CodeGenFunction.cpp revision 27dd7d962bbf774988bc5e59d04a7743ed503514
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Intrinsics.h"
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31  : CodeGenTypeCache(cgm), CGM(cgm),
32    Target(CGM.getContext().getTargetInfo()),
33    Builder(cgm.getModule().getContext()),
34    AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35    LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
36    FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37    DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38    IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39    CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
40    CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
41    TerminateHandler(0), TrapBB(0) {
42
43  CatchUndefined = getContext().getLangOptions().CatchUndefined;
44  CGM.getCXXABI().getMangleContext().startNewFunction();
45}
46
47CodeGenFunction::~CodeGenFunction() {
48  // If there are any unclaimed block infos, go ahead and destroy them
49  // now.  This can happen if IR-gen gets clever and skips evaluating
50  // something.
51  if (FirstBlockInfo)
52    destroyBlockInfos(FirstBlockInfo);
53}
54
55
56llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57  return CGM.getTypes().ConvertTypeForMem(T);
58}
59
60llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61  return CGM.getTypes().ConvertType(T);
62}
63
64bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65  switch (type.getCanonicalType()->getTypeClass()) {
66#define TYPE(name, parent)
67#define ABSTRACT_TYPE(name, parent)
68#define NON_CANONICAL_TYPE(name, parent) case Type::name:
69#define DEPENDENT_TYPE(name, parent) case Type::name:
70#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71#include "clang/AST/TypeNodes.def"
72    llvm_unreachable("non-canonical or dependent type in IR-generation");
73
74  case Type::Builtin:
75  case Type::Pointer:
76  case Type::BlockPointer:
77  case Type::LValueReference:
78  case Type::RValueReference:
79  case Type::MemberPointer:
80  case Type::Vector:
81  case Type::ExtVector:
82  case Type::FunctionProto:
83  case Type::FunctionNoProto:
84  case Type::Enum:
85  case Type::ObjCObjectPointer:
86    return false;
87
88  // Complexes, arrays, records, and Objective-C objects.
89  case Type::Complex:
90  case Type::ConstantArray:
91  case Type::IncompleteArray:
92  case Type::VariableArray:
93  case Type::Record:
94  case Type::ObjCObject:
95  case Type::ObjCInterface:
96    return true;
97
98  // In IRGen, atomic types are just the underlying type
99  case Type::Atomic:
100    return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101  }
102  llvm_unreachable("unknown type kind!");
103}
104
105void CodeGenFunction::EmitReturnBlock() {
106  // For cleanliness, we try to avoid emitting the return block for
107  // simple cases.
108  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109
110  if (CurBB) {
111    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112
113    // We have a valid insert point, reuse it if it is empty or there are no
114    // explicit jumps to the return block.
115    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117      delete ReturnBlock.getBlock();
118    } else
119      EmitBlock(ReturnBlock.getBlock());
120    return;
121  }
122
123  // Otherwise, if the return block is the target of a single direct
124  // branch then we can just put the code in that block instead. This
125  // cleans up functions which started with a unified return block.
126  if (ReturnBlock.getBlock()->hasOneUse()) {
127    llvm::BranchInst *BI =
128      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129    if (BI && BI->isUnconditional() &&
130        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131      // Reset insertion point, including debug location, and delete the branch.
132      Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133      Builder.SetInsertPoint(BI->getParent());
134      BI->eraseFromParent();
135      delete ReturnBlock.getBlock();
136      return;
137    }
138  }
139
140  // FIXME: We are at an unreachable point, there is no reason to emit the block
141  // unless it has uses. However, we still need a place to put the debug
142  // region.end for now.
143
144  EmitBlock(ReturnBlock.getBlock());
145}
146
147static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148  if (!BB) return;
149  if (!BB->use_empty())
150    return CGF.CurFn->getBasicBlockList().push_back(BB);
151  delete BB;
152}
153
154void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155  assert(BreakContinueStack.empty() &&
156         "mismatched push/pop in break/continue stack!");
157
158  // Pop any cleanups that might have been associated with the
159  // parameters.  Do this in whatever block we're currently in; it's
160  // important to do this before we enter the return block or return
161  // edges will be *really* confused.
162  if (EHStack.stable_begin() != PrologueCleanupDepth)
163    PopCleanupBlocks(PrologueCleanupDepth);
164
165  // Emit function epilog (to return).
