CodeGenFunction.cpp revision 2de56d1d0c3a504ad1529de2677628bdfbb95cd4
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGDebugInfo.h"
17#include "CGException.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/AST/APValue.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Intrinsics.h"
27using namespace clang;
28using namespace CodeGen;
29
30CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
31  : BlockFunction(cgm, *this, Builder), CGM(cgm),
32    Target(CGM.getContext().Target),
33    Builder(cgm.getModule().getContext()),
34    NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
35    ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
36    SwitchInsn(0), CaseRangeBlock(0),
37    DidCallStackSave(false), UnreachableBlock(0),
38    CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
39    ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
40    TrapBB(0) {
41
42  // Get some frequently used types.
43  LLVMPointerWidth = Target.getPointerWidth(0);
44  llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
45  IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
46  Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
47  Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
48
49  Exceptions = getContext().getLangOptions().Exceptions;
50  CatchUndefined = getContext().getLangOptions().CatchUndefined;
51  CGM.getMangleContext().startNewFunction();
52}
53
54ASTContext &CodeGenFunction::getContext() const {
55  return CGM.getContext();
56}
57
58
59llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) {
60  llvm::Value *Res = LocalDeclMap[VD];
61  assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
62  return Res;
63}
64
65llvm::Constant *
66CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) {
67  return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
68}
69
70const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
71  return CGM.getTypes().ConvertTypeForMem(T);
72}
73
74const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
75  return CGM.getTypes().ConvertType(T);
76}
77
78bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
79  return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
80    T->isObjCObjectType();
81}
82
83void CodeGenFunction::EmitReturnBlock() {
84  // For cleanliness, we try to avoid emitting the return block for
85  // simple cases.
86  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
87
88  if (CurBB) {
89    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
90
91    // We have a valid insert point, reuse it if it is empty or there are no
92    // explicit jumps to the return block.
93    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
94      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
95      delete ReturnBlock.getBlock();
96    } else
97      EmitBlock(ReturnBlock.getBlock());
98    return;
99  }
100
101  // Otherwise, if the return block is the target of a single direct
102  // branch then we can just put the code in that block instead. This
103  // cleans up functions which started with a unified return block.
104  if (ReturnBlock.getBlock()->hasOneUse()) {
105    llvm::BranchInst *BI =
106      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
107    if (BI && BI->isUnconditional() &&
108        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
109      // Reset insertion point and delete the branch.
110      Builder.SetInsertPoint(BI->getParent());
111      BI->eraseFromParent();
112      delete ReturnBlock.getBlock();
113      return;
114    }
115  }
116
117  // FIXME: We are at an unreachable point, there is no reason to emit the block
118  // unless it has uses. However, we still need a place to put the debug
119  // region.end for now.
120
121  EmitBlock(ReturnBlock.getBlock());
122}
123
124static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
125  if (!BB) return;
126  if (!BB->use_empty())
127    return CGF.CurFn->getBasicBlockList().push_back(BB);
128  delete BB;
129}
130
131void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
132  assert(BreakContinueStack.empty() &&
133         "mismatched push/pop in break/continue stack!");
134
135  // Emit function epilog (to return).
136  EmitReturnBlock();
137
138  EmitFunctionInstrumentation("__cyg_profile_func_exit");
139
140  // Emit debug descriptor for function end.
141  if (CGDebugInfo *DI = getDebugInfo()) {
142    DI->setLocation(EndLoc);
143    DI->EmitFunctionEnd(Builder);
144  }
145
146  EmitFunctionEpilog(*CurFnInfo);
147  EmitEndEHSpec(CurCodeDecl);
148
149  assert(EHStack.empty() &&
150         "did not remove all scopes from cleanup stack!");
151
152  // If someone did an indirect goto, emit the indirect goto block at the end of
153  // the function.
154  if (IndirectBranch) {
155    EmitBlock(IndirectBranch->getParent());
156    Builder.ClearInsertionPoint();
157  }
158
159  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
160  llvm::Instruction *Ptr = AllocaInsertPt;
161  AllocaInsertPt = 0;
162  Ptr->eraseFromParent();
163
164  // If someone took the address of a label but never did an indirect goto, we
165  // made a zero entry PHI node, which is illegal, zap it now.
166  if (IndirectBranch) {
167    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
168    if (PN->getNumIncomingValues() == 0) {
169      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
170      PN->eraseFromParent();
171    }
172  }
173
174  EmitIfUsed(*this, RethrowBlock.getBlock());
175  EmitIfUsed(*this, TerminateLandingPad);
176  EmitIfUsed(*this, TerminateHandler);
177  EmitIfUsed(*this, UnreachableBlock);
178
179  if (CGM.getCodeGenOpts().EmitDeclMetadata)
180    EmitDeclMetadata();
181}
182
183/// ShouldInstrumentFunction - Return true if the current function should be
184/// instrumented with __cyg_profile_func_* calls
185bool CodeGenFunction::ShouldInstrumentFunction() {
186  if (!CGM.getCodeGenOpts().InstrumentFunctions)
187    return false;
188  if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
189    return false;
190  return true;
191}
192
193/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
194/// instrumentation function with the current function and the call site, if
195/// function instrumentation is enabled.
