CodeGenFunction.cpp revision 5bfe232d1f07a6fd160fcf82c277c055a412a1c0
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCXXABI.h"
17#include "CGDebugInfo.h"
18#include "CGException.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Intrinsics.h"
28using namespace clang;
29using namespace CodeGen;
30
31static void ResolveAllBranchFixups(CodeGenFunction &CGF,
32                                   llvm::SwitchInst *Switch,
33                                   llvm::BasicBlock *CleanupEntry);
34
35CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
36  : BlockFunction(cgm, *this, Builder), CGM(cgm),
37    Target(CGM.getContext().Target),
38    Builder(cgm.getModule().getContext()),
39    NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
40    ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
41    SwitchInsn(0), CaseRangeBlock(0),
42    DidCallStackSave(false), UnreachableBlock(0),
43    CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
44    ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
45    TrapBB(0) {
46
47  // Get some frequently used types.
48  LLVMPointerWidth = Target.getPointerWidth(0);
49  llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
50  IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
51  Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
52  Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
53
54  Exceptions = getContext().getLangOptions().Exceptions;
55  CatchUndefined = getContext().getLangOptions().CatchUndefined;
56  CGM.getCXXABI().getMangleContext().startNewFunction();
57}
58
59ASTContext &CodeGenFunction::getContext() const {
60  return CGM.getContext();
61}
62
63
64const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
65  return CGM.getTypes().ConvertTypeForMem(T);
66}
67
68const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
69  return CGM.getTypes().ConvertType(T);
70}
71
72bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
73  return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
74    T->isObjCObjectType();
75}
76
77void CodeGenFunction::EmitReturnBlock() {
78  // For cleanliness, we try to avoid emitting the return block for
79  // simple cases.
80  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
81
82  if (CurBB) {
83    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
84
85    // We have a valid insert point, reuse it if it is empty or there are no
86    // explicit jumps to the return block.
87    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
88      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
89      delete ReturnBlock.getBlock();
90    } else
91      EmitBlock(ReturnBlock.getBlock());
92    return;
93  }
94
95  // Otherwise, if the return block is the target of a single direct
96  // branch then we can just put the code in that block instead. This
97  // cleans up functions which started with a unified return block.
98  if (ReturnBlock.getBlock()->hasOneUse()) {
99    llvm::BranchInst *BI =
100      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
101    if (BI && BI->isUnconditional() &&
102        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
103      // Reset insertion point and delete the branch.
104      Builder.SetInsertPoint(BI->getParent());
105      BI->eraseFromParent();
106      delete ReturnBlock.getBlock();
107      return;
108    }
109  }
110
111  // FIXME: We are at an unreachable point, there is no reason to emit the block
112  // unless it has uses. However, we still need a place to put the debug
113  // region.end for now.
114
115  EmitBlock(ReturnBlock.getBlock());
116}
117
118static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
119  if (!BB) return;
120  if (!BB->use_empty())
121    return CGF.CurFn->getBasicBlockList().push_back(BB);
122  delete BB;
123}
124
125void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
126  assert(BreakContinueStack.empty() &&
127         "mismatched push/pop in break/continue stack!");
128
129  // Emit function epilog (to return).
130  EmitReturnBlock();
131
132  EmitFunctionInstrumentation("__cyg_profile_func_exit");
133
134  // Emit debug descriptor for function end.
135  if (CGDebugInfo *DI = getDebugInfo()) {
136    DI->setLocation(EndLoc);
137    DI->EmitFunctionEnd(Builder);
138  }
139
140  EmitFunctionEpilog(*CurFnInfo);
141  EmitEndEHSpec(CurCodeDecl);
142
143  assert(EHStack.empty() &&
144         "did not remove all scopes from cleanup stack!");
145
146  // If someone did an indirect goto, emit the indirect goto block at the end of
147  // the function.
148  if (IndirectBranch) {
149    EmitBlock(IndirectBranch->getParent());
150    Builder.ClearInsertionPoint();
151  }
152
153  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
154  llvm::Instruction *Ptr = AllocaInsertPt;
155  AllocaInsertPt = 0;
156  Ptr->eraseFromParent();
157
158  // If someone took the address of a label but never did an indirect goto, we
159  // made a zero entry PHI node, which is illegal, zap it now.
160  if (IndirectBranch) {
161    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
162    if (PN->getNumIncomingValues() == 0) {
163      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
164      PN->eraseFromParent();
165    }
166  }
167
168  EmitIfUsed(*this, RethrowBlock.getBlock());
169  EmitIfUsed(*this, TerminateLandingPad);
170  EmitIfUsed(*this, TerminateHandler);
171  EmitIfUsed(*this, UnreachableBlock);
172
173  if (CGM.getCodeGenOpts().EmitDeclMetadata)
174    EmitDeclMetadata();
175}
176
177/// ShouldInstrumentFunction - Return true if the current function should be
178/// instrumented with __cyg_profile_func_* calls
179bool CodeGenFunction::ShouldInstrumentFunction() {
180  if (!CGM.getCodeGenOpts().InstrumentFunctions)
181    return false;
182  if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
183    return false;
184  return true;
185}
186
187/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
188/// instrumentation function with the current function and the call site, if
189/// function instrumentation is enabled.
190void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
191  if (!ShouldInstrumentFunction())
192    return;
193
194  const llvm::PointerType *PointerTy;
195  const llvm::FunctionType *FunctionTy;
196  std::vector<const llvm::Type*> ProfileFuncArgs;
197
198  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
199  PointerTy = llvm::Type::getInt8PtrTy(VMContext);
200  ProfileFuncArgs.push_back(PointerTy);
201  ProfileFuncArgs.push_back(PointerTy);
202  FunctionTy = llvm::FunctionType::get(
203    llvm::Type::getVoidTy(VMContext),
204    ProfileFuncArgs, false);
205
206  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
207  llvm::CallInst *CallSite = Builder.CreateCall(
208    CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
209    llvm::ConstantInt::get(Int32Ty, 0),
210    "callsite");
211
212  Builder.CreateCall2(F,
213                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
214                      CallSite);
215}
216
217void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
218                                    llvm::Function *Fn,
219                                    const FunctionArgList &Args,
220                                    SourceLocation StartLoc) {
221  const Decl *D = GD.getDecl();
222
223  DidCallStackSave = false;
224  CurCodeDecl = CurFuncDecl = D;
225  FnRetTy = RetTy;
226  CurFn = Fn;
227  assert(CurFn->isDeclaration() && "Function already has body?");
228
229  // Pass inline keyword to optimizer if it appears explicitly on any
230  // declaration.