166  EmitReturnBlock();
167
168  if (ShouldInstrumentFunction())
169    EmitFunctionInstrumentation("__cyg_profile_func_exit");
170
171  // Emit debug descriptor for function end.
172  if (CGDebugInfo *DI = getDebugInfo()) {
173    DI->setLocation(EndLoc);
174    DI->EmitFunctionEnd(Builder);
175  }
176
177  EmitFunctionEpilog(*CurFnInfo);
178  EmitEndEHSpec(CurCodeDecl);
179
180  assert(EHStack.empty() &&
181         "did not remove all scopes from cleanup stack!");
182
183  // If someone did an indirect goto, emit the indirect goto block at the end of
184  // the function.
185  if (IndirectBranch) {
186    EmitBlock(IndirectBranch->getParent());
187    Builder.ClearInsertionPoint();
188  }
189
190  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191  llvm::Instruction *Ptr = AllocaInsertPt;
192  AllocaInsertPt = 0;
193  Ptr->eraseFromParent();
194
195  // If someone took the address of a label but never did an indirect goto, we
196  // made a zero entry PHI node, which is illegal, zap it now.
197  if (IndirectBranch) {
198    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199    if (PN->getNumIncomingValues() == 0) {
200      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201      PN->eraseFromParent();
202    }
203  }
204
205  EmitIfUsed(*this, EHResumeBlock);
206  EmitIfUsed(*this, TerminateLandingPad);
207  EmitIfUsed(*this, TerminateHandler);
208  EmitIfUsed(*this, UnreachableBlock);
209
210  if (CGM.getCodeGenOpts().EmitDeclMetadata)
211    EmitDeclMetadata();
212}
213
214/// ShouldInstrumentFunction - Return true if the current function should be
215/// instrumented with __cyg_profile_func_* calls
216bool CodeGenFunction::ShouldInstrumentFunction() {
217  if (!CGM.getCodeGenOpts().InstrumentFunctions)
218    return false;
219  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220    return false;
221  return true;
222}
223
224/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225/// instrumentation function with the current function and the call site, if
226/// function instrumentation is enabled.
227void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229  llvm::PointerType *PointerTy = Int8PtrTy;
230  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231  llvm::FunctionType *FunctionTy =
232    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
233
234  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
235  llvm::CallInst *CallSite = Builder.CreateCall(
236    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
237    llvm::ConstantInt::get(Int32Ty, 0),
238    "callsite");
239
240  Builder.CreateCall2(F,
241                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
242                      CallSite);
243}
244
245void CodeGenFunction::EmitMCountInstrumentation() {
246  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
247
248  llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
249                                                       Target.getMCountName());
250  Builder.CreateCall(MCountFn);
251}
252
253void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
254                                    llvm::Function *Fn,
255                                    const CGFunctionInfo &FnInfo,
256                                    const FunctionArgList &Args,
257                                    SourceLocation StartLoc) {
258  const Decl *D = GD.getDecl();
259
260  DidCallStackSave = false;
261  CurCodeDecl = CurFuncDecl = D;
262  FnRetTy = RetTy;
263  CurFn = Fn;
264  CurFnInfo = &FnInfo;
265  assert(CurFn->isDeclaration() && "Function already has body?");
266
267  // Pass inline keyword to optimizer if it appears explicitly on any
268  // declaration.
269  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
270    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
271           RE = FD->redecls_end(); RI != RE; ++RI)
272      if (RI->isInlineSpecified()) {
273        Fn->addFnAttr(llvm::Attribute::InlineHint);
274        break;
275      }
276
277  if (getContext().getLangOptions().OpenCL) {
278    // Add metadata for a kernel function.
279    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
280      if (FD->hasAttr<OpenCLKernelAttr>()) {
281        llvm::LLVMContext &Context = getLLVMContext();
282        llvm::NamedMDNode *OpenCLMetadata =
283          CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
284
285        llvm::Value *Op = Fn;
286        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
287      }
288  }
289
290  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
291
292  // Create a marker to make it easy to insert allocas into the entryblock
293  // later.  Don't create this with the builder, because we don't want it
294  // folded.
295  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
296  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
297  if (Builder.isNamePreserving())
298    AllocaInsertPt->setName("allocapt");
299
300  ReturnBlock = getJumpDestInCurrentScope("return");
301
302  Builder.SetInsertPoint(EntryBB);
303
304  // Emit subprogram debug descriptor.
