TargetInfo.cpp revision 3db4dde12de84269c8f803f9dfca37a2d14f9898
1//===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes wrap the information about a call or function
11// definition used to handle ABI compliancy.
12//
13//===----------------------------------------------------------------------===//
14
15#include "TargetInfo.h"
16#include "ABIInfo.h"
17#include "CodeGenFunction.h"
18#include "clang/AST/RecordLayout.h"
19#include "llvm/Type.h"
20#include "llvm/Target/TargetData.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/Triple.h"
23#include "llvm/Support/raw_ostream.h"
24using namespace clang;
25using namespace CodeGen;
26
27static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
28                               llvm::Value *Array,
29                               llvm::Value *Value,
30                               unsigned FirstIndex,
31                               unsigned LastIndex) {
32  // Alternatively, we could emit this as a loop in the source.
33  for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
34    llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
35    Builder.CreateStore(Value, Cell);
36  }
37}
38
39static bool isAggregateTypeForABI(QualType T) {
40  return CodeGenFunction::hasAggregateLLVMType(T) ||
41         T->isMemberFunctionPointerType();
42}
43
44ABIInfo::~ABIInfo() {}
45
46ASTContext &ABIInfo::getContext() const {
47  return CGT.getContext();
48}
49
50llvm::LLVMContext &ABIInfo::getVMContext() const {
51  return CGT.getLLVMContext();
52}
53
54const llvm::TargetData &ABIInfo::getTargetData() const {
55  return CGT.getTargetData();
56}
57
58
59void ABIArgInfo::dump() const {
60  llvm::raw_ostream &OS = llvm::errs();
61  OS << "(ABIArgInfo Kind=";
62  switch (TheKind) {
63  case Direct:
64    OS << "Direct Type=";
65    if (const llvm::Type *Ty = getCoerceToType())
66      Ty->print(OS);
67    else
68      OS << "null";
69    break;
70  case Extend:
71    OS << "Extend";
72    break;
73  case Ignore:
74    OS << "Ignore";
75    break;
76  case Indirect:
77    OS << "Indirect Align=" << getIndirectAlign()
78       << " Byal=" << getIndirectByVal();
79    break;
80  case Expand:
81    OS << "Expand";
82    break;
83  }
84  OS << ")\n";
85}
86
87TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
88
89static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
90
91/// isEmptyField - Return true iff a the field is "empty", that is it
92/// is an unnamed bit-field or an (array of) empty record(s).
93static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
94                         bool AllowArrays) {
95  if (FD->isUnnamedBitfield())
96    return true;
97
98  QualType FT = FD->getType();
99
100    // Constant arrays of empty records count as empty, strip them off.
101  if (AllowArrays)
102    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
103      FT = AT->getElementType();
104
105  const RecordType *RT = FT->getAs<RecordType>();
106  if (!RT)
107    return false;
108
109  // C++ record fields are never empty, at least in the Itanium ABI.
110  //
111  // FIXME: We should use a predicate for whether this behavior is true in the
112  // current ABI.
113  if (isa<CXXRecordDecl>(RT->getDecl()))
114    return false;
115
116  return isEmptyRecord(Context, FT, AllowArrays);
117}
118
119/// isEmptyRecord - Return true iff a structure contains only empty
120/// fields. Note that a structure with a flexible array member is not
121/// considered empty.
122static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
123  const RecordType *RT = T->getAs<RecordType>();
124  if (!RT)
125    return 0;
126  const RecordDecl *RD = RT->getDecl();
127  if (RD->hasFlexibleArrayMember())
128    return false;
129
130  // If this is a C++ record, check the bases first.
131  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
132    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
133           e = CXXRD->bases_end(); i != e; ++i)
134      if (!isEmptyRecord(Context, i->getType(), true))
135        return false;
136
137  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
138         i != e; ++i)
139    if (!isEmptyField(Context, *i, AllowArrays))
140      return false;
141  return true;
142}
143
144/// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
145/// a non-trivial destructor or a non-trivial copy constructor.
146static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
147  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
148  if (!RD)
149    return false;
150
151  return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
152}
153
154/// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
155/// a record type with either a non-trivial destructor or a non-trivial copy
156/// constructor.
157static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
158  const RecordType *RT = T->getAs<RecordType>();
159  if (!RT)
160    return false;
161
162  return hasNonTrivialDestructorOrCopyConstructor(RT);
163}
164
165/// isSingleElementStruct - Determine if a structure is a "single
166/// element struct", i.e. it has exactly one non-empty field or
167/// exactly one field which is itself a single element
168/// struct. Structures with flexible array members are never
169/// considered single element structs.
170///
171/// \return The field declaration for the single non-empty field, if
172/// it exists.
173static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
174  const RecordType *RT = T->getAsStructureType();
175  if (!RT)
176    return 0;
177
178  const RecordDecl *RD = RT->getDecl();
179  if (RD->hasFlexibleArrayMember())
180    return 0;
181
182  const Type *Found = 0;
183
184  // If this is a C++ record, check the bases first.
185  if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
186    for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
187           e = CXXRD->bases_end(); i != e; ++i) {
188      // Ignore empty records.
189      if (isEmptyRecord(Context, i->getType(), true))
190        continue;
191
192      // If we already found an element then this isn't a single-element struct.
193      if (Found)
194        return 0;
195
196      // If this is non-empty and not a single element struct, the composite
197      // cannot be a single element struct.
198      Found = isSingleElementStruct(i->getType(), Context);
199      if (!Found)
200        return 0;
201    }
202  }
203
204  // Check for single element.
205  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
206         i != e; ++i) {
207    const FieldDecl *FD = *i;
208    QualType FT = FD->getType();
209
210    // Ignore empty fields.
211    if (isEmptyField(Context, FD, true))
212      continue;
213
214    // If we already found an element then this isn't a single-element
215    // struct.
216    if (Found)
217      return 0;
218
219    // Treat single element arrays as the element.
220    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
221      if (AT->getSize().getZExtValue() != 1)
222        break;
223      FT = AT->getElementType();
224    }
225
226    if (!isAggregateTypeForABI(FT)) {
227      Found = FT.getTypePtr();
228    } else {
229      Found = isSingleElementStruct(FT, Context);
230      if (!Found)
231        return 0;
232    }
233  }
234
235  return Found;
236}
237
238static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
239  if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
240      !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
241      !Ty->isBlockPointerType())
242    return false;
243
244  uint64_t Size = Context.getTypeSize(Ty);
245  return Size == 32 || Size == 64;
246}
247
248/// canExpandIndirectArgument - Test whether an argument type which is to be
249/// passed indirectly (on the stack) would have the equivalent layout if it was
250/// expanded into separate arguments. If so, we prefer to do the latter to avoid
251/// inhibiting optimizations.
252///
253// FIXME: This predicate is missing many cases, currently it just follows
254// llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
255// should probably make this smarter, or better yet make the LLVM backend
256// capable of handling it.
257static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
258  // We can only expand structure types.
259  const RecordType *RT = Ty->getAs<RecordType>();
260  if (!RT)
261    return false;
262
263  // We can only expand (C) structures.
264  //
265  // FIXME: This needs to be generalized to handle classes as well.
266  const RecordDecl *RD = RT->getDecl();
267  if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
268    return false;
269
270  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
271         i != e; ++i) {
272    const FieldDecl *FD = *i;
273
274    if (!is32Or64BitBasicType(FD->getType(), Context))
275      return false;
276
277    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
278    // how to expand them yet, and the predicate for telling if a bitfield still
279    // counts as "basic" is more complicated than what we were doing previously.
280    if (FD->isBitField())
281      return false;
282  }
283
284  return true;
285}
286
287namespace {
288/// DefaultABIInfo - The default implementation for ABI specific
289/// details. This implementation provides information which results in
290/// self-consistent and sensible LLVM IR generation, but does not
291/// conform to any particular ABI.
292class DefaultABIInfo : public ABIInfo {
293public:
294  DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
295
296  ABIArgInfo classifyReturnType(QualType RetTy) const;
297  ABIArgInfo classifyArgumentType(QualType RetTy) const;
298
299  virtual void computeInfo(CGFunctionInfo &FI) const {
300    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
301    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
302         it != ie; ++it)
303      it->info = classifyArgumentType(it->type);
304  }
305
306  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
307                                 CodeGenFunction &CGF) const;
308};
309
310class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
311public:
312  DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
313    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
314};
315
316llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
317                                       CodeGenFunction &CGF) const {
318  return 0;
319}
320
321ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
322  if (isAggregateTypeForABI(Ty))
323    return ABIArgInfo::getIndirect(0);
324
325  // Treat an enum type as its underlying type.
326  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
327    Ty = EnumTy->getDecl()->getIntegerType();
328
329  return (Ty->isPromotableIntegerType() ?
330          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
331}
332
333//===----------------------------------------------------------------------===//
334// X86-32 ABI Implementation
335//===----------------------------------------------------------------------===//
336
337/// X86_32ABIInfo - The X86-32 ABI information.
338class X86_32ABIInfo : public ABIInfo {
339  bool IsDarwinVectorABI;
340  bool IsSmallStructInRegABI;
341
342  static bool isRegisterSize(unsigned Size) {
343    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
344  }
345
346  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
347
348  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
349  /// such that the argument will be passed in memory.
350  ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
351
352public:
353
354  ABIArgInfo classifyReturnType(QualType RetTy) const;
355  ABIArgInfo classifyArgumentType(QualType RetTy) const;
356
357  virtual void computeInfo(CGFunctionInfo &FI) const {
358    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
359    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
360         it != ie; ++it)
361      it->info = classifyArgumentType(it->type);
362  }
363
364  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
365                                 CodeGenFunction &CGF) const;
366
367  X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
368    : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p) {}
369};
370
371class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
372public:
373  X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p)
374    :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p)) {}
375
376  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
377                           CodeGen::CodeGenModule &CGM) const;
378
379  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
380    // Darwin uses different dwarf register numbers for EH.
