CodeGenFunction.cpp revision 8b418685e9e4f02f4eb2a76e1ec063e07552b68d
1//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-function state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGCUDARuntime.h"
17#include "CGCXXABI.h"
18#include "CGDebugInfo.h"
19#include "CGException.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Frontend/CodeGenOptions.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Intrinsics.h"
28using namespace clang;
29using namespace CodeGen;
30
31CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32  : CodeGenTypeCache(cgm), CGM(cgm),
33    Target(CGM.getContext().getTargetInfo()), Builder(cgm.getModule().getContext()),
34    AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
35    NormalCleanupDest(0), NextCleanupDestIndex(1), FirstBlockInfo(0),
36    EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
37    DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
38    IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
39    CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
40    OutermostConditional(0), TerminateLandingPad(0), TerminateHandler(0),
41    TrapBB(0) {
42
43  CatchUndefined = getContext().getLangOptions().CatchUndefined;
44  CGM.getCXXABI().getMangleContext().startNewFunction();
45}
46
47CodeGenFunction::~CodeGenFunction() {
48  // If there are any unclaimed block infos, go ahead and destroy them
49  // now.  This can happen if IR-gen gets clever and skips evaluating
50  // something.
51  if (FirstBlockInfo)
52    destroyBlockInfos(FirstBlockInfo);
53}
54
55
56llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
57  return CGM.getTypes().ConvertTypeForMem(T);
58}
59
60llvm::Type *CodeGenFunction::ConvertType(QualType T) {
61  return CGM.getTypes().ConvertType(T);
62}
63
64bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
65  switch (type.getCanonicalType()->getTypeClass()) {
66#define TYPE(name, parent)
67#define ABSTRACT_TYPE(name, parent)
68#define NON_CANONICAL_TYPE(name, parent) case Type::name:
69#define DEPENDENT_TYPE(name, parent) case Type::name:
70#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
71#include "clang/AST/TypeNodes.def"
72    llvm_unreachable("non-canonical or dependent type in IR-generation");
73
74  case Type::Builtin:
75  case Type::Pointer:
76  case Type::BlockPointer:
77  case Type::LValueReference:
78  case Type::RValueReference:
79  case Type::MemberPointer:
80  case Type::Vector:
81  case Type::ExtVector:
82  case Type::FunctionProto:
83  case Type::FunctionNoProto:
84  case Type::Enum:
85  case Type::ObjCObjectPointer:
86    return false;
87
88  // Complexes, arrays, records, and Objective-C objects.
89  case Type::Complex:
90  case Type::ConstantArray:
91  case Type::IncompleteArray:
92  case Type::VariableArray:
93  case Type::Record:
94  case Type::ObjCObject:
95  case Type::ObjCInterface:
96    return true;
97
98  // In IRGen, atomic types are just the underlying type
99  case Type::Atomic:
100    return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
101  }
102  llvm_unreachable("unknown type kind!");
103}
104
105void CodeGenFunction::EmitReturnBlock() {
106  // For cleanliness, we try to avoid emitting the return block for
107  // simple cases.
108  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
109
110  if (CurBB) {
111    assert(!CurBB->getTerminator() && "Unexpected terminated block.");
112
113    // We have a valid insert point, reuse it if it is empty or there are no
114    // explicit jumps to the return block.
115    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
116      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
117      delete ReturnBlock.getBlock();
118    } else
119      EmitBlock(ReturnBlock.getBlock());
120    return;
121  }
122
123  // Otherwise, if the return block is the target of a single direct
124  // branch then we can just put the code in that block instead. This
125  // cleans up functions which started with a unified return block.
126  if (ReturnBlock.getBlock()->hasOneUse()) {
127    llvm::BranchInst *BI =
128      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
129    if (BI && BI->isUnconditional() &&
130        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
131      // Reset insertion point, including debug location, and delete the branch.
132      Builder.SetCurrentDebugLocation(BI->getDebugLoc());
133      Builder.SetInsertPoint(BI->getParent());
134      BI->eraseFromParent();
135      delete ReturnBlock.getBlock();
136      return;
137    }
138  }
139
140  // FIXME: We are at an unreachable point, there is no reason to emit the block
141  // unless it has uses. However, we still need a place to put the debug
142  // region.end for now.