305  if (CGDebugInfo *DI = getDebugInfo()) {
306    unsigned NumArgs = 0;
307    QualType *ArgsArray = new QualType[Args.size()];
308    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
309	 i != e; ++i) {
310      ArgsArray[NumArgs++] = (*i)->getType();
311    }
312
313    QualType FnType =
314      getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
315                                   FunctionProtoType::ExtProtoInfo());
316
317    delete[] ArgsArray;
318
319    DI->setLocation(StartLoc);
320    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
321  }
322
323  if (ShouldInstrumentFunction())
324    EmitFunctionInstrumentation("__cyg_profile_func_enter");
325
326  if (CGM.getCodeGenOpts().InstrumentForProfiling)
327    EmitMCountInstrumentation();
328
329  if (RetTy->isVoidType()) {
330    // Void type; nothing to return.
331    ReturnValue = 0;
332  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
333             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
334    // Indirect aggregate return; emit returned value directly into sret slot.
335    // This reduces code size, and affects correctness in C++.
336    ReturnValue = CurFn->arg_begin();
337  } else {
338    ReturnValue = CreateIRTemp(RetTy, "retval");
339
340    // Tell the epilog emitter to autorelease the result.  We do this
341    // now so that various specialized functions can suppress it
342    // during their IR-generation.
343    if (getLangOptions().ObjCAutoRefCount &&
344        !CurFnInfo->isReturnsRetained() &&
345        RetTy->isObjCRetainableType())
346      AutoreleaseResult = true;
347  }
348
349  EmitStartEHSpec(CurCodeDecl);
350
351  PrologueCleanupDepth = EHStack.stable_begin();
352  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
353
354  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
355    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
356    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
357    if (MD->getParent()->isLambda() &&
358        MD->getOverloadedOperator() == OO_Call) {
359      // We're in a lambda; figure out the captures.
360      MD->getParent()->getCaptureFields(LambdaCaptureFields,
361                                        LambdaThisCaptureField);
362      if (LambdaThisCaptureField) {
363        // If this lambda captures this, load it.
364        LValue ThisLValue = EmitLValueForField(CXXABIThisValue,
365                                               LambdaThisCaptureField, 0);
366        CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
367      }
368    } else {
369      // Not in a lambda; just use 'this' from the method.
370      // FIXME: Should we generate a new load for each use of 'this'?  The
371      // fast register allocator would be happier...
372      CXXThisValue = CXXABIThisValue;
373    }
374  }
375
376  // If any of the arguments have a variably modified type, make sure to
377  // emit the type size.
378  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
379       i != e; ++i) {
380    QualType Ty = (*i)->getType();
381
382    if (Ty->isVariablyModifiedType())
383      EmitVariablyModifiedType(Ty);
384  }
385  // Emit a location at the end of the prologue.
386  if (CGDebugInfo *DI = getDebugInfo())
387    DI->EmitLocation(Builder, StartLoc);
388}
389
390void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
391  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
392  assert(FD->getBody());
393  EmitStmt(FD->getBody());
394}
395
396/// Tries to mark the given function nounwind based on the
397/// non-existence of any throwing calls within it.  We believe this is
398/// lightweight enough to do at -O0.
399static void TryMarkNoThrow(llvm::Function *F) {
400  // LLVM treats 'nounwind' on a function as part of the type, so we
401  // can't do this on functions that can be overwritten.
402  if (F->mayBeOverridden()) return;
403
404  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
405    for (llvm::BasicBlock::iterator
406           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
407      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
408        if (!Call->doesNotThrow())
409          return;
410      } else if (isa<llvm::ResumeInst>(&*BI)) {
411        return;
412      }
413  F->setDoesNotThrow(true);
414}
415
416void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
417                                   const CGFunctionInfo &FnInfo) {
418  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
419
420  // Check if we should generate debug info for this function.
421  if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
422    DebugInfo = CGM.getModuleDebugInfo();
423
424  FunctionArgList Args;
425  QualType ResTy = FD->getResultType();
426
427  CurGD = GD;
428  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
429    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
430
431  if (FD->getNumParams())
432    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
433      Args.push_back(FD->getParamDecl(i));
434
435  SourceRange BodyRange;
436  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
437
438  // Emit the standard function prologue.
439  StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
440
441  // Generate the body of the function.
