CodeGenFunction.cpp revision 6217b80b7a1379b74cced1c076338262c3c980b3
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGDebugInfo.h"
17#include "clang/Basic/TargetInfo.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "llvm/Target/TargetData.h"
23using namespace clang;
24using namespace CodeGen;
25
26CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
27  : BlockFunction(cgm, *this, Builder), CGM(cgm),
28    Target(CGM.getContext().Target),
29    Builder(cgm.getModule().getContext()),
30    DebugInfo(0), SwitchInsn(0), CaseRangeBlock(0), InvokeDest(0),
31    CXXThisDecl(0) {
32  LLVMIntTy = ConvertType(getContext().IntTy);
33  LLVMPointerWidth = Target.getPointerWidth(0);
34}
35
36ASTContext &CodeGenFunction::getContext() const {
37  return CGM.getContext();
38}
39
40
41llvm::BasicBlock *CodeGenFunction::getBasicBlockForLabel(const LabelStmt *S) {
42  llvm::BasicBlock *&BB = LabelMap[S];
43  if (BB) return BB;
44
45  // Create, but don't insert, the new block.
46  return BB = createBasicBlock(S->getName());
47}
48
49llvm::Value *CodeGenFunction::GetAddrOfLocalVar(const VarDecl *VD) {
50  llvm::Value *Res = LocalDeclMap[VD];
51  assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
52  return Res;
53}
54
55llvm::Constant *
56CodeGenFunction::GetAddrOfStaticLocalVar(const VarDecl *BVD) {
57  return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
58}
59
60const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
61  return CGM.getTypes().ConvertTypeForMem(T);
62}
63
64const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
65  return CGM.getTypes().ConvertType(T);
66}
67
68bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
69  // FIXME: Use positive checks instead of negative ones to be more robust in
70  // the face of extension.
71  return !T->hasPointerRepresentation() &&!T->isRealType() &&
72    !T->isVoidType() && !T->isVectorType() && !T->isFunctionType() &&
73    !T->isBlockPointerType();
74}
75
76void CodeGenFunction::EmitReturnBlock() {
77  // For cleanliness, we try to avoid emitting the return block for
78  // simple cases.
79  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
80
81  if (CurBB) {
82    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
83
84    // We have a valid insert point, reuse it if it is empty or there are no
85    // explicit jumps to the return block.
86    if (CurBB->empty() || ReturnBlock->use_empty()) {
87      ReturnBlock->replaceAllUsesWith(CurBB);
88      delete ReturnBlock;
89    } else
90      EmitBlock(ReturnBlock);
91    return;
92  }
93
94  // Otherwise, if the return block is the target of a single direct
95  // branch then we can just put the code in that block instead. This
96  // cleans up functions which started with a unified return block.
97  if (ReturnBlock->hasOneUse()) {
98    llvm::BranchInst *BI =
99      dyn_cast<llvm::BranchInst>(*ReturnBlock->use_begin());
100    if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock) {
101      // Reset insertion point and delete the branch.
102      Builder.SetInsertPoint(BI->getParent());
103      BI->eraseFromParent();
104      delete ReturnBlock;
105      return;
106    }
107  }
108
109  // FIXME: We are at an unreachable point, there is no reason to emit the block
110  // unless it has uses. However, we still need a place to put the debug
111  // region.end for now.
112
113  EmitBlock(ReturnBlock);
114}
115
116void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
117  // Finish emission of indirect switches.
118  EmitIndirectSwitches();
119
120  assert(BreakContinueStack.empty() &&
121         "mismatched push/pop in break/continue stack!");
122  assert(BlockScopes.empty() &&
123         "did not remove all blocks from block scope map!");
124  assert(CleanupEntries.empty() &&
125         "mismatched push/pop in cleanup stack!");
126
127  // Emit function epilog (to return).
128  EmitReturnBlock();
129
130  // Emit debug descriptor for function end.