143
144  EmitBlock(ReturnBlock.getBlock());
145}
146
147static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
148  if (!BB) return;
149  if (!BB->use_empty())
150    return CGF.CurFn->getBasicBlockList().push_back(BB);
151  delete BB;
152}
153
154void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
155  assert(BreakContinueStack.empty() &&
156         "mismatched push/pop in break/continue stack!");
157
158  // Pop any cleanups that might have been associated with the
159  // parameters.  Do this in whatever block we're currently in; it's
160  // important to do this before we enter the return block or return
161  // edges will be *really* confused.
162  if (EHStack.stable_begin() != PrologueCleanupDepth)
163    PopCleanupBlocks(PrologueCleanupDepth);
164
165  // Emit function epilog (to return).
166  EmitReturnBlock();
167
168  if (ShouldInstrumentFunction())
169    EmitFunctionInstrumentation("__cyg_profile_func_exit");
170
171  // Emit debug descriptor for function end.
172  if (CGDebugInfo *DI = getDebugInfo()) {
173    DI->setLocation(EndLoc);
174    DI->EmitFunctionEnd(Builder);
175  }
176
177  EmitFunctionEpilog(*CurFnInfo);
178  EmitEndEHSpec(CurCodeDecl);
179
180  assert(EHStack.empty() &&
181         "did not remove all scopes from cleanup stack!");
182
183  // If someone did an indirect goto, emit the indirect goto block at the end of
184  // the function.
185  if (IndirectBranch) {
186    EmitBlock(IndirectBranch->getParent());
187    Builder.ClearInsertionPoint();
188  }
189
190  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
191  llvm::Instruction *Ptr = AllocaInsertPt;
192  AllocaInsertPt = 0;
193  Ptr->eraseFromParent();
194
195  // If someone took the address of a label but never did an indirect goto, we
196  // made a zero entry PHI node, which is illegal, zap it now.
197  if (IndirectBranch) {
198    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
199    if (PN->getNumIncomingValues() == 0) {
200      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
201      PN->eraseFromParent();
202    }
203  }
204
205  EmitIfUsed(*this, EHResumeBlock);
206  EmitIfUsed(*this, TerminateLandingPad);
207  EmitIfUsed(*this, TerminateHandler);
208  EmitIfUsed(*this, UnreachableBlock);
209
210  if (CGM.getCodeGenOpts().EmitDeclMetadata)
211    EmitDeclMetadata();
212}
213
214/// ShouldInstrumentFunction - Return true if the current function should be
215/// instrumented with __cyg_profile_func_* calls
216bool CodeGenFunction::ShouldInstrumentFunction() {
217  if (!CGM.getCodeGenOpts().InstrumentFunctions)
218    return false;
219  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
220    return false;
221  return true;
222}
223
224/// EmitFunctionInstrumentation - Emit LLVM code to call the specified
225/// instrumentation function with the current function and the call site, if
226/// function instrumentation is enabled.
227void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
228  // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
229  llvm::PointerType *PointerTy = Int8PtrTy;
230  llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
231  llvm::FunctionType *FunctionTy =
232    llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
233
234  llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
235  llvm::CallInst *CallSite = Builder.CreateCall(
236    CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
237    llvm::ConstantInt::get(Int32Ty, 0),
238    "callsite");
239
240  Builder.CreateCall2(F,
241                      llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
242                      CallSite);
243}
244
245void CodeGenFunction::EmitMCountInstrumentation() {
246  llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
247
248  llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
249                                                       Target.getMCountName());
250  Builder.CreateCall(MCountFn);
251}
252
253void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
254                                    llvm::Function *Fn,
255                                    const CGFunctionInfo &FnInfo,
256                                    const FunctionArgList &Args,
257                                    SourceLocation StartLoc) {
258  const Decl *D = GD.getDecl();
259
260  DidCallStackSave = false;
261  CurCodeDecl = CurFuncDecl = D;
262  FnRetTy = RetTy;
263  CurFn = Fn;
264  CurFnInfo = &FnInfo;
265  assert(CurFn->isDeclaration() && "Function already has body?");
266
267  // Pass inline keyword to optimizer if it appears explicitly on any
268  // declaration.
269  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
270    for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
271           RE = FD->redecls_end(); RI != RE; ++RI)
272      if (RI->isInlineSpecified()) {
273        Fn->addFnAttr(llvm::Attribute::InlineHint);
274        break;
275      }
276
277  if (getContext().getLangOptions().OpenCL) {
278    // Add metadata for a kernel function.