381    if (CGM.isTargetDarwin()) return 5;
382
383    return 4;
384  }
385
386  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
387                               llvm::Value *Address) const;
388};
389
390}
391
392/// shouldReturnTypeInRegister - Determine if the given type should be
393/// passed in a register (for the Darwin ABI).
394bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
395                                               ASTContext &Context) {
396  uint64_t Size = Context.getTypeSize(Ty);
397
398  // Type must be register sized.
399  if (!isRegisterSize(Size))
400    return false;
401
402  if (Ty->isVectorType()) {
403    // 64- and 128- bit vectors inside structures are not returned in
404    // registers.
405    if (Size == 64 || Size == 128)
406      return false;
407
408    return true;
409  }
410
411  // If this is a builtin, pointer, enum, complex type, member pointer, or
412  // member function pointer it is ok.
413  if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
414      Ty->isAnyComplexType() || Ty->isEnumeralType() ||
415      Ty->isBlockPointerType() || Ty->isMemberPointerType())
416    return true;
417
418  // Arrays are treated like records.
419  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
420    return shouldReturnTypeInRegister(AT->getElementType(), Context);
421
422  // Otherwise, it must be a record type.
423  const RecordType *RT = Ty->getAs<RecordType>();
424  if (!RT) return false;
425
426  // FIXME: Traverse bases here too.
427
428  // Structure types are passed in register if all fields would be
429  // passed in a register.
430  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
431         e = RT->getDecl()->field_end(); i != e; ++i) {
432    const FieldDecl *FD = *i;
433
434    // Empty fields are ignored.
435    if (isEmptyField(Context, FD, true))
436      continue;
437
438    // Check fields recursively.
439    if (!shouldReturnTypeInRegister(FD->getType(), Context))
440      return false;
441  }
442
443  return true;
444}
445
446ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
447  if (RetTy->isVoidType())
448    return ABIArgInfo::getIgnore();
449
450  if (const VectorType *VT = RetTy->getAs<VectorType>()) {
451    // On Darwin, some vectors are returned in registers.
452    if (IsDarwinVectorABI) {
453      uint64_t Size = getContext().getTypeSize(RetTy);
454
455      // 128-bit vectors are a special case; they are returned in
456      // registers and we need to make sure to pick a type the LLVM
457      // backend will like.
458      if (Size == 128)
459        return ABIArgInfo::getDirect(llvm::VectorType::get(
460                  llvm::Type::getInt64Ty(getVMContext()), 2));
461
462      // Always return in register if it fits in a general purpose
463      // register, or if it is 64 bits and has a single element.
464      if ((Size == 8 || Size == 16 || Size == 32) ||
465          (Size == 64 && VT->getNumElements() == 1))
466        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
467                                                            Size));
468
469      return ABIArgInfo::getIndirect(0);
470    }
471
472    return ABIArgInfo::getDirect();
473  }
474
475  if (isAggregateTypeForABI(RetTy)) {
476    if (const RecordType *RT = RetTy->getAs<RecordType>()) {
477      // Structures with either a non-trivial destructor or a non-trivial
478      // copy constructor are always indirect.
479      if (hasNonTrivialDestructorOrCopyConstructor(RT))
480        return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
481
482      // Structures with flexible arrays are always indirect.
483      if (RT->getDecl()->hasFlexibleArrayMember())
484        return ABIArgInfo::getIndirect(0);
485    }
486
487    // If specified, structs and unions are always indirect.
488    if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
489      return ABIArgInfo::getIndirect(0);
490
491    // Classify "single element" structs as their element type.
492    if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) {
493      if (const BuiltinType *BT = SeltTy->getAs<BuiltinType>()) {
494        if (BT->isIntegerType()) {
495          // We need to use the size of the structure, padding
496          // bit-fields can adjust that to be larger than the single
497          // element type.
498          uint64_t Size = getContext().getTypeSize(RetTy);
499          return ABIArgInfo::getDirect(
500            llvm::IntegerType::get(getVMContext(), (unsigned)Size));
501        }
502
503        if (BT->getKind() == BuiltinType::Float) {
504          assert(getContext().getTypeSize(RetTy) ==
505                 getContext().getTypeSize(SeltTy) &&
506                 "Unexpect single element structure size!");
507          return ABIArgInfo::getDirect(llvm::Type::getFloatTy(getVMContext()));
508        }
509
510        if (BT->getKind() == BuiltinType::Double) {
511          assert(getContext().getTypeSize(RetTy) ==
512                 getContext().getTypeSize(SeltTy) &&
513                 "Unexpect single element structure size!");
514          return ABIArgInfo::getDirect(llvm::Type::getDoubleTy(getVMContext()));
515        }
516      } else if (SeltTy->isPointerType()) {
517        // FIXME: It would be really nice if this could come out as the proper
518        // pointer type.
519        const llvm::Type *PtrTy = llvm::Type::getInt8PtrTy(getVMContext());
520        return ABIArgInfo::getDirect(PtrTy);
521      } else if (SeltTy->isVectorType()) {
522        // 64- and 128-bit vectors are never returned in a
523        // register when inside a structure.
524        uint64_t Size = getContext().getTypeSize(RetTy);
525        if (Size == 64 || Size == 128)
526          return ABIArgInfo::getIndirect(0);
527
528        return classifyReturnType(QualType(SeltTy, 0));
529      }
530    }
531
532    // Small structures which are register sized are generally returned
533    // in a register.
534    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
535      uint64_t Size = getContext().getTypeSize(RetTy);
536      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
537    }
538
539    return ABIArgInfo::getIndirect(0);
540  }
541
542  // Treat an enum type as its underlying type.
543  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
544    RetTy = EnumTy->getDecl()->getIntegerType();
545
546  return (RetTy->isPromotableIntegerType() ?
547          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
548}
549
550ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
551  if (!ByVal)
552    return ABIArgInfo::getIndirect(0, false);
553
554  // Compute the byval alignment. We trust the back-end to honor the
555  // minimum ABI alignment for byval, to make cleaner IR.
556  const unsigned MinABIAlign = 4;
557  unsigned Align = getContext().getTypeAlign(Ty) / 8;
558  if (Align > MinABIAlign)
559    return ABIArgInfo::getIndirect(Align);
560  return ABIArgInfo::getIndirect(0);
561}
562
563ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
564  // FIXME: Set alignment on indirect arguments.
565  if (isAggregateTypeForABI(Ty)) {
566    // Structures with flexible arrays are always indirect.
567    if (const RecordType *RT = Ty->getAs<RecordType>()) {
568      // Structures with either a non-trivial destructor or a non-trivial
569      // copy constructor are always indirect.
570      if (hasNonTrivialDestructorOrCopyConstructor(RT))
571        return getIndirectResult(Ty, /*ByVal=*/false);
572
573      if (RT->getDecl()->hasFlexibleArrayMember())
574        return getIndirectResult(Ty);
575    }
576
577    // Ignore empty structs.
578    if (Ty->isStructureType() && getContext().getTypeSize(Ty) == 0)
579      return ABIArgInfo::getIgnore();
580
581    // Expand small (<= 128-bit) record types when we know that the stack layout
582    // of those arguments will match the struct. This is important because the
583    // LLVM backend isn't smart enough to remove byval, which inhibits many
584    // optimizations.
585    if (getContext().getTypeSize(Ty) <= 4*32 &&
586        canExpandIndirectArgument(Ty, getContext()))
587      return ABIArgInfo::getExpand();
588
589    return getIndirectResult(Ty);
590  }
591
592  if (const VectorType *VT = Ty->getAs<VectorType>()) {
593    // On Darwin, some vectors are passed in memory, we handle this by passing
594    // it as an i8/i16/i32/i64.
595    if (IsDarwinVectorABI) {
596      uint64_t Size = getContext().getTypeSize(Ty);
597      if ((Size == 8 || Size == 16 || Size == 32) ||
598          (Size == 64 && VT->getNumElements() == 1))
599        return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
600                                                            Size));
601    }
602
603    return ABIArgInfo::getDirect();
604  }
605
606
607  if (const EnumType *EnumTy = Ty->getAs<EnumType>())
608    Ty = EnumTy->getDecl()->getIntegerType();
609
610  return (Ty->isPromotableIntegerType() ?
611          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
612}
613
614llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
615                                      CodeGenFunction &CGF) const {
616  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
617  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
618
619  CGBuilderTy &Builder = CGF.Builder;
620  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
621                                                       "ap");
622  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
623  llvm::Type *PTy =
624    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
625  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
626
627  uint64_t Offset =
628    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
629  llvm::Value *NextAddr =
630    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
631                      "ap.next");
632  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
633
634  return AddrTyped;
635}
636
637void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
638                                                  llvm::GlobalValue *GV,
639                                            CodeGen::CodeGenModule &CGM) const {
640  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
641    if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
642      // Get the LLVM function.
643      llvm::Function *Fn = cast<llvm::Function>(GV);
644
645      // Now add the 'alignstack' attribute with a value of 16.
646      Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
647    }
648  }
649}
650
651bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
652                                               CodeGen::CodeGenFunction &CGF,
653                                               llvm::Value *Address) const {
654  CodeGen::CGBuilderTy &Builder = CGF.Builder;
655  llvm::LLVMContext &Context = CGF.getLLVMContext();
656
657  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
658  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
659
660  // 0-7 are the eight integer registers;  the order is different
661  //   on Darwin (for EH), but the range is the same.
662  // 8 is %eip.
663  AssignToArrayRange(Builder, Address, Four8, 0, 8);
664
665  if (CGF.CGM.isTargetDarwin()) {
666    // 12-16 are st(0..4).  Not sure why we stop at 4.
667    // These have size 16, which is sizeof(long double) on
668    // platforms with 8-byte alignment for that type.
669    llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
670    AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
671
672  } else {
673    // 9 is %eflags, which doesn't get a size on Darwin for some
674    // reason.
675    Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
676
677    // 11-16 are st(0..5).  Not sure why we stop at 5.