196void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
197  if (!ShouldInstrumentFunction())
198    return;
199
200  const llvm::PointerType *PointerTy;
201  const llvm::FunctionType *FunctionTy;
202  std::vector<const llvm::Type*> ProfileFuncArgs;
203
204  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
205  PointerTy = llvm::Type::getInt8PtrTy(VMContext);
206  ProfileFuncArgs.push_back(PointerTy);
207  ProfileFuncArgs.push_back(PointerTy);
208  FunctionTy = llvm::FunctionType::get(
209    llvm::Type::getVoidTy(VMContext),
210    ProfileFuncArgs, false);
211
212  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
213  llvm::CallInst *CallSite = Builder.CreateCall(
214    CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
215    llvm::ConstantInt::get(Int32Ty, 0),
216    "callsite");
217
218  Builder.CreateCall2(F,
219                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
220                      CallSite);
221}
222
223void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
224                                    llvm::Function *Fn,
225                                    const FunctionArgList &Args,
226                                    SourceLocation StartLoc) {
227  const Decl *D = GD.getDecl();
228
229  DidCallStackSave = false;
230  CurCodeDecl = CurFuncDecl = D;
231  FnRetTy = RetTy;
232  CurFn = Fn;
233  assert(CurFn->isDeclaration() && "Function already has body?");
234
235  // Pass inline keyword to optimizer if it appears explicitly on any
236  // declaration.
237  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
238    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
239           RE = FD->redecls_end(); RI != RE; ++RI)
240      if (RI->isInlineSpecified()) {
241        Fn->addFnAttr(llvm::Attribute::InlineHint);
242        break;
243      }
244
245  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
246
247  // Create a marker to make it easy to insert allocas into the entryblock
248  // later.  Don't create this with the builder, because we don't want it
249  // folded.
250  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
251  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
252  if (Builder.isNamePreserving())
253    AllocaInsertPt->setName("allocapt");
254
255  ReturnBlock = getJumpDestInCurrentScope("return");
256
257  Builder.SetInsertPoint(EntryBB);
258
259  QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
260                                                 false, false, 0, 0,
261                                                 /*FIXME?*/
262                                                 FunctionType::ExtInfo());
263
264  // Emit subprogram debug descriptor.
265  if (CGDebugInfo *DI = getDebugInfo()) {
266    DI->setLocation(StartLoc);
267    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
268  }
269
270  EmitFunctionInstrumentation("__cyg_profile_func_enter");
271
272  // FIXME: Leaked.
273  // CC info is ignored, hopefully?
274  CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
275                                              FunctionType::ExtInfo());
276
277  if (RetTy->isVoidType()) {
278    // Void type; nothing to return.
279    ReturnValue = 0;
280  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
281             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
282    // Indirect aggregate return; emit returned value directly into sret slot.
283    // This reduces code size, and affects correctness in C++.
284    ReturnValue = CurFn->arg_begin();
285  } else {
286    ReturnValue = CreateIRTemp(RetTy, "retval");
287  }
288
289  EmitStartEHSpec(CurCodeDecl);
290  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
291
292  if (CXXThisDecl)
293    CXXThisValue = Builder.CreateLoad(LocalDeclMap[CXXThisDecl], "this");
294  if (CXXVTTDecl)
295    CXXVTTValue = Builder.CreateLoad(LocalDeclMap[CXXVTTDecl], "vtt");
296
297  // If any of the arguments have a variably modified type, make sure to
298  // emit the type size.
299  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
300       i != e; ++i) {
301    QualType Ty = i->second;
302
303    if (Ty->isVariablyModifiedType())
304      EmitVLASize(Ty);
305  }
306}
307
308void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
309  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
310  assert(FD->getBody());
311  EmitStmt(FD->getBody());
312}
313
314/// Tries to mark the given function nounwind based on the
315/// non-existence of any throwing calls within it.  We believe this is
316/// lightweight enough to do at -O0.
317static void TryMarkNoThrow(llvm::Function *F) {
318  // LLVM treats 'nounwind' on a function as part of the type, so we
319  // can't do this on functions that can be overwritten.
320  if (F->mayBeOverridden()) return;
321
322  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
323    for (llvm::BasicBlock::iterator
324           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
325      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
326        if (!Call->doesNotThrow())
327          return;
328  F->setDoesNotThrow(true);
329}
330
331void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
332  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
333
334  // Check if we should generate debug info for this function.
335  if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
336    DebugInfo = CGM.getDebugInfo();
337
338  FunctionArgList Args;
339
340  CurGD = GD;
341  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
342    if (MD->isInstance()) {
343      // Create the implicit 'this' decl.
344      // FIXME: I'm not entirely sure I like using a fake decl just for code
345      // generation. Maybe we can come up with a better way?
346      CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0,
347                                              FD->getLocation(),
348                                              &getContext().Idents.get("this"),
349                                              MD->getThisType(getContext()));
350      Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType()));
351
352      // Check if we need a VTT parameter as well.
353      if (CodeGenVTables::needsVTTParameter(GD)) {
354        // FIXME: The comment about using a fake decl above applies here too.
355        QualType T = getContext().getPointerType(getContext().VoidPtrTy);
356        CXXVTTDecl =
357          ImplicitParamDecl::Create(getContext(), 0, FD->getLocation(),
358                                    &getContext().Idents.get("vtt"), T);
359        Args.push_back(std::make_pair(CXXVTTDecl, CXXVTTDecl->getType()));
360      }
361    }
362  }
363
364  if (FD->getNumParams()) {
365    const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
366    assert(FProto && "Function def must have prototype!");
367
368    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
369      Args.push_back(std::make_pair(FD->getParamDecl(i),
370                                    FProto->getArgType(i)));
371  }
372
373  SourceRange BodyRange;
374  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
375
376  // Emit the standard function prologue.
