
481      BeginConditionalBranch();
482      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
483      EndConditionalBranch();
484
485      return;
486    }
487  }
488
489  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
490    // br(!x, t, f) -> br(x, f, t)
491    if (CondUOp->getOpcode() == UO_LNot)
492      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
493  }
494
495  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
496    // Handle ?: operator.
497
498    // Just ignore GNU ?: extension.
499    if (CondOp->getLHS()) {
500      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
501      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
502      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
503      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
504      EmitBlock(LHSBlock);
505      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
506      EmitBlock(RHSBlock);
507      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
508      return;
509    }
510  }
511
512  // Emit the code with the fully general case.
513  llvm::Value *CondV = EvaluateExprAsBool(Cond);
514  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
515}
516
517/// ErrorUnsupported - Print out an error that codegen doesn't support the
518/// specified stmt yet.
519void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
520                                       bool OmitOnError) {
521  CGM.ErrorUnsupported(S, Type, OmitOnError);
522}
523
524void
525CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
526  // Ignore empty classes in C++.
527  if (getContext().getLangOptions().CPlusPlus) {
528    if (const RecordType *RT = Ty->getAs<RecordType>()) {
529      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
530        return;
531    }
532  }
533
534  // Cast the dest ptr to the appropriate i8 pointer type.
535  unsigned DestAS =
536    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
537  const llvm::Type *BP =
538    llvm::Type::getInt8PtrTy(VMContext, DestAS);
539  if (DestPtr->getType() != BP)
540    DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
541
542  // Get size and alignment info for this aggregate.
543  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
544  uint64_t Size = TypeInfo.first;
545  unsigned Align = TypeInfo.second;
546
547  // Don't bother emitting a zero-byte memset.
548  if (Size == 0)
549    return;
550
551  llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
552  llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
553
554  // If the type contains a pointer to data member we can't memset it to zero.
555  // Instead, create a null constant and copy it to the destination.
556  if (!CGM.getTypes().isZeroInitializable(Ty)) {
557    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
558
559    llvm::GlobalVariable *NullVariable =
560      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
561                               /*isConstant=*/true,
562                               llvm::GlobalVariable::PrivateLinkage,
563                               NullConstant, llvm::Twine());
564    llvm::Value *SrcPtr =
565      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
566
567    // FIXME: variable-size types?
568
569    // Get and call the appropriate llvm.memcpy overload.
570    llvm::Constant *Memcpy =
571      CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
572    Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
573                        /*volatile*/ Builder.getFalse());
574    return;
575  }
576
577  // Otherwise, just memset the whole thing to zero.  This is legal
578  // because in LLVM, all default initializers (other than the ones we just
579  // handled above) are guaranteed to have a bit pattern of all zeros.
580
581  // FIXME: Handle variable sized types.
582  Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
583                      Builder.getInt8(0),
584                      SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
585}
586
587llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
588  // Make sure that there is a block for the indirect goto.
589  if (IndirectBranch == 0)
590    GetIndirectGotoBlock();
591
592  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
593
594  // Make sure the indirect branch includes all of the address-taken blocks.
595  IndirectBranch->addDestination(BB);
596  return llvm::BlockAddress::get(CurFn, BB);
597}
598
599llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
600  // If we already made the indirect branch for indirect goto, return its block.
601  if (IndirectBranch) return IndirectBranch->getParent();
602
603  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
604
605  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
606
607  // Create the PHI node that indirect gotos will add entries to.
608  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
609
610  // Create the indirect branch instruction.
611  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
612  return IndirectBranch->getParent();
613}
614
615llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
616  llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
617
618  assert(SizeEntry && "Did not emit size for type");
619  return SizeEntry;
620}
621
622llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
623  assert(Ty->isVariablyModifiedType() &&
624         "Must pass variably modified type to EmitVLASizes!");
625
626  EnsureInsertPoint();
627
628  if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
629    // unknown size indication requires no size computation.