442  if (isa<CXXDestructorDecl>(FD))
443    EmitDestructorBody(Args);
444  else if (isa<CXXConstructorDecl>(FD))
445    EmitConstructorBody(Args);
446  else if (getContext().getLangOptions().CUDA &&
447           !CGM.getCodeGenOpts().CUDAIsDevice &&
448           FD->hasAttr<CUDAGlobalAttr>())
449    CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
450  else if (isa<CXXConversionDecl>(FD) &&
451           cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
452    // The lambda conversion to block pointer is special; the semantics can't be
453    // expressed in the AST, so IRGen needs to special-case it.
454    EmitLambdaToBlockPointerBody(Args);
455  } else if (isa<CXXMethodDecl>(FD) &&
456             cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
457    // The lambda "__invoke" function is special, because it forwards or
458    // clones the body of the function call operator (but is actually static).
459    EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
460  }
461  else
462    EmitFunctionBody(Args);
463
464  // Emit the standard function epilogue.
465  FinishFunction(BodyRange.getEnd());
466
467  // If we haven't marked the function nothrow through other means, do
468  // a quick pass now to see if we can.
469  if (!CurFn->doesNotThrow())
470    TryMarkNoThrow(CurFn);
471}
472
473/// ContainsLabel - Return true if the statement contains a label in it.  If
474/// this statement is not executed normally, it not containing a label means
475/// that we can just remove the code.
476bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
477  // Null statement, not a label!
478  if (S == 0) return false;
479
480  // If this is a label, we have to emit the code, consider something like:
481  // if (0) {  ...  foo:  bar(); }  goto foo;
482  //
483  // TODO: If anyone cared, we could track __label__'s, since we know that you
484  // can't jump to one from outside their declared region.
485  if (isa<LabelStmt>(S))
486    return true;
487
488  // If this is a case/default statement, and we haven't seen a switch, we have
489  // to emit the code.
490  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
491    return true;
492
493  // If this is a switch statement, we want to ignore cases below it.
494  if (isa<SwitchStmt>(S))
495    IgnoreCaseStmts = true;
496
497  // Scan subexpressions for verboten labels.
498  for (Stmt::const_child_range I = S->children(); I; ++I)
499    if (ContainsLabel(*I, IgnoreCaseStmts))
500      return true;
501
502  return false;
503}
504
505/// containsBreak - Return true if the statement contains a break out of it.
506/// If the statement (recursively) contains a switch or loop with a break
507/// inside of it, this is fine.
508bool CodeGenFunction::containsBreak(const Stmt *S) {
509  // Null statement, not a label!
510  if (S == 0) return false;
511
512  // If this is a switch or loop that defines its own break scope, then we can
513  // include it and anything inside of it.
514  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
515      isa<ForStmt>(S))
516    return false;
517
518  if (isa<BreakStmt>(S))
519    return true;
520
521  // Scan subexpressions for verboten breaks.
522  for (Stmt::const_child_range I = S->children(); I; ++I)
523    if (containsBreak(*I))
524      return true;
525
526  return false;
527}
528
529
530/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
531/// to a constant, or if it does but contains a label, return false.  If it
532/// constant folds return true and set the boolean result in Result.
533bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
534                                                   bool &ResultBool) {
535  llvm::APInt ResultInt;
536  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
537    return false;
538
539  ResultBool = ResultInt.getBoolValue();
540  return true;
541}
542
543/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
544/// to a constant, or if it does but contains a label, return false.  If it
545/// constant folds return true and set the folded value.
546bool CodeGenFunction::
547ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
548  // FIXME: Rename and handle conversion of other evaluatable things
549  // to bool.
550  llvm::APSInt Int;
551  if (!Cond->EvaluateAsInt(Int, getContext()))
552    return false;  // Not foldable, not integer or not fully evaluatable.
553
554  if (CodeGenFunction::ContainsLabel(Cond))
555    return false;  // Contains a label.
556
557  ResultInt = Int;
558  return true;
559}
560
561
562
563/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
564/// statement) to the specified blocks.  Based on the condition, this might try
565/// to simplify the codegen of the conditional based on the branch.
566///
567void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
568                                           llvm::BasicBlock *TrueBlock,
569                                           llvm::BasicBlock *FalseBlock) {
570  Cond = Cond->IgnoreParens();
571
572  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
573    // Handle X && Y in a condition.
574    if (CondBOp->getOpcode() == BO_LAnd) {
575      // If we have "1 && X", simplify the code.  "0 && X" would have constant
576      // folded if the case was simple enough.
