TargetInfo.cpp revision 117e3f4cd4d6ea41c3202da8729f94168c5c8239
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39ABIInfo::~ABIInfo() {}
40
41ASTContext &ABIInfo::getContext() const {
42  return CGT.getContext();
43}
44
45llvm::LLVMContext &ABIInfo::getVMContext() const {
46  return CGT.getLLVMContext();
47}
48
49const llvm::TargetData &ABIInfo::getTargetData() const {
50  return CGT.getTargetData();
51}
52
53
54void ABIArgInfo::dump() const {
55  llvm::raw_ostream &OS = llvm::errs();
56  OS << "(ABIArgInfo Kind=";
57  switch (TheKind) {
58  case Direct:
59    OS << "Direct Type=";
60    if (const llvm::Type *Ty = getCoerceToType())
61      Ty->print(OS);
62    else
63      OS << "null";
64    break;
65  case Extend:
66    OS << "Extend";
67    break;
68  case Ignore:
69    OS << "Ignore";
70    break;
71  case Indirect:
72    OS << "Indirect Align=" << getIndirectAlign()
73       << " Byal=" << getIndirectByVal();
74    break;
75  case Expand:
76    OS << "Expand";
77    break;
78  }
79  OS << ")\n";
80}
81
82TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
83
84static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
85
86/// isEmptyField - Return true iff a the field is "empty", that is it
87/// is an unnamed bit-field or an (array of) empty record(s).
88static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
89                         bool AllowArrays) {
90  if (FD->isUnnamedBitfield())
91    return true;
92
93  QualType FT = FD->getType();
94
95    // Constant arrays of empty records count as empty, strip them off.
96  if (AllowArrays)
97    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
98      FT = AT->getElementType();
99
100  const RecordType *RT = FT->getAs<RecordType>();
101  if (!RT)
102    return false;
103
104  // C++ record fields are never empty, at least in the Itanium ABI.
105  //
106  // FIXME: We should use a predicate for whether this behavior is true in the
107  // current ABI.
108  if (isa<CXXRecordDecl>(RT->getDecl()))
109    return false;
110
111  return isEmptyRecord(Context, FT, AllowArrays);
112}
113
114/// isEmptyRecord - Return true iff a structure contains only empty
115/// fields. Note that a structure with a flexible array member is not
116/// considered empty.
117static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
118  const RecordType *RT = T->getAs<RecordType>();
119  if (!RT)
120    return 0;
121  const RecordDecl *RD = RT->getDecl();
122  if (RD->hasFlexibleArrayMember())
123    return false;
124
125  // If this is a C++ record, check the bases first.
126  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
127    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
128           e = CXXRD->bases_end(); i != e; ++i)
129      if (!isEmptyRecord(Context, i->getType(), true))
130        return false;
131
132  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
133         i != e; ++i)
134    if (!isEmptyField(Context, *i, AllowArrays))
135      return false;
136  return true;
137}
138
139/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
140/// a non-trivial destructor or a non-trivial copy constructor.
141static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
142  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
143  if (!RD)
144    return false;
145
146  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
147}
148
149/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
150/// a record type with either a non-trivial destructor or a non-trivial copy
151/// constructor.
152static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
153  const RecordType *RT = T->getAs<RecordType>();
154  if (!RT)
155    return false;
156
157  return hasNonTrivialDestructorOrCopyConstructor(RT);
158}
159
160/// isSingleElementStruct - Determine if a structure is a "single
161/// element struct", i.e. it has exactly one non-empty field or
162/// exactly one field which is itself a single element
163/// struct. Structures with flexible array members are never
164/// considered single element structs.
165///
166/// \return The field declaration for the single non-empty field, if
167/// it exists.
168static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
169  const RecordType *RT = T->getAsStructureType();
170  if (!RT)
171    return 0;
172
173  const RecordDecl *RD = RT->getDecl();
174  if (RD->hasFlexibleArrayMember())
175    return 0;
176
177  const Type *Found = 0;
178
179  // If this is a C++ record, check the bases first.
180  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
181    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
182           e = CXXRD->bases_end(); i != e; ++i) {
183      // Ignore empty records.
184      if (isEmptyRecord(Context, i->getType(), true))
185        continue;
186
187      // If we already found an element then this isn't a single-element struct.
188      if (Found)
189        return 0;
190
191      // If this is non-empty and not a single element struct, the composite
192      // cannot be a single element struct.
193      Found = isSingleElementStruct(i->getType(), Context);
194      if (!Found)
195        return 0;
196    }
197  }
198
199  // Check for single element.
200  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
201         i != e; ++i) {
202    const FieldDecl *FD = *i;
203    QualType FT = FD->getType();
204
205    // Ignore empty fields.
206    if (isEmptyField(Context, FD, true))
207      continue;
208
209    // If we already found an element then this isn't a single-element
210    // struct.
211    if (Found)
212      return 0;
213
214    // Treat single element arrays as the element.
215    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
216      if (AT->getSize().getZExtValue() != 1)
217        break;
218      FT = AT->getElementType();
219    }
220
221    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
222      Found = FT.getTypePtr();
223    } else {
224      Found = isSingleElementStruct(FT, Context);
225      if (!Found)
226        return 0;
227    }
228  }
229
230  return Found;
231}
232
233static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
234  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
235      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
236      !Ty->isBlockPointerType())
237    return false;
238
239  uint64_t Size = Context.getTypeSize(Ty);
240  return Size == 32 || Size == 64;
241}
242
243/// canExpandIndirectArgument - Test whether an argument type which is to be
244/// passed indirectly (on the stack) would have the equivalent layout if it was
245/// expanded into separate arguments. If so, we prefer to do the latter to avoid
246/// inhibiting optimizations.
247///
248// FIXME: This predicate is missing many cases, currently it just follows
249// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
250// should probably make this smarter, or better yet make the LLVM backend
251// capable of handling it.
252static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
253  // We can only expand structure types.
254  const RecordType *RT = Ty->getAs<RecordType>();
255  if (!RT)
256    return false;
257
258  // We can only expand (C) structures.
259  //
260  // FIXME: This needs to be generalized to handle classes as well.
261  const RecordDecl *RD = RT->getDecl();
262  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
263    return false;
264
265  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
266         i != e; ++i) {
267    const FieldDecl *FD = *i;
268
269    if (!is32Or64BitBasicType(FD->getType(), Context))
270      return false;
271
272    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
273    // how to expand them yet, and the predicate for telling if a bitfield still
274    // counts as "basic" is more complicated than what we were doing previously.
275    if (FD->isBitField())
276      return false;
277  }
278
279  return true;
280}
281
282namespace {
283/// DefaultABIInfo - The default implementation for ABI specific
284/// details. This implementation provides information which results in
285/// self-consistent and sensible LLVM IR generation, but does not
286/// conform to any particular ABI.
287class DefaultABIInfo : public ABIInfo {
288public:
289  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
290
291  ABIArgInfo classifyReturnType(QualType RetTy) const;
292  ABIArgInfo classifyArgumentType(QualType RetTy) const;
293
294  virtual void computeInfo(CGFunctionInfo &FI) const {
295    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
296    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
297         it != ie; ++it)
298      it->info = classifyArgumentType(it->type);
299  }
300
301  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
302                                 CodeGenFunction &CGF) const;
303};
304
305class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
306public:
307  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
308    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
309};
310
311llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
312                                       CodeGenFunction &CGF) const {
313  return 0;
314}
315
316ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
317  if (CodeGenFunction::hasAggregateLLVMType(Ty))
318    return ABIArgInfo::getIndirect(0);
319
320  // Treat an enum type as its underlying type.
321  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
322    Ty = EnumTy->getDecl()->getIntegerType();
323
324  return (Ty->isPromotableIntegerType() ?
325          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
326}
327
328//===----------------------------------------------------------------------===//
329// X86-32 ABI Implementation
330//===----------------------------------------------------------------------===//
331
332/// X86_32ABIInfo - The X86-32 ABI information.
333class X86_32ABIInfo : public ABIInfo {
334  bool IsDarwinVectorABI;
335  bool IsSmallStructInRegABI;
336
337  static bool isRegisterSize(unsigned Size) {
338    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
339  }
340
341  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
342
343  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
344  /// such that the argument will be passed in memory.
345  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
346
347public:
348
349  ABIArgInfo classifyReturnType(QualType RetTy) const;
350  ABIArgInfo classifyArgumentType(QualType RetTy) const;
351
352  virtual void computeInfo(CGFunctionInfo &FI) const {
353    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
354    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
355         it != ie; ++it)
356      it->info = classifyArgumentType(it->type);
357  }
358
359  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
360                                 CodeGenFunction &CGF) const;
361
362  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
363    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
364};
365
366class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
367public:
368  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
369    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
370
371  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
372                           CodeGen::CodeGenModule &CGM) const;
373
374  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
375    // Darwin uses different dwarf register numbers for EH.