231  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
232    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
233           RE = FD->redecls_end(); RI != RE; ++RI)
234      if (RI->isInlineSpecified()) {
235        Fn->addFnAttr(llvm::Attribute::InlineHint);
236        break;
237      }
238
239  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
240
241  // Create a marker to make it easy to insert allocas into the entryblock
242  // later.  Don't create this with the builder, because we don't want it
243  // folded.
244  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
245  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
246  if (Builder.isNamePreserving())
247    AllocaInsertPt->setName("allocapt");
248
249  ReturnBlock = getJumpDestInCurrentScope("return");
250
251  Builder.SetInsertPoint(EntryBB);
252
253  QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
254                                                 false, false, 0, 0,
255                                                 /*FIXME?*/
256                                                 FunctionType::ExtInfo());
257
258  // Emit subprogram debug descriptor.
259  if (CGDebugInfo *DI = getDebugInfo()) {
260    DI->setLocation(StartLoc);
261    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
262  }
263
264  EmitFunctionInstrumentation("__cyg_profile_func_enter");
265
266  // FIXME: Leaked.
267  // CC info is ignored, hopefully?
268  CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
269                                              FunctionType::ExtInfo());
270
271  if (RetTy->isVoidType()) {
272    // Void type; nothing to return.
273    ReturnValue = 0;
274  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
275             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
276    // Indirect aggregate return; emit returned value directly into sret slot.
277    // This reduces code size, and affects correctness in C++.
278    ReturnValue = CurFn->arg_begin();
279  } else {
280    ReturnValue = CreateIRTemp(RetTy, "retval");
281  }
282
283  EmitStartEHSpec(CurCodeDecl);
284  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
285
286  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
287    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
288
289  // If any of the arguments have a variably modified type, make sure to
290  // emit the type size.
291  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
292       i != e; ++i) {
293    QualType Ty = i->second;
294
295    if (Ty->isVariablyModifiedType())
296      EmitVLASize(Ty);
297  }
298}
299
300void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
301  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
302  assert(FD->getBody());
303  EmitStmt(FD->getBody());
304}
305
306/// Tries to mark the given function nounwind based on the
307/// non-existence of any throwing calls within it.  We believe this is
308/// lightweight enough to do at -O0.
309static void TryMarkNoThrow(llvm::Function *F) {
310  // LLVM treats 'nounwind' on a function as part of the type, so we
311  // can't do this on functions that can be overwritten.
312  if (F->mayBeOverridden()) return;
313
314  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
315    for (llvm::BasicBlock::iterator
316           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
317      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
318        if (!Call->doesNotThrow())
319          return;
320  F->setDoesNotThrow(true);
321}
322
323void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
324  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
325
326  // Check if we should generate debug info for this function.
327  if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
328    DebugInfo = CGM.getDebugInfo();
329
330  FunctionArgList Args;
331  QualType ResTy = FD->getResultType();
332
333  CurGD = GD;
334  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
335    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
336
337  if (FD->getNumParams()) {
338    const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
339    assert(FProto && "Function def must have prototype!");
340
341    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
342      Args.push_back(std::make_pair(FD->getParamDecl(i),
343                                    FProto->getArgType(i)));
344  }
345
346  SourceRange BodyRange;
347  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
348
349  // Emit the standard function prologue.
350  StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
351
352  // Generate the body of the function.
353  if (isa<CXXDestructorDecl>(FD))
354    EmitDestructorBody(Args);
355  else if (isa<CXXConstructorDecl>(FD))
356    EmitConstructorBody(Args);
357  else
358    EmitFunctionBody(Args);
359
360  // Emit the standard function epilogue.
361  FinishFunction(BodyRange.getEnd());
362
363  // If we haven't marked the function nothrow through other means, do
364  // a quick pass now to see if we can.
365  if (!CurFn->doesNotThrow())
366    TryMarkNoThrow(CurFn);
367}
368
369/// ContainsLabel - Return true if the statement contains a label in it.  If
370/// this statement is not executed normally, it not containing a label means
371/// that we can just remove the code.
372bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
373  // Null statement, not a label!
374  if (S == 0) return false;
375
376  // If this is a label, we have to emit the code, consider something like:
377  // if (0) {  ...  foo:  bar(); }  goto foo;
378  if (isa<LabelStmt>(S))
379    return true;
380
381  // If this is a case/default statement, and we haven't seen a switch, we have
382  // to emit the code.
383  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
384    return true;
385
386  // If this is a switch statement, we want to ignore cases below it.
387  if (isa<SwitchStmt>(S))
388    IgnoreCaseStmts = true;
389
390  // Scan subexpressions for verboten labels.
391  for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
392       I != E; ++I)
393    if (ContainsLabel(*I, IgnoreCaseStmts))
394      return true;
395
396  return false;
397}
398
399
400/// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
401/// a constant, or if it does but contains a label, return 0.  If it constant
402/// folds to 'true' and does not contain a label, return 1, if it constant folds
403/// to 'false' and does not contain a label, return -1.
404int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
405  // FIXME: Rename and handle conversion of other evaluatable things
406  // to bool.
407  Expr::EvalResult Result;
408  if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
409      Result.HasSideEffects)
410    return 0;  // Not foldable, not integer or not fully evaluatable.
411
412  if (CodeGenFunction::ContainsLabel(Cond))
413    return 0;  // Contains a label.
414
415  return Result.Val.getInt().getBoolValue() ? 1 : -1;
416}
417
418
419/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
420/// statement) to the specified blocks.  Based on the condition, this might try
421/// to simplify the codegen of the conditional based on the branch.
422///
423void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
424                                           llvm::BasicBlock *TrueBlock,
425                                           llvm::BasicBlock *FalseBlock) {
426  if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
427    return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
428
429  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
430    // Handle X && Y in a condition.