279    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
280      if (FD->hasAttr<OpenCLKernelAttr>()) {
281        llvm::LLVMContext &Context = getLLVMContext();
282        llvm::NamedMDNode *OpenCLMetadata =
283          CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
284
285        llvm::Value *Op = Fn;
286        OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Op));
287      }
288  }
289
290  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
291
292  // Create a marker to make it easy to insert allocas into the entryblock
293  // later.  Don't create this with the builder, because we don't want it
294  // folded.
295  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
296  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
297  if (Builder.isNamePreserving())
298    AllocaInsertPt->setName("allocapt");
299
300  ReturnBlock = getJumpDestInCurrentScope("return");
301
302  Builder.SetInsertPoint(EntryBB);
303
304  // Emit subprogram debug descriptor.
305  if (CGDebugInfo *DI = getDebugInfo()) {
306    unsigned NumArgs = 0;
307    QualType *ArgsArray = new QualType[Args.size()];
308    for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
309	 i != e; ++i) {
310      ArgsArray[NumArgs++] = (*i)->getType();
311    }
312
313    QualType FnType =
314      getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
315                                   FunctionProtoType::ExtProtoInfo());
316
317    delete[] ArgsArray;
318
319    DI->setLocation(StartLoc);
320    DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
321  }
322
323  if (ShouldInstrumentFunction())
324    EmitFunctionInstrumentation("__cyg_profile_func_enter");
325
326  if (CGM.getCodeGenOpts().InstrumentForProfiling)
327    EmitMCountInstrumentation();
328
329  if (RetTy->isVoidType()) {
330    // Void type; nothing to return.
331    ReturnValue = 0;
332  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
333             hasAggregateLLVMType(CurFnInfo->getReturnType())) {
334    // Indirect aggregate return; emit returned value directly into sret slot.
335    // This reduces code size, and affects correctness in C++.
336    ReturnValue = CurFn->arg_begin();
337  } else {
338    ReturnValue = CreateIRTemp(RetTy, "retval");
339
340    // Tell the epilog emitter to autorelease the result.  We do this
341    // now so that various specialized functions can suppress it
342    // during their IR-generation.
343    if (getLangOptions().ObjCAutoRefCount &&
344        !CurFnInfo->isReturnsRetained() &&
345        RetTy->isObjCRetainableType())
346      AutoreleaseResult = true;
347  }
348
349  EmitStartEHSpec(CurCodeDecl);
350
351  PrologueCleanupDepth = EHStack.stable_begin();
352  EmitFunctionProlog(*CurFnInfo, CurFn, Args);
353
354  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
355    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
356
357  // If any of the arguments have a variably modified type, make sure to
358  // emit the type size.
359  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
360       i != e; ++i) {
361    QualType Ty = (*i)->getType();
362
363    if (Ty->isVariablyModifiedType())
364      EmitVariablyModifiedType(Ty);
365  }
366  // Emit a location at the end of the prologue.
367  if (CGDebugInfo *DI = getDebugInfo())
368    DI->EmitLocation(Builder, StartLoc);
369}
370
371void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
372  const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
373  assert(FD->getBody());
374  EmitStmt(FD->getBody());
375}
376
377/// Tries to mark the given function nounwind based on the
378/// non-existence of any throwing calls within it.  We believe this is
379/// lightweight enough to do at -O0.
380static void TryMarkNoThrow(llvm::Function *F) {
381  // LLVM treats 'nounwind' on a function as part of the type, so we
382  // can't do this on functions that can be overwritten.
383  if (F->mayBeOverridden()) return;
384
385  for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
386    for (llvm::BasicBlock::iterator
387           BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
388      if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
389        if (!Call->doesNotThrow())
390          return;
391      } else if (isa<llvm::ResumeInst>(&*BI)) {
392        return;
393      }
394  F->setDoesNotThrow(true);
395}
396
397void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
398                                   const CGFunctionInfo &FnInfo) {
399  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
400
401  // Check if we should generate debug info for this function.
402  if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
403    DebugInfo = CGM.getModuleDebugInfo();
404
405  FunctionArgList Args;
406  QualType ResTy = FD->getResultType();
407
408  CurGD = GD;
409  if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
410    CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
411
412  if (FD->getNumParams())
413    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
414      Args.push_back(FD->getParamDecl(i));
415
416  SourceRange BodyRange;
417  if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
418
419  // Emit the standard function prologue.