376    if (CGM.isTargetDarwin()) return 5;
377
378    return 4;
379  }
380
381  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
382                               llvm::Value *Address) const;
383};
384
385}
386
387/// shouldReturnTypeInRegister - Determine if the given type should be
388/// passed in a register (for the Darwin ABI).
389bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
390                                               ASTContext &Context) {
391  uint64_t Size = Context.getTypeSize(Ty);
392
393  // Type must be register sized.
394  if (!isRegisterSize(Size))
395    return false;
396
397  if (Ty->isVectorType()) {
398    // 64- and 128- bit vectors inside structures are not returned in
399    // registers.
400    if (Size == 64 || Size == 128)
401      return false;
402
403    return true;
404  }
405
406  // If this is a builtin, pointer, enum, complex type, member pointer, or
407  // member function pointer it is ok.
408  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
409      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
410      Ty->isBlockPointerType() || Ty->isMemberPointerType())
411    return true;
412
413  // Arrays are treated like records.
414  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
415    return shouldReturnTypeInRegister(AT->getElementType(), Context);
416
417  // Otherwise, it must be a record type.
418  const RecordType *RT = Ty->getAs<RecordType>();
419  if (!RT) return false;
420
421  // FIXME: Traverse bases here too.
422
423  // Structure types are passed in register if all fields would be
424  // passed in a register.
425  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
426         e = RT->getDecl()->field_end(); i != e; ++i) {
427    const FieldDecl *FD = *i;
428
429    // Empty fields are ignored.
430    if (isEmptyField(Context, FD, true))
431      continue;
432
433    // Check fields recursively.
434    if (!shouldReturnTypeInRegister(FD->getType(), Context))
435      return false;
436  }
437
438  return true;
439}
440
441ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
442  if (RetTy->isVoidType())
443    return ABIArgInfo::getIgnore();
444
445  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
446    // On Darwin, some vectors are returned in registers.
447    if (IsDarwinVectorABI) {
448      uint64_t Size = getContext().getTypeSize(RetTy);
449
450      // 128-bit vectors are a special case; they are returned in
451      // registers and we need to make sure to pick a type the LLVM
452      // backend will like.
453      if (Size == 128)
454        return ABIArgInfo::getDirect(llvm::VectorType::get(
455                  llvm::Type::getInt64Ty(getVMContext()), 2));
456
457      // Always return in register if it fits in a general purpose
458      // register, or if it is 64 bits and has a single element.
459      if ((Size == 8 || Size == 16 || Size == 32) ||
460          (Size == 64 && VT->getNumElements() == 1))
461        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
462                                                            Size));
463
464      return ABIArgInfo::getIndirect(0);
465    }
466
467    return ABIArgInfo::getDirect();
468  }
469
470  if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
471    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
472      // Structures with either a non-trivial destructor or a non-trivial
473      // copy constructor are always indirect.
474      if (hasNonTrivialDestructorOrCopyConstructor(RT))
475        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
476
477      // Structures with flexible arrays are always indirect.
478      if (RT->getDecl()->hasFlexibleArrayMember())
479        return ABIArgInfo::getIndirect(0);
480    }
481
482    // If specified, structs and unions are always indirect.
483    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
484      return ABIArgInfo::getIndirect(0);
485
486    // Classify "single element" structs as their element type.
487    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
488      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
489        if (BT->isIntegerType()) {
490          // We need to use the size of the structure, padding
491          // bit-fields can adjust that to be larger than the single
492          // element type.
493          uint64_t Size = getContext().getTypeSize(RetTy);
494          return ABIArgInfo::getDirect(
495            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
496        }
497
498        if (BT->getKind() == BuiltinType::Float) {
499          assert(getContext().getTypeSize(RetTy) ==
500                 getContext().getTypeSize(SeltTy) &&
501                 "Unexpect single element structure size!");
502          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
503        }
504
505        if (BT->getKind() == BuiltinType::Double) {
506          assert(getContext().getTypeSize(RetTy) ==
507                 getContext().getTypeSize(SeltTy) &&
508                 "Unexpect single element structure size!");
509          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
510        }
511      } else if (SeltTy->isPointerType()) {
512        // FIXME: It would be really nice if this could come out as the proper
513        // pointer type.
514        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
515        return ABIArgInfo::getDirect(PtrTy);
516      } else if (SeltTy->isVectorType()) {
517        // 64- and 128-bit vectors are never returned in a
518        // register when inside a structure.
519        uint64_t Size = getContext().getTypeSize(RetTy);
520        if (Size == 64 || Size == 128)
521          return ABIArgInfo::getIndirect(0);
522
523        return classifyReturnType(QualType(SeltTy, 0));
524      }
525    }
526
527    // Small structures which are register sized are generally returned
528    // in a register.
529    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
530      uint64_t Size = getContext().getTypeSize(RetTy);
531      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
532    }
533
534    return ABIArgInfo::getIndirect(0);
535  }
536
537  // Treat an enum type as its underlying type.
538  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
539    RetTy = EnumTy->getDecl()->getIntegerType();
540
541  return (RetTy->isPromotableIntegerType() ?
542          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
543}
544
545ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
546  if (!ByVal)
547    return ABIArgInfo::getIndirect(0, false);
548
549  // Compute the byval alignment. We trust the back-end to honor the
550  // minimum ABI alignment for byval, to make cleaner IR.
551  const unsigned MinABIAlign = 4;
552  unsigned Align = getContext().getTypeAlign(Ty) / 8;
553  if (Align > MinABIAlign)
554    return ABIArgInfo::getIndirect(Align);
555  return ABIArgInfo::getIndirect(0);
556}
557
558ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
559  // FIXME: Set alignment on indirect arguments.
560  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
561    // Structures with flexible arrays are always indirect.
562    if (const RecordType *RT = Ty->getAs<RecordType>()) {
563      // Structures with either a non-trivial destructor or a non-trivial
564      // copy constructor are always indirect.
565      if (hasNonTrivialDestructorOrCopyConstructor(RT))
566        return getIndirectResult(Ty, /*ByVal=*/false);
567
568      if (RT->getDecl()->hasFlexibleArrayMember())
569        return getIndirectResult(Ty);
570    }
571
572    // Ignore empty structs.
573    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
574      return ABIArgInfo::getIgnore();
575
576    // Expand small (<= 128-bit) record types when we know that the stack layout
577    // of those arguments will match the struct. This is important because the
578    // LLVM backend isn't smart enough to remove byval, which inhibits many
579    // optimizations.
580    if (getContext().getTypeSize(Ty) <= 4*32 &&
581        canExpandIndirectArgument(Ty, getContext()))
582      return ABIArgInfo::getExpand();
583
584    return getIndirectResult(Ty);
585  }
586
587  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
588    Ty = EnumTy->getDecl()->getIntegerType();
589
590  return (Ty->isPromotableIntegerType() ?
591          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
592}
593
594llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
595                                      CodeGenFunction &CGF) const {
596  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
597  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
598
599  CGBuilderTy &Builder = CGF.Builder;
600  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
601                                                       "ap");
602  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
603  llvm::Type *PTy =
604    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
605  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
606
607  uint64_t Offset =
608    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
609  llvm::Value *NextAddr =
610    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
611                      "ap.next");
612  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
613
614  return AddrTyped;
615}
616
617void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
618                                                  llvm::GlobalValue *GV,
619                                            CodeGen::CodeGenModule &CGM) const {
620  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
621    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
622      // Get the LLVM function.
623      llvm::Function *Fn = cast<llvm::Function>(GV);
624
625      // Now add the 'alignstack' attribute with a value of 16.
626      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
627    }
628  }
629}
630
631bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
632                                               CodeGen::CodeGenFunction &CGF,
633                                               llvm::Value *Address) const {
634  CodeGen::CGBuilderTy &Builder = CGF.Builder;
635  llvm::LLVMContext &Context = CGF.getLLVMContext();
636
637  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
638  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
639
640  // 0-7 are the eight integer registers;  the order is different
641  //   on Darwin (for EH), but the range is the same.
642  // 8 is %eip.
643  AssignToArrayRange(Builder, Address, Four8, 0, 8);
644
645  if (CGF.CGM.isTargetDarwin()) {
646    // 12-16 are st(0..4).  Not sure why we stop at 4.
647    // These have size 16, which is sizeof(long double) on
648    // platforms with 8-byte alignment for that type.
649    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
650    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
651
652  } else {
653    // 9 is %eflags, which doesn't get a size on Darwin for some
654    // reason.