131  if (CGDebugInfo *DI = getDebugInfo()) {
132    DI->setLocation(EndLoc);
133    DI->EmitRegionEnd(CurFn, Builder);
134  }
135
136  EmitFunctionEpilog(*CurFnInfo, ReturnValue);
137
138  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
139  llvm::Instruction *Ptr = AllocaInsertPt;
140  AllocaInsertPt = 0;
141  Ptr->eraseFromParent();
142}
143
144void CodeGenFunction::StartFunction(const Decl *D, QualType RetTy,
145                                    llvm::Function *Fn,
146                                    const FunctionArgList &Args,
147                                    SourceLocation StartLoc) {
148  DidCallStackSave = false;
149  CurCodeDecl = CurFuncDecl = D;
150  FnRetTy = RetTy;
151  CurFn = Fn;
152  assert(CurFn->isDeclaration() && "Function already has body?");
153
154  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
155
156  // Create a marker to make it easy to insert allocas into the entryblock
157  // later.  Don't create this with the builder, because we don't want it
158  // folded.
159  llvm::Value *Undef = VMContext.getUndef(llvm::Type::Int32Ty);
160  AllocaInsertPt = new llvm::BitCastInst(Undef, llvm::Type::Int32Ty, "",
161                                         EntryBB);
162  if (Builder.isNamePreserving())
163    AllocaInsertPt->setName("allocapt");
164
165  ReturnBlock = createBasicBlock("return");
166  ReturnValue = 0;
167  if (!RetTy->isVoidType())
168    ReturnValue = CreateTempAlloca(ConvertType(RetTy), "retval");
169
170  Builder.SetInsertPoint(EntryBB);
171
172  // Emit subprogram debug descriptor.
173  // FIXME: The cast here is a huge hack.
174  if (CGDebugInfo *DI = getDebugInfo()) {
175    DI->setLocation(StartLoc);
176    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
177      DI->EmitFunctionStart(CGM.getMangledName(FD), RetTy, CurFn, Builder);
178    } else {
179      // Just use LLVM function name.
180
181      // FIXME: Remove unnecessary conversion to std::string when API settles.
182      DI->EmitFunctionStart(std::string(Fn->getName()).c_str(),
183                            RetTy, CurFn, Builder);
184    }
185  }
186
187  // FIXME: Leaked.
188  CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args);
189  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
190
191  // If any of the arguments have a variably modified type, make sure to
192  // emit the type size.
193  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
194       i != e; ++i) {
195    QualType Ty = i->second;
196
197    if (Ty->isVariablyModifiedType())
198      EmitVLASize(Ty);
199  }
200}
201
202void CodeGenFunction::GenerateCode(const FunctionDecl *FD,
203                                   llvm::Function *Fn) {
204  // Check if we should generate debug info for this function.
205  if (CGM.getDebugInfo() && !FD->hasAttr<NodebugAttr>())
206    DebugInfo = CGM.getDebugInfo();
207
208  FunctionArgList Args;
209
210  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
211    if (MD->isInstance()) {
212      // Create the implicit 'this' decl.
213      // FIXME: I'm not entirely sure I like using a fake decl just for code
214      // generation. Maybe we can come up with a better way?
215      CXXThisDecl = ImplicitParamDecl::Create(getContext(), 0, SourceLocation(),
216                                              &getContext().Idents.get("this"),
217                                              MD->getThisType(getContext()));
218      Args.push_back(std::make_pair(CXXThisDecl, CXXThisDecl->getType()));
219    }
220  }
221
222  if (FD->getNumParams()) {
223    const FunctionProtoType* FProto = FD->getType()->getAsFunctionProtoType();
224    assert(FProto && "Function def must have prototype!");
225
226    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
227      Args.push_back(std::make_pair(FD->getParamDecl(i),
228                                    FProto->getArgType(i)));
229  }
230
231  // FIXME: Support CXXTryStmt here, too.
232  if (const CompoundStmt *S = FD->getCompoundBody()) {
233    StartFunction(FD, FD->getResultType(), Fn, Args, S->getLBracLoc());
234    if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
235      EmitCtorPrologue(CD);
236    EmitStmt(S);
237    FinishFunction(S->getRBracLoc());
238  }
239
240  // Destroy the 'this' declaration.