630    if (!VAT->getSizeExpr())
631      return 0;
632    llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
633
634    if (!SizeEntry) {
635      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
636
637      // Get the element size;
638      QualType ElemTy = VAT->getElementType();
639      llvm::Value *ElemSize;
640      if (ElemTy->isVariableArrayType())
641        ElemSize = EmitVLASize(ElemTy);
642      else
643        ElemSize = llvm::ConstantInt::get(SizeTy,
644            getContext().getTypeSizeInChars(ElemTy).getQuantity());
645
646      llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
647      NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
648
649      SizeEntry = Builder.CreateMul(ElemSize, NumElements);
650    }
651
652    return SizeEntry;
653  }
654
655  if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
656    EmitVLASize(AT->getElementType());
657    return 0;
658  }
659
660  if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
661    EmitVLASize(PT->getInnerType());
662    return 0;
663  }
664
665  const PointerType *PT = Ty->getAs<PointerType>();
666  assert(PT && "unknown VM type!");
667  EmitVLASize(PT->getPointeeType());
668  return 0;
669}
670
671llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
672  if (getContext().getBuiltinVaListType()->isArrayType())
673    return EmitScalarExpr(E);
674  return EmitLValue(E).getAddress();
675}
676
677/// Pops cleanup blocks until the given savepoint is reached.
678void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
679  assert(Old.isValid());
680
681  while (EHStack.stable_begin() != Old) {
682    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
683
684    // As long as Old strictly encloses the scope's enclosing normal
685    // cleanup, we're going to emit another normal cleanup which
686    // fallthrough can propagate through.
687    bool FallThroughIsBranchThrough =
688      Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
689
690    PopCleanupBlock(FallThroughIsBranchThrough);
691  }
692}
693
694static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
695                                           EHCleanupScope &Scope) {
696  assert(Scope.isNormalCleanup());
697  llvm::BasicBlock *Entry = Scope.getNormalBlock();
698  if (!Entry) {
699    Entry = CGF.createBasicBlock("cleanup");
700    Scope.setNormalBlock(Entry);
701  }
702  return Entry;
703}
704
705static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
706                                       EHCleanupScope &Scope) {
707  assert(Scope.isEHCleanup());
708  llvm::BasicBlock *Entry = Scope.getEHBlock();
709  if (!Entry) {
710    Entry = CGF.createBasicBlock("eh.cleanup");
711    Scope.setEHBlock(Entry);
712  }
713  return Entry;
714}
715
716/// Transitions the terminator of the given exit-block of a cleanup to
717/// be a cleanup switch.
718static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
719                                                   llvm::BasicBlock *Block) {
720  // If it's a branch, turn it into a switch whose default
721  // destination is its original target.
722  llvm::TerminatorInst *Term = Block->getTerminator();
723  assert(Term && "can't transition block without terminator");
724
725  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
726    assert(Br->isUnconditional());
727    llvm::LoadInst *Load =
728      new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
729    llvm::SwitchInst *Switch =
730      llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
731    Br->eraseFromParent();
732    return Switch;
733  } else {
734    return cast<llvm::SwitchInst>(Term);
735  }
736}
737
738/// Attempts to reduce a cleanup's entry block to a fallthrough.  This
739/// is basically llvm::MergeBlockIntoPredecessor, except
740/// simplified/optimized for the tighter constraints on cleanup blocks.
741///
742/// Returns the new block, whatever it is.
743static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
744                                              llvm::BasicBlock *Entry) {
745  llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
746  if (!Pred) return Entry;
747
748  llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
749  if (!Br || Br->isConditional()) return Entry;
750  assert(Br->getSuccessor(0) == Entry);
751
752  // If we were previously inserting at the end of the cleanup entry
753  // block, we'll need to continue inserting at the end of the
754  // predecessor.
755  bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
756  assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
757
758  // Kill the branch.
759  Br->eraseFromParent();
760
761  // Merge the blocks.
762  Pred->getInstList().splice(Pred->end(), Entry->getInstList());
763
764  // Kill the entry block.
765  Entry->eraseFromParent();
766
767  if (WasInsertBlock)
768    CGF.Builder.SetInsertPoint(Pred);
769
770  return Pred;
771}
772
773static void EmitCleanup(CodeGenFunction &CGF,
774                        EHScopeStack::Cleanup *Fn,
775                        bool ForEH,
776                        llvm::Value *ActiveFlag) {
777  // EH cleanups always occur within a terminate scope.
778  if (ForEH) CGF.EHStack.pushTerminate();
779
780  // If there's an active flag, load it and skip the cleanup if it's
781  // false.