377  StartFunction(GD, FD->getResultType(), Fn, Args, BodyRange.getBegin());
378
379  // Generate the body of the function.
380  if (isa<CXXDestructorDecl>(FD))
381    EmitDestructorBody(Args);
382  else if (isa<CXXConstructorDecl>(FD))
383    EmitConstructorBody(Args);
384  else
385    EmitFunctionBody(Args);
386
387  // Emit the standard function epilogue.
388  FinishFunction(BodyRange.getEnd());
389
390  // If we haven't marked the function nothrow through other means, do
391  // a quick pass now to see if we can.
392  if (!CurFn->doesNotThrow())
393    TryMarkNoThrow(CurFn);
394}
395
396/// ContainsLabel - Return true if the statement contains a label in it.  If
397/// this statement is not executed normally, it not containing a label means
398/// that we can just remove the code.
399bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
400  // Null statement, not a label!
401  if (S == 0) return false;
402
403  // If this is a label, we have to emit the code, consider something like:
404  // if (0) {  ...  foo:  bar(); }  goto foo;
405  if (isa<LabelStmt>(S))
406    return true;
407
408  // If this is a case/default statement, and we haven't seen a switch, we have
409  // to emit the code.
410  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
411    return true;
412
413  // If this is a switch statement, we want to ignore cases below it.
414  if (isa<SwitchStmt>(S))
415    IgnoreCaseStmts = true;
416
417  // Scan subexpressions for verboten labels.
418  for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
419       I != E; ++I)
420    if (ContainsLabel(*I, IgnoreCaseStmts))
421      return true;
422
423  return false;
424}
425
426
427/// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
428/// a constant, or if it does but contains a label, return 0.  If it constant
429/// folds to 'true' and does not contain a label, return 1, if it constant folds
430/// to 'false' and does not contain a label, return -1.
431int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
432  // FIXME: Rename and handle conversion of other evaluatable things
433  // to bool.
434  Expr::EvalResult Result;
435  if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
436      Result.HasSideEffects)
437    return 0;  // Not foldable, not integer or not fully evaluatable.
438
439  if (CodeGenFunction::ContainsLabel(Cond))
440    return 0;  // Contains a label.
441
442  return Result.Val.getInt().getBoolValue() ? 1 : -1;
443}
444
445
446/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
447/// statement) to the specified blocks.  Based on the condition, this might try
448/// to simplify the codegen of the conditional based on the branch.
449///
450void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
451                                           llvm::BasicBlock *TrueBlock,
452                                           llvm::BasicBlock *FalseBlock) {
453  if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
454    return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
455
456  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
457    // Handle X && Y in a condition.
458    if (CondBOp->getOpcode() == BO_LAnd) {
459      // If we have "1 && X", simplify the code.  "0 && X" would have constant
460      // folded if the case was simple enough.
461      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
462        // br(1 && X) -> br(X).
463        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
464      }
465
466      // If we have "X && 1", simplify the code to use an uncond branch.
467      // "X && 0" would have been constant folded to 0.
468      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
469        // br(X && 1) -> br(X).
470        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
471      }
472
473      // Emit the LHS as a conditional.  If the LHS conditional is false, we
474      // want to jump to the FalseBlock.
475      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
476      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
477      EmitBlock(LHSTrue);
478
479      // Any temporaries created here are conditional.
480      BeginConditionalBranch();
481      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
482      EndConditionalBranch();
483
484      return;
485    } else if (CondBOp->getOpcode() == BO_LOr) {
486      // If we have "0 || X", simplify the code.  "1 || X" would have constant
487      // folded if the case was simple enough.
488      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
489        // br(0 || X) -> br(X).
490        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
491      }
492
493      // If we have "X || 0", simplify the code to use an uncond branch.
494      // "X || 1" would have been constant folded to 1.
495      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
496        // br(X || 0) -> br(X).
497        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
498      }
499
500      // Emit the LHS as a conditional.  If the LHS conditional is true, we
501      // want to jump to the TrueBlock.
502      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
503      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
504      EmitBlock(LHSFalse);
505
506      // Any temporaries created here are conditional.
507      BeginConditionalBranch();
508      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
509      EndConditionalBranch();
510
511      return;
512    }
513  }
514
515  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
516    // br(!x, t, f) -> br(x, f, t)
517    if (CondUOp->getOpcode() == UO_LNot)
518      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
519  }
520
521  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
522    // Handle ?: operator.
523
524    // Just ignore GNU ?: extension.
525    if (CondOp->getLHS()) {
526      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
527      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
528      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
529      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
530      EmitBlock(LHSBlock);
531      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
532      EmitBlock(RHSBlock);
533      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
534      return;
535    }
536  }
537
538  // Emit the code with the fully general case.
539  llvm::Value *CondV = EvaluateExprAsBool(Cond);
540  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
541}
542
543/// ErrorUnsupported - Print out an error that codegen doesn't support the
544/// specified stmt yet.