431    if (CondBOp->getOpcode() == BO_LAnd) {
432      // If we have "1 && X", simplify the code.  "0 && X" would have constant
433      // folded if the case was simple enough.
434      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
435        // br(1 && X) -> br(X).
436        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
437      }
438
439      // If we have "X && 1", simplify the code to use an uncond branch.
440      // "X && 0" would have been constant folded to 0.
441      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
442        // br(X && 1) -> br(X).
443        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
444      }
445
446      // Emit the LHS as a conditional.  If the LHS conditional is false, we
447      // want to jump to the FalseBlock.
448      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
449      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
450      EmitBlock(LHSTrue);
451
452      // Any temporaries created here are conditional.
453      BeginConditionalBranch();
454      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
455      EndConditionalBranch();
456
457      return;
458    } else if (CondBOp->getOpcode() == BO_LOr) {
459      // If we have "0 || X", simplify the code.  "1 || X" would have constant
460      // folded if the case was simple enough.
461      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
462        // br(0 || X) -> br(X).
463        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
464      }
465
466      // If we have "X || 0", simplify the code to use an uncond branch.
467      // "X || 1" would have been constant folded to 1.
468      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
469        // br(X || 0) -> br(X).
470        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
471      }
472
473      // Emit the LHS as a conditional.  If the LHS conditional is true, we
474      // want to jump to the TrueBlock.
475      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
476      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
477      EmitBlock(LHSFalse);
478
479      // Any temporaries created here are conditional.
480      BeginConditionalBranch();
481      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
482      EndConditionalBranch();
483
484      return;
485    }
486  }
487
488  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
489    // br(!x, t, f) -> br(x, f, t)
490    if (CondUOp->getOpcode() == UO_LNot)
491      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
492  }
493
494  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
495    // Handle ?: operator.
496
497    // Just ignore GNU ?: extension.
498    if (CondOp->getLHS()) {
499      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
500      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
501      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
502      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
503      EmitBlock(LHSBlock);
504      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
505      EmitBlock(RHSBlock);
506      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
507      return;
508    }
509  }
510
511  // Emit the code with the fully general case.
512  llvm::Value *CondV = EvaluateExprAsBool(Cond);
513  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
514}
515
516/// ErrorUnsupported - Print out an error that codegen doesn't support the
517/// specified stmt yet.
518void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
519                                       bool OmitOnError) {
520  CGM.ErrorUnsupported(S, Type, OmitOnError);
521}
522
523void
524CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
525  // Ignore empty classes in C++.
526  if (getContext().getLangOptions().CPlusPlus) {
527    if (const RecordType *RT = Ty->getAs<RecordType>()) {
528      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
529        return;
530    }
531  }
532
533  // Cast the dest ptr to the appropriate i8 pointer type.
534  unsigned DestAS =
535    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
536  const llvm::Type *BP =
537    llvm::Type::getInt8PtrTy(VMContext, DestAS);
538  if (DestPtr->getType() != BP)
539    DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
540
541  // Get size and alignment info for this aggregate.
542  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
543  uint64_t Size = TypeInfo.first;
544  unsigned Align = TypeInfo.second;
545
546  // Don't bother emitting a zero-byte memset.
547  if (Size == 0)
548    return;
549
550  llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
551  llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
552
553  // If the type contains a pointer to data member we can't memset it to zero.
554  // Instead, create a null constant and copy it to the destination.
555  if (!CGM.getTypes().isZeroInitializable(Ty)) {
556    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
557
558    llvm::GlobalVariable *NullVariable =
559      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
560                               /*isConstant=*/true,
561                               llvm::GlobalVariable::PrivateLinkage,
562                               NullConstant, llvm::Twine());
563    llvm::Value *SrcPtr =
564      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
565
566    // FIXME: variable-size types?
567
568    // Get and call the appropriate llvm.memcpy overload.
569    llvm::Constant *Memcpy =
570      CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
571    Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
572                        /*volatile*/ Builder.getFalse());
573    return;
574  }
575
576  // Otherwise, just memset the whole thing to zero.  This is legal
577  // because in LLVM, all default initializers (other than the ones we just
578  // handled above) are guaranteed to have a bit pattern of all zeros.
579
580  // FIXME: Handle variable sized types.
581  Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
582                      Builder.getInt8(0),
583                      SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
584}
585
586llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
587  // Make sure that there is a block for the indirect goto.
588  if (IndirectBranch == 0)
589    GetIndirectGotoBlock();
590
591  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
592
593  // Make sure the indirect branch includes all of the address-taken blocks.
594  IndirectBranch->addDestination(BB);
595  return llvm::BlockAddress::get(CurFn, BB);
596}
597
598llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
599  // If we already made the indirect branch for indirect goto, return its block.
600  if (IndirectBranch) return IndirectBranch->getParent();
601
602  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
603
604  const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
605
606  // Create the PHI node that indirect gotos will add entries to.
607  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
608
609  // Create the indirect branch instruction.
610  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
611  return IndirectBranch->getParent();
612}
613
614llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
615  llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
616
617  assert(SizeEntry && "Did not emit size for type");
618  return SizeEntry;
619}
620
621llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
622  assert(Ty->isVariablyModifiedType() &&
623         "Must pass variably modified type to EmitVLASizes!");
624
625  EnsureInsertPoint();
626
627  if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
628    // unknown size indication requires no size computation.
629    if (!VAT->getSizeExpr())
630      return 0;
631    llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
632
633    if (!SizeEntry) {
634      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
635
636      // Get the element size;
637      QualType ElemTy = VAT->getElementType();
638      llvm::Value *ElemSize;
639      if (ElemTy->isVariableArrayType())
640        ElemSize = EmitVLASize(ElemTy);
641      else
642        ElemSize = llvm::ConstantInt::get(SizeTy,
643            getContext().getTypeSizeInChars(ElemTy).getQuantity());
644
645      llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
646      NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
647
648      SizeEntry = Builder.CreateMul(ElemSize, NumElements);
649    }
650
651    return SizeEntry;
652  }
653
654  if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
655    EmitVLASize(AT->getElementType());
656    return 0;
657  }
658
659  if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
660    EmitVLASize(PT->getInnerType());
661    return 0;
662  }
663
664  const PointerType *PT = Ty->getAs<PointerType>();
665  assert(PT && "unknown VM type!");
666  EmitVLASize(PT->getPointeeType());
667  return 0;
668}
669
670llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
671  if (getContext().getBuiltinVaListType()->isArrayType())
672    return EmitScalarExpr(E);
673  return EmitLValue(E).getAddress();
674}
675
676/// Pops cleanup blocks until the given savepoint is reached.