782  llvm::BasicBlock *ContBB = 0;
783  if (ActiveFlag) {
784    ContBB = CGF.createBasicBlock("cleanup.done");
785    llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
786    llvm::Value *IsActive
787      = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
788    CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
789    CGF.EmitBlock(CleanupBB);
790  }
791
792  // Ask the cleanup to emit itself.
793  Fn->Emit(CGF, ForEH);
794  assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
795
796  // Emit the continuation block if there was an active flag.
797  if (ActiveFlag)
798    CGF.EmitBlock(ContBB);
799
800  // Leave the terminate scope.
801  if (ForEH) CGF.EHStack.popTerminate();
802}
803
804static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
805                                          llvm::BasicBlock *From,
806                                          llvm::BasicBlock *To) {
807  // Exit is the exit block of a cleanup, so it always terminates in
808  // an unconditional branch or a switch.
809  llvm::TerminatorInst *Term = Exit->getTerminator();
810
811  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
812    assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
813    Br->setSuccessor(0, To);
814  } else {
815    llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
816    for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
817      if (Switch->getSuccessor(I) == From)
818        Switch->setSuccessor(I, To);
819  }
820}
821
822/// Pops a cleanup block.  If the block includes a normal cleanup, the
823/// current insertion point is threaded through the cleanup, as are
824/// any branch fixups on the cleanup.
825void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
826  assert(!EHStack.empty() && "cleanup stack is empty!");
827  assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
828  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
829  assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
830
831  // Remember activation information.
832  bool IsActive = Scope.isActive();
833  llvm::Value *NormalActiveFlag =
834    Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
835  llvm::Value *EHActiveFlag =
836    Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
837
838  // Check whether we need an EH cleanup.  This is only true if we've
839  // generated a lazy EH cleanup block.
840  bool RequiresEHCleanup = Scope.hasEHBranches();
841
842  // Check the three conditions which might require a normal cleanup:
843
844  // - whether there are branch fix-ups through this cleanup
845  unsigned FixupDepth = Scope.getFixupDepth();
846  bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
847
848  // - whether there are branch-throughs or branch-afters
849  bool HasExistingBranches = Scope.hasBranches();
850
851  // - whether there's a fallthrough
852  llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
853  bool HasFallthrough = (FallthroughSource != 0 && IsActive);
854
855  // Branch-through fall-throughs leave the insertion point set to the
856  // end of the last cleanup, which points to the current scope.  The
857  // rest of IR gen doesn't need to worry about this; it only happens
858  // during the execution of PopCleanupBlocks().
859  bool HasPrebranchedFallthrough =
860    (FallthroughSource && FallthroughSource->getTerminator());
861
862  // If this is a normal cleanup, then having a prebranched
863  // fallthrough implies that the fallthrough source unconditionally
864  // jumps here.
865  assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
866         (Scope.getNormalBlock() &&
867          FallthroughSource->getTerminator()->getSuccessor(0)
868            == Scope.getNormalBlock()));
869
870  bool RequiresNormalCleanup = false;
871  if (Scope.isNormalCleanup() &&
872      (HasFixups || HasExistingBranches || HasFallthrough)) {
873    RequiresNormalCleanup = true;
874  }
875
876  // Even if we don't need the normal cleanup, we might still have
877  // prebranched fallthrough to worry about.
878  if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
879      HasPrebranchedFallthrough) {
880    assert(!IsActive);
881
882    llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
883
884    // If we're branching through this cleanup, just forward the
885    // prebranched fallthrough to the next cleanup, leaving the insert
886    // point in the old block.
887    if (FallthroughIsBranchThrough) {
888      EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
889      llvm::BasicBlock *EnclosingEntry =
890        CreateNormalEntry(*this, cast<EHCleanupScope>(S));
891
892      ForwardPrebranchedFallthrough(FallthroughSource,
893                                    NormalEntry, EnclosingEntry);
894      assert(NormalEntry->use_empty() &&
895             "uses of entry remain after forwarding?");
896      delete NormalEntry;
897
898    // Otherwise, we're branching out;  just emit the next block.
899    } else {
900      EmitBlock(NormalEntry);
901      SimplifyCleanupEntry(*this, NormalEntry);
902    }
903  }
904
905  // If we don't need the cleanup at all, we're done.