655    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
656
657    // 11-16 are st(0..5).  Not sure why we stop at 5.
658    // These have size 12, which is sizeof(long double) on
659    // platforms with 4-byte alignment for that type.
660    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
661    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
662  }
663
664  return false;
665}
666
667//===----------------------------------------------------------------------===//
668// X86-64 ABI Implementation
669//===----------------------------------------------------------------------===//
670
671
672namespace {
673/// X86_64ABIInfo - The X86_64 ABI information.
674class X86_64ABIInfo : public ABIInfo {
675  enum Class {
676    Integer = 0,
677    SSE,
678    SSEUp,
679    X87,
680    X87Up,
681    ComplexX87,
682    NoClass,
683    Memory
684  };
685
686  /// merge - Implement the X86_64 ABI merging algorithm.
687  ///
688  /// Merge an accumulating classification \arg Accum with a field
689  /// classification \arg Field.
690  ///
691  /// \param Accum - The accumulating classification. This should
692  /// always be either NoClass or the result of a previous merge
693  /// call. In addition, this should never be Memory (the caller
694  /// should just return Memory for the aggregate).
695  static Class merge(Class Accum, Class Field);
696
697  /// classify - Determine the x86_64 register classes in which the
698  /// given type T should be passed.
699  ///
700  /// \param Lo - The classification for the parts of the type
701  /// residing in the low word of the containing object.
702  ///
703  /// \param Hi - The classification for the parts of the type
704  /// residing in the high word of the containing object.
705  ///
706  /// \param OffsetBase - The bit offset of this type in the
707  /// containing object.  Some parameters are classified different
708  /// depending on whether they straddle an eightbyte boundary.
709  ///
710  /// If a word is unused its result will be NoClass; if a type should
711  /// be passed in Memory then at least the classification of \arg Lo
712  /// will be Memory.
713  ///
714  /// The \arg Lo class will be NoClass iff the argument is ignored.
715  ///
716  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
717  /// also be ComplexX87.
718  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
719
720  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
721  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
722                                       unsigned IROffset, QualType SourceTy,
723                                       unsigned SourceOffset) const;
724  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
725                                           unsigned IROffset, QualType SourceTy,
726                                           unsigned SourceOffset) const;
727
728  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
729  /// such that the argument will be returned in memory.
730  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
731
732  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
733  /// such that the argument will be passed in memory.
734  ABIArgInfo getIndirectResult(QualType Ty) const;
735
736  ABIArgInfo classifyReturnType(QualType RetTy) const;
737
738  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &neededInt,
739                                  unsigned &neededSSE) const;
740
741public:
742  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
743
744  virtual void computeInfo(CGFunctionInfo &FI) const;
745
746  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
747                                 CodeGenFunction &CGF) const;
748};
749
750class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
751public:
752  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
753    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
754
755  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
756    return 7;
757  }
758
759  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
760                               llvm::Value *Address) const {
761    CodeGen::CGBuilderTy &Builder = CGF.Builder;
762    llvm::LLVMContext &Context = CGF.getLLVMContext();
763
764    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
765    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
766
767    // 0-15 are the 16 integer registers.
768    // 16 is %rip.
769    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
770
771    return false;
772  }
773};
774
775}
776
777X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
778  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
779  // classified recursively so that always two fields are
780  // considered. The resulting class is calculated according to
781  // the classes of the fields in the eightbyte:
782  //
783  // (a) If both classes are equal, this is the resulting class.
784  //
785  // (b) If one of the classes is NO_CLASS, the resulting class is
786  // the other class.
787  //
788  // (c) If one of the classes is MEMORY, the result is the MEMORY
789  // class.
790  //
791  // (d) If one of the classes is INTEGER, the result is the
792  // INTEGER.
793  //
794  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
795  // MEMORY is used as class.
796  //
797  // (f) Otherwise class SSE is used.
798
799  // Accum should never be memory (we should have returned) or
800  // ComplexX87 (because this cannot be passed in a structure).
801  assert((Accum != Memory && Accum != ComplexX87) &&
802         "Invalid accumulated classification during merge.");
803  if (Accum == Field || Field == NoClass)
804    return Accum;
805  if (Field == Memory)
806    return Memory;
807  if (Accum == NoClass)
808    return Field;
809  if (Accum == Integer || Field == Integer)
810    return Integer;
811  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
812      Accum == X87 || Accum == X87Up)
813    return Memory;
814  return SSE;
815}
816
817void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
818                             Class &Lo, Class &Hi) const {
819  // FIXME: This code can be simplified by introducing a simple value class for
820  // Class pairs with appropriate constructor methods for the various
821  // situations.
822
823  // FIXME: Some of the split computations are wrong; unaligned vectors
824  // shouldn't be passed in registers for example, so there is no chance they
825  // can straddle an eightbyte. Verify & simplify.
826
827  Lo = Hi = NoClass;
828
829  Class &Current = OffsetBase < 64 ? Lo : Hi;
830  Current = Memory;
831
832  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
833    BuiltinType::Kind k = BT->getKind();
834
835    if (k == BuiltinType::Void) {
836      Current = NoClass;
837    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
838      Lo = Integer;
839      Hi = Integer;
840    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
841      Current = Integer;
842    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
843      Current = SSE;
844    } else if (k == BuiltinType::LongDouble) {
845      Lo = X87;
846      Hi = X87Up;
847    }
848    // FIXME: _Decimal32 and _Decimal64 are SSE.
849    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
850    return;
851  }
852
853  if (const EnumType *ET = Ty->getAs<EnumType>()) {
854    // Classify the underlying integer type.
855    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
856    return;
857  }
858
859  if (Ty->hasPointerRepresentation()) {
860    Current = Integer;
861    return;
862  }
863
864  if (Ty->isMemberPointerType()) {
865    if (Ty->isMemberFunctionPointerType())
866      Lo = Hi = Integer;
867    else
868      Current = Integer;
869    return;
870  }
871
872  if (const VectorType *VT = Ty->getAs<VectorType>()) {
873    uint64_t Size = getContext().getTypeSize(VT);
874    if (Size == 32) {
875      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
876      // float> as integer.
877      Current = Integer;
878
879      // If this type crosses an eightbyte boundary, it should be
880      // split.
881      uint64_t EB_Real = (OffsetBase) / 64;
882      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
883      if (EB_Real != EB_Imag)
884        Hi = Lo;
885    } else if (Size == 64) {
886      // gcc passes <1 x double> in memory. :(
887      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
888        return;
889
890      // gcc passes <1 x long long> as INTEGER.
891      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
892        Current = Integer;
893      else
894        Current = SSE;
895
896      // If this type crosses an eightbyte boundary, it should be
897      // split.
898      if (OffsetBase && OffsetBase != 64)
899        Hi = Lo;
900    } else if (Size == 128) {
901      Lo = SSE;
902      Hi = SSEUp;
903    }
904    return;
905  }
906
907  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
908    QualType ET = getContext().getCanonicalType(CT->getElementType());
909
910    uint64_t Size = getContext().getTypeSize(Ty);
911    if (ET->isIntegralOrEnumerationType()) {
912      if (Size <= 64)
913        Current = Integer;
914      else if (Size <= 128)
915        Lo = Hi = Integer;
916    } else if (ET == getContext().FloatTy)
917      Current = SSE;
918    else if (ET == getContext().DoubleTy)
919      Lo = Hi = SSE;
920    else if (ET == getContext().LongDoubleTy)
921      Current = ComplexX87;
922
923    // If this complex type crosses an eightbyte boundary then it
924    // should be split.
925    uint64_t EB_Real = (OffsetBase) / 64;
926    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
927    if (Hi == NoClass && EB_Real != EB_Imag)
928      Hi = Lo;
929
930    return;
931  }
932
933  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
934    // Arrays are treated like structures.
935
936    uint64_t Size = getContext().getTypeSize(Ty);
937
938    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
939    // than two eightbytes, ..., it has class MEMORY.
940    if (Size > 128)
941      return;
942
943    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
944    // fields, it has class MEMORY.
945    //
946    // Only need to check alignment of array base.
947    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
948      return;
949
950    // Otherwise implement simplified merge. We could be smarter about
951    // this, but it isn't worth it and would be harder to verify.
952    Current = NoClass;
953    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
954    uint64_t ArraySize = AT->getSize().getZExtValue();
955    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
956      Class FieldLo, FieldHi;
957      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
958      Lo = merge(Lo, FieldLo);
959      Hi = merge(Hi, FieldHi);
960      if (Lo == Memory || Hi == Memory)
961        break;
962    }
963
964    // Do post merger cleanup (see below). Only case we worry about is Memory.