677void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
678  assert(Old.isValid());
679
680  while (EHStack.stable_begin() != Old) {
681    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
682
683    // As long as Old strictly encloses the scope's enclosing normal
684    // cleanup, we're going to emit another normal cleanup which
685    // fallthrough can propagate through.
686    bool FallThroughIsBranchThrough =
687      Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
688
689    PopCleanupBlock(FallThroughIsBranchThrough);
690  }
691}
692
693static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
694                                           EHCleanupScope &Scope) {
695  assert(Scope.isNormalCleanup());
696  llvm::BasicBlock *Entry = Scope.getNormalBlock();
697  if (!Entry) {
698    Entry = CGF.createBasicBlock("cleanup");
699    Scope.setNormalBlock(Entry);
700  }
701  return Entry;
702}
703
704static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
705                                       EHCleanupScope &Scope) {
706  assert(Scope.isEHCleanup());
707  llvm::BasicBlock *Entry = Scope.getEHBlock();
708  if (!Entry) {
709    Entry = CGF.createBasicBlock("eh.cleanup");
710    Scope.setEHBlock(Entry);
711  }
712  return Entry;
713}
714
715/// Transitions the terminator of the given exit-block of a cleanup to
716/// be a cleanup switch.
717static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
718                                                   llvm::BasicBlock *Block) {
719  // If it's a branch, turn it into a switch whose default
720  // destination is its original target.
721  llvm::TerminatorInst *Term = Block->getTerminator();
722  assert(Term && "can't transition block without terminator");
723
724  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
725    assert(Br->isUnconditional());
726    llvm::LoadInst *Load =
727      new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
728    llvm::SwitchInst *Switch =
729      llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
730    Br->eraseFromParent();
731    return Switch;
732  } else {
733    return cast<llvm::SwitchInst>(Term);
734  }
735}
736
737/// Attempts to reduce a cleanup's entry block to a fallthrough.  This
738/// is basically llvm::MergeBlockIntoPredecessor, except
739/// simplified/optimized for the tighter constraints on cleanup blocks.
740///
741/// Returns the new block, whatever it is.
742static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
743                                              llvm::BasicBlock *Entry) {
744  llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
745  if (!Pred) return Entry;
746
747  llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
748  if (!Br || Br->isConditional()) return Entry;
749  assert(Br->getSuccessor(0) == Entry);
750
751  // If we were previously inserting at the end of the cleanup entry
752  // block, we'll need to continue inserting at the end of the
753  // predecessor.
754  bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
755  assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
756
757  // Kill the branch.
758  Br->eraseFromParent();
759
760  // Merge the blocks.
761  Pred->getInstList().splice(Pred->end(), Entry->getInstList());
762
763  // Kill the entry block.
764  Entry->eraseFromParent();
765
766  if (WasInsertBlock)
767    CGF.Builder.SetInsertPoint(Pred);
768
769  return Pred;
770}
771
772static void EmitCleanup(CodeGenFunction &CGF,
773                        EHScopeStack::Cleanup *Fn,
774                        bool ForEH,
775                        llvm::Value *ActiveFlag) {
776  // EH cleanups always occur within a terminate scope.
777  if (ForEH) CGF.EHStack.pushTerminate();
778
779  // If there's an active flag, load it and skip the cleanup if it's
780  // false.
781  llvm::BasicBlock *ContBB = 0;
782  if (ActiveFlag) {
783    ContBB = CGF.createBasicBlock("cleanup.done");
784    llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
785    llvm::Value *IsActive
786      = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
787    CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
788    CGF.EmitBlock(CleanupBB);
789  }
790
791  // Ask the cleanup to emit itself.
792  Fn->Emit(CGF, ForEH);
793  assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
794
795  // Emit the continuation block if there was an active flag.
796  if (ActiveFlag)
797    CGF.EmitBlock(ContBB);
798
799  // Leave the terminate scope.
800  if (ForEH) CGF.EHStack.popTerminate();
801}
802
803static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
804                                          llvm::BasicBlock *From,
805                                          llvm::BasicBlock *To) {
806  // Exit is the exit block of a cleanup, so it always terminates in
807  // an unconditional branch or a switch.
808  llvm::TerminatorInst *Term = Exit->getTerminator();
809
810  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
811    assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
812    Br->setSuccessor(0, To);
813  } else {
814    llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
815    for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
816      if (Switch->getSuccessor(I) == From)
817        Switch->setSuccessor(I, To);
818  }
819}
820
821/// Pops a cleanup block.  If the block includes a normal cleanup, the
822/// current insertion point is threaded through the cleanup, as are
823/// any branch fixups on the cleanup.
824void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
825  assert(!EHStack.empty() && "cleanup stack is empty!");
826  assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
827  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
828  assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
829
830  // Remember activation information.
831  bool IsActive = Scope.isActive();
832  llvm::Value *NormalActiveFlag =
833    Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : 0;
834  llvm::Value *EHActiveFlag =
835    Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : 0;
836
837  // Check whether we need an EH cleanup.  This is only true if we've
838  // generated a lazy EH cleanup block.
839  bool RequiresEHCleanup = Scope.hasEHBranches();
840
841  // Check the three conditions which might require a normal cleanup:
842
843  // - whether there are branch fix-ups through this cleanup
844  unsigned FixupDepth = Scope.getFixupDepth();
845  bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
846
847  // - whether there are branch-throughs or branch-afters
848  bool HasExistingBranches = Scope.hasBranches();
849
850  // - whether there's a fallthrough
851  llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
852  bool HasFallthrough = (FallthroughSource != 0 && IsActive);
853
854  // Branch-through fall-throughs leave the insertion point set to the
855  // end of the last cleanup, which points to the current scope.  The
856  // rest of IR gen doesn't need to worry about this; it only happens
857  // during the execution of PopCleanupBlocks().