241  if (CXXThisDecl)
242    CXXThisDecl->Destroy(getContext());
243}
244
245/// ContainsLabel - Return true if the statement contains a label in it.  If
246/// this statement is not executed normally, it not containing a label means
247/// that we can just remove the code.
248bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
249  // Null statement, not a label!
250  if (S == 0) return false;
251
252  // If this is a label, we have to emit the code, consider something like:
253  // if (0) {  ...  foo:  bar(); }  goto foo;
254  if (isa<LabelStmt>(S))
255    return true;
256
257  // If this is a case/default statement, and we haven't seen a switch, we have
258  // to emit the code.
259  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
260    return true;
261
262  // If this is a switch statement, we want to ignore cases below it.
263  if (isa<SwitchStmt>(S))
264    IgnoreCaseStmts = true;
265
266  // Scan subexpressions for verboten labels.
267  for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
268       I != E; ++I)
269    if (ContainsLabel(*I, IgnoreCaseStmts))
270      return true;
271
272  return false;
273}
274
275
276/// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
277/// a constant, or if it does but contains a label, return 0.  If it constant
278/// folds to 'true' and does not contain a label, return 1, if it constant folds
279/// to 'false' and does not contain a label, return -1.
280int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
281  // FIXME: Rename and handle conversion of other evaluatable things
282  // to bool.
283  Expr::EvalResult Result;
284  if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
285      Result.HasSideEffects)
286    return 0;  // Not foldable, not integer or not fully evaluatable.
287
288  if (CodeGenFunction::ContainsLabel(Cond))
289    return 0;  // Contains a label.
290
291  return Result.Val.getInt().getBoolValue() ? 1 : -1;
292}
293
294
295/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
296/// statement) to the specified blocks.  Based on the condition, this might try
297/// to simplify the codegen of the conditional based on the branch.
298///
299void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
300                                           llvm::BasicBlock *TrueBlock,
301                                           llvm::BasicBlock *FalseBlock) {
302  if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
303    return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
304
305  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
306    // Handle X && Y in a condition.
307    if (CondBOp->getOpcode() == BinaryOperator::LAnd) {
308      // If we have "1 && X", simplify the code.  "0 && X" would have constant
309      // folded if the case was simple enough.
310      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
311        // br(1 && X) -> br(X).
312        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
313      }
314
315      // If we have "X && 1", simplify the code to use an uncond branch.
316      // "X && 0" would have been constant folded to 0.
317      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
318        // br(X && 1) -> br(X).
319        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
320      }
321
322      // Emit the LHS as a conditional.  If the LHS conditional is false, we
323      // want to jump to the FalseBlock.
324      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
325      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
326      EmitBlock(LHSTrue);
327
328      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
329      return;
330    } else if (CondBOp->getOpcode() == BinaryOperator::LOr) {
331      // If we have "0 || X", simplify the code.  "1 || X" would have constant
332      // folded if the case was simple enough.
333      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
334        // br(0 || X) -> br(X).
335        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
336      }
337
338      // If we have "X || 0", simplify the code to use an uncond branch.
339      // "X || 1" would have been constant folded to 1.
340      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
341        // br(X || 0) -> br(X).
342        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
343      }
344
345      // Emit the LHS as a conditional.  If the LHS conditional is true, we
346      // want to jump to the TrueBlock.
347      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
348      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
349      EmitBlock(LHSFalse);
350
351      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
352      return;
353    }
354  }
355
356  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
357    // br(!x, t, f) -> br(x, f, t)
358    if (CondUOp->getOpcode() == UnaryOperator::LNot)
359      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
360  }
361
362  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
363    // Handle ?: operator.
364
365    // Just ignore GNU ?: extension.
366    if (CondOp->getLHS()) {
367      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
368      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
369      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
370      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
371      EmitBlock(LHSBlock);
372      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
373      EmitBlock(RHSBlock);
374      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
375      return;
376    }
377  }
378
379  // Emit the code with the fully general case.
380  llvm::Value *CondV = EvaluateExprAsBool(Cond);
381  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
382}
383
384/// getCGRecordLayout - Return record layout info.