577      bool ConstantBool = false;
578      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
579          ConstantBool) {
580        // br(1 && X) -> br(X).
581        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
582      }
583
584      // If we have "X && 1", simplify the code to use an uncond branch.
585      // "X && 0" would have been constant folded to 0.
586      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
587          ConstantBool) {
588        // br(X && 1) -> br(X).
589        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
590      }
591
592      // Emit the LHS as a conditional.  If the LHS conditional is false, we
593      // want to jump to the FalseBlock.
594      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
595
596      ConditionalEvaluation eval(*this);
597      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
598      EmitBlock(LHSTrue);
599
600      // Any temporaries created here are conditional.
601      eval.begin(*this);
602      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
603      eval.end(*this);
604
605      return;
606    }
607
608    if (CondBOp->getOpcode() == BO_LOr) {
609      // If we have "0 || X", simplify the code.  "1 || X" would have constant
610      // folded if the case was simple enough.
611      bool ConstantBool = false;
612      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
613          !ConstantBool) {
614        // br(0 || X) -> br(X).
615        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
616      }
617
618      // If we have "X || 0", simplify the code to use an uncond branch.
619      // "X || 1" would have been constant folded to 1.
620      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
621          !ConstantBool) {
622        // br(X || 0) -> br(X).
623        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
624      }
625
626      // Emit the LHS as a conditional.  If the LHS conditional is true, we
627      // want to jump to the TrueBlock.
628      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
629
630      ConditionalEvaluation eval(*this);
631      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
632      EmitBlock(LHSFalse);
633
634      // Any temporaries created here are conditional.
635      eval.begin(*this);
636      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
637      eval.end(*this);
638
639      return;
640    }
641  }
642
643  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
644    // br(!x, t, f) -> br(x, f, t)
645    if (CondUOp->getOpcode() == UO_LNot)
646      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
647  }
648
649  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
650    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
651    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
652    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
653
654    ConditionalEvaluation cond(*this);
655    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
656
657    cond.begin(*this);
658    EmitBlock(LHSBlock);
659    EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
660    cond.end(*this);
661
662    cond.begin(*this);
663    EmitBlock(RHSBlock);
664    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
665    cond.end(*this);
666
667    return;
668  }
669
670  // Emit the code with the fully general case.
671  llvm::Value *CondV = EvaluateExprAsBool(Cond);
672  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
673}
674
675/// ErrorUnsupported - Print out an error that codegen doesn't support the
676/// specified stmt yet.
677void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
678                                       bool OmitOnError) {
679  CGM.ErrorUnsupported(S, Type, OmitOnError);
680}
681
682/// emitNonZeroVLAInit - Emit the "zero" initialization of a
683/// variable-length array whose elements have a non-zero bit-pattern.
684///
685/// \param src - a char* pointing to the bit-pattern for a single
686/// base element of the array
687/// \param sizeInChars - the total size of the VLA, in chars
688/// \param align - the total alignment of the VLA
689static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
690                               llvm::Value *dest, llvm::Value *src,
691                               llvm::Value *sizeInChars) {
692  std::pair<CharUnits,CharUnits> baseSizeAndAlign
693    = CGF.getContext().getTypeInfoInChars(baseType);
694
695  CGBuilderTy &Builder = CGF.Builder;
696
697  llvm::Value *baseSizeInChars
698    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
699
700  llvm::Type *i8p = Builder.getInt8PtrTy();
701
702  llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
703  llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
704
705  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
706  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
707  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
708
709  // Make a loop over the VLA.  C99 guarantees that the VLA element
710  // count must be nonzero.
711  CGF.EmitBlock(loopBB);
712
713  llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
714  cur->addIncoming(begin, originBB);
715
716  // memcpy the individual element bit-pattern.
717  Builder.CreateMemCpy(cur, src, baseSizeInChars,
718                       baseSizeAndAlign.second.getQuantity(),
719                       /*volatile*/ false);
720
721  // Go to the next element.
722  llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
723
724  // Leave if that's the end of the VLA.
725  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
726  Builder.CreateCondBr(done, contBB, loopBB);
727  cur->addIncoming(next, loopBB);
728
729  CGF.EmitBlock(contBB);
730}
731
732void
733CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
734  // Ignore empty classes in C++.
735  if (getContext().getLangOptions().CPlusPlus) {
736    if (const RecordType *RT = Ty->getAs<RecordType>()) {
737      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
738        return;
739    }
740  }
741
742  // Cast the dest ptr to the appropriate i8 pointer type.