858  bool HasPrebranchedFallthrough =
859    (FallthroughSource && FallthroughSource->getTerminator());
860
861  // If this is a normal cleanup, then having a prebranched
862  // fallthrough implies that the fallthrough source unconditionally
863  // jumps here.
864  assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
865         (Scope.getNormalBlock() &&
866          FallthroughSource->getTerminator()->getSuccessor(0)
867            == Scope.getNormalBlock()));
868
869  bool RequiresNormalCleanup = false;
870  if (Scope.isNormalCleanup() &&
871      (HasFixups || HasExistingBranches || HasFallthrough)) {
872    RequiresNormalCleanup = true;
873  }
874
875  // Even if we don't need the normal cleanup, we might still have
876  // prebranched fallthrough to worry about.
877  if (Scope.isNormalCleanup() && !RequiresNormalCleanup &&
878      HasPrebranchedFallthrough) {
879    assert(!IsActive);
880
881    llvm::BasicBlock *NormalEntry = Scope.getNormalBlock();
882
883    // If we're branching through this cleanup, just forward the
884    // prebranched fallthrough to the next cleanup, leaving the insert
885    // point in the old block.
886    if (FallthroughIsBranchThrough) {
887      EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
888      llvm::BasicBlock *EnclosingEntry =
889        CreateNormalEntry(*this, cast<EHCleanupScope>(S));
890
891      ForwardPrebranchedFallthrough(FallthroughSource,
892                                    NormalEntry, EnclosingEntry);
893      assert(NormalEntry->use_empty() &&
894             "uses of entry remain after forwarding?");
895      delete NormalEntry;
896
897    // Otherwise, we're branching out;  just emit the next block.
898    } else {
899      EmitBlock(NormalEntry);
900      SimplifyCleanupEntry(*this, NormalEntry);
901    }
902  }
903
904  // If we don't need the cleanup at all, we're done.
905  if (!RequiresNormalCleanup && !RequiresEHCleanup) {
906    EHStack.popCleanup(); // safe because there are no fixups
907    assert(EHStack.getNumBranchFixups() == 0 ||
908           EHStack.hasNormalCleanups());
909    return;
910  }
911
912  // Copy the cleanup emission data out.  Note that SmallVector
913  // guarantees maximal alignment for its buffer regardless of its
914  // type parameter.
915  llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
916  CleanupBuffer.reserve(Scope.getCleanupSize());
917  memcpy(CleanupBuffer.data(),
918         Scope.getCleanupBuffer(), Scope.getCleanupSize());
919  CleanupBuffer.set_size(Scope.getCleanupSize());
920  EHScopeStack::Cleanup *Fn =
921    reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
922
923  // We want to emit the EH cleanup after the normal cleanup, but go
924  // ahead and do the setup for the EH cleanup while the scope is still
925  // alive.
926  llvm::BasicBlock *EHEntry = 0;
927  llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
928  if (RequiresEHCleanup) {
929    EHEntry = CreateEHEntry(*this, Scope);
930
931    // Figure out the branch-through dest if necessary.
932    llvm::BasicBlock *EHBranchThroughDest = 0;
933    if (Scope.hasEHBranchThroughs()) {
934      assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
935      EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
936      EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
937    }
938
939    // If we have exactly one branch-after and no branch-throughs, we
940    // can dispatch it without a switch.
941    if (!Scope.hasEHBranchThroughs() &&
942        Scope.getNumEHBranchAfters() == 1) {
943      assert(!EHBranchThroughDest);
944
945      // TODO: remove the spurious eh.cleanup.dest stores if this edge
946      // never went through any switches.
947      llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
948      EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
949
950    // Otherwise, if we have any branch-afters, we need a switch.
951    } else if (Scope.getNumEHBranchAfters()) {
952      // The default of the switch belongs to the branch-throughs if
953      // they exist.
954      llvm::BasicBlock *Default =
955        (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
956
957      const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
958
959      llvm::LoadInst *Load =
960        new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
961      llvm::SwitchInst *Switch =
962        llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
963
964      EHInstsToAppend.push_back(Load);
965      EHInstsToAppend.push_back(Switch);
966
967      for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
968        Switch->addCase(Scope.getEHBranchAfterIndex(I),
969                        Scope.getEHBranchAfterBlock(I));
970
971    // Otherwise, we have only branch-throughs; jump to the next EH
972    // cleanup.
973    } else {
974      assert(EHBranchThroughDest);
975      EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
976    }
977  }
978
979  if (!RequiresNormalCleanup) {
980    EHStack.popCleanup();
981  } else {
982    // If we have a fallthrough and no other need for the cleanup,
983    // emit it directly.
984    if (HasFallthrough && !HasPrebranchedFallthrough &&
985        !HasFixups && !HasExistingBranches) {
986
987      // Fixups can cause us to optimistically create a normal block,
988      // only to later have no real uses for it.  Just delete it in
989      // this case.
990      // TODO: we can potentially simplify all the uses after this.
991      if (Scope.getNormalBlock()) {
992        Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
993        delete Scope.getNormalBlock();
994      }
995
996      EHStack.popCleanup();
997
998      EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
999
1000    // Otherwise, the best approach is to thread everything through
1001    // the cleanup block and then try to clean up after ourselves.
1002    } else {
1003      // Force the entry block to exist.
1004      llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
1005
1006      // I.  Set up the fallthrough edge in.
1007
1008      // If there's a fallthrough, we need to store the cleanup
1009      // destination index.  For fall-throughs this is always zero.
1010      if (HasFallthrough) {
1011        if (!HasPrebranchedFallthrough)
1012          Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
1013
1014      // Otherwise, clear the IP if we don't have fallthrough because
1015      // the cleanup is inactive.  We don't need to save it because
1016      // it's still just FallthroughSource.