385const CGRecordLayout *CodeGenFunction::getCGRecordLayout(CodeGenTypes &CGT,
386                                                         QualType Ty) {
387  const RecordType *RTy = Ty->getAs<RecordType>();
388  assert (RTy && "Unexpected type. RecordType expected here.");
389
390  return CGT.getCGRecordLayout(RTy->getDecl());
391}
392
393/// ErrorUnsupported - Print out an error that codegen doesn't support the
394/// specified stmt yet.
395void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
396                                       bool OmitOnError) {
397  CGM.ErrorUnsupported(S, Type, OmitOnError);
398}
399
400unsigned CodeGenFunction::GetIDForAddrOfLabel(const LabelStmt *L) {
401  // Use LabelIDs.size() as the new ID if one hasn't been assigned.
402  return LabelIDs.insert(std::make_pair(L, LabelIDs.size())).first->second;
403}
404
405void CodeGenFunction::EmitMemSetToZero(llvm::Value *DestPtr, QualType Ty) {
406  const llvm::Type *BP = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty);
407  if (DestPtr->getType() != BP)
408    DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
409
410  // Get size and alignment info for this aggregate.
411  std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
412
413  // Don't bother emitting a zero-byte memset.
414  if (TypeInfo.first == 0)
415    return;
416
417  // FIXME: Handle variable sized types.
418  const llvm::Type *IntPtr = VMContext.getIntegerType(LLVMPointerWidth);
419
420  Builder.CreateCall4(CGM.getMemSetFn(), DestPtr,
421                      getLLVMContext().getNullValue(llvm::Type::Int8Ty),
422                      // TypeInfo.first describes size in bits.
423                      llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
424                      llvm::ConstantInt::get(llvm::Type::Int32Ty,
425                                             TypeInfo.second/8));
426}
427
428void CodeGenFunction::EmitIndirectSwitches() {
429  llvm::BasicBlock *Default;
430
431  if (IndirectSwitches.empty())
432    return;
433
434  if (!LabelIDs.empty()) {
435    Default = getBasicBlockForLabel(LabelIDs.begin()->first);
436  } else {
437    // No possible targets for indirect goto, just emit an infinite
438    // loop.
439    Default = createBasicBlock("indirectgoto.loop", CurFn);
440    llvm::BranchInst::Create(Default, Default);
441  }
442
443  for (std::vector<llvm::SwitchInst*>::iterator i = IndirectSwitches.begin(),
444         e = IndirectSwitches.end(); i != e; ++i) {
445    llvm::SwitchInst *I = *i;
446
447    I->setSuccessor(0, Default);
448    for (std::map<const LabelStmt*,unsigned>::iterator LI = LabelIDs.begin(),
449           LE = LabelIDs.end(); LI != LE; ++LI) {
450      I->addCase(llvm::ConstantInt::get(llvm::Type::Int32Ty,
451                                        LI->second),
452                 getBasicBlockForLabel(LI->first));
453    }
454  }
455}
456
457llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
458  llvm::Value *&SizeEntry = VLASizeMap[VAT];
459
460  assert(SizeEntry && "Did not emit size for type");
461  return SizeEntry;
462}
463
464llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
465  assert(Ty->isVariablyModifiedType() &&
466         "Must pass variably modified type to EmitVLASizes!");
467
468  EnsureInsertPoint();
469
470  if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
471    llvm::Value *&SizeEntry = VLASizeMap[VAT];
472
473    if (!SizeEntry) {
474      // Get the element size;
475      llvm::Value *ElemSize;
476
477      QualType ElemTy = VAT->getElementType();
478
479      const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
480
481      if (ElemTy->isVariableArrayType())
482        ElemSize = EmitVLASize(ElemTy);
483      else {
484        ElemSize = llvm::ConstantInt::get(SizeTy,
485                                          getContext().getTypeSize(ElemTy) / 8);
486      }
487