906  if (!RequiresNormalCleanup && !RequiresEHCleanup) {
907    EHStack.popCleanup(); // safe because there are no fixups
908    assert(EHStack.getNumBranchFixups() == 0 ||
909           EHStack.hasNormalCleanups());
910    return;
911  }
912
913  // Copy the cleanup emission data out.  Note that SmallVector
914  // guarantees maximal alignment for its buffer regardless of its
915  // type parameter.
916  llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
917  CleanupBuffer.reserve(Scope.getCleanupSize());
918  memcpy(CleanupBuffer.data(),
919         Scope.getCleanupBuffer(), Scope.getCleanupSize());
920  CleanupBuffer.set_size(Scope.getCleanupSize());
921  EHScopeStack::Cleanup *Fn =
922    reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
923
924  // We want to emit the EH cleanup after the normal cleanup, but go
925  // ahead and do the setup for the EH cleanup while the scope is still
926  // alive.
927  llvm::BasicBlock *EHEntry = 0;
928  llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
929  if (RequiresEHCleanup) {
930    EHEntry = CreateEHEntry(*this, Scope);
931
932    // Figure out the branch-through dest if necessary.
933    llvm::BasicBlock *EHBranchThroughDest = 0;
934    if (Scope.hasEHBranchThroughs()) {
935      assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
936      EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
937      EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
938    }
939
940    // If we have exactly one branch-after and no branch-throughs, we
941    // can dispatch it without a switch.
942    if (!Scope.hasEHBranchThroughs() &&
943        Scope.getNumEHBranchAfters() == 1) {
944      assert(!EHBranchThroughDest);
945
946      // TODO: remove the spurious eh.cleanup.dest stores if this edge
947      // never went through any switches.
948      llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
949      EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
950
951    // Otherwise, if we have any branch-afters, we need a switch.
952    } else if (Scope.getNumEHBranchAfters()) {
953      // The default of the switch belongs to the branch-throughs if
954      // they exist.
955      llvm::BasicBlock *Default =
956        (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
957
958      const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
959
960      llvm::LoadInst *Load =
961        new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
962      llvm::SwitchInst *Switch =
963        llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
964
965      EHInstsToAppend.push_back(Load);
966      EHInstsToAppend.push_back(Switch);
967
968      for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
969        Switch->addCase(Scope.getEHBranchAfterIndex(I),
970                        Scope.getEHBranchAfterBlock(I));
971
972    // Otherwise, we have only branch-throughs; jump to the next EH
973    // cleanup.
974    } else {
975      assert(EHBranchThroughDest);
976      EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
977    }
978  }
979
980  if (!RequiresNormalCleanup) {
981    EHStack.popCleanup();
982  } else {
983    // If we have a fallthrough and no other need for the cleanup,
984    // emit it directly.
985    if (HasFallthrough && !HasPrebranchedFallthrough &&
986        !HasFixups && !HasExistingBranches) {
987
988      // Fixups can cause us to optimistically create a normal block,
989      // only to later have no real uses for it.  Just delete it in
990      // this case.
991      // TODO: we can potentially simplify all the uses after this.
992      if (Scope.getNormalBlock()) {
993        Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
994        delete Scope.getNormalBlock();
995      }
996
997      EHStack.popCleanup();
998
999      EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1000
1001    // Otherwise, the best approach is to thread everything through
1002    // the cleanup block and then try to clean up after ourselves.
1003    } else {
1004      // Force the entry block to exist.
1005      llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
1006
1007      // I.  Set up the fallthrough edge in.
1008
1009      // If there's a fallthrough, we need to store the cleanup
1010      // destination index.  For fall-throughs this is always zero.
1011      if (HasFallthrough) {
1012        if (!HasPrebranchedFallthrough)
1013          Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1014
1015      // Otherwise, clear the IP if we don't have fallthrough because
1016      // the cleanup is inactive.  We don't need to save it because
1017      // it's still just FallthroughSource.
1018      } else if (FallthroughSource) {
1019        assert(!IsActive && "source without fallthrough for active cleanup");
1020        Builder.ClearInsertionPoint();
1021      }
1022
1023      // II.  Emit the entry block.  This implicitly branches to it if
1024      // we have fallthrough.  All the fixups and existing branches
1025      // should already be branched to it.