1017      } else if (FallthroughSource) {
1018        assert(!IsActive && "source without fallthrough for active cleanup");
1019        Builder.ClearInsertionPoint();
1020      }
1021
1022      // II.  Emit the entry block.  This implicitly branches to it if
1023      // we have fallthrough.  All the fixups and existing branches
1024      // should already be branched to it.
1025      EmitBlock(NormalEntry);
1026
1027      // III.  Figure out where we're going and build the cleanup
1028      // epilogue.
1029
1030      bool HasEnclosingCleanups =
1031        (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
1032
1033      // Compute the branch-through dest if we need it:
1034      //   - if there are branch-throughs threaded through the scope
1035      //   - if fall-through is a branch-through
1036      //   - if there are fixups that will be optimistically forwarded
1037      //     to the enclosing cleanup
1038      llvm::BasicBlock *BranchThroughDest = 0;
1039      if (Scope.hasBranchThroughs() ||
1040          (FallthroughSource && FallthroughIsBranchThrough) ||
1041          (HasFixups && HasEnclosingCleanups)) {
1042        assert(HasEnclosingCleanups);
1043        EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
1044        BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
1045      }
1046
1047      llvm::BasicBlock *FallthroughDest = 0;
1048      llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
1049
1050      // If there's exactly one branch-after and no other threads,
1051      // we can route it without a switch.
1052      if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
1053          Scope.getNumBranchAfters() == 1) {
1054        assert(!BranchThroughDest || !IsActive);
1055
1056        // TODO: clean up the possibly dead stores to the cleanup dest slot.
1057        llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
1058        InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
1059
1060      // Build a switch-out if we need it:
1061      //   - if there are branch-afters threaded through the scope
1062      //   - if fall-through is a branch-after
1063      //   - if there are fixups that have nowhere left to go and
1064      //     so must be immediately resolved
1065      } else if (Scope.getNumBranchAfters() ||
1066                 (HasFallthrough && !FallthroughIsBranchThrough) ||
1067                 (HasFixups && !HasEnclosingCleanups)) {
1068
1069        llvm::BasicBlock *Default =
1070          (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
1071
1072        // TODO: base this on the number of branch-afters and fixups
1073        const unsigned SwitchCapacity = 10;
1074
1075        llvm::LoadInst *Load =
1076          new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
1077        llvm::SwitchInst *Switch =
1078          llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
1079
1080        InstsToAppend.push_back(Load);
1081        InstsToAppend.push_back(Switch);
1082
1083        // Branch-after fallthrough.
1084        if (FallthroughSource && !FallthroughIsBranchThrough) {
1085          FallthroughDest = createBasicBlock("cleanup.cont");
1086          if (HasFallthrough)
1087            Switch->addCase(Builder.getInt32(0), FallthroughDest);
1088        }
1089
1090        for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
1091          Switch->addCase(Scope.getBranchAfterIndex(I),
1092                          Scope.getBranchAfterBlock(I));
1093        }
1094
1095        // If there aren't any enclosing cleanups, we can resolve all
1096        // the fixups now.
1097        if (HasFixups && !HasEnclosingCleanups)
1098          ResolveAllBranchFixups(*this, Switch, NormalEntry);
1099      } else {
1100        // We should always have a branch-through destination in this case.
1101        assert(BranchThroughDest);
1102        InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
1103      }
1104
1105      // IV.  Pop the cleanup and emit it.
1106      EHStack.popCleanup();
1107      assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
1108
1109      EmitCleanup(*this, Fn, /*ForEH*/ false, NormalActiveFlag);
1110
1111      // Append the prepared cleanup prologue from above.
1112      llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1113      for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1114        NormalExit->getInstList().push_back(InstsToAppend[I]);
1115
1116      // Optimistically hope that any fixups will continue falling through.
1117      for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1118           I < E; ++I) {
1119        BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1120        if (!Fixup.Destination) continue;
1121        if (!Fixup.OptimisticBranchBlock) {
1122          new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1123                              getNormalCleanupDestSlot(),
1124                              Fixup.InitialBranch);
1125          Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1126        }
1127        Fixup.OptimisticBranchBlock = NormalExit;
1128      }
1129
1130      // V.  Set up the fallthrough edge out.
1131
1132      // Case 1: a fallthrough source exists but shouldn't branch to
1133      // the cleanup because the cleanup is inactive.
1134      if (!HasFallthrough && FallthroughSource) {
1135        assert(!IsActive);
1136
1137        // If we have a prebranched fallthrough, that needs to be
1138        // forwarded to the right block.
1139        if (HasPrebranchedFallthrough) {
1140          llvm::BasicBlock *Next;
1141          if (FallthroughIsBranchThrough) {
1142            Next = BranchThroughDest;
1143            assert(!FallthroughDest);
1144          } else {
1145            Next = FallthroughDest;
1146          }
1147
1148          ForwardPrebranchedFallthrough(FallthroughSource, NormalEntry, Next);
1149        }
1150        Builder.SetInsertPoint(FallthroughSource);
1151
1152      // Case 2: a fallthrough source exists and should branch to the
1153      // cleanup, but we're not supposed to branch through to the next
1154      // cleanup.
1155      } else if (HasFallthrough && FallthroughDest) {
1156        assert(!FallthroughIsBranchThrough);
1157        EmitBlock(FallthroughDest);
1158
1159      // Case 3: a fallthrough source exists and should branch to the
1160      // cleanup and then through to the next.
1161      } else if (HasFallthrough) {
1162        // Everything is already set up for this.
1163
1164      // Case 4: no fallthrough source exists.
1165      } else {
1166        Builder.ClearInsertionPoint();
1167      }
1168
1169      // VI.  Assorted cleaning.
1170
1171      // Check whether we can merge NormalEntry into a single predecessor.
1172      // This might invalidate (non-IR) pointers to NormalEntry.
1173      llvm::BasicBlock *NewNormalEntry =
1174        SimplifyCleanupEntry(*this, NormalEntry);
1175
1176      // If it did invalidate those pointers, and NormalEntry was the same
1177      // as NormalExit, go back and patch up the fixups.