545void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
546                                       bool OmitOnError) {
547  CGM.ErrorUnsupported(S, Type, OmitOnError);
548}
549
550void
551CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
552  // Ignore empty classes in C++.
553  if (getContext().getLangOptions().CPlusPlus) {
554    if (const RecordType *RT = Ty->getAs<RecordType>()) {
555      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
556        return;
557    }
558  }
559
560  // Cast the dest ptr to the appropriate i8 pointer type.
561  unsigned DestAS =
562    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
563  const llvm::Type *BP =
564    llvm::Type::getInt8PtrTy(VMContext, DestAS);
565  if (DestPtr->getType() != BP)
566    DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
567
568  // Get size and alignment info for this aggregate.
569  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
570  uint64_t Size = TypeInfo.first;
571  unsigned Align = TypeInfo.second;
572
573  // Don't bother emitting a zero-byte memset.
574  if (Size == 0)
575    return;
576
577  llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
578  llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
579
580  // If the type contains a pointer to data member we can't memset it to zero.
581  // Instead, create a null constant and copy it to the destination.
582  if (!CGM.getTypes().isZeroInitializable(Ty)) {
583    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
584
585    llvm::GlobalVariable *NullVariable =
586      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
587                               /*isConstant=*/true,
588                               llvm::GlobalVariable::PrivateLinkage,
589                               NullConstant, llvm::Twine());
590    llvm::Value *SrcPtr =
591      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
592
593    // FIXME: variable-size types?
594
595    // Get and call the appropriate llvm.memcpy overload.
596    llvm::Constant *Memcpy =
597      CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
598    Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
599                        /*volatile*/ Builder.getFalse());
600    return;
601  }
602
603  // Otherwise, just memset the whole thing to zero.  This is legal
604  // because in LLVM, all default initializers (other than the ones we just
605  // handled above) are guaranteed to have a bit pattern of all zeros.
606
607  // FIXME: Handle variable sized types.
608  Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
609                      Builder.getInt8(0),
610                      SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
611}
612
613llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
614  // Make sure that there is a block for the indirect goto.
615  if (IndirectBranch == 0)
616    GetIndirectGotoBlock();
617
618  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
619
620  // Make sure the indirect branch includes all of the address-taken blocks.
621  IndirectBranch->addDestination(BB);
622  return llvm::BlockAddress::get(CurFn, BB);
623}
624
625llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
626  // If we already made the indirect branch for indirect goto, return its block.
627  if (IndirectBranch) return IndirectBranch->getParent();
628
629  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
630
631  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
632
633  // Create the PHI node that indirect gotos will add entries to.
634  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
635
636  // Create the indirect branch instruction.
637  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
638  return IndirectBranch->getParent();
639}
640
641llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
642  llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
643
644  assert(SizeEntry && "Did not emit size for type");
645  return SizeEntry;
646}
647
648llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
649  assert(Ty->isVariablyModifiedType() &&
650         "Must pass variably modified type to EmitVLASizes!");
651
652  EnsureInsertPoint();
653
654  if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
655    llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
656
657    if (!SizeEntry) {
658      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
659
660      // Get the element size;
661      QualType ElemTy = VAT->getElementType();
662      llvm::Value *ElemSize;
663      if (ElemTy->isVariableArrayType())
664        ElemSize = EmitVLASize(ElemTy);
665      else
666        ElemSize = llvm::ConstantInt::get(SizeTy,
667            getContext().getTypeSizeInChars(ElemTy).getQuantity());
668
669      llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
670      NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
671
672      SizeEntry = Builder.CreateMul(ElemSize, NumElements);
673    }
674
675    return SizeEntry;
676  }
677
678  if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
679    EmitVLASize(AT->getElementType());
680    return 0;
681  }
682
683  const PointerType *PT = Ty->getAs<PointerType>();
684  assert(PT && "unknown VM type!");
685  EmitVLASize(PT->getPointeeType());
686  return 0;
687}
688
689llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
690  if (CGM.getContext().getBuiltinVaListType()->isArrayType())
691    return EmitScalarExpr(E);
692  return EmitLValue(E).getAddress();
693}
694
695/// Pops cleanup blocks until the given savepoint is reached.
696void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
697  assert(Old.isValid());
698
699  while (EHStack.stable_begin() != Old) {
700    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
701
702    // As long as Old strictly encloses the scope's enclosing normal
703    // cleanup, we're going to emit another normal cleanup which
704    // fallthrough can propagate through.
705    bool FallThroughIsBranchThrough =
706      Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
707
708    PopCleanupBlock(FallThroughIsBranchThrough);
709  }
710}
711
712static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
713                                           EHCleanupScope &Scope) {
714  assert(Scope.isNormalCleanup());
715  llvm::BasicBlock *Entry = Scope.getNormalBlock();
716  if (!Entry) {
717    Entry = CGF.createBasicBlock("cleanup");
718    Scope.setNormalBlock(Entry);
719  }
720  return Entry;
721}
722
723static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
724                                       EHCleanupScope &Scope) {
725  assert(Scope.isEHCleanup());
726  llvm::BasicBlock *Entry = Scope.getEHBlock();
727  if (!Entry) {
728    Entry = CGF.createBasicBlock("eh.cleanup");
729    Scope.setEHBlock(Entry);
730  }
731  return Entry;
732}
733
734/// Transitions the terminator of the given exit-block of a cleanup to
735/// be a cleanup switch.