1026      EmitBlock(NormalEntry);
1027
1028      // III.  Figure out where we're going and build the cleanup
1029      // epilogue.
1030
1031      bool HasEnclosingCleanups =
1032        (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1033
1034      // Compute the branch-through dest if we need it:
1035      //   - if there are branch-throughs threaded through the scope
1036      //   - if fall-through is a branch-through
1037      //   - if there are fixups that will be optimistically forwarded
1038      //     to the enclosing cleanup
1039      llvm::BasicBlock *BranchThroughDest = 0;
1040      if (Scope.hasBranchThroughs() ||
1041          (FallthroughSource && FallthroughIsBranchThrough) ||
1042          (HasFixups && HasEnclosingCleanups)) {
1043        assert(HasEnclosingCleanups);
1044        EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1045        BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1046      }
1047
1048      llvm::BasicBlock *FallthroughDest = 0;
1049      llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1050
1051      // If there's exactly one branch-after and no other threads,
1052      // we can route it without a switch.
1053      if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1054          Scope.getNumBranchAfters() == 1) {
1055        assert(!BranchThroughDest || !IsActive);
1056
1057        // TODO: clean up the possibly dead stores to the cleanup dest slot.
1058        llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1059        InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1060
1061      // Build a switch-out if we need it:
1062      //   - if there are branch-afters threaded through the scope
1063      //   - if fall-through is a branch-after
1064      //   - if there are fixups that have nowhere left to go and
1065      //     so must be immediately resolved
1066      } else if (Scope.getNumBranchAfters() ||
1067                 (HasFallthrough && !FallthroughIsBranchThrough) ||
1068                 (HasFixups && !HasEnclosingCleanups)) {
1069
1070        llvm::BasicBlock *Default =
1071          (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1072
1073        // TODO: base this on the number of branch-afters and fixups
1074        const unsigned SwitchCapacity = 10;
1075
1076        llvm::LoadInst *Load =
1077          new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1078        llvm::SwitchInst *Switch =
1079          llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1080
1081        InstsToAppend.push_back(Load);
1082        InstsToAppend.push_back(Switch);
1083
1084        // Branch-after fallthrough.
1085        if (FallthroughSource && !FallthroughIsBranchThrough) {
1086          FallthroughDest = createBasicBlock("cleanup.cont");
1087          if (HasFallthrough)
1088            Switch->addCase(Builder.getInt32(0), FallthroughDest);
1089        }
1090
1091        for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1092          Switch->addCase(Scope.getBranchAfterIndex(I),
1093                          Scope.getBranchAfterBlock(I));
1094        }
1095
1096        // If there aren't any enclosing cleanups, we can resolve all
1097        // the fixups now.
1098        if (HasFixups && !HasEnclosingCleanups)
1099          ResolveAllBranchFixups(*this, Switch, NormalEntry);
1100      } else {
1101        // We should always have a branch-through destination in this case.
1102        assert(BranchThroughDest);
1103        InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1104      }
1105
1106      // IV.  Pop the cleanup and emit it.
1107      EHStack.popCleanup();
1108      assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1109
1110      EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1111
1112      // Append the prepared cleanup prologue from above.
1113      llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1114      for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1115        NormalExit->getInstList().push_back(InstsToAppend[I]);
1116
1117      // Optimistically hope that any fixups will continue falling through.
1118      for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1119           I < E; ++I) {
1120        BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1121        if (!Fixup.Destination) continue;
1122        if (!Fixup.OptimisticBranchBlock) {
1123          new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1124                              getNormalCleanupDestSlot(),
1125                              Fixup.InitialBranch);
1126          Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1127        }
1128        Fixup.OptimisticBranchBlock = NormalExit;
1129      }
1130
1131      // V.  Set up the fallthrough edge out.
1132
1133      // Case 1: a fallthrough source exists but shouldn't branch to
1134      // the cleanup because the cleanup is inactive.
1135      if (!HasFallthrough && FallthroughSource) {
1136        assert(!IsActive);
1137
1138        // If we have a prebranched fallthrough, that needs to be
1139        // forwarded to the right block.