420  StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
421
422  // Generate the body of the function.
423  if (isa<CXXDestructorDecl>(FD))
424    EmitDestructorBody(Args);
425  else if (isa<CXXConstructorDecl>(FD))
426    EmitConstructorBody(Args);
427  else if (getContext().getLangOptions().CUDA &&
428           !CGM.getCodeGenOpts().CUDAIsDevice &&
429           FD->hasAttr<CUDAGlobalAttr>())
430    CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
431  else
432    EmitFunctionBody(Args);
433
434  // Emit the standard function epilogue.
435  FinishFunction(BodyRange.getEnd());
436
437  // If we haven't marked the function nothrow through other means, do
438  // a quick pass now to see if we can.
439  if (!CurFn->doesNotThrow())
440    TryMarkNoThrow(CurFn);
441}
442
443/// ContainsLabel - Return true if the statement contains a label in it.  If
444/// this statement is not executed normally, it not containing a label means
445/// that we can just remove the code.
446bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
447  // Null statement, not a label!
448  if (S == 0) return false;
449
450  // If this is a label, we have to emit the code, consider something like:
451  // if (0) {  ...  foo:  bar(); }  goto foo;
452  //
453  // TODO: If anyone cared, we could track __label__'s, since we know that you
454  // can't jump to one from outside their declared region.
455  if (isa<LabelStmt>(S))
456    return true;
457
458  // If this is a case/default statement, and we haven't seen a switch, we have
459  // to emit the code.
460  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
461    return true;
462
463  // If this is a switch statement, we want to ignore cases below it.
464  if (isa<SwitchStmt>(S))
465    IgnoreCaseStmts = true;
466
467  // Scan subexpressions for verboten labels.
468  for (Stmt::const_child_range I = S->children(); I; ++I)
469    if (ContainsLabel(*I, IgnoreCaseStmts))
470      return true;
471
472  return false;
473}
474
475/// containsBreak - Return true if the statement contains a break out of it.
476/// If the statement (recursively) contains a switch or loop with a break
477/// inside of it, this is fine.
478bool CodeGenFunction::containsBreak(const Stmt *S) {
479  // Null statement, not a label!
480  if (S == 0) return false;
481
482  // If this is a switch or loop that defines its own break scope, then we can
483  // include it and anything inside of it.
484  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
485      isa<ForStmt>(S))
486    return false;
487
488  if (isa<BreakStmt>(S))
489    return true;
490
491  // Scan subexpressions for verboten breaks.
492  for (Stmt::const_child_range I = S->children(); I; ++I)
493    if (containsBreak(*I))
494      return true;
495
496  return false;
497}
498
499
500/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
501/// to a constant, or if it does but contains a label, return false.  If it
502/// constant folds return true and set the boolean result in Result.
503bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
504                                                   bool &ResultBool) {
505  llvm::APInt ResultInt;
506  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
507    return false;
508
509  ResultBool = ResultInt.getBoolValue();
510  return true;
511}
512
513/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
514/// to a constant, or if it does but contains a label, return false.  If it
515/// constant folds return true and set the folded value.
516bool CodeGenFunction::
517ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &ResultInt) {
518  // FIXME: Rename and handle conversion of other evaluatable things
519  // to bool.
520  llvm::APSInt Int;
521  if (!Cond->EvaluateAsInt(Int, getContext()))
522    return false;  // Not foldable, not integer or not fully evaluatable.
523
524  if (CodeGenFunction::ContainsLabel(Cond))
525    return false;  // Contains a label.
526
527  ResultInt = Int;
528  return true;
529}
530
531
532
533/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
534/// statement) to the specified blocks.  Based on the condition, this might try
535/// to simplify the codegen of the conditional based on the branch.
536///
537void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
538                                           llvm::BasicBlock *TrueBlock,
539                                           llvm::BasicBlock *FalseBlock) {
540  Cond = Cond->IgnoreParens();
541
542  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
543    // Handle X && Y in a condition.
544    if (CondBOp->getOpcode() == BO_LAnd) {
545      // If we have "1 && X", simplify the code.  "0 && X" would have constant
546      // folded if the case was simple enough.
547      bool ConstantBool = false;
548      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
549          ConstantBool) {
550        // br(1 && X) -> br(X).
551        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
552      }
553
554      // If we have "X && 1", simplify the code to use an uncond branch.
555      // "X && 0" would have been constant folded to 0.