736static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
737                                                   llvm::BasicBlock *Block) {
738  // If it's a branch, turn it into a switch whose default
739  // destination is its original target.
740  llvm::TerminatorInst *Term = Block->getTerminator();
741  assert(Term && "can't transition block without terminator");
742
743  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
744    assert(Br->isUnconditional());
745    llvm::LoadInst *Load =
746      new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
747    llvm::SwitchInst *Switch =
748      llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
749    Br->eraseFromParent();
750    return Switch;
751  } else {
752    return cast<llvm::SwitchInst>(Term);
753  }
754}
755
756/// Attempts to reduce a cleanup's entry block to a fallthrough.  This
757/// is basically llvm::MergeBlockIntoPredecessor, except
758/// simplified/optimized for the tighter constraints on cleanup blocks.
759///
760/// Returns the new block, whatever it is.
761static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
762                                              llvm::BasicBlock *Entry) {
763  llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
764  if (!Pred) return Entry;
765
766  llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
767  if (!Br || Br->isConditional()) return Entry;
768  assert(Br->getSuccessor(0) == Entry);
769
770  // If we were previously inserting at the end of the cleanup entry
771  // block, we'll need to continue inserting at the end of the
772  // predecessor.
773  bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
774  assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
775
776  // Kill the branch.
777  Br->eraseFromParent();
778
779  // Merge the blocks.
780  Pred->getInstList().splice(Pred->end(), Entry->getInstList());
781
782  // Kill the entry block.
783  Entry->eraseFromParent();
784
785  if (WasInsertBlock)
786    CGF.Builder.SetInsertPoint(Pred);
787
788  return Pred;
789}
790
791static void EmitCleanup(CodeGenFunction &CGF,
792                        EHScopeStack::Cleanup *Fn,
793                        bool ForEH) {
794  if (ForEH) CGF.EHStack.pushTerminate();
795  Fn->Emit(CGF, ForEH);
796  if (ForEH) CGF.EHStack.popTerminate();
797  assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
798}
799
800/// Pops a cleanup block.  If the block includes a normal cleanup, the
801/// current insertion point is threaded through the cleanup, as are
802/// any branch fixups on the cleanup.
803void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
804  assert(!EHStack.empty() && "cleanup stack is empty!");
805  assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
806  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
807  assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
808  assert(Scope.isActive() && "cleanup was still inactive when popped!");
809
810  // Check whether we need an EH cleanup.  This is only true if we've
811  // generated a lazy EH cleanup block.
812  bool RequiresEHCleanup = Scope.hasEHBranches();
813
814  // Check the three conditions which might require a normal cleanup:
815
816  // - whether there are branch fix-ups through this cleanup
817  unsigned FixupDepth = Scope.getFixupDepth();
818  bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
819
820  // - whether there are branch-throughs or branch-afters
821  bool HasExistingBranches = Scope.hasBranches();
822
823  // - whether there's a fallthrough
824  llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
825  bool HasFallthrough = (FallthroughSource != 0);
826
827  bool RequiresNormalCleanup = false;
828  if (Scope.isNormalCleanup() &&
829      (HasFixups || HasExistingBranches || HasFallthrough)) {
830    RequiresNormalCleanup = true;
831  }
832
833  // If we don't need the cleanup at all, we're done.
834  if (!RequiresNormalCleanup && !RequiresEHCleanup) {
835    EHStack.popCleanup(); // safe because there are no fixups
836    assert(EHStack.getNumBranchFixups() == 0 ||
837           EHStack.hasNormalCleanups());
838    return;
839  }
840
841  // Copy the cleanup emission data out.  Note that SmallVector
842  // guarantees maximal alignment for its buffer regardless of its
843  // type parameter.
844  llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
845  CleanupBuffer.reserve(Scope.getCleanupSize());
846  memcpy(CleanupBuffer.data(),
847         Scope.getCleanupBuffer(), Scope.getCleanupSize());
848  CleanupBuffer.set_size(Scope.getCleanupSize());
849  EHScopeStack::Cleanup *Fn =
850    reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
851
852  // We want to emit the EH cleanup after the normal cleanup, but go
853  // ahead and do the setup for the EH cleanup while the scope is still
854  // alive.
855  llvm::BasicBlock *EHEntry = 0;
856  llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
857  if (RequiresEHCleanup) {
858    EHEntry = CreateEHEntry(*this, Scope);
859
860    // Figure out the branch-through dest if necessary.
861    llvm::BasicBlock *EHBranchThroughDest = 0;
862    if (Scope.hasEHBranchThroughs()) {
863      assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
864      EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
865      EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
866    }
867
868    // If we have exactly one branch-after and no branch-throughs, we
869    // can dispatch it without a switch.
870    if (!Scope.hasEHBranchThroughs() &&
871        Scope.getNumEHBranchAfters() == 1) {
872      assert(!EHBranchThroughDest);
873
874      // TODO: remove the spurious eh.cleanup.dest stores if this edge
875      // never went through any switches.
876      llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
877      EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
878
879    // Otherwise, if we have any branch-afters, we need a switch.
880    } else if (Scope.getNumEHBranchAfters()) {
881      // The default of the switch belongs to the branch-throughs if
882      // they exist.