1140        if (HasPrebranchedFallthrough) {
1141          llvm::BasicBlock *Next;
1142          if (FallthroughIsBranchThrough) {
1143            Next = BranchThroughDest;
1144            assert(!FallthroughDest);
1145          } else {
1146            Next = FallthroughDest;
1147          }
1148
1149          ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1150        }
1151        Builder.SetInsertPoint(FallthroughSource);
1152
1153      // Case 2: a fallthrough source exists and should branch to the
1154      // cleanup, but we're not supposed to branch through to the next
1155      // cleanup.
1156      } else if (HasFallthrough && FallthroughDest) {
1157        assert(!FallthroughIsBranchThrough);
1158        EmitBlock(FallthroughDest);
1159
1160      // Case 3: a fallthrough source exists and should branch to the
1161      // cleanup and then through to the next.
1162      } else if (HasFallthrough) {
1163        // Everything is already set up for this.
1164
1165      // Case 4: no fallthrough source exists.
1166      } else {
1167        Builder.ClearInsertionPoint();
1168      }
1169
1170      // VI.  Assorted cleaning.
1171
1172      // Check whether we can merge NormalEntry into a single predecessor.
1173      // This might invalidate (non-IR) pointers to NormalEntry.
1174      llvm::BasicBlock *NewNormalEntry =
1175        SimplifyCleanupEntry(*this, NormalEntry);
1176
1177      // If it did invalidate those pointers, and NormalEntry was the same
1178      // as NormalExit, go back and patch up the fixups.
1179      if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1180        for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1181               I < E; ++I)
1182          CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1183    }
1184  }
1185
1186  assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1187
1188  // Emit the EH cleanup if required.
1189  if (RequiresEHCleanup) {
1190    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1191
1192    EmitBlock(EHEntry);
1193    EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1194
1195    // Append the prepared cleanup prologue from above.
1196    llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1197    for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1198      EHExit->getInstList().push_back(EHInstsToAppend[I]);
1199
1200    Builder.restoreIP(SavedIP);
1201
1202    SimplifyCleanupEntry(*this, EHEntry);
1203  }
1204}
1205
1206/// Terminate the current block by emitting a branch which might leave
1207/// the current cleanup-protected scope.  The target scope may not yet
1208/// be known, in which case this will require a fixup.
1209///
1210/// As a side-effect, this method clears the insertion point.
1211void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1212  assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1213         && "stale jump destination");
1214
1215  if (!HaveInsertPoint())
1216    return;
1217
1218  // Create the branch.
1219  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1220
1221  // Calculate the innermost active normal cleanup.
1222  EHScopeStack::stable_iterator
1223    TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1224
1225  // If we're not in an active normal cleanup scope, or if the
1226  // destination scope is within the innermost active normal cleanup
1227  // scope, we don't need to worry about fixups.
1228  if (TopCleanup == EHStack.stable_end() ||
1229      TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1230    Builder.ClearInsertionPoint();
1231    return;
1232  }
1233
1234  // If we can't resolve the destination cleanup scope, just add this
1235  // to the current cleanup scope as a branch fixup.
1236  if (!Dest.getScopeDepth().isValid()) {
1237    BranchFixup &Fixup = EHStack.addBranchFixup();
1238    Fixup.Destination = Dest.getBlock();
1239    Fixup.DestinationIndex = Dest.getDestIndex();
1240    Fixup.InitialBranch = BI;
1241    Fixup.OptimisticBranchBlock = 0;
1242
1243    Builder.ClearInsertionPoint();
1244    return;
1245  }
1246
1247  // Otherwise, thread through all the normal cleanups in scope.
1248
1249  // Store the index at the start.
1250  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1251  new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1252
1253  // Adjust BI to point to the first cleanup block.
1254  {
1255    EHCleanupScope &Scope =
1256      cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1257    BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1258  }
1259
1260  // Add this destination to all the scopes involved.
1261  EHScopeStack::stable_iterator I = TopCleanup;
1262  EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1263  if (E.strictlyEncloses(I)) {
1264    while (true) {
1265      EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1266      assert(Scope.isNormalCleanup());
1267      I = Scope.getEnclosingNormalCleanup();
1268
1269      // If this is the last cleanup we're propagating through, tell it
1270      // that there's a resolved jump moving through it.
1271      if (!E.strictlyEncloses(I)) {
1272        Scope.addBranchAfter(Index, Dest.getBlock());
1273        break;
1274      }
1275
1276      // Otherwise, tell the scope that there's a jump propoagating
1277      // through it.  If this isn't new information, all the rest of
1278      // the work has been done before.