965    if (Hi == Memory)
966      Lo = Memory;
967    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
968    return;
969  }
970
971  if (const RecordType *RT = Ty->getAs<RecordType>()) {
972    uint64_t Size = getContext().getTypeSize(Ty);
973
974    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
975    // than two eightbytes, ..., it has class MEMORY.
976    if (Size > 128)
977      return;
978
979    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
980    // copy constructor or a non-trivial destructor, it is passed by invisible
981    // reference.
982    if (hasNonTrivialDestructorOrCopyConstructor(RT))
983      return;
984
985    const RecordDecl *RD = RT->getDecl();
986
987    // Assume variable sized types are passed in memory.
988    if (RD->hasFlexibleArrayMember())
989      return;
990
991    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
992
993    // Reset Lo class, this will be recomputed.
994    Current = NoClass;
995
996    // If this is a C++ record, classify the bases first.
997    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
998      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
999             e = CXXRD->bases_end(); i != e; ++i) {
1000        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1001               "Unexpected base class!");
1002        const CXXRecordDecl *Base =
1003          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1004
1005        // Classify this field.
1006        //
1007        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1008        // single eightbyte, each is classified separately. Each eightbyte gets
1009        // initialized to class NO_CLASS.
1010        Class FieldLo, FieldHi;
1011        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
1012        classify(i->getType(), Offset, FieldLo, FieldHi);
1013        Lo = merge(Lo, FieldLo);
1014        Hi = merge(Hi, FieldHi);
1015        if (Lo == Memory || Hi == Memory)
1016          break;
1017      }
1018    }
1019
1020    // Classify the fields one at a time, merging the results.
1021    unsigned idx = 0;
1022    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1023           i != e; ++i, ++idx) {
1024      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1025      bool BitField = i->isBitField();
1026
1027      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1028      // fields, it has class MEMORY.
1029      //
1030      // Note, skip this test for bit-fields, see below.
1031      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1032        Lo = Memory;
1033        return;
1034      }
1035
1036      // Classify this field.
1037      //
1038      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1039      // exceeds a single eightbyte, each is classified
1040      // separately. Each eightbyte gets initialized to class
1041      // NO_CLASS.
1042      Class FieldLo, FieldHi;
1043
1044      // Bit-fields require special handling, they do not force the
1045      // structure to be passed in memory even if unaligned, and
1046      // therefore they can straddle an eightbyte.
1047      if (BitField) {
1048        // Ignore padding bit-fields.
1049        if (i->isUnnamedBitfield())
1050          continue;
1051
1052        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1053        uint64_t Size =
1054          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1055
1056        uint64_t EB_Lo = Offset / 64;
1057        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1058        FieldLo = FieldHi = NoClass;
1059        if (EB_Lo) {
1060          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1061          FieldLo = NoClass;
1062          FieldHi = Integer;
1063        } else {
1064          FieldLo = Integer;
1065          FieldHi = EB_Hi ? Integer : NoClass;
1066        }
1067      } else
1068        classify(i->getType(), Offset, FieldLo, FieldHi);
1069      Lo = merge(Lo, FieldLo);
1070      Hi = merge(Hi, FieldHi);
1071      if (Lo == Memory || Hi == Memory)
1072        break;
1073    }
1074
1075    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1076    //
1077    // (a) If one of the classes is MEMORY, the whole argument is
1078    // passed in memory.
1079    //
1080    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1081
1082    // The first of these conditions is guaranteed by how we implement
1083    // the merge (just bail).
1084    //
1085    // The second condition occurs in the case of unions; for example
1086    // union { _Complex double; unsigned; }.
1087    if (Hi == Memory)
1088      Lo = Memory;
1089    if (Hi == SSEUp && Lo != SSE)
1090      Hi = SSE;
1091  }
1092}
1093
1094ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1095  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1096  // place naturally.
1097  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1098    // Treat an enum type as its underlying type.
1099    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1100      Ty = EnumTy->getDecl()->getIntegerType();
1101
1102    return (Ty->isPromotableIntegerType() ?
1103            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1104  }
1105
1106  return ABIArgInfo::getIndirect(0);
1107}
1108
1109ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1110  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1111  // place naturally.
1112  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1113    // Treat an enum type as its underlying type.
1114    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1115      Ty = EnumTy->getDecl()->getIntegerType();
1116
1117    return (Ty->isPromotableIntegerType() ?
1118            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1119  }
1120
1121  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1122    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1123
1124  // Compute the byval alignment. We trust the back-end to honor the
1125  // minimum ABI alignment for byval, to make cleaner IR.
1126  const unsigned MinABIAlign = 8;
1127  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1128  if (Align > MinABIAlign)
1129    return ABIArgInfo::getIndirect(Align);
1130  return ABIArgInfo::getIndirect(0);
1131}
1132
1133/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1134/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1135/// vector register.
1136const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1137  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1138
1139  // Wrapper structs that just contain vectors are passed just like vectors,
1140  // strip them off if present.
1141  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1142  while (STy && STy->getNumElements() == 1) {
1143    IRType = STy->getElementType(0);
1144    STy = dyn_cast<llvm::StructType>(IRType);
1145  }
1146
1147  // If the preferred type is a 16-byte vector, prefer to pass it.
1148  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1149    const llvm::Type *EltTy = VT->getElementType();
1150    if (VT->getBitWidth() == 128 &&
1151        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1152         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1153         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1154         EltTy->isIntegerTy(128)))
1155      return VT;
1156  }
1157
1158  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1159}
1160
1161/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1162/// is known to either be off the end of the specified type or being in
1163/// alignment padding.  The user type specified is known to be at most 128 bits
1164/// in size, and have passed through X86_64ABIInfo::classify with a successful
1165/// classification that put one of the two halves in the INTEGER class.
1166///
1167/// It is conservatively correct to return false.
1168static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1169                                  unsigned EndBit, ASTContext &Context) {
1170  // If the bytes being queried are off the end of the type, there is no user
1171  // data hiding here.  This handles analysis of builtins, vectors and other
1172  // types that don't contain interesting padding.
1173  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1174  if (TySize <= StartBit)
1175    return true;
1176
1177  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1178    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1179    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1180
1181    // Check each element to see if the element overlaps with the queried range.
1182    for (unsigned i = 0; i != NumElts; ++i) {
1183      // If the element is after the span we care about, then we're done..
1184      unsigned EltOffset = i*EltSize;
1185      if (EltOffset >= EndBit) break;
1186
1187      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1188      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1189                                 EndBit-EltOffset, Context))
1190        return false;
1191    }
1192    // If it overlaps no elements, then it is safe to process as padding.
1193    return true;
1194  }
1195
1196  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1197    const RecordDecl *RD = RT->getDecl();
1198    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1199
1200    // If this is a C++ record, check the bases first.
1201    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1202      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1203           e = CXXRD->bases_end(); i != e; ++i) {
1204        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1205               "Unexpected base class!");
1206        const CXXRecordDecl *Base =
1207          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1208
1209        // If the base is after the span we care about, ignore it.
1210        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffset(Base);
1211        if (BaseOffset >= EndBit) continue;
1212
1213        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1214        if (!BitsContainNoUserData(i->getType(), BaseStart,
1215                                   EndBit-BaseOffset, Context))
1216          return false;
1217      }
1218    }
1219
1220    // Verify that no field has data that overlaps the region of interest.  Yes
1221    // this could be sped up a lot by being smarter about queried fields,
1222    // however we're only looking at structs up to 16 bytes, so we don't care
1223    // much.
1224    unsigned idx = 0;
1225    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1226         i != e; ++i, ++idx) {
1227      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1228
1229      // If we found a field after the region we care about, then we're done.
1230      if (FieldOffset >= EndBit) break;
1231
1232      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1233      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1234                                 Context))
1235        return false;
1236    }
1237
1238    // If nothing in this record overlapped the area of interest, then we're
1239    // clean.
1240    return true;
1241  }
1242
1243  return false;
1244}
1245
1246/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1247/// float member at the specified offset.  For example, {int,{float}} has a
1248/// float at offset 4.  It is conservatively correct for this routine to return
1249/// false.
1250static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1251                                  const llvm::TargetData &TD) {
1252  // Base case if we find a float.
1253  if (IROffset == 0 && IRType->isFloatTy())
1254    return true;
1255
1256  // If this is a struct, recurse into the field at the specified offset.
1257  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1258    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1259    unsigned Elt = SL->getElementContainingOffset(IROffset);
1260    IROffset -= SL->getElementOffset(Elt);
1261    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1262  }
1263
1264  // If this is an array, recurse into the field at the specified offset.