883      llvm::BasicBlock *Default =
884        (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
885
886      const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
887
888      llvm::LoadInst *Load =
889        new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
890      llvm::SwitchInst *Switch =
891        llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
892
893      EHInstsToAppend.push_back(Load);
894      EHInstsToAppend.push_back(Switch);
895
896      for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
897        Switch->addCase(Scope.getEHBranchAfterIndex(I),
898                        Scope.getEHBranchAfterBlock(I));
899
900    // Otherwise, we have only branch-throughs; jump to the next EH
901    // cleanup.
902    } else {
903      assert(EHBranchThroughDest);
904      EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
905    }
906  }
907
908  if (!RequiresNormalCleanup) {
909    EHStack.popCleanup();
910  } else {
911    // As a kindof crazy internal case, branch-through fall-throughs
912    // leave the insertion point set to the end of the last cleanup.
913    bool HasPrebranchedFallthrough =
914      (HasFallthrough && FallthroughSource->getTerminator());
915    assert(!HasPrebranchedFallthrough ||
916           FallthroughSource->getTerminator()->getSuccessor(0)
917             == Scope.getNormalBlock());
918
919    // If we have a fallthrough and no other need for the cleanup,
920    // emit it directly.
921    if (HasFallthrough && !HasPrebranchedFallthrough &&
922        !HasFixups && !HasExistingBranches) {
923
924      // Fixups can cause us to optimistically create a normal block,
925      // only to later have no real uses for it.  Just delete it in
926      // this case.
927      // TODO: we can potentially simplify all the uses after this.
928      if (Scope.getNormalBlock()) {
929        Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
930        delete Scope.getNormalBlock();
931      }
932
933      EHStack.popCleanup();
934
935      EmitCleanup(*this, Fn, /*ForEH*/ false);
936
937    // Otherwise, the best approach is to thread everything through
938    // the cleanup block and then try to clean up after ourselves.
939    } else {
940      // Force the entry block to exist.
941      llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
942
943      // If there's a fallthrough, we need to store the cleanup
944      // destination index.  For fall-throughs this is always zero.
945      if (HasFallthrough && !HasPrebranchedFallthrough)
946        Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
947
948      // Emit the entry block.  This implicitly branches to it if we
949      // have fallthrough.  All the fixups and existing branches should
950      // already be branched to it.
951      EmitBlock(NormalEntry);
952
953      bool HasEnclosingCleanups =
954        (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
955
956      // Compute the branch-through dest if we need it:
957      //   - if there are branch-throughs threaded through the scope
958      //   - if fall-through is a branch-through
959      //   - if there are fixups that will be optimistically forwarded
960      //     to the enclosing cleanup
961      llvm::BasicBlock *BranchThroughDest = 0;
962      if (Scope.hasBranchThroughs() ||
963          (HasFallthrough && FallthroughIsBranchThrough) ||
964          (HasFixups && HasEnclosingCleanups)) {
965        assert(HasEnclosingCleanups);
966        EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
967        BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
968      }
969
970      llvm::BasicBlock *FallthroughDest = 0;
971      llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
972
973      // If there's exactly one branch-after and no other threads,
974      // we can route it without a switch.
975      if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
976          Scope.getNumBranchAfters() == 1) {
977        assert(!BranchThroughDest);
978
979        // TODO: clean up the possibly dead stores to the cleanup dest slot.
980        llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
981        InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
982
983      // Build a switch-out if we need it:
984      //   - if there are branch-afters threaded through the scope
985      //   - if fall-through is a branch-after
986      //   - if there are fixups that have nowhere left to go and
987      //     so must be immediately resolved
988      } else if (Scope.getNumBranchAfters() ||
989                 (HasFallthrough && !FallthroughIsBranchThrough) ||
990                 (HasFixups && !HasEnclosingCleanups)) {
991
992        llvm::BasicBlock *Default =
993          (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
994
995        // TODO: base this on the number of branch-afters and fixups
996        const unsigned SwitchCapacity = 10;
997
998        llvm::LoadInst *Load =
999          new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1000        llvm::SwitchInst *Switch =
1001          llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1002
1003        InstsToAppend.push_back(Load);
1004        InstsToAppend.push_back(Switch);
1005
1006        // Branch-after fallthrough.
1007        if (HasFallthrough && !FallthroughIsBranchThrough) {
1008          FallthroughDest = createBasicBlock("cleanup.cont");
1009          Switch->addCase(Builder.getInt32(0), FallthroughDest);
1010        }
1011
1012        for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1013          Switch->addCase(Scope.getBranchAfterIndex(I),
1014                          Scope.getBranchAfterBlock(I));
1015        }
1016
1017        if (HasFixups && !HasEnclosingCleanups)
1018          ResolveAllBranchFixups(Switch);
1019      } else {
1020        // We should always have a branch-through destination in this case.
1021        assert(BranchThroughDest);
1022        InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1023      }
1024
1025      // We're finally ready to pop the cleanup.
1026      EHStack.popCleanup();
1027      assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1028
1029      EmitCleanup(*this, Fn, /*ForEH*/ false);
1030
1031      // Append the prepared cleanup prologue from above.
1032      llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1033      for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1034        NormalExit->getInstList().push_back(InstsToAppend[I]);
1035
1036      // Optimistically hope that any fixups will continue falling through.