1279      if (!Scope.addBranchThrough(Dest.getBlock()))
1280        break;
1281    }
1282  }
1283
1284  Builder.ClearInsertionPoint();
1285}
1286
1287void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1288  // We should never get invalid scope depths for an UnwindDest; that
1289  // implies that the destination wasn't set up correctly.
1290  assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1291
1292  if (!HaveInsertPoint())
1293    return;
1294
1295  // Create the branch.
1296  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1297
1298  // Calculate the innermost active cleanup.
1299  EHScopeStack::stable_iterator
1300    InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1301
1302  // If the destination is in the same EH cleanup scope as us, we
1303  // don't need to thread through anything.
1304  if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1305    Builder.ClearInsertionPoint();
1306    return;
1307  }
1308  assert(InnermostCleanup != EHStack.stable_end());
1309
1310  // Store the index at the start.
1311  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1312  new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1313
1314  // Adjust BI to point to the first cleanup block.
1315  {
1316    EHCleanupScope &Scope =
1317      cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1318    BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1319  }
1320
1321  // Add this destination to all the scopes involved.
1322  for (EHScopeStack::stable_iterator
1323         I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1324    assert(E.strictlyEncloses(I));
1325    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1326    assert(Scope.isEHCleanup());
1327    I = Scope.getEnclosingEHCleanup();
1328
1329    // If this is the last cleanup we're propagating through, add this
1330    // as a branch-after.
1331    if (I == E) {
1332      Scope.addEHBranchAfter(Index, Dest.getBlock());
1333      break;
1334    }
1335
1336    // Otherwise, add it as a branch-through.  If this isn't new
1337    // information, all the rest of the work has been done before.
1338    if (!Scope.addEHBranchThrough(Dest.getBlock()))
1339      break;
1340  }
1341
1342  Builder.ClearInsertionPoint();
1343}
1344
1345/// All the branch fixups on the EH stack have propagated out past the
1346/// outermost normal cleanup; resolve them all by adding cases to the
1347/// given switch instruction.
1348static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1349                                   llvm::SwitchInst *Switch,
1350                                   llvm::BasicBlock *CleanupEntry) {
1351  llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1352
1353  for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1354    // Skip this fixup if its destination isn't set.
1355    BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1356    if (Fixup.Destination == 0) continue;
1357
1358    // If there isn't an OptimisticBranchBlock, then InitialBranch is
1359    // still pointing directly to its destination; forward it to the
1360    // appropriate cleanup entry.  This is required in the specific
1361    // case of
1362    //   { std::string s; goto lbl; }
1363    //   lbl:
1364    // i.e. where there's an unresolved fixup inside a single cleanup
1365    // entry which we're currently popping.
1366    if (Fixup.OptimisticBranchBlock == 0) {
1367      new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1368                          CGF.getNormalCleanupDestSlot(),
1369                          Fixup.InitialBranch);
1370      Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1371    }
1372
1373    // Don't add this case to the switch statement twice.
1374    if (!CasesAdded.insert(Fixup.Destination)) continue;
1375
1376    Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1377                    Fixup.Destination);
1378  }
1379
1380  CGF.EHStack.clearFixups();
1381}
1382
1383void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1384  assert(Block && "resolving a null target block");
1385  if (!EHStack.getNumBranchFixups()) return;
1386
1387  assert(EHStack.hasNormalCleanups() &&
1388         "branch fixups exist with no normal cleanups on stack");
1389
1390  llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1391  bool ResolvedAny = false;
1392
1393  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1394    // Skip this fixup if its destination doesn't match.
1395    BranchFixup &Fixup = EHStack.getBranchFixup(I);
1396    if (Fixup.Destination != Block) continue;
1397
1398    Fixup.Destination = 0;
1399    ResolvedAny = true;
1400
1401    // If it doesn't have an optimistic branch block, LatestBranch is
1402    // already pointing to the right place.
1403    llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1404    if (!BranchBB)
1405      continue;
1406
1407    // Don't process the same optimistic branch block twice.
1408    if (!ModifiedOptimisticBlocks.insert(BranchBB))
1409      continue;
1410
1411    llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1412
1413    // Add a case to the switch.