678    // These have size 12, which is sizeof(long double) on
679    // platforms with 4-byte alignment for that type.
680    llvm::Value *Twelve8 = llvm::ConstantInt::get(i8, 12);
681    AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
682  }
683
684  return false;
685}
686
687//===----------------------------------------------------------------------===//
688// X86-64 ABI Implementation
689//===----------------------------------------------------------------------===//
690
691
692namespace {
693/// X86_64ABIInfo - The X86_64 ABI information.
694class X86_64ABIInfo : public ABIInfo {
695  enum Class {
696    Integer = 0,
697    SSE,
698    SSEUp,
699    X87,
700    X87Up,
701    ComplexX87,
702    NoClass,
703    Memory
704  };
705
706  /// merge - Implement the X86_64 ABI merging algorithm.
707  ///
708  /// Merge an accumulating classification \arg Accum with a field
709  /// classification \arg Field.
710  ///
711  /// \param Accum - The accumulating classification. This should
712  /// always be either NoClass or the result of a previous merge
713  /// call. In addition, this should never be Memory (the caller
714  /// should just return Memory for the aggregate).
715  static Class merge(Class Accum, Class Field);
716
717  /// classify - Determine the x86_64 register classes in which the
718  /// given type T should be passed.
719  ///
720  /// \param Lo - The classification for the parts of the type
721  /// residing in the low word of the containing object.
722  ///
723  /// \param Hi - The classification for the parts of the type
724  /// residing in the high word of the containing object.
725  ///
726  /// \param OffsetBase - The bit offset of this type in the
727  /// containing object.  Some parameters are classified different
728  /// depending on whether they straddle an eightbyte boundary.
729  ///
730  /// If a word is unused its result will be NoClass; if a type should
731  /// be passed in Memory then at least the classification of \arg Lo
732  /// will be Memory.
733  ///
734  /// The \arg Lo class will be NoClass iff the argument is ignored.
735  ///
736  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
737  /// also be ComplexX87.
738  void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
739
740  const llvm::Type *Get16ByteVectorType(QualType Ty) const;
741  const llvm::Type *GetSSETypeAtOffset(const llvm::Type *IRType,
742                                       unsigned IROffset, QualType SourceTy,
743                                       unsigned SourceOffset) const;
744  const llvm::Type *GetINTEGERTypeAtOffset(const llvm::Type *IRType,
745                                           unsigned IROffset, QualType SourceTy,
746                                           unsigned SourceOffset) const;
747
748  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
749  /// such that the argument will be returned in memory.
750  ABIArgInfo getIndirectReturnResult(QualType Ty) const;
751
752  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
753  /// such that the argument will be passed in memory.
754  ABIArgInfo getIndirectResult(QualType Ty) const;
755
756  ABIArgInfo classifyReturnType(QualType RetTy) const;
757
758  ABIArgInfo classifyArgumentType(QualType Ty, unsigned &neededInt,
759                                  unsigned &neededSSE) const;
760
761public:
762  X86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
763
764  virtual void computeInfo(CGFunctionInfo &FI) const;
765
766  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
767                                 CodeGenFunction &CGF) const;
768};
769
770/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
771class WinX86_64ABIInfo : public X86_64ABIInfo {
772public:
773  WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : X86_64ABIInfo(CGT) {}
774
775  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
776                                 CodeGenFunction &CGF) const;
777};
778
779class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
780public:
781  X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
782    : TargetCodeGenInfo(new X86_64ABIInfo(CGT)) {}
783
784  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
785    return 7;
786  }
787
788  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
789                               llvm::Value *Address) const {
790    CodeGen::CGBuilderTy &Builder = CGF.Builder;
791    llvm::LLVMContext &Context = CGF.getLLVMContext();
792
793    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
794    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
795
796    // 0-15 are the 16 integer registers.
797    // 16 is %rip.
798    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
799
800    return false;
801  }
802};
803
804class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
805public:
806  WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
807    : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
808
809  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
810    return 7;
811  }
812
813  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
814                               llvm::Value *Address) const {
815    CodeGen::CGBuilderTy &Builder = CGF.Builder;
816    llvm::LLVMContext &Context = CGF.getLLVMContext();
817
818    const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
819    llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
820
821    // 0-15 are the 16 integer registers.
822    // 16 is %rip.
823    AssignToArrayRange(Builder, Address, Eight8, 0, 16);
824
825    return false;
826  }
827};
828
829}
830
831X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
832  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
833  // classified recursively so that always two fields are
834  // considered. The resulting class is calculated according to
835  // the classes of the fields in the eightbyte:
836  //
837  // (a) If both classes are equal, this is the resulting class.
838  //
839  // (b) If one of the classes is NO_CLASS, the resulting class is
840  // the other class.
841  //
842  // (c) If one of the classes is MEMORY, the result is the MEMORY
843  // class.
844  //
845  // (d) If one of the classes is INTEGER, the result is the
846  // INTEGER.
847  //
848  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
849  // MEMORY is used as class.
850  //
851  // (f) Otherwise class SSE is used.
852
853  // Accum should never be memory (we should have returned) or
854  // ComplexX87 (because this cannot be passed in a structure).
855  assert((Accum != Memory && Accum != ComplexX87) &&
856         "Invalid accumulated classification during merge.");
857  if (Accum == Field || Field == NoClass)
858    return Accum;
859  if (Field == Memory)
860    return Memory;
861  if (Accum == NoClass)
862    return Field;
863  if (Accum == Integer || Field == Integer)
864    return Integer;
865  if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
866      Accum == X87 || Accum == X87Up)
867    return Memory;
868  return SSE;
869}
870
871void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
872                             Class &Lo, Class &Hi) const {
873  // FIXME: This code can be simplified by introducing a simple value class for
874  // Class pairs with appropriate constructor methods for the various
875  // situations.
876
877  // FIXME: Some of the split computations are wrong; unaligned vectors
878  // shouldn't be passed in registers for example, so there is no chance they
879  // can straddle an eightbyte. Verify & simplify.
880
881  Lo = Hi = NoClass;
882
883  Class &Current = OffsetBase < 64 ? Lo : Hi;
884  Current = Memory;
885
886  if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
887    BuiltinType::Kind k = BT->getKind();
888
889    if (k == BuiltinType::Void) {
890      Current = NoClass;
891    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
892      Lo = Integer;
893      Hi = Integer;
894    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
895      Current = Integer;
896    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
897      Current = SSE;
898    } else if (k == BuiltinType::LongDouble) {
899      Lo = X87;
900      Hi = X87Up;
901    }
902    // FIXME: _Decimal32 and _Decimal64 are SSE.
903    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
904    return;
905  }
906
907  if (const EnumType *ET = Ty->getAs<EnumType>()) {
908    // Classify the underlying integer type.
909    classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
910    return;
911  }
912
913  if (Ty->hasPointerRepresentation()) {
914    Current = Integer;
915    return;
916  }
917
918  if (Ty->isMemberPointerType()) {
919    if (Ty->isMemberFunctionPointerType())
920      Lo = Hi = Integer;
921    else
922      Current = Integer;
923    return;
924  }
925
926  if (const VectorType *VT = Ty->getAs<VectorType>()) {
927    uint64_t Size = getContext().getTypeSize(VT);
928    if (Size == 32) {
929      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
930      // float> as integer.
931      Current = Integer;
932
933      // If this type crosses an eightbyte boundary, it should be
934      // split.
935      uint64_t EB_Real = (OffsetBase) / 64;
936      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
937      if (EB_Real != EB_Imag)
938        Hi = Lo;
939    } else if (Size == 64) {
940      // gcc passes <1 x double> in memory. :(
941      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
942        return;
943
944      // gcc passes <1 x long long> as INTEGER.
945      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
946          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
947          VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
948          VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
949        Current = Integer;
950      else
951        Current = SSE;
952
953      // If this type crosses an eightbyte boundary, it should be
954      // split.
955      if (OffsetBase && OffsetBase != 64)
956        Hi = Lo;
957    } else if (Size == 128) {
958      Lo = SSE;
959      Hi = SSEUp;
960    }
961    return;
962  }
963
964  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
965    QualType ET = getContext().getCanonicalType(CT->getElementType());
966
967    uint64_t Size = getContext().getTypeSize(Ty);
968    if (ET->isIntegralOrEnumerationType()) {
969      if (Size <= 64)
970        Current = Integer;
971      else if (Size <= 128)
972        Lo = Hi = Integer;
973    } else if (ET == getContext().FloatTy)
974      Current = SSE;
975    else if (ET == getContext().DoubleTy)
976      Lo = Hi = SSE;
977    else if (ET == getContext().LongDoubleTy)
978      Current = ComplexX87;
979
980    // If this complex type crosses an eightbyte boundary then it
981    // should be split.
982    uint64_t EB_Real = (OffsetBase) / 64;
983    uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
984    if (Hi == NoClass && EB_Real != EB_Imag)
985      Hi = Lo;
986
987    return;
988  }
989
990  if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
991    // Arrays are treated like structures.
992
993    uint64_t Size = getContext().getTypeSize(Ty);
994
995    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
996    // than two eightbytes, ..., it has class MEMORY.
997    if (Size > 128)
998      return;
999
1000    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1001    // fields, it has class MEMORY.
1002    //
1003    // Only need to check alignment of array base.
1004    if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1005      return;
1006
1007    // Otherwise implement simplified merge. We could be smarter about
1008    // this, but it isn't worth it and would be harder to verify.
1009    Current = NoClass;
1010    uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1011    uint64_t ArraySize = AT->getSize().getZExtValue();
1012    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1013      Class FieldLo, FieldHi;
1014      classify(AT->getElementType(), Offset, FieldLo, FieldHi);
1015      Lo = merge(Lo, FieldLo);
1016      Hi = merge(Hi, FieldHi);
1017      if (Lo == Memory || Hi == Memory)
1018        break;
1019    }
1020
1021    // Do post merger cleanup (see below). Only case we worry about is Memory.