743  unsigned DestAS =
744    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
745  llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
746  if (DestPtr->getType() != BP)
747    DestPtr = Builder.CreateBitCast(DestPtr, BP);
748
749  // Get size and alignment info for this aggregate.
750  std::pair<CharUnits, CharUnits> TypeInfo =
751    getContext().getTypeInfoInChars(Ty);
752  CharUnits Size = TypeInfo.first;
753  CharUnits Align = TypeInfo.second;
754
755  llvm::Value *SizeVal;
756  const VariableArrayType *vla;
757
758  // Don't bother emitting a zero-byte memset.
759  if (Size.isZero()) {
760    // But note that getTypeInfo returns 0 for a VLA.
761    if (const VariableArrayType *vlaType =
762          dyn_cast_or_null<VariableArrayType>(
763                                          getContext().getAsArrayType(Ty))) {
764      QualType eltType;
765      llvm::Value *numElts;
766      llvm::tie(numElts, eltType) = getVLASize(vlaType);
767
768      SizeVal = numElts;
769      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
770      if (!eltSize.isOne())
771        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
772      vla = vlaType;
773    } else {
774      return;
775    }
776  } else {
777    SizeVal = CGM.getSize(Size);
778    vla = 0;
779  }
780
781  // If the type contains a pointer to data member we can't memset it to zero.
782  // Instead, create a null constant and copy it to the destination.
783  // TODO: there are other patterns besides zero that we can usefully memset,
784  // like -1, which happens to be the pattern used by member-pointers.
785  if (!CGM.getTypes().isZeroInitializable(Ty)) {
786    // For a VLA, emit a single element, then splat that over the VLA.
787    if (vla) Ty = getContext().getBaseElementType(vla);
788
789    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
790
791    llvm::GlobalVariable *NullVariable =
792      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
793                               /*isConstant=*/true,
794                               llvm::GlobalVariable::PrivateLinkage,
795                               NullConstant, Twine());
796    llvm::Value *SrcPtr =
797      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
798
799    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
800
801    // Get and call the appropriate llvm.memcpy overload.
802    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
803    return;
804  }
805
806  // Otherwise, just memset the whole thing to zero.  This is legal
807  // because in LLVM, all default initializers (other than the ones we just
808  // handled above) are guaranteed to have a bit pattern of all zeros.
809  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
810                       Align.getQuantity(), false);
811}
812
813llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
814  // Make sure that there is a block for the indirect goto.
815  if (IndirectBranch == 0)
816    GetIndirectGotoBlock();
817
818  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
819
820  // Make sure the indirect branch includes all of the address-taken blocks.
821  IndirectBranch->addDestination(BB);
822  return llvm::BlockAddress::get(CurFn, BB);
823}
824
825llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
826  // If we already made the indirect branch for indirect goto, return its block.
827  if (IndirectBranch) return IndirectBranch->getParent();
828
829  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
830
831  // Create the PHI node that indirect gotos will add entries to.
832  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
833                                              "indirect.goto.dest");
834
835  // Create the indirect branch instruction.
836  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
837  return IndirectBranch->getParent();
838}
839
840/// Computes the length of an array in elements, as well as the base
841/// element type and a properly-typed first element pointer.
842llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
843                                              QualType &baseType,
844                                              llvm::Value *&addr) {
845  const ArrayType *arrayType = origArrayType;
846
847  // If it's a VLA, we have to load the stored size.  Note that
848  // this is the size of the VLA in bytes, not its size in elements.
849  llvm::Value *numVLAElements = 0;
850  if (isa<VariableArrayType>(arrayType)) {
851    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
852
853    // Walk into all VLAs.  This doesn't require changes to addr,
854    // which has type T* where T is the first non-VLA element type.
855    do {
856      QualType elementType = arrayType->getElementType();
857      arrayType = getContext().getAsArrayType(elementType);
858
859      // If we only have VLA components, 'addr' requires no adjustment.
860      if (!arrayType) {
861        baseType = elementType;
862        return numVLAElements;
863      }
864    } while (isa<VariableArrayType>(arrayType));
865
866    // We get out here only if we find a constant array type
867    // inside the VLA.
868  }
869
870  // We have some number of constant-length arrays, so addr should
871  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
872  // down to the first element of addr.