1414    Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1415  }
1416
1417  if (ResolvedAny)
1418    EHStack.popNullFixups();
1419}
1420
1421static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1422                                  EHScopeStack::stable_iterator C) {
1423  // If we needed a normal block for any reason, that counts.
1424  if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1425    return true;
1426
1427  // Check whether any enclosed cleanups were needed.
1428  for (EHScopeStack::stable_iterator
1429         I = EHStack.getInnermostNormalCleanup();
1430         I != C; ) {
1431    assert(C.strictlyEncloses(I));
1432    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1433    if (S.getNormalBlock()) return true;
1434    I = S.getEnclosingNormalCleanup();
1435  }
1436
1437  return false;
1438}
1439
1440static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1441                              EHScopeStack::stable_iterator C) {
1442  // If we needed an EH block for any reason, that counts.
1443  if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1444    return true;
1445
1446  // Check whether any enclosed cleanups were needed.
1447  for (EHScopeStack::stable_iterator
1448         I = EHStack.getInnermostEHCleanup(); I != C; ) {
1449    assert(C.strictlyEncloses(I));
1450    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1451    if (S.getEHBlock()) return true;
1452    I = S.getEnclosingEHCleanup();
1453  }
1454
1455  return false;
1456}
1457
1458enum ForActivation_t {
1459  ForActivation,
1460  ForDeactivation
1461};
1462
1463/// The given cleanup block is changing activation state.  Configure a
1464/// cleanup variable if necessary.
1465///
1466/// It would be good if we had some way of determining if there were
1467/// extra uses *after* the change-over point.
1468static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1469                                        EHScopeStack::stable_iterator C,
1470                                        ForActivation_t Kind) {
1471  EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1472
1473  // We always need the flag if we're activating the cleanup, because
1474  // we have to assume that the current location doesn't necessarily
1475  // dominate all future uses of the cleanup.
1476  bool NeedFlag = (Kind == ForActivation);
1477
1478  // Calculate whether the cleanup was used:
1479
1480  //   - as a normal cleanup
1481  if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1482    Scope.setTestFlagInNormalCleanup();
1483    NeedFlag = true;
1484  }
1485
1486  //  - as an EH cleanup
1487  if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1488    Scope.setTestFlagInEHCleanup();
1489    NeedFlag = true;
1490  }
1491
1492  // If it hasn't yet been used as either, we're done.
1493  if (!NeedFlag) return;
1494
1495  llvm::AllocaInst *Var = Scope.getActiveFlag();
1496  if (!Var) {
1497    Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1498    Scope.setActiveFlag(Var);
1499
1500    // Initialize to true or false depending on whether it was
1501    // active up to this point.
1502    CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1503  }
1504
1505  CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1506}
1507
1508/// Activate a cleanup that was created in an inactivated state.
1509void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1510  assert(C != EHStack.stable_end() && "activating bottom of stack?");
1511  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1512  assert(!Scope.isActive() && "double activation");
1513
1514  SetupCleanupBlockActivation(*this, C, ForActivation);
1515
1516  Scope.setActive(true);
1517}
1518
1519/// Deactive a cleanup that was created in an active state.
1520void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1521  assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1522  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1523  assert(Scope.isActive() && "double deactivation");
1524
1525  // If it's the top of the stack, just pop it.
1526  if (C == EHStack.stable_begin()) {
1527    // If it's a normal cleanup, we need to pretend that the
1528    // fallthrough is unreachable.
1529    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1530    PopCleanupBlock();
1531    Builder.restoreIP(SavedIP);
1532    return;
1533  }
1534
1535  // Otherwise, follow the general case.
1536  SetupCleanupBlockActivation(*this, C, ForDeactivation);
1537
1538  Scope.setActive(false);
1539}
1540
1541llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1542  if (!NormalCleanupDest)
1543    NormalCleanupDest =
1544      CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1545  return NormalCleanupDest;
1546}
1547
1548llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1549  if (!EHCleanupDest)
1550    EHCleanupDest =
1551      CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1552  return EHCleanupDest;
1553}
1554
1555void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1556                                              llvm::Constant *Init) {
1557  assert (Init && "Invalid DeclRefExpr initializer!");
1558  if (CGDebugInfo *Dbg = getDebugInfo())
1559    Dbg->EmitGlobalVariable(E->getDecl(), Init);
1560}
1561