1022    if (Hi == Memory)
1023      Lo = Memory;
1024    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1025    return;
1026  }
1027
1028  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1029    uint64_t Size = getContext().getTypeSize(Ty);
1030
1031    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1032    // than two eightbytes, ..., it has class MEMORY.
1033    if (Size > 128)
1034      return;
1035
1036    // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1037    // copy constructor or a non-trivial destructor, it is passed by invisible
1038    // reference.
1039    if (hasNonTrivialDestructorOrCopyConstructor(RT))
1040      return;
1041
1042    const RecordDecl *RD = RT->getDecl();
1043
1044    // Assume variable sized types are passed in memory.
1045    if (RD->hasFlexibleArrayMember())
1046      return;
1047
1048    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1049
1050    // Reset Lo class, this will be recomputed.
1051    Current = NoClass;
1052
1053    // If this is a C++ record, classify the bases first.
1054    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1055      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1056             e = CXXRD->bases_end(); i != e; ++i) {
1057        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1058               "Unexpected base class!");
1059        const CXXRecordDecl *Base =
1060          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1061
1062        // Classify this field.
1063        //
1064        // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
1065        // single eightbyte, each is classified separately. Each eightbyte gets
1066        // initialized to class NO_CLASS.
1067        Class FieldLo, FieldHi;
1068        uint64_t Offset = OffsetBase + Layout.getBaseClassOffset(Base);
1069        classify(i->getType(), Offset, FieldLo, FieldHi);
1070        Lo = merge(Lo, FieldLo);
1071        Hi = merge(Hi, FieldHi);
1072        if (Lo == Memory || Hi == Memory)
1073          break;
1074      }
1075    }
1076
1077    // Classify the fields one at a time, merging the results.
1078    unsigned idx = 0;
1079    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1080           i != e; ++i, ++idx) {
1081      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1082      bool BitField = i->isBitField();
1083
1084      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1085      // fields, it has class MEMORY.
1086      //
1087      // Note, skip this test for bit-fields, see below.
1088      if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
1089        Lo = Memory;
1090        return;
1091      }
1092
1093      // Classify this field.
1094      //
1095      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
1096      // exceeds a single eightbyte, each is classified
1097      // separately. Each eightbyte gets initialized to class
1098      // NO_CLASS.
1099      Class FieldLo, FieldHi;
1100
1101      // Bit-fields require special handling, they do not force the
1102      // structure to be passed in memory even if unaligned, and
1103      // therefore they can straddle an eightbyte.
1104      if (BitField) {
1105        // Ignore padding bit-fields.
1106        if (i->isUnnamedBitfield())
1107          continue;
1108
1109        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
1110        uint64_t Size =
1111          i->getBitWidth()->EvaluateAsInt(getContext()).getZExtValue();
1112
1113        uint64_t EB_Lo = Offset / 64;
1114        uint64_t EB_Hi = (Offset + Size - 1) / 64;
1115        FieldLo = FieldHi = NoClass;
1116        if (EB_Lo) {
1117          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
1118          FieldLo = NoClass;
1119          FieldHi = Integer;
1120        } else {
1121          FieldLo = Integer;
1122          FieldHi = EB_Hi ? Integer : NoClass;
1123        }
1124      } else
1125        classify(i->getType(), Offset, FieldLo, FieldHi);
1126      Lo = merge(Lo, FieldLo);
1127      Hi = merge(Hi, FieldHi);
1128      if (Lo == Memory || Hi == Memory)
1129        break;
1130    }
1131
1132    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1133    //
1134    // (a) If one of the classes is MEMORY, the whole argument is
1135    // passed in memory.
1136    //
1137    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
1138
1139    // The first of these conditions is guaranteed by how we implement
1140    // the merge (just bail).
1141    //
1142    // The second condition occurs in the case of unions; for example
1143    // union { _Complex double; unsigned; }.
1144    if (Hi == Memory)
1145      Lo = Memory;
1146    if (Hi == SSEUp && Lo != SSE)
1147      Hi = SSE;
1148  }
1149}
1150
1151ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
1152  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1153  // place naturally.
1154  if (!isAggregateTypeForABI(Ty)) {
1155    // Treat an enum type as its underlying type.
1156    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1157      Ty = EnumTy->getDecl()->getIntegerType();
1158
1159    return (Ty->isPromotableIntegerType() ?
1160            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1161  }
1162
1163  return ABIArgInfo::getIndirect(0);
1164}
1165
1166ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
1167  // If this is a scalar LLVM value then assume LLVM will pass it in the right
1168  // place naturally.
1169  if (!isAggregateTypeForABI(Ty)) {
1170    // Treat an enum type as its underlying type.
1171    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1172      Ty = EnumTy->getDecl()->getIntegerType();
1173
1174    return (Ty->isPromotableIntegerType() ?
1175            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
1176  }
1177
1178  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
1179    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
1180
1181  // Compute the byval alignment. We trust the back-end to honor the
1182  // minimum ABI alignment for byval, to make cleaner IR.
1183  const unsigned MinABIAlign = 8;
1184  unsigned Align = getContext().getTypeAlign(Ty) / 8;
1185  if (Align > MinABIAlign)
1186    return ABIArgInfo::getIndirect(Align);
1187  return ABIArgInfo::getIndirect(0);
1188}
1189
1190/// Get16ByteVectorType - The ABI specifies that a value should be passed in an
1191/// full vector XMM register.  Pick an LLVM IR type that will be passed as a
1192/// vector register.
1193const llvm::Type *X86_64ABIInfo::Get16ByteVectorType(QualType Ty) const {
1194  const llvm::Type *IRType = CGT.ConvertTypeRecursive(Ty);
1195
1196  // Wrapper structs that just contain vectors are passed just like vectors,
1197  // strip them off if present.
1198  const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
1199  while (STy && STy->getNumElements() == 1) {
1200    IRType = STy->getElementType(0);
1201    STy = dyn_cast<llvm::StructType>(IRType);
1202  }
1203
1204  // If the preferred type is a 16-byte vector, prefer to pass it.
1205  if (const llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
1206    const llvm::Type *EltTy = VT->getElementType();
1207    if (VT->getBitWidth() == 128 &&
1208        (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
1209         EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
1210         EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
1211         EltTy->isIntegerTy(128)))
1212      return VT;
1213  }
1214
1215  return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
1216}
1217
1218/// BitsContainNoUserData - Return true if the specified [start,end) bit range
1219/// is known to either be off the end of the specified type or being in
1220/// alignment padding.  The user type specified is known to be at most 128 bits
1221/// in size, and have passed through X86_64ABIInfo::classify with a successful
1222/// classification that put one of the two halves in the INTEGER class.
1223///
1224/// It is conservatively correct to return false.
1225static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
1226                                  unsigned EndBit, ASTContext &Context) {
1227  // If the bytes being queried are off the end of the type, there is no user
1228  // data hiding here.  This handles analysis of builtins, vectors and other
1229  // types that don't contain interesting padding.
1230  unsigned TySize = (unsigned)Context.getTypeSize(Ty);
1231  if (TySize <= StartBit)
1232    return true;
1233
1234  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
1235    unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
1236    unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
1237
1238    // Check each element to see if the element overlaps with the queried range.
1239    for (unsigned i = 0; i != NumElts; ++i) {
1240      // If the element is after the span we care about, then we're done..
1241      unsigned EltOffset = i*EltSize;
1242      if (EltOffset >= EndBit) break;
1243
1244      unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
1245      if (!BitsContainNoUserData(AT->getElementType(), EltStart,
1246                                 EndBit-EltOffset, Context))
1247        return false;
1248    }
1249    // If it overlaps no elements, then it is safe to process as padding.
1250    return true;
1251  }
1252
1253  if (const RecordType *RT = Ty->getAs<RecordType>()) {
1254    const RecordDecl *RD = RT->getDecl();
1255    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1256
1257    // If this is a C++ record, check the bases first.
1258    if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1259      for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
1260           e = CXXRD->bases_end(); i != e; ++i) {
1261        assert(!i->isVirtual() && !i->getType()->isDependentType() &&
1262               "Unexpected base class!");
1263        const CXXRecordDecl *Base =
1264          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
1265
1266        // If the base is after the span we care about, ignore it.
1267        unsigned BaseOffset = (unsigned)Layout.getBaseClassOffset(Base);
1268        if (BaseOffset >= EndBit) continue;
1269
1270        unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
1271        if (!BitsContainNoUserData(i->getType(), BaseStart,
1272                                   EndBit-BaseOffset, Context))
1273          return false;
1274      }
1275    }
1276
1277    // Verify that no field has data that overlaps the region of interest.  Yes
1278    // this could be sped up a lot by being smarter about queried fields,
1279    // however we're only looking at structs up to 16 bytes, so we don't care
1280    // much.
1281    unsigned idx = 0;
1282    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1283         i != e; ++i, ++idx) {
1284      unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
1285
1286      // If we found a field after the region we care about, then we're done.
1287      if (FieldOffset >= EndBit) break;
1288
1289      unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
1290      if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
1291                                 Context))
1292        return false;
1293    }
1294
1295    // If nothing in this record overlapped the area of interest, then we're
1296    // clean.
1297    return true;
1298  }
1299
1300  return false;
1301}
1302
1303/// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
1304/// float member at the specified offset.  For example, {int,{float}} has a
1305/// float at offset 4.  It is conservatively correct for this routine to return
1306/// false.
1307static bool ContainsFloatAtOffset(const llvm::Type *IRType, unsigned IROffset,
1308                                  const llvm::TargetData &TD) {
1309  // Base case if we find a float.
1310  if (IROffset == 0 && IRType->isFloatTy())
1311    return true;
1312
1313  // If this is a struct, recurse into the field at the specified offset.
1314  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1315    const llvm::StructLayout *SL = TD.getStructLayout(STy);
1316    unsigned Elt = SL->getElementContainingOffset(IROffset);
1317    IROffset -= SL->getElementOffset(Elt);
1318    return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
1319  }
1320
1321  // If this is an array, recurse into the field at the specified offset.