873  SmallVector<llvm::Value*, 8> gepIndices;
874
875  // GEP down to the array type.
876  llvm::ConstantInt *zero = Builder.getInt32(0);
877  gepIndices.push_back(zero);
878
879  // It's more efficient to calculate the count from the LLVM
880  // constant-length arrays than to re-evaluate the array bounds.
881  uint64_t countFromCLAs = 1;
882
883  llvm::ArrayType *llvmArrayType =
884    cast<llvm::ArrayType>(
885      cast<llvm::PointerType>(addr->getType())->getElementType());
886  while (true) {
887    assert(isa<ConstantArrayType>(arrayType));
888    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
889             == llvmArrayType->getNumElements());
890
891    gepIndices.push_back(zero);
892    countFromCLAs *= llvmArrayType->getNumElements();
893
894    llvmArrayType =
895      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
896    if (!llvmArrayType) break;
897
898    arrayType = getContext().getAsArrayType(arrayType->getElementType());
899    assert(arrayType && "LLVM and Clang types are out-of-synch");
900  }
901
902  baseType = arrayType->getElementType();
903
904  // Create the actual GEP.
905  addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
906
907  llvm::Value *numElements
908    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
909
910  // If we had any VLA dimensions, factor them in.
911  if (numVLAElements)
912    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
913
914  return numElements;
915}
916
917std::pair<llvm::Value*, QualType>
918CodeGenFunction::getVLASize(QualType type) {
919  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
920  assert(vla && "type was not a variable array type!");
921  return getVLASize(vla);
922}
923
924std::pair<llvm::Value*, QualType>
925CodeGenFunction::getVLASize(const VariableArrayType *type) {
926  // The number of elements so far; always size_t.
927  llvm::Value *numElements = 0;
928
929  QualType elementType;
930  do {
931    elementType = type->getElementType();
932    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
933    assert(vlaSize && "no size for VLA!");
934    assert(vlaSize->getType() == SizeTy);
935
936    if (!numElements) {
937      numElements = vlaSize;
938    } else {
939      // It's undefined behavior if this wraps around, so mark it that way.
940      numElements = Builder.CreateNUWMul(numElements, vlaSize);
941    }
942  } while ((type = getContext().getAsVariableArrayType(elementType)));
943
944  return std::pair<llvm::Value*,QualType>(numElements, elementType);
945}
946
947void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
948  assert(type->isVariablyModifiedType() &&
949         "Must pass variably modified type to EmitVLASizes!");
950
951  EnsureInsertPoint();
952
953  // We're going to walk down into the type and look for VLA
954  // expressions.
955  do {
956    assert(type->isVariablyModifiedType());
957
958    const Type *ty = type.getTypePtr();
959    switch (ty->getTypeClass()) {
960
961#define TYPE(Class, Base)
962#define ABSTRACT_TYPE(Class, Base)
963#define NON_CANONICAL_TYPE(Class, Base)
964#define DEPENDENT_TYPE(Class, Base) case Type::Class:
965#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
966#include "clang/AST/TypeNodes.def"
967      llvm_unreachable("unexpected dependent type!");
968
969    // These types are never variably-modified.
970    case Type::Builtin:
971    case Type::Complex:
972    case Type::Vector:
973    case Type::ExtVector:
974    case Type::Record:
975    case Type::Enum:
976    case Type::Elaborated:
977    case Type::TemplateSpecialization:
978    case Type::ObjCObject:
979    case Type::ObjCInterface:
980    case Type::ObjCObjectPointer:
981      llvm_unreachable("type class is never variably-modified!");
982
983    case Type::Pointer:
984      type = cast<PointerType>(ty)->getPointeeType();
985      break;
986
987    case Type::BlockPointer:
988      type = cast<BlockPointerType>(ty)->getPointeeType();
989      break;
990
991    case Type::LValueReference:
992    case Type::RValueReference:
993      type = cast<ReferenceType>(ty)->getPointeeType();
994      break;
995
996    case Type::MemberPointer:
997      type = cast<MemberPointerType>(ty)->getPointeeType();
998      break;
999
1000    case Type::ConstantArray:
1001    case Type::IncompleteArray:
1002      // Losing element qualification here is fine.
1003      type = cast<ArrayType>(ty)->getElementType();
1004      break;
1005
1006    case Type::VariableArray: {
1007      // Losing element qualification here is fine.