1265  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1266    const llvm::Type *EltTy = ATy->getElementType();
1267    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1268    IROffset -= IROffset/EltSize*EltSize;
1269    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1270  }
1271
1272  return false;
1273}
1274
1275
1276/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1277/// low 8 bytes of an XMM register, corresponding to the SSE class.
1278const llvm::Type *X86_64ABIInfo::
1279GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1280                   QualType SourceTy, unsigned SourceOffset) const {
1281  // The only three choices we have are either double, <2 x float>, or float. We
1282  // pass as float if the last 4 bytes is just padding.  This happens for
1283  // structs that contain 3 floats.
1284  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1285                            SourceOffset*8+64, getContext()))
1286    return llvm::Type::getFloatTy(getVMContext());
1287
1288  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1289  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1290  // case.
1291  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1292      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData())) {
1293    // FIXME: <2 x float> doesn't pass as one XMM register yet.  Don't enable
1294    // this code until it does.
1295    //return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1296
1297  }
1298
1299  return llvm::Type::getDoubleTy(getVMContext());
1300}
1301
1302
1303/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1304/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1305/// about the high or low part of an up-to-16-byte struct.  This routine picks
1306/// the best LLVM IR type to represent this, which may be i64 or may be anything
1307/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1308/// etc).
1309///
1310/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1311/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1312/// the 8-byte value references.  PrefType may be null.
1313///
1314/// SourceTy is the source level type for the entire argument.  SourceOffset is
1315/// an offset into this that we're processing (which is always either 0 or 8).
1316///
1317const llvm::Type *X86_64ABIInfo::
1318GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1319                       QualType SourceTy, unsigned SourceOffset) const {
1320  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1321  // returning an 8-byte unit starting with it.  See if we can safely use it.
1322  if (IROffset == 0) {
1323    // Pointers and int64's always fill the 8-byte unit.
1324    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1325      return IRType;
1326
1327    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1328    // goodness in the source type is just tail padding.  This is allowed to
1329    // kick in for struct {double,int} on the int, but not on
1330    // struct{double,int,int} because we wouldn't return the second int.  We
1331    // have to do this analysis on the source type because we can't depend on
1332    // unions being lowered a specific way etc.
1333    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1334        IRType->isIntegerTy(32)) {
1335      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1336
1337      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1338                                SourceOffset*8+64, getContext()))
1339        return IRType;
1340    }
1341  }
1342
1343  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1344    // If this is a struct, recurse into the field at the specified offset.
1345    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1346    if (IROffset < SL->getSizeInBytes()) {
1347      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1348      IROffset -= SL->getElementOffset(FieldIdx);
1349
1350      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1351                                    SourceTy, SourceOffset);
1352    }
1353  }
1354
1355  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1356    const llvm::Type *EltTy = ATy->getElementType();
1357    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1358    unsigned EltOffset = IROffset/EltSize*EltSize;
1359    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1360                                  SourceOffset);
1361  }
1362
1363  // Okay, we don't have any better idea of what to pass, so we pass this in an
1364  // integer register that isn't too big to fit the rest of the struct.
1365  unsigned TySizeInBytes =
1366    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1367
1368  assert(TySizeInBytes != SourceOffset && "Empty field?");
1369
1370  // It is always safe to classify this as an integer type up to i64 that
1371  // isn't larger than the structure.
1372  return llvm::IntegerType::get(getVMContext(),
1373                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1374}
1375
1376ABIArgInfo X86_64ABIInfo::
1377classifyReturnType(QualType RetTy) const {
1378  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1379  // classification algorithm.
1380  X86_64ABIInfo::Class Lo, Hi;
1381  classify(RetTy, 0, Lo, Hi);
1382
1383  // Check some invariants.
1384  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1385  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1386
1387  const llvm::Type *ResType = 0;
1388  switch (Lo) {
1389  case NoClass:
1390    if (Hi == NoClass)
1391      return ABIArgInfo::getIgnore();
1392    // If the low part is just padding, it takes no register, leave ResType
1393    // null.
1394    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1395           "Unknown missing lo part");
1396    break;
1397
1398  case SSEUp:
1399  case X87Up:
1400    assert(0 && "Invalid classification for lo word.");
1401
1402    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1403    // hidden argument.
1404  case Memory:
1405    return getIndirectReturnResult(RetTy);
1406
1407    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1408    // available register of the sequence %rax, %rdx is used.
1409  case Integer:
1410    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1411                                     RetTy, 0);
1412
1413    // If we have a sign or zero extended integer, make sure to return Extend
1414    // so that the parameter gets the right LLVM IR attributes.
1415    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1416      // Treat an enum type as its underlying type.
1417      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1418        RetTy = EnumTy->getDecl()->getIntegerType();
1419
1420      if (RetTy->isIntegralOrEnumerationType() &&
1421          RetTy->isPromotableIntegerType())
1422        return ABIArgInfo::getExtend();
1423    }
1424    break;
1425
1426    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1427    // available SSE register of the sequence %xmm0, %xmm1 is used.
1428  case SSE:
1429    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1430    break;
1431
1432    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1433    // returned on the X87 stack in %st0 as 80-bit x87 number.
1434  case X87:
1435    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1436    break;
1437
1438    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1439    // part of the value is returned in %st0 and the imaginary part in
1440    // %st1.
1441  case ComplexX87:
1442    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1443    ResType = llvm::StructType::get(getVMContext(),
1444                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1445                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1446                                    NULL);
1447    break;
1448  }
1449
1450  switch (Hi) {
1451    // Memory was handled previously and X87 should
1452    // never occur as a hi class.
1453  case Memory:
1454  case X87:
1455    assert(0 && "Invalid classification for hi word.");
1456
1457  case ComplexX87: // Previously handled.
1458  case NoClass:
1459    break;
1460
1461  case Integer: {
1462    const llvm::Type *HiType =
1463      GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1464    if (Lo == NoClass)  // Return HiType at offset 8 in memory.
1465      return ABIArgInfo::getDirect(HiType, 8);
1466
1467    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1468    break;
1469  }
1470  case SSE: {
1471    const llvm::Type *HiType =
1472      GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1473    if (Lo == NoClass)  // Return HiType at offset 8 in memory.
1474      return ABIArgInfo::getDirect(HiType, 8);
1475
1476    ResType = llvm::StructType::get(getVMContext(), ResType, HiType,NULL);
1477    break;
1478  }
1479
1480    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1481    // is passed in the upper half of the last used SSE register.
1482    //
1483    // SSEUP should always be preceeded by SSE, just widen.
1484  case SSEUp:
1485    assert(Lo == SSE && "Unexpected SSEUp classification.");
1486    ResType = Get16ByteVectorType(RetTy);
1487    break;
1488
1489    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1490    // returned together with the previous X87 value in %st0.
1491  case X87Up:
1492    // If X87Up is preceeded by X87, we don't need to do
1493    // anything. However, in some cases with unions it may not be
1494    // preceeded by X87. In such situations we follow gcc and pass the
1495    // extra bits in an SSE reg.
1496    if (Lo != X87) {
1497      const llvm::Type *HiType =
1498        GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1499      if (Lo == NoClass)  // Return HiType at offset 8 in memory.
1500        return ABIArgInfo::getDirect(HiType, 8);
1501
1502      ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1503    }
1504    break;
1505  }
1506
1507  return ABIArgInfo::getDirect(ResType);
1508}
1509
1510ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1511                                               unsigned &neededSSE) const {
1512  X86_64ABIInfo::Class Lo, Hi;
1513  classify(Ty, 0, Lo, Hi);
1514
1515  // Check some invariants.
1516  // FIXME: Enforce these by construction.
1517  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1518  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1519
1520  neededInt = 0;
1521  neededSSE = 0;
1522  const llvm::Type *ResType = 0;
1523  switch (Lo) {
1524  case NoClass:
1525    if (Hi == NoClass)
1526      return ABIArgInfo::getIgnore();
1527    // If the low part is just padding, it takes no register, leave ResType
1528    // null.
1529    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1530           "Unknown missing lo part");
1531    break;
1532
1533    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1534    // on the stack.
1535  case Memory:
1536
1537    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1538    // COMPLEX_X87, it is passed in memory.
1539  case X87:
1540  case ComplexX87:
1541    return getIndirectResult(Ty);
1542
1543  case SSEUp:
1544  case X87Up:
1545    assert(0 && "Invalid classification for lo word.");
1546
1547    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1548    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1549    // and %r9 is used.
1550  case Integer:
1551    ++neededInt;
1552
1553    // Pick an 8-byte type based on the preferred type.
1554    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1555
1556    // If we have a sign or zero extended integer, make sure to return Extend
1557    // so that the parameter gets the right LLVM IR attributes.