1322  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1323    const llvm::Type *EltTy = ATy->getElementType();
1324    unsigned EltSize = TD.getTypeAllocSize(EltTy);
1325    IROffset -= IROffset/EltSize*EltSize;
1326    return ContainsFloatAtOffset(EltTy, IROffset, TD);
1327  }
1328
1329  return false;
1330}
1331
1332
1333/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
1334/// low 8 bytes of an XMM register, corresponding to the SSE class.
1335const llvm::Type *X86_64ABIInfo::
1336GetSSETypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1337                   QualType SourceTy, unsigned SourceOffset) const {
1338  // The only three choices we have are either double, <2 x float>, or float. We
1339  // pass as float if the last 4 bytes is just padding.  This happens for
1340  // structs that contain 3 floats.
1341  if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
1342                            SourceOffset*8+64, getContext()))
1343    return llvm::Type::getFloatTy(getVMContext());
1344
1345  // We want to pass as <2 x float> if the LLVM IR type contains a float at
1346  // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
1347  // case.
1348  if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
1349      ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
1350    return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
1351
1352  return llvm::Type::getDoubleTy(getVMContext());
1353}
1354
1355
1356/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
1357/// an 8-byte GPR.  This means that we either have a scalar or we are talking
1358/// about the high or low part of an up-to-16-byte struct.  This routine picks
1359/// the best LLVM IR type to represent this, which may be i64 or may be anything
1360/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
1361/// etc).
1362///
1363/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
1364/// the source type.  IROffset is an offset in bytes into the LLVM IR type that
1365/// the 8-byte value references.  PrefType may be null.
1366///
1367/// SourceTy is the source level type for the entire argument.  SourceOffset is
1368/// an offset into this that we're processing (which is always either 0 or 8).
1369///
1370const llvm::Type *X86_64ABIInfo::
1371GetINTEGERTypeAtOffset(const llvm::Type *IRType, unsigned IROffset,
1372                       QualType SourceTy, unsigned SourceOffset) const {
1373  // If we're dealing with an un-offset LLVM IR type, then it means that we're
1374  // returning an 8-byte unit starting with it.  See if we can safely use it.
1375  if (IROffset == 0) {
1376    // Pointers and int64's always fill the 8-byte unit.
1377    if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
1378      return IRType;
1379
1380    // If we have a 1/2/4-byte integer, we can use it only if the rest of the
1381    // goodness in the source type is just tail padding.  This is allowed to
1382    // kick in for struct {double,int} on the int, but not on
1383    // struct{double,int,int} because we wouldn't return the second int.  We
1384    // have to do this analysis on the source type because we can't depend on
1385    // unions being lowered a specific way etc.
1386    if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
1387        IRType->isIntegerTy(32)) {
1388      unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
1389
1390      if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
1391                                SourceOffset*8+64, getContext()))
1392        return IRType;
1393    }
1394  }
1395
1396  if (const llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
1397    // If this is a struct, recurse into the field at the specified offset.
1398    const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
1399    if (IROffset < SL->getSizeInBytes()) {
1400      unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
1401      IROffset -= SL->getElementOffset(FieldIdx);
1402
1403      return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
1404                                    SourceTy, SourceOffset);
1405    }
1406  }
1407
1408  if (const llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
1409    const llvm::Type *EltTy = ATy->getElementType();
1410    unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
1411    unsigned EltOffset = IROffset/EltSize*EltSize;
1412    return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
1413                                  SourceOffset);
1414  }
1415
1416  // Okay, we don't have any better idea of what to pass, so we pass this in an
1417  // integer register that isn't too big to fit the rest of the struct.
1418  unsigned TySizeInBytes =
1419    (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
1420
1421  assert(TySizeInBytes != SourceOffset && "Empty field?");
1422
1423  // It is always safe to classify this as an integer type up to i64 that
1424  // isn't larger than the structure.
1425  return llvm::IntegerType::get(getVMContext(),
1426                                std::min(TySizeInBytes-SourceOffset, 8U)*8);
1427}
1428
1429ABIArgInfo X86_64ABIInfo::
1430classifyReturnType(QualType RetTy) const {
1431  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
1432  // classification algorithm.
1433  X86_64ABIInfo::Class Lo, Hi;
1434  classify(RetTy, 0, Lo, Hi);
1435
1436  // Check some invariants.
1437  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1438  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1439
1440  const llvm::Type *ResType = 0;
1441  switch (Lo) {
1442  case NoClass:
1443    if (Hi == NoClass)
1444      return ABIArgInfo::getIgnore();
1445    // If the low part is just padding, it takes no register, leave ResType
1446    // null.
1447    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1448           "Unknown missing lo part");
1449    break;
1450
1451  case SSEUp:
1452  case X87Up:
1453    assert(0 && "Invalid classification for lo word.");
1454
1455    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
1456    // hidden argument.
1457  case Memory:
1458    return getIndirectReturnResult(RetTy);
1459
1460    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
1461    // available register of the sequence %rax, %rdx is used.
1462  case Integer:
1463    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0,
1464                                     RetTy, 0);
1465
1466    // If we have a sign or zero extended integer, make sure to return Extend
1467    // so that the parameter gets the right LLVM IR attributes.
1468    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1469      // Treat an enum type as its underlying type.
1470      if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1471        RetTy = EnumTy->getDecl()->getIntegerType();
1472
1473      if (RetTy->isIntegralOrEnumerationType() &&
1474          RetTy->isPromotableIntegerType())
1475        return ABIArgInfo::getExtend();
1476    }
1477    break;
1478
1479    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
1480    // available SSE register of the sequence %xmm0, %xmm1 is used.
1481  case SSE:
1482    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 0, RetTy, 0);
1483    break;
1484
1485    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
1486    // returned on the X87 stack in %st0 as 80-bit x87 number.
1487  case X87:
1488    ResType = llvm::Type::getX86_FP80Ty(getVMContext());
1489    break;
1490
1491    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
1492    // part of the value is returned in %st0 and the imaginary part in
1493    // %st1.
1494  case ComplexX87:
1495    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
1496    ResType = llvm::StructType::get(getVMContext(),
1497                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1498                                    llvm::Type::getX86_FP80Ty(getVMContext()),
1499                                    NULL);
1500    break;
1501  }
1502
1503  const llvm::Type *HighPart = 0;
1504  switch (Hi) {
1505    // Memory was handled previously and X87 should
1506    // never occur as a hi class.
1507  case Memory:
1508  case X87:
1509    assert(0 && "Invalid classification for hi word.");
1510
1511  case ComplexX87: // Previously handled.
1512  case NoClass:
1513    break;
1514
1515  case Integer:
1516    HighPart = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1517                                      8, RetTy, 8);
1518    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1519      return ABIArgInfo::getDirect(HighPart, 8);
1520    break;
1521  case SSE:
1522    HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy), 8, RetTy, 8);
1523    if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1524      return ABIArgInfo::getDirect(HighPart, 8);
1525    break;
1526
1527    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
1528    // is passed in the upper half of the last used SSE register.
1529    //
1530    // SSEUP should always be preceeded by SSE, just widen.
1531  case SSEUp:
1532    assert(Lo == SSE && "Unexpected SSEUp classification.");
1533    ResType = Get16ByteVectorType(RetTy);
1534    break;
1535
1536    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
1537    // returned together with the previous X87 value in %st0.
1538  case X87Up:
1539    // If X87Up is preceeded by X87, we don't need to do
1540    // anything. However, in some cases with unions it may not be
1541    // preceeded by X87. In such situations we follow gcc and pass the
1542    // extra bits in an SSE reg.
1543    if (Lo != X87) {
1544      HighPart = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(RetTy),
1545                                    8, RetTy, 8);
1546      if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
1547        return ABIArgInfo::getDirect(HighPart, 8);
1548    }
1549    break;
1550  }
1551
1552  // If a high part was specified, merge it together with the low part.  It is
1553  // known to pass in the high eightbyte of the result.
1554  if (HighPart)
1555    ResType = llvm::StructType::get(getVMContext(), ResType, HighPart, NULL);
1556
1557  return ABIArgInfo::getDirect(ResType);
1558}
1559
1560ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
1561                                               unsigned &neededSSE) const {
1562  X86_64ABIInfo::Class Lo, Hi;
1563  classify(Ty, 0, Lo, Hi);
1564
1565  // Check some invariants.
1566  // FIXME: Enforce these by construction.
1567  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
1568  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
1569
1570  neededInt = 0;
1571  neededSSE = 0;
1572  const llvm::Type *ResType = 0;
1573  switch (Lo) {
1574  case NoClass:
1575    if (Hi == NoClass)
1576      return ABIArgInfo::getIgnore();
1577    // If the low part is just padding, it takes no register, leave ResType
1578    // null.
1579    assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
1580           "Unknown missing lo part");
1581    break;
1582
1583    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
1584    // on the stack.
1585  case Memory:
1586
1587    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
1588    // COMPLEX_X87, it is passed in memory.
1589  case X87:
1590  case ComplexX87:
1591    return getIndirectResult(Ty);
1592
1593  case SSEUp:
1594  case X87Up:
1595    assert(0 && "Invalid classification for lo word.");
1596
1597    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
1598    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
1599    // and %r9 is used.
1600  case Integer:
1601    ++neededInt;
1602
1603    // Pick an 8-byte type based on the preferred type.
1604    ResType = GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1605
1606    // If we have a sign or zero extended integer, make sure to return Extend
1607    // so that the parameter gets the right LLVM IR attributes.
1608    if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
1609      // Treat an enum type as its underlying type.
1610      if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1611        Ty = EnumTy->getDecl()->getIntegerType();
1612
1613      if (Ty->isIntegralOrEnumerationType() &&
1614          Ty->isPromotableIntegerType())
1615        return ABIArgInfo::getExtend();
1616    }
1617
1618    break;
1619
1620    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
1621    // available SSE register is used, the registers are taken in the
1622    // order from %xmm0 to %xmm7.