488      llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
489      NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
490
491      SizeEntry = Builder.CreateMul(ElemSize, NumElements);
492    }
493
494    return SizeEntry;
495  } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
496    EmitVLASize(AT->getElementType());
497  } else if (const PointerType *PT = Ty->getAs<PointerType>())
498    EmitVLASize(PT->getPointeeType());
499  else {
500    assert(0 && "unknown VM type!");
501  }
502
503  return 0;
504}
505
506llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
507  if (CGM.getContext().getBuiltinVaListType()->isArrayType()) {
508    return EmitScalarExpr(E);
509  }
510  return EmitLValue(E).getAddress();
511}
512
513void CodeGenFunction::PushCleanupBlock(llvm::BasicBlock *CleanupBlock)
514{
515  CleanupEntries.push_back(CleanupEntry(CleanupBlock));
516}
517
518void CodeGenFunction::EmitCleanupBlocks(size_t OldCleanupStackSize)
519{
520  assert(CleanupEntries.size() >= OldCleanupStackSize &&
521         "Cleanup stack mismatch!");
522
523  while (CleanupEntries.size() > OldCleanupStackSize)
524    EmitCleanupBlock();
525}
526
527CodeGenFunction::CleanupBlockInfo CodeGenFunction::PopCleanupBlock()
528{
529  CleanupEntry &CE = CleanupEntries.back();
530
531  llvm::BasicBlock *CleanupBlock = CE.CleanupBlock;
532
533  std::vector<llvm::BasicBlock *> Blocks;
534  std::swap(Blocks, CE.Blocks);
535
536  std::vector<llvm::BranchInst *> BranchFixups;
537  std::swap(BranchFixups, CE.BranchFixups);
538
539  CleanupEntries.pop_back();
540
541  // Check if any branch fixups pointed to the scope we just popped. If so,
542  // we can remove them.
543  for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) {
544    llvm::BasicBlock *Dest = BranchFixups[i]->getSuccessor(0);
545    BlockScopeMap::iterator I = BlockScopes.find(Dest);
546
547    if (I == BlockScopes.end())
548      continue;
549
550    assert(I->second <= CleanupEntries.size() && "Invalid branch fixup!");
551
552    if (I->second == CleanupEntries.size()) {
553      // We don't need to do this branch fixup.
554      BranchFixups[i] = BranchFixups.back();
555      BranchFixups.pop_back();
556      i--;
557      e--;
558      continue;
559    }
560  }
561
562  llvm::BasicBlock *SwitchBlock = 0;
563  llvm::BasicBlock *EndBlock = 0;
564  if (!BranchFixups.empty()) {
565    SwitchBlock = createBasicBlock("cleanup.switch");
566    EndBlock = createBasicBlock("cleanup.end");
567
568    llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
569
570    Builder.SetInsertPoint(SwitchBlock);
571
572    llvm::Value *DestCodePtr = CreateTempAlloca(llvm::Type::Int32Ty,
573                                                "cleanup.dst");
574    llvm::Value *DestCode = Builder.CreateLoad(DestCodePtr, "tmp");
575
576    // Create a switch instruction to determine where to jump next.
577    llvm::SwitchInst *SI = Builder.CreateSwitch(DestCode, EndBlock,
578                                                BranchFixups.size());
579
580    // Restore the current basic block (if any)
581    if (CurBB) {
582      Builder.SetInsertPoint(CurBB);
583
584      // If we had a current basic block, we also need to emit an instruction
585      // to initialize the cleanup destination.
586      Builder.CreateStore(getLLVMContext().getNullValue(llvm::Type::Int32Ty),
587                          DestCodePtr);
588    } else
589      Builder.ClearInsertionPoint();
590
591    for (size_t i = 0, e = BranchFixups.size(); i != e; ++i) {
592      llvm::BranchInst *BI = BranchFixups[i];
593      llvm::BasicBlock *Dest = BI->getSuccessor(0);
594
595      // Fixup the branch instruction to point to the cleanup block.
596      BI->setSuccessor(0, CleanupBlock);
597
598      if (CleanupEntries.empty()) {
599        llvm::ConstantInt *ID;
600
601        // Check if we already have a destination for this block.