1178      if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1179        for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1180               I < E; ++I)
1181          CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1182    }
1183  }
1184
1185  assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1186
1187  // Emit the EH cleanup if required.
1188  if (RequiresEHCleanup) {
1189    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1190
1191    EmitBlock(EHEntry);
1192    EmitCleanup(*this, Fn, /*ForEH*/ true, EHActiveFlag);
1193
1194    // Append the prepared cleanup prologue from above.
1195    llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1196    for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1197      EHExit->getInstList().push_back(EHInstsToAppend[I]);
1198
1199    Builder.restoreIP(SavedIP);
1200
1201    SimplifyCleanupEntry(*this, EHEntry);
1202  }
1203}
1204
1205/// Terminate the current block by emitting a branch which might leave
1206/// the current cleanup-protected scope.  The target scope may not yet
1207/// be known, in which case this will require a fixup.
1208///
1209/// As a side-effect, this method clears the insertion point.
1210void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1211  assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1212         && "stale jump destination");
1213
1214  if (!HaveInsertPoint())
1215    return;
1216
1217  // Create the branch.
1218  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1219
1220  // Calculate the innermost active normal cleanup.
1221  EHScopeStack::stable_iterator
1222    TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1223
1224  // If we're not in an active normal cleanup scope, or if the
1225  // destination scope is within the innermost active normal cleanup
1226  // scope, we don't need to worry about fixups.
1227  if (TopCleanup == EHStack.stable_end() ||
1228      TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1229    Builder.ClearInsertionPoint();
1230    return;
1231  }
1232
1233  // If we can't resolve the destination cleanup scope, just add this
1234  // to the current cleanup scope as a branch fixup.
1235  if (!Dest.getScopeDepth().isValid()) {
1236    BranchFixup &Fixup = EHStack.addBranchFixup();
1237    Fixup.Destination = Dest.getBlock();
1238    Fixup.DestinationIndex = Dest.getDestIndex();
1239    Fixup.InitialBranch = BI;
1240    Fixup.OptimisticBranchBlock = 0;
1241
1242    Builder.ClearInsertionPoint();
1243    return;
1244  }
1245
1246  // Otherwise, thread through all the normal cleanups in scope.
1247
1248  // Store the index at the start.
1249  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1250  new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1251
1252  // Adjust BI to point to the first cleanup block.
1253  {
1254    EHCleanupScope &Scope =
1255      cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1256    BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1257  }
1258
1259  // Add this destination to all the scopes involved.
1260  EHScopeStack::stable_iterator I = TopCleanup;
1261  EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1262  if (E.strictlyEncloses(I)) {
1263    while (true) {
1264      EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1265      assert(Scope.isNormalCleanup());
1266      I = Scope.getEnclosingNormalCleanup();
1267
1268      // If this is the last cleanup we're propagating through, tell it
1269      // that there's a resolved jump moving through it.
1270      if (!E.strictlyEncloses(I)) {
1271        Scope.addBranchAfter(Index, Dest.getBlock());
1272        break;
1273      }
1274
1275      // Otherwise, tell the scope that there's a jump propoagating
1276      // through it.  If this isn't new information, all the rest of
1277      // the work has been done before.
1278      if (!Scope.addBranchThrough(Dest.getBlock()))
1279        break;
1280    }
1281  }
1282
1283  Builder.ClearInsertionPoint();
1284}
1285
1286void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1287  // We should never get invalid scope depths for an UnwindDest; that
1288  // implies that the destination wasn't set up correctly.
1289  assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1290
1291  if (!HaveInsertPoint())
1292    return;
1293
1294  // Create the branch.
1295  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1296
1297  // Calculate the innermost active cleanup.
1298  EHScopeStack::stable_iterator
1299    InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1300
1301  // If the destination is in the same EH cleanup scope as us, we
1302  // don't need to thread through anything.
1303  if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1304    Builder.ClearInsertionPoint();
1305    return;
1306  }
1307  assert(InnermostCleanup != EHStack.stable_end());
1308
1309  // Store the index at the start.
1310  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1311  new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1312
1313  // Adjust BI to point to the first cleanup block.
1314  {
1315    EHCleanupScope &Scope =
1316      cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1317    BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1318  }
1319
1320  // Add this destination to all the scopes involved.
1321  for (EHScopeStack::stable_iterator
1322         I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1323    assert(E.strictlyEncloses(I));
1324    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1325    assert(Scope.isEHCleanup());
1326    I = Scope.getEnclosingEHCleanup();
1327
1328    // If this is the last cleanup we're propagating through, add this
1329    // as a branch-after.
1330    if (I == E) {
1331      Scope.addEHBranchAfter(Index, Dest.getBlock());
1332      break;
1333    }
1334
1335    // Otherwise, add it as a branch-through.  If this isn't new
1336    // information, all the rest of the work has been done before.
1337    if (!Scope.addEHBranchThrough(Dest.getBlock()))
1338      break;
1339  }
1340
1341  Builder.ClearInsertionPoint();
1342}
1343
1344/// All the branch fixups on the EH stack have propagated out past the
1345/// outermost normal cleanup; resolve them all by adding cases to the
1346/// given switch instruction.
1347static void ResolveAllBranchFixups(CodeGenFunction &CGF,
1348                                   llvm::SwitchInst *Switch,
1349                                   llvm::BasicBlock *CleanupEntry) {
1350  llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1351
1352  for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
1353    // Skip this fixup if its destination isn't set.
1354    BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1355    if (Fixup.Destination == 0) continue;
1356
1357    // If there isn't an OptimisticBranchBlock, then InitialBranch is
1358    // still pointing directly to its destination; forward it to the
1359    // appropriate cleanup entry.  This is required in the specific
1360    // case of
1361    //   { std::string s; goto lbl; }
1362    //   lbl:
1363    // i.e. where there's an unresolved fixup inside a single cleanup
1364    // entry which we're currently popping.
1365    if (Fixup.OptimisticBranchBlock == 0) {
1366      new llvm::StoreInst(CGF.Builder.getInt32(Fixup.DestinationIndex),
1367                          CGF.getNormalCleanupDestSlot(),
1368                          Fixup.InitialBranch);
1369      Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
1370    }
1371
1372    // Don't add this case to the switch statement twice.