1623  case SSE:
1624    ++neededSSE;
1625    ResType = GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 0, Ty, 0);
1626    break;
1627  }
1628
1629  switch (Hi) {
1630    // Memory was handled previously, ComplexX87 and X87 should
1631    // never occur as hi classes, and X87Up must be preceed by X87,
1632    // which is passed in memory.
1633  case Memory:
1634  case X87:
1635  case ComplexX87:
1636    assert(0 && "Invalid classification for hi word.");
1637    break;
1638
1639  case NoClass: break;
1640
1641  case Integer: {
1642    ++neededInt;
1643    // Pick an 8-byte type based on the preferred type.
1644    const llvm::Type *HiType =
1645      GetINTEGERTypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1646
1647    if (Lo == NoClass)  // Pass HiType at offset 8 in memory.
1648      return ABIArgInfo::getDirect(HiType, 8);
1649
1650    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1651    break;
1652  }
1653
1654    // X87Up generally doesn't occur here (long double is passed in
1655    // memory), except in situations involving unions.
1656  case X87Up:
1657  case SSE: {
1658    const llvm::Type *HiType =
1659      GetSSETypeAtOffset(CGT.ConvertTypeRecursive(Ty), 8, Ty, 8);
1660
1661    if (Lo == NoClass)  // Pass HiType at offset 8 in memory.
1662      return ABIArgInfo::getDirect(HiType, 8);
1663
1664    ResType = llvm::StructType::get(getVMContext(), ResType, HiType, NULL);
1665    ++neededSSE;
1666    break;
1667  }
1668
1669    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
1670    // eightbyte is passed in the upper half of the last used SSE
1671    // register.  This only happens when 128-bit vectors are passed.
1672  case SSEUp:
1673    assert(Lo == SSE && "Unexpected SSEUp classification");
1674    ResType = Get16ByteVectorType(Ty);
1675    break;
1676  }
1677
1678  return ABIArgInfo::getDirect(ResType);
1679}
1680
1681void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1682
1683  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1684
1685  // Keep track of the number of assigned registers.
1686  unsigned freeIntRegs = 6, freeSSERegs = 8;
1687
1688  // If the return value is indirect, then the hidden argument is consuming one
1689  // integer register.
1690  if (FI.getReturnInfo().isIndirect())
1691    --freeIntRegs;
1692
1693  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
1694  // get assigned (in left-to-right order) for passing as follows...
1695  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1696       it != ie; ++it) {
1697    unsigned neededInt, neededSSE;
1698    it->info = classifyArgumentType(it->type, neededInt, neededSSE);
1699
1700    // AMD64-ABI 3.2.3p3: If there are no registers available for any
1701    // eightbyte of an argument, the whole argument is passed on the
1702    // stack. If registers have already been assigned for some
1703    // eightbytes of such an argument, the assignments get reverted.
1704    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
1705      freeIntRegs -= neededInt;
1706      freeSSERegs -= neededSSE;
1707    } else {
1708      it->info = getIndirectResult(it->type);
1709    }
1710  }
1711}
1712
1713static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
1714                                        QualType Ty,
1715                                        CodeGenFunction &CGF) {
1716  llvm::Value *overflow_arg_area_p =
1717    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
1718  llvm::Value *overflow_arg_area =
1719    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
1720
1721  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
1722  // byte boundary if alignment needed by type exceeds 8 byte boundary.
1723  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
1724  if (Align > 8) {
1725    // Note that we follow the ABI & gcc here, even though the type
1726    // could in theory have an alignment greater than 16. This case
1727    // shouldn't ever matter in practice.
1728
1729    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
1730    llvm::Value *Offset =
1731      llvm::ConstantInt::get(CGF.Int32Ty, 15);
1732    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
1733    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
1734                                                    CGF.Int64Ty);
1735    llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, ~15LL);
1736    overflow_arg_area =
1737      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
1738                                 overflow_arg_area->getType(),
1739                                 "overflow_arg_area.align");
1740  }
1741
1742  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
1743  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1744  llvm::Value *Res =
1745    CGF.Builder.CreateBitCast(overflow_arg_area,
1746                              llvm::PointerType::getUnqual(LTy));
1747
1748  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
1749  // l->overflow_arg_area + sizeof(type).
1750  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
1751  // an 8 byte boundary.
1752
1753  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
1754  llvm::Value *Offset =
1755      llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
1756  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
1757                                            "overflow_arg_area.next");
1758  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
1759
1760  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
1761  return Res;
1762}
1763
1764llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1765                                      CodeGenFunction &CGF) const {
1766  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
1767
1768  // Assume that va_list type is correct; should be pointer to LLVM type:
1769  // struct {
1770  //   i32 gp_offset;
1771  //   i32 fp_offset;
1772  //   i8* overflow_arg_area;
1773  //   i8* reg_save_area;
1774  // };
1775  unsigned neededInt, neededSSE;
1776
1777  Ty = CGF.getContext().getCanonicalType(Ty);
1778  ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
1779
1780  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
1781  // in the registers. If not go to step 7.
1782  if (!neededInt && !neededSSE)
1783    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1784
1785  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
1786  // general purpose registers needed to pass type and num_fp to hold
1787  // the number of floating point registers needed.
1788
1789  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
1790  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
1791  // l->fp_offset > 304 - num_fp * 16 go to step 7.
1792  //
1793  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
1794  // register save space).
1795
1796  llvm::Value *InRegs = 0;
1797  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
1798  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
1799  if (neededInt) {
1800    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
1801    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
1802    InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
1803    InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
1804  }
1805
1806  if (neededSSE) {
1807    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
1808    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
1809    llvm::Value *FitsInFP =
1810      llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
1811    FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
1812    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
1813  }
1814
1815  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
1816  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
1817  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
1818  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
1819
1820  // Emit code to load the value if it was passed in registers.
1821
1822  CGF.EmitBlock(InRegBlock);
1823
1824  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
1825  // an offset of l->gp_offset and/or l->fp_offset. This may require
1826  // copying to a temporary location in case the parameter is passed
1827  // in different register classes or requires an alignment greater
1828  // than 8 for general purpose registers and 16 for XMM registers.
1829  //
1830  // FIXME: This really results in shameful code when we end up needing to
1831  // collect arguments from different places; often what should result in a
1832  // simple assembling of a structure from scattered addresses has many more
1833  // loads than necessary. Can we clean this up?
1834  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
1835  llvm::Value *RegAddr =
1836    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
1837                           "reg_save_area");
1838  if (neededInt && neededSSE) {
1839    // FIXME: Cleanup.
1840    assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
1841    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
1842    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
1843    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
1844    const llvm::Type *TyLo = ST->getElementType(0);
1845    const llvm::Type *TyHi = ST->getElementType(1);
1846    assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
1847           "Unexpected ABI info for mixed regs");
1848    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
1849    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
1850    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1851    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1852    llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
1853    llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
1854    llvm::Value *V =
1855      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
1856    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1857    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
1858    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1859
1860    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1861                                        llvm::PointerType::getUnqual(LTy));
1862  } else if (neededInt) {
1863    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
1864    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1865                                        llvm::PointerType::getUnqual(LTy));
1866  } else if (neededSSE == 1) {
1867    RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1868    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
1869                                        llvm::PointerType::getUnqual(LTy));
1870  } else {
1871    assert(neededSSE == 2 && "Invalid number of needed registers!");
1872    // SSE registers are spaced 16 bytes apart in the register save
1873    // area, we need to collect the two eightbytes together.
1874    llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
1875    llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
1876    const llvm::Type *DoubleTy = llvm::Type::getDoubleTy(VMContext);
1877    const llvm::Type *DblPtrTy =
1878      llvm::PointerType::getUnqual(DoubleTy);
1879    const llvm::StructType *ST = llvm::StructType::get(VMContext, DoubleTy,
1880                                                       DoubleTy, NULL);
1881    llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
1882    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
1883                                                         DblPtrTy));
1884    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
1885    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
1886                                                         DblPtrTy));
1887    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
1888    RegAddr = CGF.Builder.CreateBitCast(Tmp,
1889                                        llvm::PointerType::getUnqual(LTy));
1890  }
1891
1892  // AMD64-ABI 3.5.7p5: Step 5. Set:
1893  // l->gp_offset = l->gp_offset + num_gp * 8
1894  // l->fp_offset = l->fp_offset + num_fp * 16.
1895  if (neededInt) {
1896    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
1897    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
1898                            gp_offset_p);
1899  }
1900  if (neededSSE) {
1901    llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
1902    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
1903                            fp_offset_p);
1904  }
1905  CGF.EmitBranch(ContBlock);
1906
1907  // Emit code to load the value if it was passed in memory.
1908
1909  CGF.EmitBlock(InMemBlock);
1910  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
1911
1912  // Return the appropriate result.