556      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
557          ConstantBool) {
558        // br(X && 1) -> br(X).
559        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
560      }
561
562      // Emit the LHS as a conditional.  If the LHS conditional is false, we
563      // want to jump to the FalseBlock.
564      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
565
566      ConditionalEvaluation eval(*this);
567      EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
568      EmitBlock(LHSTrue);
569
570      // Any temporaries created here are conditional.
571      eval.begin(*this);
572      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
573      eval.end(*this);
574
575      return;
576    }
577
578    if (CondBOp->getOpcode() == BO_LOr) {
579      // If we have "0 || X", simplify the code.  "1 || X" would have constant
580      // folded if the case was simple enough.
581      bool ConstantBool = false;
582      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
583          !ConstantBool) {
584        // br(0 || X) -> br(X).
585        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
586      }
587
588      // If we have "X || 0", simplify the code to use an uncond branch.
589      // "X || 1" would have been constant folded to 1.
590      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
591          !ConstantBool) {
592        // br(X || 0) -> br(X).
593        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
594      }
595
596      // Emit the LHS as a conditional.  If the LHS conditional is true, we
597      // want to jump to the TrueBlock.
598      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
599
600      ConditionalEvaluation eval(*this);
601      EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
602      EmitBlock(LHSFalse);
603
604      // Any temporaries created here are conditional.
605      eval.begin(*this);
606      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
607      eval.end(*this);
608
609      return;
610    }
611  }
612
613  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
614    // br(!x, t, f) -> br(x, f, t)
615    if (CondUOp->getOpcode() == UO_LNot)
616      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
617  }
618
619  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
620    // Handle ?: operator.
621
622    // Just ignore GNU ?: extension.
623    if (CondOp->getLHS()) {
624      // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
625      llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
626      llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
627
628      ConditionalEvaluation cond(*this);
629      EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
630
631      cond.begin(*this);
632      EmitBlock(LHSBlock);
633      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
634      cond.end(*this);
635
636      cond.begin(*this);
637      EmitBlock(RHSBlock);
638      EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
639      cond.end(*this);
640
641      return;
642    }
643  }
644
645  // Emit the code with the fully general case.
646  llvm::Value *CondV = EvaluateExprAsBool(Cond);
647  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
648}
649
650/// ErrorUnsupported - Print out an error that codegen doesn't support the
651/// specified stmt yet.
652void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
653                                       bool OmitOnError) {
654  CGM.ErrorUnsupported(S, Type, OmitOnError);
655}
656
657/// emitNonZeroVLAInit - Emit the "zero" initialization of a
658/// variable-length array whose elements have a non-zero bit-pattern.
659///
660/// \param src - a char* pointing to the bit-pattern for a single
661/// base element of the array
662/// \param sizeInChars - the total size of the VLA, in chars
663/// \param align - the total alignment of the VLA
664static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
665                               llvm::Value *dest, llvm::Value *src,
666                               llvm::Value *sizeInChars) {
667  std::pair<CharUnits,CharUnits> baseSizeAndAlign
668    = CGF.getContext().getTypeInfoInChars(baseType);
669
670  CGBuilderTy &Builder = CGF.Builder;
671
672  llvm::Value *baseSizeInChars
673    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
674
675  llvm::Type *i8p = Builder.getInt8PtrTy();
676
677  llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
678  llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
679
680  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
681  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
682  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
683
684  // Make a loop over the VLA.  C99 guarantees that the VLA element
685  // count must be nonzero.
686  CGF.EmitBlock(loopBB);
687
688  llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
689  cur->addIncoming(begin, originBB);
690
691  // memcpy the individual element bit-pattern.
692  Builder.CreateMemCpy(cur, src, baseSizeInChars,
693                       baseSizeAndAlign.second.getQuantity(),
694                       /*volatile*/ false);
695
696  // Go to the next element.
697  llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
698
699  // Leave if that's the end of the VLA.
700  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
701  Builder.CreateCondBr(done, contBB, loopBB);
702  cur->addIncoming(next, loopBB);
703
704  CGF.EmitBlock(contBB);
705}
706
707void
708CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
709  // Ignore empty classes in C++.
710  if (getContext().getLangOptions().CPlusPlus) {
711    if (const RecordType *RT = Ty->getAs<RecordType>()) {
712      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
713        return;
714    }
715  }
716
717  // Cast the dest ptr to the appropriate i8 pointer type.