1037      for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1038           I < E; ++I) {
1039        BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1040        if (!Fixup.Destination) continue;
1041        if (!Fixup.OptimisticBranchBlock) {
1042          new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1043                              getNormalCleanupDestSlot(),
1044                              Fixup.InitialBranch);
1045          Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1046        }
1047        Fixup.OptimisticBranchBlock = NormalExit;
1048      }
1049
1050      if (FallthroughDest)
1051        EmitBlock(FallthroughDest);
1052      else if (!HasFallthrough)
1053        Builder.ClearInsertionPoint();
1054
1055      // Check whether we can merge NormalEntry into a single predecessor.
1056      // This might invalidate (non-IR) pointers to NormalEntry.
1057      llvm::BasicBlock *NewNormalEntry =
1058        SimplifyCleanupEntry(*this, NormalEntry);
1059
1060      // If it did invalidate those pointers, and NormalEntry was the same
1061      // as NormalExit, go back and patch up the fixups.
1062      if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1063        for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1064               I < E; ++I)
1065          CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1066    }
1067  }
1068
1069  assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1070
1071  // Emit the EH cleanup if required.
1072  if (RequiresEHCleanup) {
1073    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1074
1075    EmitBlock(EHEntry);
1076    EmitCleanup(*this, Fn, /*ForEH*/ true);
1077
1078    // Append the prepared cleanup prologue from above.
1079    llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1080    for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1081      EHExit->getInstList().push_back(EHInstsToAppend[I]);
1082
1083    Builder.restoreIP(SavedIP);
1084
1085    SimplifyCleanupEntry(*this, EHEntry);
1086  }
1087}
1088
1089/// Terminate the current block by emitting a branch which might leave
1090/// the current cleanup-protected scope.  The target scope may not yet
1091/// be known, in which case this will require a fixup.
1092///
1093/// As a side-effect, this method clears the insertion point.
1094void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1095  assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1096         && "stale jump destination");
1097
1098  if (!HaveInsertPoint())
1099    return;
1100
1101  // Create the branch.
1102  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1103
1104  // Calculate the innermost active normal cleanup.
1105  EHScopeStack::stable_iterator
1106    TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1107
1108  // If we're not in an active normal cleanup scope, or if the
1109  // destination scope is within the innermost active normal cleanup
1110  // scope, we don't need to worry about fixups.
1111  if (TopCleanup == EHStack.stable_end() ||
1112      TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1113    Builder.ClearInsertionPoint();
1114    return;
1115  }
1116
1117  // If we can't resolve the destination cleanup scope, just add this
1118  // to the current cleanup scope as a branch fixup.
1119  if (!Dest.getScopeDepth().isValid()) {
1120    BranchFixup &Fixup = EHStack.addBranchFixup();
1121    Fixup.Destination = Dest.getBlock();
1122    Fixup.DestinationIndex = Dest.getDestIndex();
1123    Fixup.InitialBranch = BI;
1124    Fixup.OptimisticBranchBlock = 0;
1125
1126    Builder.ClearInsertionPoint();
1127    return;
1128  }
1129
1130  // Otherwise, thread through all the normal cleanups in scope.
1131
1132  // Store the index at the start.
1133  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1134  new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1135
1136  // Adjust BI to point to the first cleanup block.
1137  {
1138    EHCleanupScope &Scope =
1139      cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1140    BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1141  }
1142
1143  // Add this destination to all the scopes involved.
1144  EHScopeStack::stable_iterator I = TopCleanup;
1145  EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1146  if (E.strictlyEncloses(I)) {
1147    while (true) {
1148      EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1149      assert(Scope.isNormalCleanup());
1150      I = Scope.getEnclosingNormalCleanup();
1151
1152      // If this is the last cleanup we're propagating through, tell it
1153      // that there's a resolved jump moving through it.
1154      if (!E.strictlyEncloses(I)) {
1155        Scope.addBranchAfter(Index, Dest.getBlock());
1156        break;
1157      }
1158
1159      // Otherwise, tell the scope that there's a jump propoagating
1160      // through it.  If this isn't new information, all the rest of
1161      // the work has been done before.
1162      if (!Scope.addBranchThrough(Dest.getBlock()))
1163        break;
1164    }
1165  }
1166
1167  Builder.ClearInsertionPoint();
1168}
1169
1170void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1171  // We should never get invalid scope depths for an UnwindDest; that
1172  // implies that the destination wasn't set up correctly.
1173  assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1174
1175  if (!HaveInsertPoint())
1176    return;
1177
1178  // Create the branch.
1179  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1180
1181  // Calculate the innermost active cleanup.
1182  EHScopeStack::stable_iterator
1183    InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1184
1185  // If the destination is in the same EH cleanup scope as us, we
1186  // don't need to thread through anything.
1187  if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1188    Builder.ClearInsertionPoint();
1189    return;
1190  }
1191  assert(InnermostCleanup != EHStack.stable_end());
1192
1193  // Store the index at the start.
1194  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1195  new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1196
1197  // Adjust BI to point to the first cleanup block.
1198  {
1199    EHCleanupScope &Scope =
1200      cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1201    BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1202  }
1203
1204  // Add this destination to all the scopes involved.
1205  for (EHScopeStack::stable_iterator
1206         I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1207    assert(E.strictlyEncloses(I));
1208    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1209    assert(Scope.isEHCleanup());
1210    I = Scope.getEnclosingEHCleanup();
1211
1212    // If this is the last cleanup we're propagating through, add this
1213    // as a branch-after.