1913
1914  CGF.EmitBlock(ContBlock);
1915  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
1916                                                 "vaarg.addr");
1917  ResAddr->reserveOperandSpace(2);
1918  ResAddr->addIncoming(RegAddr, InRegBlock);
1919  ResAddr->addIncoming(MemAddr, InMemBlock);
1920  return ResAddr;
1921}
1922
1923llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1924                                      CodeGenFunction &CGF) const {
1925  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1926  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1927
1928  CGBuilderTy &Builder = CGF.Builder;
1929  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1930                                                       "ap");
1931  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
1932  llvm::Type *PTy =
1933    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
1934  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
1935
1936  uint64_t Offset =
1937    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
1938  llvm::Value *NextAddr =
1939    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
1940                      "ap.next");
1941  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
1942
1943  return AddrTyped;
1944}
1945
1946//===----------------------------------------------------------------------===//
1947// PIC16 ABI Implementation
1948//===----------------------------------------------------------------------===//
1949
1950namespace {
1951
1952class PIC16ABIInfo : public ABIInfo {
1953public:
1954  PIC16ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
1955
1956  ABIArgInfo classifyReturnType(QualType RetTy) const;
1957
1958  ABIArgInfo classifyArgumentType(QualType RetTy) const;
1959
1960  virtual void computeInfo(CGFunctionInfo &FI) const {
1961    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
1962    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
1963         it != ie; ++it)
1964      it->info = classifyArgumentType(it->type);
1965  }
1966
1967  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1968                                 CodeGenFunction &CGF) const;
1969};
1970
1971class PIC16TargetCodeGenInfo : public TargetCodeGenInfo {
1972public:
1973  PIC16TargetCodeGenInfo(CodeGenTypes &CGT)
1974    : TargetCodeGenInfo(new PIC16ABIInfo(CGT)) {}
1975};
1976
1977}
1978
1979ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy) const {
1980  if (RetTy->isVoidType()) {
1981    return ABIArgInfo::getIgnore();
1982  } else {
1983    return ABIArgInfo::getDirect();
1984  }
1985}
1986
1987ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty) const {
1988  return ABIArgInfo::getDirect();
1989}
1990
1991llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
1992                                     CodeGenFunction &CGF) const {
1993  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
1994  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
1995
1996  CGBuilderTy &Builder = CGF.Builder;
1997  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
1998                                                       "ap");
1999  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2000  llvm::Type *PTy =
2001    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2002  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2003
2004  uint64_t Offset = CGF.getContext().getTypeSize(Ty) / 8;
2005
2006  llvm::Value *NextAddr =
2007    Builder.CreateGEP(Addr, llvm::ConstantInt::get(
2008                          llvm::Type::getInt32Ty(CGF.getLLVMContext()), Offset),
2009                      "ap.next");
2010  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2011
2012  return AddrTyped;
2013}
2014
2015
2016// PowerPC-32
2017
2018namespace {
2019class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
2020public:
2021  PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
2022
2023  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2024    // This is recovered from gcc output.
2025    return 1; // r1 is the dedicated stack pointer
2026  }
2027
2028  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2029                               llvm::Value *Address) const;
2030};
2031
2032}
2033
2034bool
2035PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2036                                                llvm::Value *Address) const {
2037  // This is calculated from the LLVM and GCC tables and verified
2038  // against gcc output.  AFAIK all ABIs use the same encoding.
2039
2040  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2041  llvm::LLVMContext &Context = CGF.getLLVMContext();
2042
2043  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2044  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2045  llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
2046  llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
2047
2048  // 0-31: r0-31, the 4-byte general-purpose registers
2049  AssignToArrayRange(Builder, Address, Four8, 0, 31);
2050
2051  // 32-63: fp0-31, the 8-byte floating-point registers
2052  AssignToArrayRange(Builder, Address, Eight8, 32, 63);
2053
2054  // 64-76 are various 4-byte special-purpose registers:
2055  // 64: mq
2056  // 65: lr
2057  // 66: ctr
2058  // 67: ap
2059  // 68-75 cr0-7
2060  // 76: xer
2061  AssignToArrayRange(Builder, Address, Four8, 64, 76);
2062
2063  // 77-108: v0-31, the 16-byte vector registers
2064  AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
2065
2066  // 109: vrsave
2067  // 110: vscr
2068  // 111: spe_acc
2069  // 112: spefscr
2070  // 113: sfp
2071  AssignToArrayRange(Builder, Address, Four8, 109, 113);
2072
2073  return false;
2074}
2075
2076
2077//===----------------------------------------------------------------------===//
2078// ARM ABI Implementation
2079//===----------------------------------------------------------------------===//
2080
2081namespace {
2082
2083class ARMABIInfo : public ABIInfo {
2084public:
2085  enum ABIKind {
2086    APCS = 0,
2087    AAPCS = 1,
2088    AAPCS_VFP
2089  };
2090
2091private:
2092  ABIKind Kind;
2093
2094public:
2095  ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
2096
2097private:
2098  ABIKind getABIKind() const { return Kind; }
2099
2100  ABIArgInfo classifyReturnType(QualType RetTy) const;
2101  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2102
2103  virtual void computeInfo(CGFunctionInfo &FI) const;
2104
2105  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2106                                 CodeGenFunction &CGF) const;
2107};
2108
2109class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
2110public:
2111  ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
2112    :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
2113
2114  int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
2115    return 13;
2116  }
2117};
2118
2119}
2120
2121void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
2122  FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2123  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2124       it != ie; ++it)
2125    it->info = classifyArgumentType(it->type);
2126
2127  const llvm::Triple &Triple(getContext().Target.getTriple());
2128  llvm::CallingConv::ID DefaultCC;
2129  if (Triple.getEnvironmentName() == "gnueabi" ||
2130      Triple.getEnvironmentName() == "eabi")
2131    DefaultCC = llvm::CallingConv::ARM_AAPCS;
2132  else
2133    DefaultCC = llvm::CallingConv::ARM_APCS;
2134
2135  switch (getABIKind()) {
2136  case APCS:
2137    if (DefaultCC != llvm::CallingConv::ARM_APCS)
2138      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
2139    break;
2140
2141  case AAPCS:
2142    if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
2143      FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
2144    break;
2145
2146  case AAPCS_VFP:
2147    FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
2148    break;
2149  }
2150}
2151
2152ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
2153  if (!isAggregateTypeForABI(Ty)) {
2154    // Treat an enum type as its underlying type.
2155    if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2156      Ty = EnumTy->getDecl()->getIntegerType();
2157
2158    return (Ty->isPromotableIntegerType() ?
2159            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2160  }
2161
2162  // Ignore empty records.
2163  if (isEmptyRecord(getContext(), Ty, true))
2164    return ABIArgInfo::getIgnore();
2165
2166  // Structures with either a non-trivial destructor or a non-trivial
2167  // copy constructor are always indirect.
2168  if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
2169    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2170
2171  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
2172  // backend doesn't support byval.
2173  // FIXME: This doesn't handle alignment > 64 bits.
2174  const llvm::Type* ElemTy;
2175  unsigned SizeRegs;
2176  if (getContext().getTypeAlign(Ty) > 32) {
2177    ElemTy = llvm::Type::getInt64Ty(getVMContext());
2178    SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
2179  } else {
2180    ElemTy = llvm::Type::getInt32Ty(getVMContext());
2181    SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
2182  }
2183  std::vector<const llvm::Type*> LLVMFields;
2184  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
2185  const llvm::Type* STy = llvm::StructType::get(getVMContext(), LLVMFields,
2186                                                true);
2187  return ABIArgInfo::getDirect(STy);
2188}
2189
2190static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
2191                              llvm::LLVMContext &VMContext) {
2192  // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
2193  // is called integer-like if its size is less than or equal to one word, and
2194  // the offset of each of its addressable sub-fields is zero.
2195
2196  uint64_t Size = Context.getTypeSize(Ty);
2197
2198  // Check that the type fits in a word.
2199  if (Size > 32)
2200    return false;
2201
2202  // FIXME: Handle vector types!
2203  if (Ty->isVectorType())
2204    return false;
2205
2206  // Float types are never treated as "integer like".
2207  if (Ty->isRealFloatingType())
2208    return false;
2209
2210  // If this is a builtin or pointer type then it is ok.
2211  if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
2212    return true;
2213
2214  // Small complex integer types are "integer like".
2215  if (const ComplexType *CT = Ty->getAs<ComplexType>())
2216    return isIntegerLikeType(CT->getElementType(), Context, VMContext);
2217
2218  // Single element and zero sized arrays should be allowed, by the definition
2219  // above, but they are not.
2220
2221  // Otherwise, it must be a record type.
2222  const RecordType *RT = Ty->getAs<RecordType>();
2223  if (!RT) return false;
2224
2225  // Ignore records with flexible arrays.
2226  const RecordDecl *RD = RT->getDecl();
2227  if (RD->hasFlexibleArrayMember())
2228    return false;
2229
2230  // Check that all sub-fields are at offset 0, and are themselves "integer
2231  // like".
2232  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2233
2234  bool HadField = false;
2235  unsigned idx = 0;
2236  for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2237       i != e; ++i, ++idx) {
2238    const FieldDecl *FD = *i;
2239
2240    // Bit-fields are not addressable, we only need to verify they are "integer
2241    // like". We still have to disallow a subsequent non-bitfield, for example:
2242    //   struct { int : 0; int x }
2243    // is non-integer like according to gcc.
2244    if (FD->isBitField()) {
2245      if (!RD->isUnion())
2246        HadField = true;
2247
2248      if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2249        return false;
2250
2251      continue;
2252    }
2253
2254    // Check if this field is at offset 0.
2255    if (Layout.getFieldOffset(idx) != 0)
2256      return false;
2257
2258    if (!isIntegerLikeType(FD->getType(), Context, VMContext))
2259      return false;
2260
2261    // Only allow at most one field in a structure. This doesn't match the
2262    // wording above, but follows gcc in situations with a field following an
2263    // empty structure.
2264    if (!RD->isUnion()) {
2265      if (HadField)
2266        return false;
2267
2268      HadField = true;
2269    }
2270  }
2271
2272  return true;
2273}
2274
2275ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
2276  if (RetTy->isVoidType())
2277    return ABIArgInfo::getIgnore();
2278
2279  if (!isAggregateTypeForABI(RetTy)) {
2280    // Treat an enum type as its underlying type.
2281    if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2282      RetTy = EnumTy->getDecl()->getIntegerType();
2283
2284    return (RetTy->isPromotableIntegerType() ?
2285            ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2286  }
2287
2288  // Structures with either a non-trivial destructor or a non-trivial
2289  // copy constructor are always indirect.
2290  if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
2291    return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
2292
2293  // Are we following APCS?
2294  if (getABIKind() == APCS) {
2295    if (isEmptyRecord(getContext(), RetTy, false))
2296      return ABIArgInfo::getIgnore();
2297
2298    // Complex types are all returned as packed integers.
2299    //
2300    // FIXME: Consider using 2 x vector types if the back end handles them
2301    // correctly.