1558    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1559      // Treat an enum type as its underlying type.
1560      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1561        Ty = EnumTy->getDecl()->getIntegerType();
1562
1563      if (Ty->isIntegralOrEnumerationType() &&
1564          Ty->isPromotableIntegerType())
1565        return ABIArgInfo::getExtend();
1566    }
1567
1568    break;
1569
1570    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1571    // available SSE register is used, the registers are taken in the
1572    // order from %xmm0 to %xmm7.
1573  case SSE:
1574    ++neededSSE;
1575    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1576    break;
1577  }
1578
1579  switch (Hi) {
1580    // Memory was handled previously, ComplexX87 and X87 should
1581    // never occur as hi classes, and X87Up must be preceed by X87,
1582    // which is passed in memory.
1583  case Memory:
1584  case X87:
1585  case ComplexX87:
1586    assert(0 && "Invalid classification for hi word.");
1587    break;
1588
1589  case NoClass: break;
1590
1591  case Integer: {
1592    ++neededInt;
1593    // Pick an 8-byte type based on the preferred type.
1594    const llvm::Type *HiType =
1595      GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1596
1597    if (Lo == NoClass)  // Pass HiType at offset 8 in memory.
1598      return ABIArgInfo::getDirect(HiType, 8);
1599
1600    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1601    break;
1602  }
1603
1604    // X87Up generally doesn't occur here (long double is passed in
1605    // memory), except in situations involving unions.
1606  case X87Up:
1607  case SSE: {
1608    const llvm::Type *HiType =
1609      GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1610
1611    if (Lo == NoClass)  // Pass HiType at offset 8 in memory.
1612      return ABIArgInfo::getDirect(HiType, 8);
1613
1614    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1615    ++neededSSE;
1616    break;
1617  }
1618
1619    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1620    // eightbyte is passed in the upper half of the last used SSE
1621    // register.  This only happens when 128-bit vectors are passed.
1622  case SSEUp:
1623    assert(Lo == SSE && "Unexpected SSEUp classification");
1624    ResType = Get16ByteVectorType(Ty);
1625    break;
1626  }
1627
1628  return ABIArgInfo::getDirect(ResType);
1629}
1630
1631void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1632
1633  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1634
1635  // Keep track of the number of assigned registers.
1636  unsigned freeIntRegs = 6, freeSSERegs = 8;
1637
1638  // If the return value is indirect, then the hidden argument is consuming one
1639  // integer register.
1640  if (FI.getReturnInfo().isIndirect())
1641    --freeIntRegs;
1642
1643  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1644  // get assigned (in left-to-right order) for passing as follows...
1645  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1646       it != ie; ++it) {
1647    unsigned neededInt, neededSSE;
1648    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1649
1650    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1651    // eightbyte of an argument, the whole argument is passed on the
1652    // stack. If registers have already been assigned for some
1653    // eightbytes of such an argument, the assignments get reverted.
1654    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1655      freeIntRegs -= neededInt;
1656      freeSSERegs -= neededSSE;
1657    } else {
1658      it->info = getIndirectResult(it->type);
1659    }
1660  }
1661}
1662
1663static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1664                                        QualType Ty,
1665                                        CodeGenFunction &CGF) {
1666  llvm::Value *overflow_arg_area_p =
1667    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1668  llvm::Value *overflow_arg_area =
1669    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1670
1671  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1672  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1673  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1674  if (Align > 8) {
1675    // Note that we follow the ABI & gcc here, even though the type
1676    // could in theory have an alignment greater than 16. This case
1677    // shouldn't ever matter in practice.
1678
1679    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1680    llvm::Value *Offset =
1681      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1682    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1683    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1684                                                    CGF.Int64Ty);
1685    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1686    overflow_arg_area =
1687      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1688                                 overflow_arg_area->getType(),
1689                                 "overflow_arg_area.align");
1690  }
1691
1692  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1693  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1694  llvm::Value *Res =
1695    CGF.Builder.CreateBitCast(overflow_arg_area,
1696                              llvm::PointerType::getUnqual(LTy));
1697
1698  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1699  // l->overflow_arg_area + sizeof(type).
1700  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1701  // an 8 byte boundary.
1702
1703  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1704  llvm::Value *Offset =
1705      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1706  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1707                                            "overflow_arg_area.next");
1708  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1709
1710  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1711  return Res;
1712}
1713
1714llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1715                                      CodeGenFunction &CGF) const {
1716  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1717
1718  // Assume that va_list type is correct; should be pointer to LLVM type:
1719  // struct {
1720  //   i32 gp_offset;
1721  //   i32 fp_offset;
1722  //   i8* overflow_arg_area;
1723  //   i8* reg_save_area;
1724  // };
1725  unsigned neededInt, neededSSE;
1726
1727  Ty = CGF.getContext().getCanonicalType(Ty);
1728  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1729
1730  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1731  // in the registers. If not go to step 7.
1732  if (!neededInt && !neededSSE)
1733    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1734
1735  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1736  // general purpose registers needed to pass type and num_fp to hold
1737  // the number of floating point registers needed.
1738
1739  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1740  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1741  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1742  //
1743  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1744  // register save space).
1745
1746  llvm::Value *InRegs = 0;
1747  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1748  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1749  if (neededInt) {
1750    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1751    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1752    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1753    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1754  }
1755
1756  if (neededSSE) {
1757    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1758    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1759    llvm::Value *FitsInFP =
1760      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1761    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1762    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1763  }
1764
1765  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1766  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1767  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1768  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1769
1770  // Emit code to load the value if it was passed in registers.
1771
1772  CGF.EmitBlock(InRegBlock);
1773
1774  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1775  // an offset of l->gp_offset and/or l->fp_offset. This may require
1776  // copying to a temporary location in case the parameter is passed
1777  // in different register classes or requires an alignment greater
1778  // than 8 for general purpose registers and 16 for XMM registers.
1779  //
1780  // FIXME: This really results in shameful code when we end up needing to
1781  // collect arguments from different places; often what should result in a
1782  // simple assembling of a structure from scattered addresses has many more
1783  // loads than necessary. Can we clean this up?
1784  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1785  llvm::Value *RegAddr =
1786    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1787                           "reg_save_area");
1788  if (neededInt && neededSSE) {
1789    // FIXME: Cleanup.
1790    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1791    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1792    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1793    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1794    const llvm::Type *TyLo = ST->getElementType(0);
1795    const llvm::Type *TyHi = ST->getElementType(1);
1796    assert((TyLo->isFloatingPointTy() ^ TyHi->isFloatingPointTy()) &&
1797           "Unexpected ABI info for mixed regs");
1798    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1799    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1800    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1801    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1802    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1803    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1804    llvm::Value *V =
1805      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1806    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1807    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1808    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1809
1810    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1811                                        llvm::PointerType::getUnqual(LTy));
1812  } else if (neededInt) {
1813    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1814    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1815                                        llvm::PointerType::getUnqual(LTy));
1816  } else if (neededSSE == 1) {
1817    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1818    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1819                                        llvm::PointerType::getUnqual(LTy));
1820  } else {
1821    assert(neededSSE == 2 && "Invalid number of needed registers!");
1822    // SSE registers are spaced 16 bytes apart in the register save
1823    // area, we need to collect the two eightbytes together.
1824    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1825    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
1826    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1827    const llvm::Type *DblPtrTy =
1828      llvm::PointerType::getUnqual(DoubleTy);
1829    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1830                                                       DoubleTy, NULL);
1831    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1832    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1833                                                         DblPtrTy));
1834    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1835    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1836                                                         DblPtrTy));
1837    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1838    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1839                                        llvm::PointerType::getUnqual(LTy));
1840  }
1841
1842  // AMD64-ABI 3.5.7p5: Step 5. Set:
1843  // l->gp_offset = l->gp_offset + num_gp * 8
1844  // l->fp_offset = l->fp_offset + num_fp * 16.
1845  if (neededInt) {
1846    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
1847    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1848                            gp_offset_p);
1849  }
1850  if (neededSSE) {
1851    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
1852    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1853                            fp_offset_p);
1854  }
1855  CGF.EmitBranch(ContBlock);
1856
1857  // Emit code to load the value if it was passed in memory.
1858
1859  CGF.EmitBlock(InMemBlock);
1860  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1861
1862  // Return the appropriate result.