1373    if (!CasesAdded.insert(Fixup.Destination)) continue;
1374
1375    Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
1376                    Fixup.Destination);
1377  }
1378
1379  CGF.EHStack.clearFixups();
1380}
1381
1382void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1383  assert(Block && "resolving a null target block");
1384  if (!EHStack.getNumBranchFixups()) return;
1385
1386  assert(EHStack.hasNormalCleanups() &&
1387         "branch fixups exist with no normal cleanups on stack");
1388
1389  llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1390  bool ResolvedAny = false;
1391
1392  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1393    // Skip this fixup if its destination doesn't match.
1394    BranchFixup &Fixup = EHStack.getBranchFixup(I);
1395    if (Fixup.Destination != Block) continue;
1396
1397    Fixup.Destination = 0;
1398    ResolvedAny = true;
1399
1400    // If it doesn't have an optimistic branch block, LatestBranch is
1401    // already pointing to the right place.
1402    llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1403    if (!BranchBB)
1404      continue;
1405
1406    // Don't process the same optimistic branch block twice.
1407    if (!ModifiedOptimisticBlocks.insert(BranchBB))
1408      continue;
1409
1410    llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1411
1412    // Add a case to the switch.
1413    Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1414  }
1415
1416  if (ResolvedAny)
1417    EHStack.popNullFixups();
1418}
1419
1420static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
1421                                  EHScopeStack::stable_iterator C) {
1422  // If we needed a normal block for any reason, that counts.
1423  if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
1424    return true;
1425
1426  // Check whether any enclosed cleanups were needed.
1427  for (EHScopeStack::stable_iterator
1428         I = EHStack.getInnermostNormalCleanup();
1429         I != C; ) {
1430    assert(C.strictlyEncloses(I));
1431    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1432    if (S.getNormalBlock()) return true;
1433    I = S.getEnclosingNormalCleanup();
1434  }
1435
1436  return false;
1437}
1438
1439static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1440                              EHScopeStack::stable_iterator C) {
1441  // If we needed an EH block for any reason, that counts.
1442  if (cast<EHCleanupScope>(*EHStack.find(C)).getEHBlock())
1443    return true;
1444
1445  // Check whether any enclosed cleanups were needed.
1446  for (EHScopeStack::stable_iterator
1447         I = EHStack.getInnermostEHCleanup(); I != C; ) {
1448    assert(C.strictlyEncloses(I));
1449    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1450    if (S.getEHBlock()) return true;
1451    I = S.getEnclosingEHCleanup();
1452  }
1453
1454  return false;
1455}
1456
1457enum ForActivation_t {
1458  ForActivation,
1459  ForDeactivation
1460};
1461
1462/// The given cleanup block is changing activation state.  Configure a
1463/// cleanup variable if necessary.
1464///
1465/// It would be good if we had some way of determining if there were
1466/// extra uses *after* the change-over point.
1467static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
1468                                        EHScopeStack::stable_iterator C,
1469                                        ForActivation_t Kind) {
1470  EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1471
1472  // We always need the flag if we're activating the cleanup, because
1473  // we have to assume that the current location doesn't necessarily
1474  // dominate all future uses of the cleanup.
1475  bool NeedFlag = (Kind == ForActivation);
1476
1477  // Calculate whether the cleanup was used:
1478
1479  //   - as a normal cleanup
1480  if (Scope.isNormalCleanup() && IsUsedAsNormalCleanup(CGF.EHStack, C)) {
1481    Scope.setTestFlagInNormalCleanup();
1482    NeedFlag = true;
1483  }
1484
1485  //  - as an EH cleanup
1486  if (Scope.isEHCleanup() && IsUsedAsEHCleanup(CGF.EHStack, C)) {
1487    Scope.setTestFlagInEHCleanup();
1488    NeedFlag = true;
1489  }
1490
1491  // If it hasn't yet been used as either, we're done.
1492  if (!NeedFlag) return;
1493
1494  llvm::AllocaInst *Var = Scope.getActiveFlag();
1495  if (!Var) {
1496    Var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), "cleanup.isactive");
1497    Scope.setActiveFlag(Var);
1498
1499    // Initialize to true or false depending on whether it was
1500    // active up to this point.
1501    CGF.InitTempAlloca(Var, CGF.Builder.getInt1(Kind == ForDeactivation));
1502  }
1503
1504  CGF.Builder.CreateStore(CGF.Builder.getInt1(Kind == ForActivation), Var);
1505}
1506
1507/// Activate a cleanup that was created in an inactivated state.
1508void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C) {
1509  assert(C != EHStack.stable_end() && "activating bottom of stack?");
1510  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1511  assert(!Scope.isActive() && "double activation");
1512
1513  SetupCleanupBlockActivation(*this, C, ForActivation);
1514
1515  Scope.setActive(true);
1516}
1517
1518/// Deactive a cleanup that was created in an active state.
1519void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C) {
1520  assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1521  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1522  assert(Scope.isActive() && "double deactivation");
1523
1524  // If it's the top of the stack, just pop it.
1525  if (C == EHStack.stable_begin()) {
1526    // If it's a normal cleanup, we need to pretend that the
1527    // fallthrough is unreachable.
1528    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1529    PopCleanupBlock();
1530    Builder.restoreIP(SavedIP);
1531    return;
1532  }
1533
1534  // Otherwise, follow the general case.
1535  SetupCleanupBlockActivation(*this, C, ForDeactivation);
1536
1537  Scope.setActive(false);
1538}
1539
1540llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1541  if (!NormalCleanupDest)
1542    NormalCleanupDest =
1543      CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1544  return NormalCleanupDest;
1545}
1546
1547llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1548  if (!EHCleanupDest)
1549    EHCleanupDest =
1550      CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1551  return EHCleanupDest;
1552}
1553
1554void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1555                                              llvm::Constant *Init) {
1556  assert (Init && "Invalid DeclRefExpr initializer!");
1557  if (CGDebugInfo *Dbg = getDebugInfo())
1558    Dbg->EmitGlobalVariable(E->getDecl(), Init);
1559}
1560