2302    if (RetTy->isAnyComplexType())
2303      return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2304                                              getContext().getTypeSize(RetTy)));
2305
2306    // Integer like structures are returned in r0.
2307    if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
2308      // Return in the smallest viable integer type.
2309      uint64_t Size = getContext().getTypeSize(RetTy);
2310      if (Size <= 8)
2311        return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2312      if (Size <= 16)
2313        return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2314      return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2315    }
2316
2317    // Otherwise return in memory.
2318    return ABIArgInfo::getIndirect(0);
2319  }
2320
2321  // Otherwise this is an AAPCS variant.
2322
2323  if (isEmptyRecord(getContext(), RetTy, true))
2324    return ABIArgInfo::getIgnore();
2325
2326  // Aggregates <= 4 bytes are returned in r0; other aggregates
2327  // are returned indirectly.
2328  uint64_t Size = getContext().getTypeSize(RetTy);
2329  if (Size <= 32) {
2330    // Return in the smallest viable integer type.
2331    if (Size <= 8)
2332      return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
2333    if (Size <= 16)
2334      return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
2335    return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
2336  }
2337
2338  return ABIArgInfo::getIndirect(0);
2339}
2340
2341llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2342                                   CodeGenFunction &CGF) const {
2343  // FIXME: Need to handle alignment
2344  const llvm::Type *BP = llvm::Type::getInt8PtrTy(CGF.getLLVMContext());
2345  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
2346
2347  CGBuilderTy &Builder = CGF.Builder;
2348  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
2349                                                       "ap");
2350  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
2351  llvm::Type *PTy =
2352    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
2353  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
2354
2355  uint64_t Offset =
2356    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
2357  llvm::Value *NextAddr =
2358    Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
2359                      "ap.next");
2360  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
2361
2362  return AddrTyped;
2363}
2364
2365ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
2366  if (RetTy->isVoidType())
2367    return ABIArgInfo::getIgnore();
2368
2369  if (isAggregateTypeForABI(RetTy))
2370    return ABIArgInfo::getIndirect(0);
2371
2372  // Treat an enum type as its underlying type.
2373  if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2374    RetTy = EnumTy->getDecl()->getIntegerType();
2375
2376  return (RetTy->isPromotableIntegerType() ?
2377          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2378}
2379
2380//===----------------------------------------------------------------------===//
2381// SystemZ ABI Implementation
2382//===----------------------------------------------------------------------===//
2383
2384namespace {
2385
2386class SystemZABIInfo : public ABIInfo {
2387public:
2388  SystemZABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
2389
2390  bool isPromotableIntegerType(QualType Ty) const;
2391
2392  ABIArgInfo classifyReturnType(QualType RetTy) const;
2393  ABIArgInfo classifyArgumentType(QualType RetTy) const;
2394
2395  virtual void computeInfo(CGFunctionInfo &FI) const {
2396    FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2397    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2398         it != ie; ++it)
2399      it->info = classifyArgumentType(it->type);
2400  }
2401
2402  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2403                                 CodeGenFunction &CGF) const;
2404};
2405
2406class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
2407public:
2408  SystemZTargetCodeGenInfo(CodeGenTypes &CGT)
2409    : TargetCodeGenInfo(new SystemZABIInfo(CGT)) {}
2410};
2411
2412}
2413
2414bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const {
2415  // SystemZ ABI requires all 8, 16 and 32 bit quantities to be extended.
2416  if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
2417    switch (BT->getKind()) {
2418    case BuiltinType::Bool:
2419    case BuiltinType::Char_S:
2420    case BuiltinType::Char_U:
2421    case BuiltinType::SChar:
2422    case BuiltinType::UChar:
2423    case BuiltinType::Short:
2424    case BuiltinType::UShort:
2425    case BuiltinType::Int:
2426    case BuiltinType::UInt:
2427      return true;
2428    default:
2429      return false;
2430    }
2431  return false;
2432}
2433
2434llvm::Value *SystemZABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
2435                                       CodeGenFunction &CGF) const {
2436  // FIXME: Implement
2437  return 0;
2438}
2439
2440
2441ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
2442  if (RetTy->isVoidType())
2443    return ABIArgInfo::getIgnore();
2444  if (isAggregateTypeForABI(RetTy))
2445    return ABIArgInfo::getIndirect(0);
2446
2447  return (isPromotableIntegerType(RetTy) ?
2448          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2449}
2450
2451ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
2452  if (isAggregateTypeForABI(Ty))
2453    return ABIArgInfo::getIndirect(0);
2454
2455  return (isPromotableIntegerType(Ty) ?
2456          ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
2457}
2458
2459//===----------------------------------------------------------------------===//
2460// MSP430 ABI Implementation
2461//===----------------------------------------------------------------------===//
2462
2463namespace {
2464
2465class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
2466public:
2467  MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
2468    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2469  void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2470                           CodeGen::CodeGenModule &M) const;
2471};
2472
2473}
2474
2475void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
2476                                                  llvm::GlobalValue *GV,
2477                                             CodeGen::CodeGenModule &M) const {
2478  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2479    if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
2480      // Handle 'interrupt' attribute:
2481      llvm::Function *F = cast<llvm::Function>(GV);
2482
2483      // Step 1: Set ISR calling convention.
2484      F->setCallingConv(llvm::CallingConv::MSP430_INTR);
2485
2486      // Step 2: Add attributes goodness.
2487      F->addFnAttr(llvm::Attribute::NoInline);
2488
2489      // Step 3: Emit ISR vector alias.
2490      unsigned Num = attr->getNumber() + 0xffe0;
2491      new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
2492                            "vector_" +
2493                            llvm::LowercaseString(llvm::utohexstr(Num)),
2494                            GV, &M.getModule());
2495    }
2496  }
2497}
2498
2499//===----------------------------------------------------------------------===//
2500// MIPS ABI Implementation.  This works for both little-endian and
2501// big-endian variants.
2502//===----------------------------------------------------------------------===//
2503
2504namespace {
2505class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
2506public:
2507  MIPSTargetCodeGenInfo(CodeGenTypes &CGT)
2508    : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
2509
2510  int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
2511    return 29;
2512  }
2513
2514  bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2515                               llvm::Value *Address) const;
2516};
2517}
2518
2519bool
2520MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2521                                               llvm::Value *Address) const {
2522  // This information comes from gcc's implementation, which seems to
2523  // as canonical as it gets.
2524
2525  CodeGen::CGBuilderTy &Builder = CGF.Builder;
2526  llvm::LLVMContext &Context = CGF.getLLVMContext();
2527
2528  // Everything on MIPS is 4 bytes.  Double-precision FP registers
2529  // are aliased to pairs of single-precision FP registers.
2530  const llvm::IntegerType *i8 = llvm::Type::getInt8Ty(Context);
2531  llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
2532
2533  // 0-31 are the general purpose registers, $0 - $31.
2534  // 32-63 are the floating-point registers, $f0 - $f31.
2535  // 64 and 65 are the multiply/divide registers, $hi and $lo.
2536  // 66 is the (notional, I think) register for signal-handler return.
2537  AssignToArrayRange(Builder, Address, Four8, 0, 65);
2538
2539  // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
2540  // They are one bit wide and ignored here.
2541
2542  // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
2543  // (coprocessor 1 is the FP unit)
2544  // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
2545  // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
2546  // 176-181 are the DSP accumulator registers.
2547  AssignToArrayRange(Builder, Address, Four8, 80, 181);
2548
2549  return false;
2550}
2551
2552
2553const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
2554  if (TheTargetCodeGenInfo)
2555    return *TheTargetCodeGenInfo;
2556
2557  // For now we just cache the TargetCodeGenInfo in CodeGenModule and don't
2558  // free it.
2559
2560  const llvm::Triple &Triple = getContext().Target.getTriple();
2561  switch (Triple.getArch()) {
2562  default:
2563    return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
2564
2565  case llvm::Triple::mips:
2566  case llvm::Triple::mipsel:
2567    return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types));
2568
2569  case llvm::Triple::arm:
2570  case llvm::Triple::thumb:
2571    // FIXME: We want to know the float calling convention as well.
2572    if (strcmp(getContext().Target.getABI(), "apcs-gnu") == 0)
2573      return *(TheTargetCodeGenInfo =
2574               new ARMTargetCodeGenInfo(Types, ARMABIInfo::APCS));
2575
2576    return *(TheTargetCodeGenInfo =
2577             new ARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS));
2578
2579  case llvm::Triple::pic16:
2580    return *(TheTargetCodeGenInfo = new PIC16TargetCodeGenInfo(Types));
2581
2582  case llvm::Triple::ppc:
2583    return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
2584
2585  case llvm::Triple::systemz:
2586    return *(TheTargetCodeGenInfo = new SystemZTargetCodeGenInfo(Types));
2587
2588  case llvm::Triple::msp430:
2589    return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
2590
2591  case llvm::Triple::x86:
2592    switch (Triple.getOS()) {
2593    case llvm::Triple::Darwin:
2594      return *(TheTargetCodeGenInfo =
2595               new X86_32TargetCodeGenInfo(Types, true, true));
2596    case llvm::Triple::Cygwin:
2597    case llvm::Triple::MinGW32:
2598    case llvm::Triple::AuroraUX:
2599    case llvm::Triple::DragonFly:
2600    case llvm::Triple::FreeBSD:
2601    case llvm::Triple::OpenBSD:
2602      return *(TheTargetCodeGenInfo =
2603               new X86_32TargetCodeGenInfo(Types, false, true));
2604
2605    default:
2606      return *(TheTargetCodeGenInfo =
2607               new X86_32TargetCodeGenInfo(Types, false, false));
2608    }
2609
2610  case llvm::Triple::x86_64:
2611    switch (Triple.getOS()) {
2612    case llvm::Triple::Win32:
2613    case llvm::Triple::MinGW64:
2614    case llvm::Triple::Cygwin:
2615      return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
2616    default:
2617      return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types));
2618    }
2619  }
2620}
2621