1863
1864  CGF.EmitBlock(ContBlock);
1865  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1866                                                 "vaarg.addr");
1867  ResAddr->reserveOperandSpace(2);
1868  ResAddr->addIncoming(RegAddr, InRegBlock);
1869  ResAddr->addIncoming(MemAddr, InMemBlock);
1870  return ResAddr;
1871}
1872
1873
1874
1875//===----------------------------------------------------------------------===//
1876// PIC16 ABI Implementation
1877//===----------------------------------------------------------------------===//
1878
1879namespace {
1880
1881class PIC16ABIInfo : public ABIInfo {
1882public:
1883  PIC16ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
1884
1885  ABIArgInfo classifyReturnType(QualType RetTy) const;
1886
1887  ABIArgInfo classifyArgumentType(QualType RetTy) const;
1888
1889  virtual void computeInfo(CGFunctionInfo &FI) const {
1890    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1891    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1892         it != ie; ++it)
1893      it->info = classifyArgumentType(it->type);
1894  }
1895
1896  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1897                                 CodeGenFunction &CGF) const;
1898};
1899
1900class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1901public:
1902  PIC16TargetCodeGenInfo(CodeGenTypes &CGT)
1903    : TargetCodeGenInfo(new PIC16ABIInfo(CGT)) {}
1904};
1905
1906}
1907
1908ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy) const {
1909  if (RetTy->isVoidType()) {
1910    return ABIArgInfo::getIgnore();
1911  } else {
1912    return ABIArgInfo::getDirect();
1913  }
1914}
1915
1916ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty) const {
1917  return ABIArgInfo::getDirect();
1918}
1919
1920llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1921                                     CodeGenFunction &CGF) const {
1922  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1923  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1924
1925  CGBuilderTy &Builder = CGF.Builder;
1926  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1927                                                       "ap");
1928  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1929  llvm::Type *PTy =
1930    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1931  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1932
1933  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
1934
1935  llvm::Value *NextAddr =
1936    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
1937                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
1938                      "ap.next");
1939  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1940
1941  return AddrTyped;
1942}
1943
1944
1945// PowerPC-32
1946
1947namespace {
1948class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
1949public:
1950  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
1951
1952  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
1953    // This is recovered from gcc output.
1954    return 1; // r1 is the dedicated stack pointer
1955  }
1956
1957  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1958                               llvm::Value *Address) const;
1959};
1960
1961}
1962
1963bool
1964PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1965                                                llvm::Value *Address) const {
1966  // This is calculated from the LLVM and GCC tables and verified
1967  // against gcc output.  AFAIK all ABIs use the same encoding.
1968
1969  CodeGen::CGBuilderTy &Builder = CGF.Builder;
1970  llvm::LLVMContext &Context = CGF.getLLVMContext();
1971
1972  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
1973  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
1974  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
1975  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
1976
1977  // 0-31: r0-31, the 4-byte general-purpose registers
1978  AssignToArrayRange(Builder, Address, Four8, 0, 31);
1979
1980  // 32-63: fp0-31, the 8-byte floating-point registers
1981  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
1982
1983  // 64-76 are various 4-byte special-purpose registers:
1984  // 64: mq
1985  // 65: lr
1986  // 66: ctr
1987  // 67: ap
1988  // 68-75 cr0-7
1989  // 76: xer
1990  AssignToArrayRange(Builder, Address, Four8, 64, 76);
1991
1992  // 77-108: v0-31, the 16-byte vector registers
1993  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
1994
1995  // 109: vrsave
1996  // 110: vscr
1997  // 111: spe_acc
1998  // 112: spefscr
1999  // 113: sfp
2000  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2001
2002  return false;
2003}
2004
2005
2006//===----------------------------------------------------------------------===//
2007// ARM ABI Implementation
2008//===----------------------------------------------------------------------===//
2009
2010namespace {
2011
2012class ARMABIInfo : public ABIInfo {
2013public:
2014  enum ABIKind {
2015    APCS = 0,
2016    AAPCS = 1,
2017    AAPCS_VFP
2018  };
2019
2020private:
2021  ABIKind Kind;
2022
2023public:
2024  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2025
2026private:
2027  ABIKind getABIKind() const { return Kind; }
2028
2029  ABIArgInfo classifyReturnType(QualType RetTy) const;
2030  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2031
2032  virtual void computeInfo(CGFunctionInfo &FI) const;
2033
2034  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2035                                 CodeGenFunction &CGF) const;
2036};
2037
2038class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2039public:
2040  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2041    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2042
2043  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2044    return 13;
2045  }
2046};
2047
2048}
2049
2050void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2051  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2052  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2053       it != ie; ++it)
2054    it->info = classifyArgumentType(it->type);
2055
2056  const llvm::Triple &Triple(getContext().Target.getTriple());
2057  llvm::CallingConv::ID DefaultCC;
2058  if (Triple.getEnvironmentName() == "gnueabi" ||
2059      Triple.getEnvironmentName() == "eabi")
2060    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2061  else
2062    DefaultCC = llvm::CallingConv::ARM_APCS;
2063
2064  switch (getABIKind()) {
2065  case APCS:
2066    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2067      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2068    break;
2069
2070  case AAPCS:
2071    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2072      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2073    break;
2074
2075  case AAPCS_VFP:
2076    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2077    break;
2078  }
2079}
2080
2081ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2082  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
2083    // Treat an enum type as its underlying type.
2084    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2085      Ty = EnumTy->getDecl()->getIntegerType();
2086
2087    return (Ty->isPromotableIntegerType() ?
2088            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2089  }
2090
2091  // Ignore empty records.
2092  if (isEmptyRecord(getContext(), Ty, true))
2093    return ABIArgInfo::getIgnore();
2094
2095  // Structures with either a non-trivial destructor or a non-trivial
2096  // copy constructor are always indirect.
2097  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2098    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2099
2100  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2101  // backend doesn't support byval.
2102  // FIXME: This doesn't handle alignment > 64 bits.
2103  const llvm::Type* ElemTy;
2104  unsigned SizeRegs;
2105  if (getContext().getTypeAlign(Ty) > 32) {
2106    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2107    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2108  } else {
2109    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2110    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2111  }
2112  std::vector<const llvm::Type*> LLVMFields;
2113  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2114  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2115                                                true);
2116  return ABIArgInfo::getDirect(STy);
2117}
2118
2119static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2120                              llvm::LLVMContext &VMContext) {
2121  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2122  // is called integer-like if its size is less than or equal to one word, and
2123  // the offset of each of its addressable sub-fields is zero.
2124
2125  uint64_t Size = Context.getTypeSize(Ty);
2126
2127  // Check that the type fits in a word.
2128  if (Size > 32)
2129    return false;
2130
2131  // FIXME: Handle vector types!
2132  if (Ty->isVectorType())
2133    return false;
2134
2135  // Float types are never treated as "integer like".
2136  if (Ty->isRealFloatingType())
2137    return false;
2138
2139  // If this is a builtin or pointer type then it is ok.
2140  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2141    return true;
2142
2143  // Small complex integer types are "integer like".
2144  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2145    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2146
2147  // Single element and zero sized arrays should be allowed, by the definition
2148  // above, but they are not.
2149
2150  // Otherwise, it must be a record type.
2151  const RecordType *RT = Ty->getAs<RecordType>();
2152  if (!RT) return false;
2153
2154  // Ignore records with flexible arrays.
2155  const RecordDecl *RD = RT->getDecl();
2156  if (RD->hasFlexibleArrayMember())
2157    return false;
2158
2159  // Check that all sub-fields are at offset 0, and are themselves "integer
2160  // like".
2161  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2162
2163  bool HadField = false;
2164  unsigned idx = 0;
2165  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2166       i != e; ++i, ++idx) {
2167    const FieldDecl *FD = *i;
2168
2169    // Bit-fields are not addressable, we only need to verify they are "integer
2170    // like". We still have to disallow a subsequent non-bitfield, for example:
2171    //   struct { int : 0; int x }
2172    // is non-integer like according to gcc.
2173    if (FD->isBitField()) {
2174      if (!RD->isUnion())
2175        HadField = true;
2176
2177      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2178        return false;
2179
2180      continue;
2181    }
2182
2183    // Check if this field is at offset 0.
2184    if (Layout.getFieldOffset(idx) != 0)
2185      return false;
2186
2187    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2188      return false;
2189
2190    // Only allow at most one field in a structure. This doesn't match the
2191    // wording above, but follows gcc in situations with a field following an
2192    // empty structure.
2193    if (!RD->isUnion()) {
2194      if (HadField)
2195        return false;
2196
2197      HadField = true;
2198    }
2199  }
2200
2201  return true;
2202}
2203
2204ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2205  if (RetTy->isVoidType())
2206    return ABIArgInfo::getIgnore();
2207
2208  if (!CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2209    // Treat an enum type as its underlying type.
2210    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2211      RetTy = EnumTy->getDecl()->getIntegerType();
2212
2213    return (RetTy->isPromotableIntegerType() ?