1214    if (I == E) {
1215      Scope.addEHBranchAfter(Index, Dest.getBlock());
1216      break;
1217    }
1218
1219    // Otherwise, add it as a branch-through.  If this isn't new
1220    // information, all the rest of the work has been done before.
1221    if (!Scope.addEHBranchThrough(Dest.getBlock()))
1222      break;
1223  }
1224
1225  Builder.ClearInsertionPoint();
1226}
1227
1228/// All the branch fixups on the EH stack have propagated out past the
1229/// outermost normal cleanup; resolve them all by adding cases to the
1230/// given switch instruction.
1231void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) {
1232  llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1233
1234  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1235    // Skip this fixup if its destination isn't set or if we've
1236    // already treated it.
1237    BranchFixup &Fixup = EHStack.getBranchFixup(I);
1238    if (Fixup.Destination == 0) continue;
1239    if (!CasesAdded.insert(Fixup.Destination)) continue;
1240
1241    Switch->addCase(Builder.getInt32(Fixup.DestinationIndex),
1242                    Fixup.Destination);
1243  }
1244
1245  EHStack.clearFixups();
1246}
1247
1248void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1249  assert(Block && "resolving a null target block");
1250  if (!EHStack.getNumBranchFixups()) return;
1251
1252  assert(EHStack.hasNormalCleanups() &&
1253         "branch fixups exist with no normal cleanups on stack");
1254
1255  llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1256  bool ResolvedAny = false;
1257
1258  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1259    // Skip this fixup if its destination doesn't match.
1260    BranchFixup &Fixup = EHStack.getBranchFixup(I);
1261    if (Fixup.Destination != Block) continue;
1262
1263    Fixup.Destination = 0;
1264    ResolvedAny = true;
1265
1266    // If it doesn't have an optimistic branch block, LatestBranch is
1267    // already pointing to the right place.
1268    llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1269    if (!BranchBB)
1270      continue;
1271
1272    // Don't process the same optimistic branch block twice.
1273    if (!ModifiedOptimisticBlocks.insert(BranchBB))
1274      continue;
1275
1276    llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1277
1278    // Add a case to the switch.
1279    Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1280  }
1281
1282  if (ResolvedAny)
1283    EHStack.popNullFixups();
1284}
1285
1286/// Activate a cleanup that was created in an inactivated state.
1287void CodeGenFunction::ActivateCleanup(EHScopeStack::stable_iterator C) {
1288  assert(C != EHStack.stable_end() && "activating bottom of stack?");
1289  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1290  assert(!Scope.isActive() && "double activation");
1291
1292  // Calculate whether the cleanup was used:
1293  bool Used = false;
1294
1295  //   - as a normal cleanup
1296  if (Scope.isNormalCleanup()) {
1297    bool NormalUsed = false;
1298    if (Scope.getNormalBlock()) {
1299      NormalUsed = true;
1300    } else {
1301      // Check whether any enclosed cleanups were needed.
1302      for (EHScopeStack::stable_iterator
1303             I = EHStack.getInnermostNormalCleanup(); I != C; ) {
1304        assert(C.strictlyEncloses(I));
1305        EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1306        if (S.getNormalBlock()) {
1307          NormalUsed = true;
1308          break;
1309        }
1310        I = S.getEnclosingNormalCleanup();
1311      }
1312    }
1313
1314    if (NormalUsed)
1315      Used = true;
1316    else
1317      Scope.setActivatedBeforeNormalUse(true);
1318  }
1319
1320  //  - as an EH cleanup
1321  if (Scope.isEHCleanup()) {
1322    bool EHUsed = false;
1323    if (Scope.getEHBlock()) {
1324      EHUsed = true;
1325    } else {
1326      // Check whether any enclosed cleanups were needed.
1327      for (EHScopeStack::stable_iterator
1328             I = EHStack.getInnermostEHCleanup(); I != C; ) {
1329        assert(C.strictlyEncloses(I));
1330        EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1331        if (S.getEHBlock()) {
1332          EHUsed = true;
1333          break;
1334        }
1335        I = S.getEnclosingEHCleanup();
1336      }
1337    }
1338
1339    if (EHUsed)
1340      Used = true;
1341    else
1342      Scope.setActivatedBeforeEHUse(true);
1343  }
1344
1345  llvm::AllocaInst *Var = EHCleanupScope::activeSentinel();
1346  if (Used) {
1347    Var = CreateTempAlloca(Builder.getInt1Ty());
1348    InitTempAlloca(Var, Builder.getFalse());
1349  }
1350  Scope.setActiveVar(Var);
1351}
1352
1353llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1354  if (!NormalCleanupDest)
1355    NormalCleanupDest =
1356      CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1357  return NormalCleanupDest;
1358}
1359
1360llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1361  if (!EHCleanupDest)
1362    EHCleanupDest =
1363      CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1364  return EHCleanupDest;
1365}
1366
1367void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1368                                              llvm::ConstantInt *Init) {
1369  assert (Init && "Invalid DeclRefExpr initializer!");
1370  if (CGDebugInfo *Dbg = getDebugInfo())
1371    Dbg->EmitGlobalVariable(E->getDecl(), Init, Builder);
1372}
1373