718  unsigned DestAS =
719    cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
720  llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
721  if (DestPtr->getType() != BP)
722    DestPtr = Builder.CreateBitCast(DestPtr, BP);
723
724  // Get size and alignment info for this aggregate.
725  std::pair<CharUnits, CharUnits> TypeInfo =
726    getContext().getTypeInfoInChars(Ty);
727  CharUnits Size = TypeInfo.first;
728  CharUnits Align = TypeInfo.second;
729
730  llvm::Value *SizeVal;
731  const VariableArrayType *vla;
732
733  // Don't bother emitting a zero-byte memset.
734  if (Size.isZero()) {
735    // But note that getTypeInfo returns 0 for a VLA.
736    if (const VariableArrayType *vlaType =
737          dyn_cast_or_null<VariableArrayType>(
738                                          getContext().getAsArrayType(Ty))) {
739      QualType eltType;
740      llvm::Value *numElts;
741      llvm::tie(numElts, eltType) = getVLASize(vlaType);
742
743      SizeVal = numElts;
744      CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
745      if (!eltSize.isOne())
746        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
747      vla = vlaType;
748    } else {
749      return;
750    }
751  } else {
752    SizeVal = CGM.getSize(Size);
753    vla = 0;
754  }
755
756  // If the type contains a pointer to data member we can't memset it to zero.
757  // Instead, create a null constant and copy it to the destination.
758  // TODO: there are other patterns besides zero that we can usefully memset,
759  // like -1, which happens to be the pattern used by member-pointers.
760  if (!CGM.getTypes().isZeroInitializable(Ty)) {
761    // For a VLA, emit a single element, then splat that over the VLA.
762    if (vla) Ty = getContext().getBaseElementType(vla);
763
764    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
765
766    llvm::GlobalVariable *NullVariable =
767      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
768                               /*isConstant=*/true,
769                               llvm::GlobalVariable::PrivateLinkage,
770                               NullConstant, Twine());
771    llvm::Value *SrcPtr =
772      Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
773
774    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
775
776    // Get and call the appropriate llvm.memcpy overload.
777    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
778    return;
779  }
780
781  // Otherwise, just memset the whole thing to zero.  This is legal
782  // because in LLVM, all default initializers (other than the ones we just
783  // handled above) are guaranteed to have a bit pattern of all zeros.
784  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
785                       Align.getQuantity(), false);
786}
787
788llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
789  // Make sure that there is a block for the indirect goto.
790  if (IndirectBranch == 0)
791    GetIndirectGotoBlock();
792
793  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
794
795  // Make sure the indirect branch includes all of the address-taken blocks.
796  IndirectBranch->addDestination(BB);
797  return llvm::BlockAddress::get(CurFn, BB);
798}
799
800llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
801  // If we already made the indirect branch for indirect goto, return its block.
802  if (IndirectBranch) return IndirectBranch->getParent();
803
804  CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
805
806  // Create the PHI node that indirect gotos will add entries to.
807  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
808                                              "indirect.goto.dest");
809
810  // Create the indirect branch instruction.
811  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
812  return IndirectBranch->getParent();
813}
814
815/// Computes the length of an array in elements, as well as the base
816/// element type and a properly-typed first element pointer.
817llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
818                                              QualType &baseType,
819                                              llvm::Value *&addr) {
820  const ArrayType *arrayType = origArrayType;
821
822  // If it's a VLA, we have to load the stored size.  Note that
823  // this is the size of the VLA in bytes, not its size in elements.
824  llvm::Value *numVLAElements = 0;
825  if (isa<VariableArrayType>(arrayType)) {
826    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
827
828    // Walk into all VLAs.  This doesn't require changes to addr,
829    // which has type T* where T is the first non-VLA element type.
830    do {
831      QualType elementType = arrayType->getElementType();
832      arrayType = getContext().getAsArrayType(elementType);
833
834      // If we only have VLA components, 'addr' requires no adjustment.
835      if (!arrayType) {
836        baseType = elementType;
837        return numVLAElements;
838      }
839    } while (isa<VariableArrayType>(arrayType));
840
841    // We get out here only if we find a constant array type
842    // inside the VLA.
843  }
844
845  // We have some number of constant-length arrays, so addr should
846  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
847  // down to the first element of addr.
848  SmallVector<llvm::Value*, 8> gepIndices;
849
850  // GEP down to the array type.