602        if (Dest == SI->getDefaultDest())
603          ID = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
604        else {
605          ID = SI->findCaseDest(Dest);
606          if (!ID) {
607            // No code found, get a new unique one by using the number of
608            // switch successors.
609            ID = llvm::ConstantInt::get(llvm::Type::Int32Ty,
610                                        SI->getNumSuccessors());
611            SI->addCase(ID, Dest);
612          }
613        }
614
615        // Store the jump destination before the branch instruction.
616        new llvm::StoreInst(ID, DestCodePtr, BI);
617      } else {
618        // We need to jump through another cleanup block. Create a pad block
619        // with a branch instruction that jumps to the final destination and
620        // add it as a branch fixup to the current cleanup scope.
621
622        // Create the pad block.
623        llvm::BasicBlock *CleanupPad = createBasicBlock("cleanup.pad", CurFn);
624
625        // Create a unique case ID.
626        llvm::ConstantInt *ID = llvm::ConstantInt::get(llvm::Type::Int32Ty,
627                                                       SI->getNumSuccessors());
628
629        // Store the jump destination before the branch instruction.
630        new llvm::StoreInst(ID, DestCodePtr, BI);
631
632        // Add it as the destination.
633        SI->addCase(ID, CleanupPad);
634
635        // Create the branch to the final destination.
636        llvm::BranchInst *BI = llvm::BranchInst::Create(Dest);
637        CleanupPad->getInstList().push_back(BI);
638
639        // And add it as a branch fixup.
640        CleanupEntries.back().BranchFixups.push_back(BI);
641      }
642    }
643  }
644
645  // Remove all blocks from the block scope map.
646  for (size_t i = 0, e = Blocks.size(); i != e; ++i) {
647    assert(BlockScopes.count(Blocks[i]) &&
648           "Did not find block in scope map!");
649
650    BlockScopes.erase(Blocks[i]);
651  }
652
653  return CleanupBlockInfo(CleanupBlock, SwitchBlock, EndBlock);
654}
655
656void CodeGenFunction::EmitCleanupBlock()
657{
658  CleanupBlockInfo Info = PopCleanupBlock();
659
660  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
661  if (CurBB && !CurBB->getTerminator() &&
662      Info.CleanupBlock->getNumUses() == 0) {
663    CurBB->getInstList().splice(CurBB->end(), Info.CleanupBlock->getInstList());
664    delete Info.CleanupBlock;
665  } else
666    EmitBlock(Info.CleanupBlock);
667
668  if (Info.SwitchBlock)
669    EmitBlock(Info.SwitchBlock);
670  if (Info.EndBlock)
671    EmitBlock(Info.EndBlock);
672}
673
674void CodeGenFunction::AddBranchFixup(llvm::BranchInst *BI)
675{
676  assert(!CleanupEntries.empty() &&
677         "Trying to add branch fixup without cleanup block!");
678
679  // FIXME: We could be more clever here and check if there's already a branch
680  // fixup for this destination and recycle it.
681  CleanupEntries.back().BranchFixups.push_back(BI);
682}
683
684void CodeGenFunction::EmitBranchThroughCleanup(llvm::BasicBlock *Dest)
685{
686  if (!HaveInsertPoint())
687    return;
688
689  llvm::BranchInst* BI = Builder.CreateBr(Dest);
690
691  Builder.ClearInsertionPoint();
692
693  // The stack is empty, no need to do any cleanup.
694  if (CleanupEntries.empty())
695    return;
696
697  if (!Dest->getParent()) {
698    // We are trying to branch to a block that hasn't been inserted yet.
699    AddBranchFixup(BI);
700    return;
701  }
702
703  BlockScopeMap::iterator I = BlockScopes.find(Dest);
704  if (I == BlockScopes.end()) {
705    // We are trying to jump to a block that is outside of any cleanup scope.
706    AddBranchFixup(BI);
707    return;
708  }
709
710  assert(I->second < CleanupEntries.size() &&
711         "Trying to branch into cleanup region");
712
713  if (I->second == CleanupEntries.size() - 1) {
714    // We have a branch to a block in the same scope.
715    return;
716  }
717
718  AddBranchFixup(BI);
719}
720