1008      const VariableArrayType *vat = cast<VariableArrayType>(ty);
1009
1010      // Unknown size indication requires no size computation.
1011      // Otherwise, evaluate and record it.
1012      if (const Expr *size = vat->getSizeExpr()) {
1013        // It's possible that we might have emitted this already,
1014        // e.g. with a typedef and a pointer to it.
1015        llvm::Value *&entry = VLASizeMap[size];
1016        if (!entry) {
1017          // Always zexting here would be wrong if it weren't
1018          // undefined behavior to have a negative bound.
1019          entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
1020                                        /*signed*/ false);
1021        }
1022      }
1023      type = vat->getElementType();
1024      break;
1025    }
1026
1027    case Type::FunctionProto:
1028    case Type::FunctionNoProto:
1029      type = cast<FunctionType>(ty)->getResultType();
1030      break;
1031
1032    case Type::Paren:
1033    case Type::TypeOf:
1034    case Type::UnaryTransform:
1035    case Type::Attributed:
1036    case Type::SubstTemplateTypeParm:
1037      // Keep walking after single level desugaring.
1038      type = type.getSingleStepDesugaredType(getContext());
1039      break;
1040
1041    case Type::Typedef:
1042    case Type::Decltype:
1043    case Type::Auto:
1044      // Stop walking: nothing to do.
1045      return;
1046
1047    case Type::TypeOfExpr:
1048      // Stop walking: emit typeof expression.
1049      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1050      return;
1051
1052    case Type::Atomic:
1053      type = cast<AtomicType>(ty)->getValueType();
1054      break;
1055    }
1056  } while (type->isVariablyModifiedType());
1057}
1058
1059llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1060  if (getContext().getBuiltinVaListType()->isArrayType())
1061    return EmitScalarExpr(E);
1062  return EmitLValue(E).getAddress();
1063}
1064
1065void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1066                                              llvm::Constant *Init) {
1067  assert (Init && "Invalid DeclRefExpr initializer!");
1068  if (CGDebugInfo *Dbg = getDebugInfo())
1069    Dbg->EmitGlobalVariable(E->getDecl(), Init);
1070}
1071
1072CodeGenFunction::PeepholeProtection
1073CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1074  // At the moment, the only aggressive peephole we do in IR gen
1075  // is trunc(zext) folding, but if we add more, we can easily
1076  // extend this protection.
1077
1078  if (!rvalue.isScalar()) return PeepholeProtection();
1079  llvm::Value *value = rvalue.getScalarVal();
1080  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1081
1082  // Just make an extra bitcast.
1083  assert(HaveInsertPoint());
1084  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1085                                                  Builder.GetInsertBlock());
1086
1087  PeepholeProtection protection;
1088  protection.Inst = inst;
1089  return protection;
1090}
1091
1092void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1093  if (!protection.Inst) return;
1094
1095  // In theory, we could try to duplicate the peepholes now, but whatever.
1096  protection.Inst->eraseFromParent();
1097}
1098
1099llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1100                                                 llvm::Value *AnnotatedVal,
1101                                                 llvm::StringRef AnnotationStr,
1102                                                 SourceLocation Location) {
1103  llvm::Value *Args[4] = {
1104    AnnotatedVal,
1105    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1106    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1107    CGM.EmitAnnotationLineNo(Location)
1108  };
1109  return Builder.CreateCall(AnnotationFn, Args);
1110}
1111
1112void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1113  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1114  // FIXME We create a new bitcast for every annotation because that's what
1115  // llvm-gcc was doing.
1116  for (specific_attr_iterator<AnnotateAttr>
1117       ai = D->specific_attr_begin<AnnotateAttr>(),
1118       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1119    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1120                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1121                       (*ai)->getAnnotation(), D->getLocation());
1122}
1123
1124llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1125                                                   llvm::Value *V) {
1126  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1127  llvm::Type *VTy = V->getType();
1128  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1129                                    CGM.Int8PtrTy);
1130
1131  for (specific_attr_iterator<AnnotateAttr>
1132       ai = D->specific_attr_begin<AnnotateAttr>(),
1133       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1134    // FIXME Always emit the cast inst so we can differentiate between
1135    // annotation on the first field of a struct and annotation on the struct
1136    // itself.
1137    if (VTy != CGM.Int8PtrTy)
1138      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1139    V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1140    V = Builder.CreateBitCast(V, VTy);
1141  }
1142
1143  return V;
1144}
1145