851  llvm::ConstantInt *zero = Builder.getInt32(0);
852  gepIndices.push_back(zero);
853
854  // It's more efficient to calculate the count from the LLVM
855  // constant-length arrays than to re-evaluate the array bounds.
856  uint64_t countFromCLAs = 1;
857
858  llvm::ArrayType *llvmArrayType =
859    cast<llvm::ArrayType>(
860      cast<llvm::PointerType>(addr->getType())->getElementType());
861  while (true) {
862    assert(isa<ConstantArrayType>(arrayType));
863    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
864             == llvmArrayType->getNumElements());
865
866    gepIndices.push_back(zero);
867    countFromCLAs *= llvmArrayType->getNumElements();
868
869    llvmArrayType =
870      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
871    if (!llvmArrayType) break;
872
873    arrayType = getContext().getAsArrayType(arrayType->getElementType());
874    assert(arrayType && "LLVM and Clang types are out-of-synch");
875  }
876
877  baseType = arrayType->getElementType();
878
879  // Create the actual GEP.
880  addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
881
882  llvm::Value *numElements
883    = llvm::ConstantInt::get(SizeTy, countFromCLAs);
884
885  // If we had any VLA dimensions, factor them in.
886  if (numVLAElements)
887    numElements = Builder.CreateNUWMul(numVLAElements, numElements);
888
889  return numElements;
890}
891
892std::pair<llvm::Value*, QualType>
893CodeGenFunction::getVLASize(QualType type) {
894  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
895  assert(vla && "type was not a variable array type!");
896  return getVLASize(vla);
897}
898
899std::pair<llvm::Value*, QualType>
900CodeGenFunction::getVLASize(const VariableArrayType *type) {
901  // The number of elements so far; always size_t.
902  llvm::Value *numElements = 0;
903
904  QualType elementType;
905  do {
906    elementType = type->getElementType();
907    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
908    assert(vlaSize && "no size for VLA!");
909    assert(vlaSize->getType() == SizeTy);
910
911    if (!numElements) {
912      numElements = vlaSize;
913    } else {
914      // It's undefined behavior if this wraps around, so mark it that way.
915      numElements = Builder.CreateNUWMul(numElements, vlaSize);
916    }
917  } while ((type = getContext().getAsVariableArrayType(elementType)));
918
919  return std::pair<llvm::Value*,QualType>(numElements, elementType);
920}
921
922void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
923  assert(type->isVariablyModifiedType() &&
924         "Must pass variably modified type to EmitVLASizes!");
925
926  EnsureInsertPoint();
927
928  // We're going to walk down into the type and look for VLA
929  // expressions.
930  do {
931    assert(type->isVariablyModifiedType());
932
933    const Type *ty = type.getTypePtr();
934    switch (ty->getTypeClass()) {
935
936#define TYPE(Class, Base)
937#define ABSTRACT_TYPE(Class, Base)
938#define NON_CANONICAL_TYPE(Class, Base)
939#define DEPENDENT_TYPE(Class, Base) case Type::Class:
940#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
941#include "clang/AST/TypeNodes.def"
942      llvm_unreachable("unexpected dependent type!");
943
944    // These types are never variably-modified.
945    case Type::Builtin:
946    case Type::Complex:
947    case Type::Vector:
948    case Type::ExtVector:
949    case Type::Record:
950    case Type::Enum:
951    case Type::Elaborated:
952    case Type::TemplateSpecialization:
953    case Type::ObjCObject:
954    case Type::ObjCInterface:
955    case Type::ObjCObjectPointer:
956      llvm_unreachable("type class is never variably-modified!");
957
958    case Type::Pointer:
959      type = cast<PointerType>(ty)->getPointeeType();
960      break;
961
962    case Type::BlockPointer:
963      type = cast<BlockPointerType>(ty)->getPointeeType();
964      break;
965
966    case Type::LValueReference:
967    case Type::RValueReference:
968      type = cast<ReferenceType>(ty)->getPointeeType();
969      break;
970
971    case Type::MemberPointer:
972      type = cast<MemberPointerType>(ty)->getPointeeType();
973      break;
974
975    case Type::ConstantArray:
976    case Type::IncompleteArray:
977      // Losing element qualification here is fine.
978      type = cast<ArrayType>(ty)->getElementType();
979      break;
980
981    case Type::VariableArray: {
982      // Losing element qualification here is fine.