2214            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2215  }
2216
2217  // Structures with either a non-trivial destructor or a non-trivial
2218  // copy constructor are always indirect.
2219  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2220    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2221
2222  // Are we following APCS?
2223  if (getABIKind() == APCS) {
2224    if (isEmptyRecord(getContext(), RetTy, false))
2225      return ABIArgInfo::getIgnore();
2226
2227    // Complex types are all returned as packed integers.
2228    //
2229    // FIXME: Consider using 2 x vector types if the back end handles them
2230    // correctly.
2231    if (RetTy->isAnyComplexType())
2232      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2233                                              getContext().getTypeSize(RetTy)));
2234
2235    // Integer like structures are returned in r0.
2236    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2237      // Return in the smallest viable integer type.
2238      uint64_t Size = getContext().getTypeSize(RetTy);
2239      if (Size <= 8)
2240        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2241      if (Size <= 16)
2242        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2243      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2244    }
2245
2246    // Otherwise return in memory.
2247    return ABIArgInfo::getIndirect(0);
2248  }
2249
2250  // Otherwise this is an AAPCS variant.
2251
2252  if (isEmptyRecord(getContext(), RetTy, true))
2253    return ABIArgInfo::getIgnore();
2254
2255  // Aggregates <= 4 bytes are returned in r0; other aggregates
2256  // are returned indirectly.
2257  uint64_t Size = getContext().getTypeSize(RetTy);
2258  if (Size <= 32) {
2259    // Return in the smallest viable integer type.
2260    if (Size <= 8)
2261      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2262    if (Size <= 16)
2263      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2264    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2265  }
2266
2267  return ABIArgInfo::getIndirect(0);
2268}
2269
2270llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2271                                   CodeGenFunction &CGF) const {
2272  // FIXME: Need to handle alignment
2273  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2274  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2275
2276  CGBuilderTy &Builder = CGF.Builder;
2277  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2278                                                       "ap");
2279  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2280  llvm::Type *PTy =
2281    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2282  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2283
2284  uint64_t Offset =
2285    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2286  llvm::Value *NextAddr =
2287    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2288                      "ap.next");
2289  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2290
2291  return AddrTyped;
2292}
2293
2294ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
2295  if (RetTy->isVoidType())
2296    return ABIArgInfo::getIgnore();
2297
2298  if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2299    return ABIArgInfo::getIndirect(0);
2300
2301  // Treat an enum type as its underlying type.
2302  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2303    RetTy = EnumTy->getDecl()->getIntegerType();
2304
2305  return (RetTy->isPromotableIntegerType() ?
2306          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2307}
2308
2309//===----------------------------------------------------------------------===//
2310// SystemZ ABI Implementation
2311//===----------------------------------------------------------------------===//
2312
2313namespace {
2314
2315class SystemZABIInfo : public ABIInfo {
2316public:
2317  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2318
2319  bool isPromotableIntegerType(QualType Ty) const;
2320
2321  ABIArgInfo classifyReturnType(QualType RetTy) const;
2322  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2323
2324  virtual void computeInfo(CGFunctionInfo &FI) const {
2325    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2326    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2327         it != ie; ++it)
2328      it->info = classifyArgumentType(it->type);
2329  }
2330
2331  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2332                                 CodeGenFunction &CGF) const;
2333};
2334
2335class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2336public:
2337  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2338    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2339};
2340
2341}
2342
2343bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2344  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2345  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2346    switch (BT->getKind()) {
2347    case BuiltinType::Bool:
2348    case BuiltinType::Char_S:
2349    case BuiltinType::Char_U:
2350    case BuiltinType::SChar:
2351    case BuiltinType::UChar:
2352    case BuiltinType::Short:
2353    case BuiltinType::UShort:
2354    case BuiltinType::Int:
2355    case BuiltinType::UInt:
2356      return true;
2357    default:
2358      return false;
2359    }
2360  return false;
2361}
2362
2363llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2364                                       CodeGenFunction &CGF) const {
2365  // FIXME: Implement
2366  return 0;
2367}
2368
2369
2370ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2371  if (RetTy->isVoidType())
2372    return ABIArgInfo::getIgnore();
2373  if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2374    return ABIArgInfo::getIndirect(0);
2375
2376  return (isPromotableIntegerType(RetTy) ?
2377          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2378}
2379
2380ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2381  if (CodeGenFunction::hasAggregateLLVMType(Ty))
2382    return ABIArgInfo::getIndirect(0);
2383
2384  return (isPromotableIntegerType(Ty) ?
2385          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2386}
2387
2388//===----------------------------------------------------------------------===//
2389// MSP430 ABI Implementation
2390//===----------------------------------------------------------------------===//
2391
2392namespace {
2393
2394class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2395public:
2396  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2397    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2398  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2399                           CodeGen::CodeGenModule &M) const;
2400};
2401
2402}
2403
2404void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2405                                                  llvm::GlobalValue *GV,
2406                                             CodeGen::CodeGenModule &M) const {
2407  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2408    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2409      // Handle 'interrupt' attribute:
2410      llvm::Function *F = cast<llvm::Function>(GV);
2411
2412      // Step 1: Set ISR calling convention.
2413      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2414
2415      // Step 2: Add attributes goodness.
2416      F->addFnAttr(llvm::Attribute::NoInline);
2417
2418      // Step 3: Emit ISR vector alias.
2419      unsigned Num = attr->getNumber() + 0xffe0;
2420      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2421                            "vector_" +
2422                            llvm::LowercaseString(llvm::utohexstr(Num)),
2423                            GV, &M.getModule());
2424    }
2425  }
2426}
2427
2428//===----------------------------------------------------------------------===//
2429// MIPS ABI Implementation.  This works for both little-endian and
2430// big-endian variants.
2431//===----------------------------------------------------------------------===//
2432
2433namespace {
2434class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2435public:
2436  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2437    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2438
2439  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2440    return 29;
2441  }
2442
2443  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2444                               llvm::Value *Address) const;
2445};
2446}
2447
2448bool
2449MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2450                                               llvm::Value *Address) const {
2451  // This information comes from gcc's implementation, which seems to
2452  // as canonical as it gets.
2453
2454  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2455  llvm::LLVMContext &Context = CGF.getLLVMContext();
2456
2457  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2458  // are aliased to pairs of single-precision FP registers.
2459  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2460  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2461
2462  // 0-31 are the general purpose registers, $0 - $31.
2463  // 32-63 are the floating-point registers, $f0 - $f31.
2464  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2465  // 66 is the (notional, I think) register for signal-handler return.
2466  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2467
2468  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2469  // They are one bit wide and ignored here.
2470
2471  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2472  // (coprocessor 1 is the FP unit)
2473  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2474  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2475  // 176-181 are the DSP accumulator registers.
2476  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2477
2478  return false;
2479}
2480
2481
2482const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2483  if (TheTargetCodeGenInfo)
2484    return *TheTargetCodeGenInfo;
2485
2486  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2487  // free it.
2488
2489  const llvm::Triple &Triple = getContext().Target.getTriple();
2490  switch (Triple.getArch()) {
2491  default:
2492    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2493
2494  case llvm::Triple::mips:
2495  case llvm::Triple::mipsel:
2496    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2497
2498  case llvm::Triple::arm:
2499  case llvm::Triple::thumb:
2500    // FIXME: We want to know the float calling convention as well.
2501    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2502      return *(TheTargetCodeGenInfo =
2503               new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2504
2505    return *(TheTargetCodeGenInfo =
2506             new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2507
2508  case llvm::Triple::pic16:
2509    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo(Types));
2510
2511  case llvm::Triple::ppc:
2512    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2513
2514  case llvm::Triple::systemz:
2515    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2516
2517  case llvm::Triple::msp430:
2518    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2519
2520  case llvm::Triple::x86:
2521    switch (Triple.getOS()) {
2522    case llvm::Triple::Darwin:
2523      return *(TheTargetCodeGenInfo =
2524               new X86_32TargetCodeGenInfo(Types, true, true));
2525    case llvm::Triple::Cygwin:
2526    case llvm::Triple::MinGW32:
2527    case llvm::Triple::MinGW64:
2528    case llvm::Triple::AuroraUX:
2529    case llvm::Triple::DragonFly:
2530    case llvm::Triple::FreeBSD:
2531    case llvm::Triple::OpenBSD:
2532      return *(TheTargetCodeGenInfo =
2533               new X86_32TargetCodeGenInfo(Types, false, true));
2534
2535    default:
2536      return *(TheTargetCodeGenInfo =
2537               new X86_32TargetCodeGenInfo(Types, false, false));
2538    }
2539
2540  case llvm::Triple::x86_64:
2541    return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2542  }
2543}
2544