983      const VariableArrayType *vat = cast<VariableArrayType>(ty);
984
985      // Unknown size indication requires no size computation.
986      // Otherwise, evaluate and record it.
987      if (const Expr *size = vat->getSizeExpr()) {
988        // It's possible that we might have emitted this already,
989        // e.g. with a typedef and a pointer to it.
990        llvm::Value *&entry = VLASizeMap[size];
991        if (!entry) {
992          // Always zexting here would be wrong if it weren't
993          // undefined behavior to have a negative bound.
994          entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
995                                        /*signed*/ false);
996        }
997      }
998      type = vat->getElementType();
999      break;
1000    }
1001
1002    case Type::FunctionProto:
1003    case Type::FunctionNoProto:
1004      type = cast<FunctionType>(ty)->getResultType();
1005      break;
1006
1007    case Type::Paren:
1008    case Type::TypeOf:
1009    case Type::UnaryTransform:
1010    case Type::Attributed:
1011    case Type::SubstTemplateTypeParm:
1012      // Keep walking after single level desugaring.
1013      type = type.getSingleStepDesugaredType(getContext());
1014      break;
1015
1016    case Type::Typedef:
1017    case Type::Decltype:
1018    case Type::Auto:
1019      // Stop walking: nothing to do.
1020      return;
1021
1022    case Type::TypeOfExpr:
1023      // Stop walking: emit typeof expression.
1024      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1025      return;
1026
1027    case Type::Atomic:
1028      type = cast<AtomicType>(ty)->getValueType();
1029      break;
1030    }
1031  } while (type->isVariablyModifiedType());
1032}
1033
1034llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1035  if (getContext().getBuiltinVaListType()->isArrayType())
1036    return EmitScalarExpr(E);
1037  return EmitLValue(E).getAddress();
1038}
1039
1040void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1041                                              llvm::Constant *Init) {
1042  assert (Init && "Invalid DeclRefExpr initializer!");
1043  if (CGDebugInfo *Dbg = getDebugInfo())
1044    Dbg->EmitGlobalVariable(E->getDecl(), Init);
1045}
1046
1047CodeGenFunction::PeepholeProtection
1048CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1049  // At the moment, the only aggressive peephole we do in IR gen
1050  // is trunc(zext) folding, but if we add more, we can easily
1051  // extend this protection.
1052
1053  if (!rvalue.isScalar()) return PeepholeProtection();
1054  llvm::Value *value = rvalue.getScalarVal();
1055  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1056
1057  // Just make an extra bitcast.
1058  assert(HaveInsertPoint());
1059  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1060                                                  Builder.GetInsertBlock());
1061
1062  PeepholeProtection protection;
1063  protection.Inst = inst;
1064  return protection;
1065}
1066
1067void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1068  if (!protection.Inst) return;
1069
1070  // In theory, we could try to duplicate the peepholes now, but whatever.
1071  protection.Inst->eraseFromParent();
1072}
1073
1074llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1075                                                 llvm::Value *AnnotatedVal,
1076                                                 llvm::StringRef AnnotationStr,
1077                                                 SourceLocation Location) {
1078  llvm::Value *Args[4] = {
1079    AnnotatedVal,
1080    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1081    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1082    CGM.EmitAnnotationLineNo(Location)
1083  };
1084  return Builder.CreateCall(AnnotationFn, Args);
1085}
1086
1087void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1088  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1089  // FIXME We create a new bitcast for every annotation because that's what
1090  // llvm-gcc was doing.
1091  for (specific_attr_iterator<AnnotateAttr>
1092       ai = D->specific_attr_begin<AnnotateAttr>(),
1093       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1094    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1095                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1096                       (*ai)->getAnnotation(), D->getLocation());
1097}
1098
1099llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1100                                                   llvm::Value *V) {
1101  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1102  llvm::Type *VTy = V->getType();
1103  llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1104                                    CGM.Int8PtrTy);
1105
1106  for (specific_attr_iterator<AnnotateAttr>
1107       ai = D->specific_attr_begin<AnnotateAttr>(),
1108       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
1109    // FIXME Always emit the cast inst so we can differentiate between
1110    // annotation on the first field of a struct and annotation on the struct
1111    // itself.
1112    if (VTy != CGM.Int8PtrTy)
1113      V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1114    V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
1115    V = Builder.CreateBitCast(V, VTy);
1116  }
1117
1118  return V;
1119}
1120